
1 Elvis 2.1 Tags 1

14. Tags

 Tags provide a fast way to locate specific points in a collection of
 files. This is done by storing a list of tag names, and their
 corresponding locations, in a file named "tags". This is
 particularly handy for programmers who are working on large
 projects.

 Traditionally, each tag has three attributes: its name (generally
 the name of a function, or some other symbol from your program), the
 name of the source code file in which that function is defined, and
 the address of its line within that file. The tag name is used for
 selecting a particular tag.

 Elvis supports more a more sophisticated model. The extensions are
 intended to allow elvis to handle C++, and similar languages, which
 allow different functions to have the same name. Since tag names are
 derived from function names, the tag name alone isn’t sufficient to
 select a single tag. Elvis permits tags to have other attributes,
 which help it select the correct tag.

 All of this is described in more detail below, in the following
 sections:
 * 14.1 The tags file
 * 14.2 Creating a tags file
 * 14.3 Reading the tags file
 * 14.4 Using tags with elvis
 * 14.5 The TAGPATH
 * 14.6 Enhanced tags
 * 14.5 Restrictions and hints
 * 14.6 History
 * 14.7 Browsing
 * 14.8 The tagprg option

 14.1 The tags file

 Tags are stored in a file named "tags". It is a plain ASCII text
 file. Each line of the file contains the attributes of a single tag.
 A tab character is used to delimit the attributes. The traditional
 tags file contains three attributes for each tag.

 The first attribute is the tag’s name. It is typically the name of a
 function, variable, or data type −− a name that you could guess by
 looking at the source code of your project. Traditionally, this
 attribute has been the sole means for selecting a tag, so tag names
 should ideally be unique. The lines of the tags file are sorted by
 this attribute.

 The second attribute is the name of source code file in which the
 corresponding function (or whatever) is defined. If it isn’t an
 absolute file name (relative to the root directory) then it should
 be relative to the directory where the tags file resides −− which
 isn’t necessarily the current working directory.

 The third attribute is the address of the line within that file,

2 Elvis 2.1 Tags 2

 where the function (or whatever) is defined. This address can either
 be a line number, or a nomagic style of regular expression. If it is
 a regular expression, it must be bound by ’/’ or ’?’ characters, and
 it may contain tab characters. Typically, the entire source line is
 encoded as a regular expression by inserting "/^" onto the front,
 appending "$/" onto the end, and inserting a backslash character
 before each / or \ character within the line.

 Elvis actually supports a superset of this format (by permitting
 extra attributes) but we’ll start with the basics.

 14.2 Creating a tags file

 Usually the tags file is created automatically by a program such as
 ctags. It reads a collection of C or C++ source files, and generates
 tags for each global function. It can also generate tags for global
 types and variables, or for static instances of any of these.

 You will usually invoke ctags on all source files in the current
 directory via a command similar to this:

 ctags *.c *.h

 The ctags program can also generate other types of output. Be sure
 to look at its manual page to see the options.

 14.3 Reading the tags file

 Tags exist mostly for use with elvis, but for the sake of simplicity
 we’ll start with the ref program.

 ref selects tags just like elvis, and then displays information
 about them. The simplest way to use it is to pass it the name of the
 tag you’re interested in. The following example would display the
 definition of the "main" function:

 ref main

 There are some other options. One of the most useful is −a which
 instructs ref to display all selected tags. (Without −a it just
 displays one of the selected tags.) For example, if your current
 directory contains many programs, each with its own "main" function,
 then this would display the headers for all of them:

 ref −a main

 You can also use ref to generate an HTML document listing all tags,
 or just the ones that match some criteria. Here’s an example which
 lists all tags as an HTML document:

 ref −ha >tags.html

 ref uses the same syntax for restrictions and sorting hints as
 elvis’ :tag command. This syntax will be described later. You should

3 Elvis 2.1 Tags 3

 check the manual page for a list of options.

 14.4 Using tags with elvis

 When starting elvis, you can use the −ttagname flag to start with
 the cursor at the definition point of a given function in your
 program’s source code. It automatically performs the following
 steps:
 1) Scan the tags file for a tag named tagname.
 2) Load the file indicated by the tag’s second attribute.
 3) Search for the line indicated by the tag’s third attribute.
 4) Within that line, search for the tag name.
 5) Move the cursor there.

 Once elvis is running, there are many commands available which deal
 with tags. The most essential is :tag tagname. It does all the same
 steps as the −ttagname command−line flag, plus it saves the cursor’s
 original position on a stack. Later, you can use :pop to bring the
 cursor back to its original position.

 When elvis is in visual command mode, you can move the cursor onto a
 word and hit ^] to perform a :tag search on that current word, or ^T
 to perform a :pop command.

 If you have a mouse, then you can use the left button to
 double−click on a word in the text, to have elvis perform a :tag
 search on that word. Double−clicking the right button anywhere in
 the text will perform a :pop command.

 The uppercase K command runs program on the word at the cursor
 position. The program is chosen by setting the keywordprg option. By
 default, it runs the ref program, so the word’s definition is
 displayed temporarily at the bottom of the screen.

 14.5 The TAGPATH

 You can have tags files in several directories, and configure ref
 and elvis to search the appropriate ones by setting the TAGPATH
 environment variable. The value of TAGPATH is a list of directories
 or tags files, delimited by either a ’:’ character (for UNIX) or a
 ’;’ character (for most other operating systems, including
 Microsoft’s).

 In a typical large project, you will have some directories which
 contain library functions, and some which contain the code for
 specific programs. With this arrangement, you would set TAGPATH to
 search the current directory followed by each of the library
 directories. Something like this...

 setenv TAGPATH=tags:/usr/src/libproj/tags:/usr/src/libio/tags

 The exact syntax depends on your command interpreter. And of course
 the exact directory names will depend on your project.

4 Elvis 2.1 Tags 4

 When your current directory is one which contains the source code
 for some program, and you do a search for (as an example)
 "showitem", elvis would look for it first in that program’s tags
 file, and if it isn’t found there then it’ll look in each library’s
 tags files until it does find it. The ref program searches the same
 way.

 Actually, elvis uses an option named tags to store the search path.
 The default value of that option is taken from the TAGPATH
 environment variable, though. If you don’t set TAGPATH (or the tags
 option), then elvis will search only in the current directory.

 The default path for ref is a little more sophisticated. That’s
 because ref is intended to be general reference utility for all
 library functions, while elvis’ tags facility is mostly intended for
 navigating through the source code of a single program.

 Note to system administrators: ref can be so handy that I suggest
 you make a tags file for the functions in your system’s standard
 libraries. If licensing restrictions prevent you from making the
 library source code available to all users, then you should use
 ctags −r to generate a "refs" file. If you don’t have access to the
 library source code yourself, then perhaps you can make something
 useful from the lint libraries.

 14.6 Enhanced tags

 The C++ programming language supports "overloading," which means
 that different functions can have the same name. Since tag names are
 derived from function names, different tags will have the same name.
 This creates a problem because the tag name has traditionally been
 the only way to select a tag, so you could easily get the wrong one.
 Elvis’ implementation of tags has some extra features to solve this
 problem.

 There are two tactics for solving the problem. The first tactic is
 to be more selective; i.e., use information other than just the tag
 name to select tags. This definitely helps, but it is an absolute
 impossibility to resolve all such ambiguities prior to run−time, so
 we also need a second tactic: collect all possible tags into a list,
 and use heuristics or explicit hints from the user to sort the list
 so the most likely alternative is tried first, the second most
 likely if the first was rejected, and so on down the list. Elvis
 uses both tactics.

 In the tags file, elvis permits tags to have extra attributes. Each
 attribute has a name and a value. The first three fields are named
 tagname, tagfile and tagaddress. Those names are implicit; the names
 don’t appear in the tags file, only the values do.

 If a tag has any extra attributes, they will be appended to the tag
 line. In order to allow the original vi/ex to read tags files which
 have additional attributes, a semicolon−doublequote character pair
 is appended to the tagaddress, before the first extra attribute. Due
 to an undocumented quirk of the original vi/ex, this will cause

5 Elvis 2.1 Tags 5

 vi/ex to ignore the remainder of the line. The extra attributes will
 not adversely affect the behavior of the original vi/ex.

 The extra attributes have explicit names. In the tags file, the
 extra attributes are generally given in the form <TAB>name:value.
 Different tags may have different extra attributes; many will have
 no extra attributes at all. The attributes may appear in a different
 sequence for each tag.

 In a single tags file, elvis supports up to 10 distinct attribute
 names −− the 3 implicit names for the standard fields, plus up to 7
 explicit names for extra attributes. (This is a limitation of elvis,
 not the enhanced tag format.)

 The name can be any series of letters or digits. Lowercase letters
 are preferred.

 The value can contain any character except NUL. Any backslash, tab,
 or newline characters should be stored as \\, \t, or \n,
 respectively.

 If an extra attribute has a value but no name or colon, then the
 name is understood to be "kind".

 The extra attributes are intended to describe the contexts in which
 the corresponding program symbol can appear. Typically the name is a
 type of lexical scope, and the value is the name of that scope;
 e.g., "function:init" for a tag which is only defined inside the
 init() function. Elvis can use these as hints to figure out which
 tags might make sense in the current context, and ignore those that
 don’t. Although the extra attributes have no preset names, the
 following names are recommended:

 kind
 The value is a single letter which indicates the lexical type of
 the tag. It can be "f" for a function, "v" for a variable, and
 so on.

 Note that since the default attribute name is kind, a solitary
 letter can denote the tag’s type (e.g, "f" for a function).

 file
 For tags which are "static", i.e., local to the file. The value
 should be the name of the file.

 If the value is given as an empty string (just "file:"), then it
 is understood to be the same as the tagfile field; this special
 case was added partly for the sake of compactness, and partly to
 provide an easy way handle tags files that aren’t in the current
 directory. The value of the tagfile field always relative to the
 directory in which the tags file itself resides.

 function
 For local variables. The value is the name of function in which
 they’re defined.

6 Elvis 2.1 Tags 6

 struct
 For fields in a struct. The value is the name of the struc. If
 it has no name (not even a typedef) then struct:struct is better
 than nothing.

 enum
 For values in an enum data type. The value is the name of the
 enum type. If it has no name (not even a typedef) then enum:enum
 is better than nothing.

 class
 For member functions and variables. The value is the name of the
 class.

 scope
 Intended mostly for class member functions. It will usually be
 "private" for private members, or omitted for public members, so
 users can restrict tag searches to only public members.

 arity
 For functions. The number of arguments.

 The ctags program has been hacked slightly to support some of these,
 but not all. Its new −h flag enables generation of the extra hint
 attributes; if you invoke ctags without any flags, then −h is one of
 the flags that it uses by default. For example, the usual command
 for generating tags for all source files in the current directory
 is...

 ctags *.c *.cpp *.h

 The current hacked−up ctags distributed with elvis will only
 generate file and class hints, and even class isn’t as effective as
 one might hope.

 Some pseudo−tags may be inserted at the top of the tags file, to
 describe the characteristics of that particular tags file. These
 tags all begin with a "!_" so that even if the tags are sorted, the
 pseudo−tags will always appear at the top of the file. The
 pseudo−tags all use the old tags format, so they can be parsed (and
 then ignored) by older tag reading programs.

 !_TAG_FILE_FORMAT 2 /supported features/
 !_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted/

 The !_TAG_FILE_FORMAT pseudo−tag’s tagfile field is 2 for new−style
 tags, or 1 for old−style tags. The !_TAG_FILE_SORTED pseudo−tag’s
 tagfile field is 1 if sorted, or 0 if unsorted. The tagaddress field
 is used simply as a comment in both tags. If these tags are missing
 from a tags file, then the file is assumed to be in the new format
 (which is still backwards compatible with the old format), and
 sorted. If a tags file is unsorted then it must contain a
 !_TAG_FILE_SORTED field indicating that.

 These may be followed by more pseudo−tags describing the ctags
 program itself. Elvis’ version of ctags produces the following

7 Elvis 2.1 Tags 7

 information:

 !_TAG_PROGRAM_AUTHOR Steve Kirkendall /kirkenda@cs.pdx.edu/
 !_TAG_PROGRAM_NAME Elvis Ctags //
 !_TAG_PROGRAM_URL ftp://ftp.cs.pdx.edu/pub/elvis/README.html //
 !_TAG_PROGRAM_VERSION 2.1 //

 The new tags file format also addresses another limitation of the
 old format: the old format allows fields to be delimited with any
 whitespace. This is a problem because space characters are becoming
 more common in file names these days, so we occasionally need to put
 spaces into the tagfile field. To support this, the new format
 dictates that fields must be delimited by a single tab character,
 not spaces. This shouldn’t cause any backward compatibility problems
 because traditionally ctags has always used tab as the delimiter.

 Also, the interpretation of the tagaddress field has been refined.
 Traditionally, it has been defined as either a line number or a
 nomagic regular expression, but it has actually been implemented in
 vi/ex to support any ex command there. Supporting any command could
 produce a security hole, so the new format only supports addresses.
 It supports more complex addresses though, because they can be
 useful in some circumstances. For example, the tag line for a "val"
 field in a struct named "item_s" could look like...

 val file.h /^struct item_s {$/;/^ int val;$/ struct:item_s

 ... which would allow the editor to skip past any "int val;"
 definitions in other structs, to find the correct "int val;" in the
 item_s struct.

 This form of tags file is also supported by Darren Hiebert’s
 Exuberant ctags and by Vim, in addition to elvis.

 If you ever need to convert a new−style tags file back to the old
 style, you can do so via the ref utility. Run it like this:

 ref −ta >oldtags

 14.5 Restrictions and hints

 The syntax of the :tag command has been extended. Previously you
 could only supply a single tagname value to search for. Now you can
 supply multiple acceptable values for any attribute, and control
 what happens when a given tag lacks a given attribute.

 The arguments of the :tag command are now whitespace−delimited
 expressions of the following forms, to define a set of restrictions
 that possible tags must meet to be selected:

 name:value
 Reject tags which have an attribute named "name", but that
 attribute’s value isn’t in the list of acceptable values. E.g.,

8 Elvis 2.1 Tags 8

 "file:foo.c" accepts global tags, or tags which are static to
 the file "foo.c", but rejects tags which are static to other
 files.

 name:=value
 Reject tags which have an attribute named "name" attribute, but
 that attribute’s value isn’t in the list of acceptable values.
 Also reject tags which don’t have a "name" attribute. E.g.,
 "class:=Foo" only accepts tags which have class "Foo".

 name:/value
 Like name:value except that when a tag has no attribute named
 name then the tagaddress attribute’s value is required to
 contain value as a substring. "class:/Foo" would find tags in
 class "Foo" PLUS global tags whose address mentions "Foo" −−
 probably friends of the Foo class.

 value
 Short for tagname:value.

 The parser also allows you to add some sorting hints to the command
 line. These hints are added to the history that elvis uses to guess
 which overloaded tag to list first.

 name:+value
 If a tag has an attribute with the given name and value, then
 cause it to appear near the beginning of the sorted list. I.e.,
 tags with this name and value are more likely to be the intended
 tag, but you can’t be certain.

 name:−value
 If a tag has an attribute with the given name and value, then
 cause it to appear near the end of the sorted list. I.e., tags
 with this name and value are less likely to be the intended tag,
 but you can’t be certain.

 All of these restriction expressions and the sorting hint
 expressions allow you to give multiple acceptable values. You can
 either give each value in a separate expression, or give a
 comma−delimited list of values to a single expression.

 A nul value string matches anything. So "struct:=" would accept any
 tag with a "struct" attribute, and reject those without it. This
 would be handy when you’re trying to do tag lookup for a word which
 follows a ’.’ character −− you know it is a field name, but you
 don’t know which struct type.

 The :tag command automatically adds a file:filename restriction
 (where filename is the name of the file being edited in the current
 window) to any tag search you request. This causes it to ignore tags
 which are static to other files. The :browse command doesn’t do
 that. See the Browsing section, below.

 14.6 History

9 Elvis 2.1 Tags 9

 The sorting hints are persistent. They aren’t forgotten immediately
 after a tag search; a hint from one search will influence the
 sorting order for following searches. The degree of influence is
 weighted, so more recent hints will have more influence than older
 hints. Eventually, each hint’s weighting factor drops to zero, and
 the hint is forgotten only then. The history uses two lists of
 name/value pairs: one for storing recent successes, and one for
 recent failures.

 While searching for a tag, elvis builds a list of tags which matched
 the restrictions. That list is sorted primarily by the tagname
 attribute’s value, but when multiple tags have the same name, elvis
 looks for the attributes of those tags in the lists of successes and
 failures, and uses the weights of any matches to compute the
 likelyhood that a particular tag is the one that the user really
 wants. The more likely tags are inserted into the list before any
 less likely tags with the same name.

 Expressions of the form name:+value add a name/value pair to the
 success list, and expressions of the form name:−value add a
 name/value to the failure list. Name/value pairs are also added
 automatically in the following circumstances:
 * If you perform a tag search on the same name twice in a row,
 then elvis assumes you’re rejecting the first tag that it found.
 The attributes of that tag are added to the failure list.
 * If you perform a tag search on a different name, then elvis
 assumes that the previous tag must have been the right one, so
 its attributes are added to the success list.

 It should be stressed that the tag history has no effect on which
 tags are selected from the tags file. It only affects the order in
 which they’re presented, if more than one tag meets your
 restrictions.

 14.7 Browsing

 The result of any tag search is always a list of matching tags. The
 :tag command keeps this list hidden, and moves the cursor to the
 single most likely member of that list. This is not always the best
 way to select a tag.

 Elvis has a :browse command which performs a tag search, and then
 builds an HTML document from the list. The document shows all tags
 which matched your search criteria; the current window will then
 switch to this document. There is also a :sbrowse command which
 displays the same document in a new window.

 The arguments to :browse differ from :tag in the following ways:
 * :browse does not automatically add any restrictions. (:tag adds
 file:filename to each search.)
 * If you invoke :browse with no arguments, then it will assume you
 wanted tagfile:filename, where filename is the name of the file
 being edited in the current window.
 * If you invoke :browse with a single argument, elvis first tries
 to interpret it as a restriction or sorting hint in the normal

10 Elvis 2.1 Tags 10

 way. But that search yields no tags, elvis may retry the search
 using your argument as a file name (tagfile:argument), or as a
 class name (class:/argument).

 By default, :browse only searches through the "tags" file in the
 current directory. When invoked as :browse! (with a "!" suffix) it
 collects matching tags from all "tags" files as specified by the
 tags option.

 Here are some examples of :browse commands.

 :browse term
 Show all tags named "term"

 :browse
 Show all tags defined in the current file.

 :browse foo.c
 Show all tags defined in the file "foo.c".

 :browse tagname:=
 Show all tags which have a tagname attribute. Since all tags
 have a tagname attribute, this shows every tag in the tags file.

 :browse class:/DbItem
 Show all tags in the DbItem class, or friend functions of that
 class. It may also include some non−friend functions which
 merely use DbItem, but there’s no easy way to avoid that.

 :browse DbItem
 If there is a tag named DbItem, then show it. Otherwise this is
 the same as :browse class:/DbItem

 Each matching tag in the generated document has a hypertext link to
 the point in your source where the corresponding symbol is defined.
 By following the hypertext link, you can go directly to the
 appropriate point in your source code. As usual, the tag stack can
 be used to :pop back to the same browser document, from which you
 may then proceed to a different tag, or :pop back one more level to
 wherever the cursor was located before you gave the :browse command.

 If you wish, you can define your own format for the browser
 document. Elvis searches through the elvispath for a file named
 "elvis.bro". If found, then blank lines in it will be used to
 delimit it into three sections:
 * Everything before the first blank line is the header. It is
 copied into the start of each browser document. $1 is replaced
 by the command line arguments, and $2 is replaced by the number
 of matching tags found. This is a straight−forward text
 substitution, not an evaluation like the following section...
 * Everything between the first blank line and the last blank line
 is repeated for each tag. For each tag, it is evaluated using
 the simpler syntax, with $1 being replaced by the tagname, $2 by
 the tagfile, $3 by the line text extracted from the tagaddress,
 and $4 by a URL combining the tagfile and tagaddress attributes.
 You can also use parentheses to enclose more complex

11 Elvis 2.1 Tags 11

 expressions.
 * Everything after the last blank line is the trailer. It it
 copied into the browser document literally.

 The ref −ha restrictions... program generates a similar HTML
 document. It always interprets its arguments as restrictions, and
 the format of the HTML document can’t be reconfigured. Those are the
 only differences.

 14.8 The tagprg option

 As an alternative to elvis’ "restrictions" method for finding tags,
 you can set the tagprg option to a shell command line which locates
 the tags.

 When you give a :tag command, elvis evaluates the tagprg option’s
 value using the simpler expression syntax. Any instance of $1 in the
 value will be replaced with the command−line arguments. Also, any
 text inside parentheses will be evaluated; this gives you a way to
 access other options’ values, so you can do things like pass the
 value of the tags option to the program so it knows which tags files
 to search through.

 The resulting string is then executed, and its output is parsed as
 though it was a tags file. All of the tags that it outputs are
 considered to be matches, since using tagprg disables the use of
 restrictions.

 Elvis builds a list of the matches, and sorts them using the same
 history mechanism that is uses with restrictions. However, the
 "name:+value" and "name:−value" sorting hints are not detected in
 the arguments.

 Once the list has been built, elvis moves the cursor to the first
 match. You can step through all matches in the list by hitting ^] or
 by giving the :ta command with no arguments, as usual.

 Note that the program’s output should be in the standard tags file
 format. At a minimum, this means "tagname TAB filename TAB address".
 If you want to use a function searching program that uses a
 different format, you’ll need to pipe its output through a
 custom−made filter that converts its output to the standard tags
 format.

 One common technique is to use the :local command in an alias, to
 set tagprg temporarily for a single search. The :text alias in
 lib/elvis.ali is an example of this.

