
1 Elvis 2.1 Regular Expressions 1

5. REGULAR EXPRESSIONS

 Elvis uses regular expressions for searching and substitutions. A
 regular expression is a text string in which some characters have
 special meanings. This is much more powerful than simple text
 matching.

 5.1 Syntax

 Elvis’ regexp package treats the following one− or two−character
 strings (called meta−characters) in special ways:

 \(subexpression\)
 The \(and \) metacharacters are used to delimit subexpressions.
 When the regular expression matches a particular chunk of text,
 Elvis will remember which portion of that chunk matched the
 subexpression. The :s/regexp/newtext/ command makes use of this
 feature.

 ^
 The ^ metacharacter matches the beginning of a line. If, for
 example, you wanted to find "foo" at the beginning of a line,
 you would use a regular expression such as /^foo/. Note that ^
 is only a metacharacter if it occurs at the beginning of a
 regular expression; practically anyplace else, it is treated as
 a normal character. (Exception: It also has a special meaning
 inside a [character−list] metacharacter, as described below.)

 $
 The $ metacharacter matches the end of a line. It is only a
 metacharacter when it occurs at the end of a regular expression;
 elsewhere, it is treated as a normal character. For example, the
 regular expression /$$/ will search for a dollar sign at the end
 of a line.

 \<
 The \< metacharacter matches a zero−length string at the
 beginning of a word. A word is considered to be a string of 1 or
 more letters, digits, or underscores. A word can begin at the
 beginning of a line or after 1 or more non−alphanumeric
 characters.

 \>
 The \> metacharacter matches a zero−length string at the end of
 a word. A word can end at the end of the line or before 1 or
 more non−alphanumeric characters. For example, /\<end\>/ would
 find any instance of the word "end", but would ignore any
 instances of e−n−d inside another word such as "calendar".

 \@
 When you’re performing a search in visual mode, and the cursor
 is on a word before you start typing the search command, then \@
 matches the word at the cursor.

 \=

2 Elvis 2.1 Regular Expressions 2

 Ordinarily, the visual mode search command leaves the cursor on
 the first character of the matching text that it finds. If your
 regular expression includes a \= metacharacter, then it will
 leave the cursor at the position that matched the \=. For
 example, if you place \= at the end of your regular expression,
 then the cursor will be left after the matching text instead of
 at the start of it.

 .
 The . metacharacter matches any single character.

 NOTE: If the magic option is turned off, then . is treated as an
 ordinary, literal character. You should use \. to get the
 meta−character version in this case.

 [character−list]
 This matches any single character from the character−list.
 Inside the character−list, you can denote a span of characters
 by writing only the first and last characters, with a hyphen
 between them. If the character−list is preceded by a ^
 character, then the list is inverted −− it will match any
 character that isn’t mentioned in the list. For example,
 /[a−zA−Z]/ matches any ASCII letter, and /[^]/ matches anything
 other than a blank.

 There is no way to quote the ’]’ or ’−’ characters, which means
 that if you want to include those characters as members of the
 list, you must place them in positions where they couldn’t be
 mistaken for the end of the list or a range. Specifically, ’]’
 can appear only as the first character in the list (immediately
 after the "[" or "[^" that starts the list) or as the last
 character in a range. ’−’ can appear there too, or immediately
 after the last character of a range. For example, [])}] matches
 a closing bracket, parentheses, or curly brace. [^−+] matches
 any character except ’+’ or ’−’. Probably the trickiest example,
 []−]−] matches a closing bracket or a ’−’. (Note that the range
 "]−]" matches a single bracket; we wrote it this way so that the
 following "−" would be in a context where it couldn’t be
 mistaken for a range and so must be a literal ’−’ character.)

 There are also special cases for some common character lists.
 When one of the following special symbols appears in a character
 list, the list will include all appropriate characters for that
 symbol including the non−ascii characters as indicated by the
 digraph table. Note that he brackets around these symbols are in
 addition to the brackets around the whole class. For example,
 /[[:alpha:]]/ matches any single letter, and
 /[[:alpha:]_][[:alnum:]_]*/ matches any C identifier.

 SPECIAL SYMBOL INCLUDED CHARACTERS

 [:alnum:] all letters and digits
 [:alpha:] all letters
 [:ascii:] all ASCII characters
 [:blank:] the space and tab characters

3 Elvis 2.1 Regular Expressions 3

 [:cntrl:] ASCII control characters
 [:digit:] all digits
 [:graph:] all printable characters excluding space
 [:lower:] all lowercase letters
 [:print:] all printable characters including space
 [:punct:] all punctuation characters
 [:space:] all whitespace characters except linefeed
 [:upper:] all uppercase characters
 [:xdigit:] all hexadecimal digits

 NOTE: If the magic option is turned off, then the opening [is
 treated as an ordinary, literal character. To get the
 meta−character behavior, you should use \[character−list] in
 this case.

 \s, \S, \d, \D, \w, \W, \p, and \P
 These are all shortcuts for certain character lists. The
 lowercase \s, \d, \w, and \p symbols match (respectively) any
 whitespace character, digit, alphanumeric character, or any
 printable character. The uppercase versions are the opposites;
 they match any single character that the lowercase versions
 don’t match.

 \0, \a, \b, \f, \r, and \t
 These are control characters, just as they would be in C
 strings. Note that there is no \n.

 \{n\} or \{n}
 This is a closure operator, which means that it can only be
 placed after something that matches a single character. It
 controls the number of times that the single−character
 expression should be repeated. The \{n\} or \{n} operator, in
 particular, means that the preceding expression should be
 repeated exactly n times. For example, /^−\{80\}$/ matches a
 line of eighty hyphens, and /\<[[:alpha:]]\{4}\>/ matches any
 four−letter word.

 \{n,m\} or \{n,m}
 This is a closure operator which means that the preceding
 single−character expression should be repeated between n and m
 times, inclusive. If the m is omitted (but the comma is present)
 then m is taken to be infinity. For example, /"[^"]\{3,5\}"/
 matches any pair of quotes which contains three, four, or five
 non−quote characters. /.\{81,}/ matches any line which contains
 more than 80 characters.

 *
 The * metacharacter is a closure operator which means that the
 preceding single−character expression can be repeated zero or
 more times. It is equivalent to \{0,\}. For example, /.*/
 matches a whole line.

 NOTE: If the magic option is turned off, then * is treated as an
 ordinary, literal character. You should use * to get the
 meta−character version in this case.

4 Elvis 2.1 Regular Expressions 4

 \+
 The \+ metacharacter is a closure operator which means that the
 preceding single−character expression can be repeated one or
 more times. It is equivalent to \{1,\}. For example, /.\+/
 matches a whole line, but only if the line contains at least one
 character. It doesn’t match empty lines.

 \?
 The \? metacharacter is a closure operator which indicates that
 the preceding single−character expression is optional −− that
 is, that it can occur 0 or 1 times. It is equivalent to \{0,1\}.
 For example, /no[−]\?one/ matches "no one", "no−one", or
 "noone".

 Anything else is treated as a normal character which must exactly
 match a character from the scanned text. The special strings may all
 be preceded by a backslash to force them to be treated normally.

 5.2 Substitutions

 The :s command has at least two arguments: a regular expression, and
 a substitution string. The text that matched the regular expression
 is replaced by text which is derived from the substitution string.

 You can use any punctuation character to delimit the regular
 expression and the replacement text. The first character after the
 command name is used as the delimiter. Most folks prefer to use a
 slash character most of the time, but if either the regular
 expression or the replacement text uses a lot of slashes, then some
 other punctuation character may be more convenient.

 Most other characters in the substitution string are copied into the
 text literally but a few have special meaning:

 SYMBOL MEANING

 ^M Insert a newline (instead of a carriage−return)
 & Insert a copy of the original text
 ~ Insert a copy of the previous replacement text
 \1 Insert a copy of that portion of the original text which
 matched the first set of \(\) parentheses
 \2−\9 Do the same for the second (etc.) pair of \(\)
 \U Convert following characters to uppercase
 \L Convert following characters to lowercase
 \E End the effect of \U or \L
 \u Convert the next character to uppercase
 \l Convert the next character to lowercase
 \# Insert the line number, as a string of digits
 \0 Insert a nul character
 \a Insert a bell character
 \b Insert a backspace character
 \f Insert a form−feed character
 \n Insert a line−feed character

5 Elvis 2.1 Regular Expressions 5

 \r Insert a carriage−return character
 \t Insert a tab character

 These may be preceded by a backslash to force them to be treated
 normally. The delimiting character can also be preceeded by a
 backslash to include it in either the regular expression or the
 substitution string.

 Traditionally \0 was a synonym for the & symbol −− they both
 inserted a copy of the matching text. Elvis breaks from tradition
 here to make \0 insert a NUL character because there would otherwise
 be no way to have a substitution insert a NUL character.

 5.3 Options

 Elvis has two options which affect the way regular expressions are
 used. These options may be examined or set via the :set command.

 The first option is called "[no]magic". This is a boolean option,
 and it is "magic" (TRUE) by default. While in magic mode, all of the
 meta−characters behave as described above. In nomagic mode, the .,
 [...], and * characters loose their special meaning unless preceeded
 by a backslash. Also, in substitution text the & and ~ characters
 are treated literally unless preceeded by a backslash.

 The second option is called "[no]ignorecase". This is a boolean
 option, and it is "noignorecase" (FALSE) by default. While in
 ignorecase mode, the searching mechanism will not distinguish
 between an uppercase letter and its lowercase form, except in a
 character list metacharacter. In noignorecase mode, uppercase and
 lowercase are treated as being different.

 Also, the "[no]wrapscan" and "[no]autoselect" options affect
 searches.

 5.4 Examples

 This example changes every occurrence of "utilize" to "use":

 :%s/utilize/use/g

 This example deletes all whitespace that occurs at the end of a line
 anywhere in the file.

 :%s/\s\+$//

 This example converts the current line to uppercase:

 :s/.*/\U&/

 This example underlines each letter in the current line, by changing
 it into an "underscore backspace letter" sequence. (The ^H is
 entered as "control−V backspace".):

6 Elvis 2.1 Regular Expressions 6

 :s/[a−zA−Z]/_^H&/g

 This example locates the last colon in a line, and swaps the text
 before the colon with the text after the colon. The first \(\) pair
 is used to delimit the stuff before the colon, and the second pair
 delimit the stuff after. In the substitution text, \1 and \2 are
 given in reverse order to perform the swap:

 :s/\(.*\):\(.*\)/\2:\1/

