
1 Elvis 2.1 User Interfaces 1

8. USER INTERFACES

 A single elvis binary can be compiled to support multiple user
 interfaces. For example, under UNIX elvis can be compiled to have a
 graphical user interface when run under X−windows, a termcap
 interface for use on most text terminals, an "open" interface for
 use on any terminal, and a "quit" interface for running scripts.
 Here’s a comprehensive list of the user interfaces which may be
 available in your copy of elvis:
 * x11 − a graphical interface under Unix and OS/2.
 * windows − a graphical interface under Win32.
 * termcap − a full−screen text−based interface.
 * vio − OS/2−specific version of the termcap interface.
 * open − a simpler text−based interface.
 * quit − a pseudo−interface for non−interactive editing.
 * script − a pseudo−interface for running scripts.

 The exact list of available user interfaces will vary from one
 system to another. You can make elvis output a list of available
 interfaces by running "elvis −G?". This will also show you which
 interface elvis will use by default.

 Elvis chooses the default user interface at run time by testing each
 user interface in turn, starting with the most desirable, and
 working its way down the list until it finds one that appears to be
 supported in the current environment. For example, if you’re using
 elvis on a text terminal under UNIX, then elvis will bypass the
 "x11" interface because X−windows doesn’t work on text terminals,
 and then elvis will find that the "termcap" interface would work, so
 that’ll be the default.

 If you don’t want to use the default user interface, you can specify
 which interface to use via the −G gui command−line flag.

 8.1 X11 Interface

 The x11 interface is used under X−Windows on UNIX or OS/2 systems.
 (See the OS/2 section of the OS chapter for a description of what
 you need to run X11 under OS/2.) Subsections here are command line
 flags, the mouse, the toolbar, resources, keys, and icons.

 The x11 interface provides a scrollbar and mouse support, and allows
 you to select which fonts to use. There is also a configurable
 toolbar. Buttons on that toolbar can even be configured to use
 pop−up dialog windows.

 The x11 interface reads app−defaults (as listed below) but those are
 only used to provided default values for options and colors. You can
 override them with :set and :color commands. The x11−specific
 options are described in the options chapter.

 8.1.1 X11 Command−line Flags
 To specify a normal font, use −font fontname or −fn fontname.
 Proportional fonts are not supported. If you don’t specify a normal
 font, then elvis will use a font named "fixed" by default.

2 Elvis 2.1 User Interfaces 2

 To specify a bold font, use −fb fontname. The specified font should
 have the same character cell size as the normal font, but elvis does
 not verify this. If you don’t specify a bold font, then elvis will
 fake it by smearing the normal font rightward one pixel.

 To specify an italic font, use −fi fontname. The specified font
 should have the same size character cell as the normal font, but
 elvis does not verify this. If you don’t specify an italic font,
 then elvis will fake it by sliding the top half of the normal font
 rightward one pixel.

 The −fc fontname flag can be used to specify the font to be used for
 controls −− currently just the toolbar and statusbar, but eventually
 elvis will offer a scrollbar too. If you don’t specify a control
 font, then elvis will use a font named "variable" by default.

 If you want to use Courier fonts, there is a shortcut: −courier size
 will use the normal, bold, and italic versions of the courier font
 in the requested size.

 You can also specify the foreground and background colors with −fg
 color and −bg color, respectively. All standard X color names are
 supported.

 Elvis has a built−in icon, which is generally a good thing. Some
 window managers won’t allow you to assign a new icon to a program
 that has a built−in one, so elvis has a −noicon flag which disables
 the built−in icon.

 Elvis also supports the −geometry WxH+X+Y flag for specifying the
 size and/or position of the first window. The size is specified in
 characters, and the default size is 80x34. There is no default
 position.

 The −fork option causes elvis to fork a new process, so you get a
 new shell prompt immediately.

 The −client option causes elvis to look for an already−running elvis
 process on the same X server, and if there is one, send the new
 arguments to it. This causes the old elvis process to create new
 windows for file arguments. The new elvis process then exits,
 leaving the old one to do the real work. If there is no elvis
 process already running, then −client will act like −fork so that
 either way, you get a new shell prompt immediately.

 You can change elvis’ defaults by editing the elvis.ini or ~/.exrc
 file. You can use the :color command to assign colors to various
 fonts, and the cursor and scrollbar/toolbar. Most other aspects are
 controlled via options.

 8.1.2 X11 Mouse
 I’ve tried to reach a balance between the mouse behavior of xterm(1)
 and what makes sense for an editor. To do this right, elvis has to
 distinguish between clicking and dragging.

3 Elvis 2.1 User Interfaces 3

 Dragging the mouse always selects text. Dragging with button 1
 pressed (usually the left button) selects characters, dragging with
 button 2 (the middle button) selects a rectangular area, and
 dragging with button 3 (usually the right button) selects whole
 lines. These operations correspond to elvis’ v, ^V, and V commands,
 respectively. When you release the button at the end of the drag,
 the selected text is immediately copied into an X11 cut buffer, so
 you can paste it into another application such as xterm. The text
 remains selected, so you can apply an operator command to it.

 Clicking button 1 cancels any pending selection, and moves the
 cursor to the clicked−on character. Clicking button 3 moves the
 cursor without cancelling the pending selection; you can use this to
 extend a pending selection.

 Clicking button 2 "pastes" text from the X11 cut butter. If you’re
 entering an ex command line, the text will be pasted into the
 command line as though you had typed it. If you’re in visual command
 mode or input mode, the text will be pasted into your edit buffer.
 When pasting, it doesn’t matter where you click in the window; elvis
 always inserts the text at the position of the text cursor.

 Double−clicking button 1 simulates a ^] keystroke, causing elvis to
 perform tag lookup on the clicked−on word. If elvis happens to be
 displaying an HTML document, then tag lookup pursues hypertext links
 so you can double−click on any underlined text to view the topic
 that describes that text. Double−clicking button 3 simulates a ^T
 keystroke, taking you back to where you did the last tag lookup.

 8.1.3 Toolbar
 The X11 interface supports a user−configurable toolbar. The toolbar
 is enabled by default; you can disable it in your ~/.exrc file by
 adding a "set notoolbar" command.

 If enabled, you will find that the default toolbar already has some
 buttons defined. You can use the :gui command to reconfigure the
 toolbar. The following commands are supported:

 :gui
 This displays the :gui commands which were used to set up all
 toolbar buttons.

 :gui label
 This displays the :gui commands which were used to set up the
 toolbar button that has the given label.

 :gui newtoolbar
 This deletes all buttons from the toolbar.

 :gui ~label
 This deletes a single, specific button from the toolbar.

 :gui gap
 This leaves a small gap between the previous button and the
 following button.

4 Elvis 2.1 User Interfaces 4

 :gui label : excommand
 This creates a button named label. Whenever you click the
 button, the excommand will be interpreted as an ex command line.
 The label can begin with any non−whitespace character. The
 remaining characters can be letters, digits, or another instance
 of the initial character.

 :gui Help:help

 NOTE: If you want to have more than one line’s worth of ex
 commands associated with a toolbar button, then you might
 consider defining an alias.

 :gui label = condition
 Normally buttons are drawn as though sticking out; this command
 gives you a way to make them selectively appear to be stuck in.
 The condition is a C−like expression. When it is true, the
 button will be drawn "sticking in". When it is false, the button
 will be drawn "sticking out". The button behaves exactly the
 same either way.

 :gui List:set neglist
 :gui List=list

 :gui label ? condition
 This gives you a way to selectively disable the button. The
 condition is a C−like expression. When it is true, the button
 behaves as normal; when it is false, the button ignores any
 mouse clicks. Also, buttons which are disabled this way are
 displayed as being "flat", instead of the normal 3D shading that
 makes them appear to stick out or in.

 :gui Quit:q
 :gui Quit?!modified

 NOTE: The condition expressions are re−evaluated after nearly
 every input event. If you have many complex expressions, this
 may take a noticeable amount of time. With the default toolbar,
 elvis seems to slow down by about 20%. Toolbar buttons which
 don’t use condition expressions have no such overhead.

 :gui label " description
 Add a one−line description to the button. The description is
 shown on the statusbar when the button is pressed. It is also
 displayed on pop−up dialogs, as described below.

 :gui Quit"Close this window, and maybe exit elvis

 :gui label ; ;
 :gui label ; option ; ...
 :gui label ; "prompt" (type) option = value ; ...
 This allows you to define a pop−up dialog for a given toolbar
 button. When you click on the toolbar button, the dialog appears
 immediately. You can then edit some values, and then hit the
 [Submit] button to store the edited values into options and run
 the toolbar button’s ex command (if any), or hit the [Cancel]

5 Elvis 2.1 User Interfaces 5

 button to do nothing.

 The simplest dialog is specified by giving just a pair of
 semicolons after the label. This dialog will have no editable
 fields, but it still shows the [Submit] and [Cancel] buttons, so
 it is a handy way to ask for confirmation before doing
 something.

 But usually you’ll give a semicolon−delimited list of options
 after the toolbar button’s label. The dialog will then allow you
 to edit those options. When you hit the [Submit] button on that
 dialog window, elvis will store the values into the options
 before running the ex command.

 The default prompt for each option is its name. If you precede
 the option name with a quoted string, then the string is used
 for the prompt instead.

 You can also override the option’s data type. The default type
 for each option is the same type used by the :set command. You
 can override that by placing one of the following before the
 option name:

 TYPE MEANING
 (oneof list) Allow any single value from the space−delimited list
 (boolean) Same as (oneof true false)
 (number) Allow any number
 (number m:n) Allow number between m and n, inclusive
 (string) Allow any string
 (file) Allow any string, but use the Tab key for file name
 completion
 (locked) Display it, but don’t allow any editing

 The default value for each option is the option’s actual value
 at the time the dialog pops up. You can override that by
 appending an ’=’ followed by an expression for some other value.
 Note that the option itself isn’t changed unless/until you hit
 the [Submit] button.

 NOTE: The user options "a" through "z" are useful for inputing
 (via the dialog) and storing temporary values. You’ll almost
 certainly want to override the prompt and type of those options.

 NOTE: Because the edited option values are stored before the
 toolbar button’s ex command is executed, the ex command can
 access the options’ values via commands such as :eval. Also,
 since elvis always subjects file names to evaluation via the
 simpler expression syntax, you can don’t need to use :eval to
 expand file names. The following shows one useful example of
 this:

 :gui Split;"File to load:" (file) f = filename
 :gui Split:split (f)

 NOTE: If you just want to use the dialog for adjusting options,

6 Elvis 2.1 User Interfaces 6

 and don’t need to run an ex command afterward, then you can
 simply omit the ex command definition for that toolbar button.
 For example, the following is sufficient for editing the display
 options:

 :gui Display Options; list; number; wrap; sidescroll

 NOTE: You can display a non−editable line of text in the dialog
 by using ="string" without giving any option name. Here’s an
 example:

 :gui Save;"Save as:"(file)f=basename(file);="In current directory!"
 :gui Save:w (f)

 8.1.4 Resources
 Elvis uses the following X resources. The resource values can be
 overridden by command−line flags, or by explicit :set or :color
 commands in the initialization scripts.

 RESOURCE CLASS DEFAULT
 (name is lowercase of class) TYPE VALUE PARTIAL EX COMMAND

 Elvis.Toolbar Boolean True set toolbar
 Elvis.Statusbar Boolean True set statusbar
 Elvis.Font Font fixed set normalfont=
 Elvis.Geometry Geometry 80x34 set firstx= xrows=
 Elvis.Foreground Color black color normal
 Elvis.Background Color gray90 color normal
 Elvis.MultiClickTimeout Timeout 3 set dblclicktime=
 Elvis.Control.Font Font variable set controlfont=
 Elvis.Cursor.Foreground Color red color cursor
 Elvis.Cursor.Selected Color red color cursor
 Elvis.Cursor.BlinkTime Timeout 3 set blinktime=
 Elvis.Tool.Foreground Color black color tool
 Elvis.Tool.Background Color gray75 color tool
 Elvis.Scrollbar.Foreground Color gray75 color scrollbar
 Elvis.Scrollbar.Background Color gray60 color scrollbar
 Elvis.Scrollbar.Width Number 11 set scrollbarwidth=
 Elvis.Scrollbar.Repeat Timeout 4 set scrollbartime=
 Elvis.Scrollbar.Enabled Boolean True set scrollbar

 The "Timeout" type gives a time value, in tenths of a second.

 For example, if your X resources database contains the line
 "elvis.font: 10x20" then the default text font would be "10x20".
 This value would therefore be used if the normalfont option was
 unset.

 The method for changing a resource may vary from one X server to
 another. Typically, you would edit a file named ~/.Xdefaults, and
 then run "xrdb −merge ~/.Xdefaults". (xrdb is part of the standard X
 distribution.)

7 Elvis 2.1 User Interfaces 7

 8.1.5 X11 Keys
 If there is a standard way to map a Keysym value into a text string,
 then elvis will use it. This means that when you hit the <m> key,
 you get an "m" character. Function keys and cursor keys have no
 standard translation, so elvis converts them to a ^K character
 followed the Keysym binary value, expressed as four hex digits.

 You can use the "^Kxxxx" character sequences as the first argument
 to a :map command. In the interest of readability and portability,
 elvis also allows you to use the symbolic name of a key in that
 context, instead of the raw characters. These are the same key names
 that are used by (among other things) the xmodmap command. Here are
 some of the more important names: Begin, End, Home, Print, Menu,
 Insert, Undo, Redo, Help, Break, Multi_key, Kanji, and Mode_switch.

 8.1.6 X11 Icons
 Elvis has a 48x32 monochrome icon compiled into it. This icon is
 stored in the file guix11/elvis.xbm. It is a standard X11 bitmap
 file.

 There are also a variety of colored icons in that directory, in
 standard X11 pixmap files. These are not compiled into elvis. If you
 want to use one of these, you’ll need to configure your window
 manager to substitute the colored icon for the compiled−in
 monochrome icon. Each window manager is configured in a different
 way, and I can’t tell you about every single one out there. But I
 use FVWM2, and I can tell you how to configure that: In your
 ~/.fvwm2rc file, add a line which reads...

 Style "elvis" Icon /usr/include/X11/pixmaps/elvis.xpm

 Note that this expects the elvis.xpm file to be copied into
 /usr/include/X11/pixmaps/. When you install elvis by running
 make install, the insticon.sh shell script is run; this checks for a
 whole series of likely places to copy icons of various sizes, and
 copies them there.

 The following color icons are available:

 NAME DESCRIPTION

 elvis.xpm 48x32, 4 colors, same as the monochrome icon
 mini.xpm 16x14, 6 colors, for fvwm95 taskbar
 normal.xpm 56x46, on a shaded button for NextStep−ish WMs
 small.xpm 21x18, on a shaded button for NextStep−ish WMs

 The last two use many colors, but most of those colors are for the
 shaded button background, not the icon itself. Other shaded−button
 icons use the exact same colors for the shading, so the overall
 impact on your color table isn’t too bad. But if you don’t normally
 use icons on shaded buttons, then you should probably use only the
 first two icons.

8 Elvis 2.1 User Interfaces 8

 8.2 Windows Interface

 The windows interface works under Microsoft’s Windows95, Windows98,
 or WindowsNT (version 3.51 or later) operating systems. It offers a
 full graphical interface with all the usual bells and whistles.
 Subsections here discuss the mouse, keys, colors, printing, and
 fonts.

 Because Microsoft doesn’t allow a single .EXE file to contain both a
 Windows interface and a text−based interface, the Windows version
 resides in a separate file named WinElvis.exe. (The text−based
 version is named elvis.exe, and it uses the termcap interface.)

 8.2.1 Windows Mouse
 In addition to all the usual mouse actions in the menubar, toolbar,
 and scrollbar, you can use the mouse in elvis’ main text area as
 follows.

 Dragging the mouse with the left button pressed causes elvis to
 select characters, like the lowercase v command. Dragging with the
 right button pressed causes it to select a rectangular area, like
 the ^V command. Dragging in the left margin (where the mouse cursor
 changes to up−and−right−arrow) causes whole lines to be selected.

 Clicking with either the left or right mouse button will move the
 cursor to the clicked−on character. When you click with the left
 button, if a selection is highlighted then elvis will cancel the
 selection; clicking with the right extends the selection to include
 the clicked−on character.

 Double−clicking on a word with the left button causes elvis to
 perform a tag search, like the ^] command. Double−clicking with the
 right button pops back to the previous position via the tag stack,
 like the ^T command.

 8.2.2 Windows Keys
 In addition to all the ASCII keys, WinElvis allows you to :map any
 cursor keys or function keys. In fact, the cursor keys all have
 rather convenient maps built−in; you can see them by running ":map"
 with no arguments.

 All of the cursor keys and function keys send multi−character
 sequences to WinElvis. WinElvis then uses its standard mapping
 facilities to convert those sequences into something that it can
 recognize and act on. Since the multi−character sequences aren’t
 standardized, and are usually hard to guess or remember, WinElvis
 allows you to refer to them symbolically. The following symbols are
 used for referring to the cursor keys:

 KEY SYMBOL MAPPED TO

 up arrow <Up> k
 down arrow <Down> j
 left arrow <Left> h
 right arrow <Right> l

9 Elvis 2.1 User Interfaces 9

 Page Up <PgUp> ^B
 Page Down <PgDn> ^F
 Home <Home> ^
 End <End> $
 Ctrl + left arrow <CLeft> B
 Ctrl + right arrow <CRight> W
 Ctrl + Page Up <CPgUp> 1G
 Ctrl + Page Down <CPgDn> G
 Ctrl + Home <CHome> 1G
 Ctrl + End <CEnd> G
 Ctrl + Insert <Insert> i
 Ctrl + Delete <Delete> x

 The function keys are a different story. Vi has a traditional way to
 access function keys in a terminal−independent manner, so WinElvis
 starts with that and extends it just slightly. The benefit of this
 is that you can use the same function key maps in other versions of
 elvis, or even in other implementations of vi.

 The basic function key symbols are #1 for the F1 key, #2 for the F2
 key, and so on through #12 for the F12 key. Combinations involving
 the Shift, Ctrl, and Alt keys are specified by appending "s", "c",
 or "a" onto the symbol. For example, Ctrl−F1 is mapped using the
 symbol #1c.

 8.2.3 Windows colors
 WinElvis allows you use the :color command to change the colors used
 for the different fonts. The color names that it supports are:
 black, blue, cyan, green, red, magenta, brown, gray, darkgray,
 lightblue, lightcyan, lightgreen, lightred, lightgray, yellow, and
 white.

 8.2.4 Windows Printing
 The default value of the lptype option is "windows". This uses the
 standard Windows graphical print spooler and should be able to print
 on any printer that Windows supports. The lpout option is ignored
 when lptype=windows.

 However you still have the option of changing lptype to one of its
 other values. The other values will generally print faster, and may
 even look slightly better, but that isn’t much of a motivation. A
 more common reason for changing lptype would be to print into a file
 in a specified format.

 8.2.5 Windows Fonts
 WinElvis allows you to specify one base font for each window, via
 the font option. You can set this to the name of any fixed−pitch
 font, such as "courier*12".

 Conceptually elvis supports six different fonts: normal, bold,
 italic, fixed, emphasized, and underlined. WinElvis derives these
 six fonts from the base font, via options named normalstyle,
 boldstyle, italicstyle, fixedstyle, emphasizedstyle, and
 underlinedstyle, respectively.

10 Elvis 2.1 User Interfaces 10

 Each of these options may be "n" to use the base font without any
 changes, or any combination of "b" for bolding, "i" for italicizing,
 or "u" for underlining. By default, boldstyle and emphasizedstyle
 use "b", italicstyle uses "i", and underlinedstyle uses "u". You can
 override these via :set, and make them be different colors via the
 :color command.

 However, when printing WinElvis will always make them all black, and
 always uses the default derived fonts.

 8.3 Termcap Interface

 The termcap interface is the one you’ll use most often on
 non−graphic terminals. It looks and acts a heck of a lot like the
 traditional vi. The biggest addition is the support for multiple
 windows. (For more information on how to use multiple windows, start
 elvis and give the command :help ^W.) Subsections here discuss
 terminal databases, termcap fields, keys, and graphic characters.

 If your terminal supports ANSI color escape sequences, then you can
 use the :color command to assign different colors to the six basic
 fonts: normal, bold, italic, underlined, emphasized, and fixed. You
 must assign a normal color first, e.g., ":color normal yellow".

 There are three additional options when using the termcap interface:
 term, ttyrows,and ttycolumns. The term option contains the name of
 the termcap entry being used; it should correspond to the type of
 terminal you’re using. The ttyrows and ttycolumns options give the
 size of the screen.

 Under Win32, there is also a codepage option for detecting or
 changing the current code page. Win32’s termcap interface also
 supports the mouse, using basically the same rules as the x11
 interface. The only differences are that it doesn’t cut & paste via
 the clipboard, and pressing both buttons of a two−button mouse will
 simulate pressing the missing middle button.

 8.3.1 Termcap, Terminfo, and tinytcap
 Termcap is a database of terminal characteristics, and a library of
 C functions for accessing that database. It was created at Berkeley
 to allow the original vi editor to be terminal−independent. Elvis’
 termcap user interface was written to use this.

 AT&T created the terminfo database and library, adding a few minor
 features. Most modern UNIX systems use terminfo instead of termcap.
 Fortunately, terminfo’s library contains functions which emulate the
 termcap functions, so the termcap interface can be compiled to work
 with the terminfo library.

 The tinytcap.c file contains a simple reimplementation of the
 termcap library, for those systems (such as MS−DOS) which don’t have
 either a real termcap, or terminfo. Tinytcap’s database is
 hard−coded into it; to add or modify a terminal description, you
 need to edit tinytcap.c and recompile elvis.

11 Elvis 2.1 User Interfaces 11

 8.3.2 Common termcap values
 This section describes most of the termcap values used by elvis. The
 values which deal with cursor keys and graphic characters will be
 described in the following sections.

 Termcap field names are two characters long. Some names supply
 Boolean values, and others supply numeric or string values. A
 Boolean value is made true by giving the name; the absence of its
 name in a terminal’s entry indicates a false value for that field,
 for that terminal. For numeric fields, the name is followed by a ’#’
 character and then decimal digits specifying the value. For string
 fields, the name is followed by a ’=’ character and then a string.
 Fields are delimited by ’:’ characters.

 TERMCAP
 FIELD DESCRIPTION

 :AL=: Insert a given number of lines before current line
 :al=: Insert one line before the current line
 :am: Automargin − cursor wraps at end−of−line
 :bc=: Move the cursor back one character
 :cI=: Set cursor shape to "insert" shape
 :cQ=: Set cursor shape to "quit" shape
 :cR=: Set cursor shape to "replace" shape
 :cV=: Set cursor shape to "vi command" shape
 :cX=: Set cursor shape to "ex command" shape
 :ce=: Clear from cursor to end−of−line
 :cm=: Move cursor to a given row/column
 :co#: Width of screen, in columns
 :DC=: Delete a given number of character at the cursor
 :dc=: Delete one character at the cursor position
 :DL=: Delete a given number of lines at the cursor
 :dl=: Delete one line at the cursor position
 :IC=: Insert a given number of characters at the cursor
 :ic=: Insert one character at the cursor position
 :ke=: Disable the cursor keypad
 :ks=: Enable the cursor keypad
 :li#: Height of screen, in lines
 :md=: Start bold text
 :me=: End bold or half−bright text
 :mh=: Start half−bright text (used for italic text)
 :pt: Terminal supports physical tabs
 :se=: End standout text
 :sg#: Width of gap required by the :so=:se=: strings
 :so=: Start standout text
 :sr=: Reverse scroll one line (limited form of :ic=:)
 :te=: String that elvis sends upon exiting
 :ti=: String that elvis sends when starting
 :us=: End underlined text
 :ug#: Width of gap required by the :us:ue:md:me: strings
 :up=: move cursor up one line
 :us=: Start underlined text
 :vb=: Visible alternative to the bell
 :ve=: Set cursor shape to "quit" shape

12 Elvis 2.1 User Interfaces 12

 :vs=: Set cursor shape to "vi command" shape
 :xn: Brain−damaged newline; ignore the :am: flag

 8.3.3 Cursor Keys and Function Keys
 Cursor keys and function keys generally send escape sequences when
 struck. Elvis needs to know what those escape sequences are, so it
 can recognize the keystroke and act accordingly.

 The names of the fields for the arrows are pretty well standardized
 in termcap, but the other cursor keys are still rather unsettled.
 Different UNIX variants use different names for the same key. Elvis
 supports all common names for each key.

 Function keys are even more challenging. Originally termcap only had
 strings which described the first 4 function keys. This was easy to
 extend to 9 keys, but starting with the 10th function key things get
 strange because termcap field names must be two characters long.
 Also, there was no way to describe shift−function keys,
 control−function keys, or alt−function keys, so I invented by own
 fields for them.

 The following table lists all of the key field names, and the keys
 they refer to. For keys which may be described via more than one
 field name, the preferred field name is listed first. It also lists
 the key’s label, as reported by :map and what (if anything) that key
 is normally mapped to.

 KEY LABEL TERMCAP NAMES DESCRIPTION

 <Up> :ku=: Up arrow, mapped to "k"
 <Down> :kd=: Down arrow, mapped to "j"
 <Left> :kl=: Left arrow, mapped to "h"
 <Right> :kr=: Right arrow, mapped to "l"
 <PgUp> :kP=:PU=:K2=: Previous Page, mapped to "^B"
 <PgDn> :kN=:PD=:K5=: Next Page, mapped to "^F"
 <Home> :kh=:HM=:K1=: Home, mapped to "^"
 <End> :kH=:EN=:K4=: End, mapped to "$"
 <Insert> :kI=: Insert key, mapped to "i"
 <Delete> :kD=: Delete key, mapped to "x"
 <CLeft> :#4=:KL=: Ctrl + Left arrow, mapped to "B"
 <CRight> :%i=:KR=: Ctrl + Right arrow, mapped to "W"
 #1 :k1=: F1 key
 #2 :k2=: F2 key
 #3 :k3=: F3 key
 #4 :k4=: F4 key
 #5 :k5=: F5 key
 #6 :k6=: F6 key
 #7 :k7=: F7 key
 #8 :k8=: F8 key
 #9 :k9=: F9 key
 #10 :k0=:ka=:k;=: F10 key
 #1s :s1=: Shift−F1 key
 #2s :s2=: Shift−F2 key

13 Elvis 2.1 User Interfaces 13

 #3s :s3=: Shift−F3 key
 #4s :s4=: Shift−F4 key
 #5s :s5=: Shift−F5 key
 #6s :s6=: Shift−F6 key
 #7s :s7=: Shift−F7 key
 #8s :s8=: Shift−F8 key
 #9s :s9=: Shift−F9 key
 #10s :s0=: Shift−F10 key
 #1c :c1=: Control−F1 key
 #2c :c2=: Control−F2 key
 #3c :c3=: Control−F3 key
 #4c :c4=: Control−F4 key
 #5c :c5=: Control−F5 key
 #6c :c6=: Control−F6 key
 #7c :c7=: Control−F7 key
 #8c :c8=: Control−F8 key
 #9c :c9=: Control−F9 key
 #10c :c0=: Control−F10 key
 #1a :a1=: Alt−F1 key
 #2a :a2=: Alt−F2 key
 #3a :a3=: Alt−F3 key
 #4a :a4=: Alt−F4 key
 #5a :a5=: Alt−F5 key
 #6a :a6=: Alt−F6 key
 #7a :a7=: Alt−F7 key
 #8a :a8=: Alt−F8 key
 #9a :a9=: Alt−F9 key
 #10a :a0=: Alt−F10 key

 8.3.4 Graphic characters
 Elvis uses graphic characters for HTML mode’s <pre graphic> and <hr>
 tags.

 Originally termcap didn’t support a way to access the terminal’s
 graphic characters. A standard of sorts was eventually developed
 under the XENIX variant of UNIX. Later, the terminfo library adopted
 a different way to access the graphic characters, and this was
 worked back into the termcap standard, displacing the XENIX
 standard. The terminfo method is preferred, these days. Elvis
 supports both.

 Terminfo Strings

 TERMCAP
 FIELD DESCRIPTION

 :as=: Start graphic text
 :ae=: End graphic text
 :ac=: Maps VT100 graphic chars to this terminal’s chars

 The terminfo method uses the :as=:ae=: strings for turning the
 graphical character attribute on and off. While in graphic mode, the
 value of the :ac=: string is interpreted as a list of character

14 Elvis 2.1 User Interfaces 14

 pairs; the first character is a VT−100 graphic character, and the
 following character is this terminal’s corresponding graphic
 character. The following table lists the (text versions of) VT−100
 graphic characters, and descriptions of them. It also includes IBM
 PC characters.

 VT−100 IBM PC DESCRIPTION

 ’q’ ’\304’ horizontal line
 ’x’ ’\263’ vertical line
 ’m’ ’\300’ lower left corner (third quadrant)
 ’v’ ’\301’ horizontal line with up−tick
 ’j’ ’\331’ lower right corner (fourth quadrant)
 ’t’ ’\303’ vertical line with right−tick
 ’n’ ’\305’ four−way intersection, like ’+’ sign
 ’u’ ’\264’ vertical line with left−tick
 ’l’ ’\332’ upper left corner (second quadrant)
 ’w’ ’\302’ horizontal line with down−tick
 ’k’ ’\277’ upper right corner (first quadrant)

 So, for example, an entry describing the IBM PC would contain the
 following:

 :ac=q\304x\263m\300v\301j\331t\303n\305u\264l\332w\302k\277:

 XENIX Termcap Strings

 TERMCAP
 FIELD DESCRIPTION

 :GS=: Start graphic text
 :GE=: End graphic text
 :GH=: Horizontal bar
 :GV=: Vertical bar
 :G3=: Lower−left corner (i.e., third quadrant)
 :GU=: Horizontal bar with up−tick
 :G4=: Lower−right corner (i.e., fourth quadrant)
 :GR=: Vertical bar with right−tick
 :GC=: Center crosspiece (i.e., a big ’+’ sign)
 :GL=: Vertical bar with a left−tick
 :G2=: Upper−left corner (i.e., second quadrant)
 :GD=: Horizontal bar with a down−tick
 :G1=: Upper−right corner (i.e., first quadrant)

 In Xenix, a separate string is used for each line−drawing graphic
 character. There are also optional :GS=:GE=: strings for starting
 and ending graphic mode. If the :GS=:GE=: strings aren’t specified,
 then termcap is expected to set the MSB of each character in the
 graphic character strings.

15 Elvis 2.1 User Interfaces 15

 8.4 VIO Interface for OS/2

 The vio interface is an OS/2−specific text−mode interface. It should
 behave almost exactly like the termcap interface in all respects:
 same options, same colors, same windowing features, etc. Unlike the
 termcap interface, the vio interface must be run locally. It can’t
 run over a network via telnet, but the termcap interface can.

 8.5 Open Interface

 The open interface was created for use on terminals which lack some
 necessary capability (such as the :cm=: cursor movement command), or
 terminals of an unknown type. The open interface is ugly; if you
 have a choice, you should always use the termcap interface instead.

 The open interface works on all text terminals because the only
 control codes it uses are backspace, carriage return, and line feed.

 It only allows you to edit one line at a time. When you move to a
 new line (e.g., by using the j or k commands), the screen scrolls up
 and the new line is displayed at the bottom of the screen. This is
 true even when you’re moving the cursor back towards the beginning
 of the edit buffer; the lines of the buffer will appear on the
 screen in reverse order! The open interface can be very confusing.

 However, practically all of the normal visual commands are
 available. The only ones missing are those that specifically affect
 a whole window.

 8.6 Quit Interface

 The quit interface is intended to be used for executing scripts of
 ex commands. It performs all of the usual initialization, and then
 quits. It is normally used in conjunction with the −c command flag.

 For example, you can have elvis load a file, print it, and then exit
 via the following command line...

 elvis −G quit −c lp somefile

 Because the usual initialization guesses a file’s display mode
 automatically, this one command can be used to format and print HTML
 documents, man pages, C code, and even hex dumps of binary files.

 8.7 Script Interface

 The script interface is similar to the quit interface, except that
 this interface reads ex commands from stdin and executes them; when
 it detects end−of−file on stdin, it exits. Status messages are
 disabled while running a script, but error messages are still
 output.

 Rather than selecting this interface via −Gscript, you will usually

16 Elvis 2.1 User Interfaces 16

 select it via the −s flag (or the obsolete − flag), which has the
 additional side−effect of disabling all initialization scripts. This
 is desirable since it causes the script to behave exactly the same
 way for different users, regardless of any customization they have
 done.

 Here’s an example shell script that uses this feature to swap
 instances of the words "left" and "right" in a group of files.

 #!/bin/sh
 for file
 do
 elvis −s $file <<EOF
 try %s/\<left\>/:TEMP:/g
 try %s/\<right\>/left/g
 try %s/:TEMP:/right/g
 if modified
 then write
 EOF
 done

 Note that the five lines between "<<EOF" and "EOF" are a series of
 elvis commands, and everything else is handled by the /bin/sh shell.
 The :try commands are used to silence error messages from any :s
 commands which fail to find any matching text. The :if/:then
 commands are used to test the buffer’s modified option, so a file
 which contains no instances of "left" or "right" won’t be rewritten
 needlessly.

