
1 Elvis 2.1 Messages 1

12. MESSAGES

 Elvis has an extremely versatile method for handling messages. You
 can change the wording, or even the language, of any message. You
 can make any message ring the terminal’s bell. You can hide certain
 messages.

 This section of the manual describes how messages are generated, and
 how you can customize them. A list of the individual messages can be
 found in Appendix A.

 12.1 The msg() function.

 Every message begins with a call to the msg() function. The message
 function is passed at least two arguments: the message’s importance,
 and the text of the message. Some messages also have other
 arguments.

 The importance of a message is a symbol which describes what type of
 message it is. The symbol can be any of the following: MSG_STATUS,
 MSG_INFO, MSG_WARNING, MSG_ERROR, or MSG_FATAL. This affects the way
 that the message is displayed. For example, MSG_STATUS messages are
 always displayed immediately, and can be overwritten by later
 messages; this is used for messages like "Reading foo.c..."
 MSG_ERROR messages cause the exitcode option to be set to 1.
 MSG_FATAL messages cause elvis to exit immediately after displaying
 the message. You can’t alter a message’s importance without editing
 elvis’ source code and recompiling; each message’s importance is
 hardcoded.

 The text of the message is a string. If there are other arguments,
 then the text of the message will be preceded by a bracketed list of
 letters which help the msg() function convert the arguments to
 strings. Although this bracketed list is part of the string, it is
 not considered to be part of the message’s text.

 Each letter in the bracketed list describes how one argument is to
 be displayed. d indicates that a long int argument is to be
 converted into a decimal number string. c and C indicate that a char
 or CHAR is to be converted into a string of length 1. s and S
 indicate that the argument is already a string of chars or CHARs.
 (The CHAR data type could be either an 8−bit character or a 16−bit
 character, depending on the compile−time configuration of elvis. The
 bitsperchar option indicates which.)

 12.2 Translation

 All of the messages built into elvis are terse. If the terse option
 is turned off, then elvis will attempt to translate each terse
 message into a verbose one. Although the terse messages are written
 in English, the verbose messages can be in any language.

 When elvis first creates a new edit session, it attempts to locate a
 file named "elvis.msg" and load it into a buffer named "Elvis

2 Elvis 2.1 Messages 2

 messages". To find the "elvis.msg" file, elvis searches through all
 of the directories named in the elvispath option.

 Each line of the "Elvis messages" buffer describes how a single
 message should be translated. To translate a message, elvis scans
 through the "Elvis messages" buffer for a line which begins with the
 terse message text followed immediately by a ’:’ character. If it
 finds one, then it skips any whitespace after the ’:’ and uses the
 remainder of the line as the message text. If it doesn’t find any
 matching line, then the terse text is used.

 This is primarily intended to be used for translating the messages
 into your native language.

 The file that contains Appendix A (initially "lib/elvistrs.msg") is
 a handy resource when you’re constructing your "elvis.msg" file. It
 contains the terse forms of almost all messages. You can yank a line
 from Appendix A, paste it into your "elvis.msg" file, and add a
 colon and verbose message to the end of the message.

 By the way, Appendix A is created automatically via the command
 "make lib/elvistrs.msg". This just searches for all messages in any
 source file, sorts them, and discards any duplicates. I intend to
 add another appendix some day which describes some of the more
 subtle messages in detail.

 12.3 Argument substitution

 After translation, the message text is evaluated using the simpler
 syntax of the built−in calculator. This basically means that you can
 use $1 in the message text to indicate where the first argument
 should appear, $2 for the second argument, and so on.

 It also means that anything inside of parentheses is evaluated using
 the full power of the calculator, which has a C−like syntax. The
 message output by the :file command uses this to calculate the
 percentage of the way through the file.

 If you want to output a literal ’$’, ’(’, ’)’, or ’\’ character as
 part of the message, you’ll need to precede it with a ’\’ character.

 12.4 Bell control

 You can force any individual messages to ring the bell by using the
 "Elvis messages" buffer to translate them into a message which
 begins with a ^G character.

 There are also two options which allow you to force the bell to ring
 for certain message types. If elvis is outputting a MSG_ERROR
 message, and the errorbells option is set, then elvis will ring the
 terminal’s bell. It will also ring the bell for MSG_WARNING messages
 if the warningbells option is set.

 Note that there is also a flash option which instructs elvis to use

3 Elvis 2.1 Messages 3

 a visible alternative to the bell, if one is available.

 12.5 Displaying the message

 Messages are normally displayed at the bottom of the current window.
 Usually this is exactly what you would expect, but it can be a
 little counterintuitive when you’re creating or closing windows.

 When you’re creating a window, the "current window" is the window
 where you gave the command which caused the window to be created. So
 if you’re editing "foo.c" and give the command :split bar.c then the
 information about the "bar.c" file will show up in the window where
 you’re editing "foo.c". The bottom line of the "bar.c" window will
 be blank.

 When you’re closing a window, elvis chooses some other window to
 become the new "current window" so that it’ll have a place where it
 can display the messages. You can’t always predict which window it
 will choose.

 When you close the last window and exit elvis, any messages that
 elvis wants to output will simply be written to stdout or stderr.
 Typically, the only message that elvis wants to output when closing
 will be "wrote foo.c, 1234 lines, 56789 characters".

