
1 Elvis 2.1 Arithmetic Expressions 1

13. ARITHMETIC EXPRESSIONS

 * 13.1 Normal (C−like) Syntax
 * 13.2 Simpler Syntax
 * 13.3 Functions
 * 13.4 EX Commands Which Use Expressions
 * 13.5 VI Commands Which Use Expressions
 * 13.6 Other Uses of Expressions

 Elvis can evaluate expressions involving numbers, strings, and
 boolean values, using a C−like syntax. These are used in several EX
 commands, one VI command, and a couple of other situations.

 There are two syntaxes. The normal syntax is extremely similar to C,
 and is used in circumstances where you probably would never use a
 literal value, such as for the :if command. The simpler syntax makes
 literal values easier to enter, while still making the full power of
 the expression evaluator available if you need it.

 13.1 Normal (C−like) Syntax

 The :calculate command uses the normal syntax and displays the
 results. We’ll use it for most of the examples in this section.

 The normal syntax is intended to resemble the syntax of the C
 programming language very closely. You can’t define your own
 functions or use flow−control constructs though; you can only use
 expressions. In traditional C documentation, these would be called
 "rvalues." Basically that means you can use literal values, option
 names, operators, parentheses, and some built−in functions.

 13.1.1 Primary expressions
 Literals can be given in any of the following formats:

 "text"
 Any text in double−quotes is taken literally. The usual C
 escapes are supported: \b, \E (uppercase, representing the Esc
 character), \f, \n, \r, and \t. Also, you can use \\ for a
 literal backslash character, or \" for a literal double−quote
 character within a string.

 \$
 \(
 \)
 \\
 You can use a backslash to quote a single dollar sign,
 parenthesis, or backslash as though it was a string of length 1.
 This was done mostly for the benefit of the simpler syntax,
 where these four character are normally the only ones which have
 any special interpretation.

 digits
 Any word which contains only digits will be taken as a literal
 value. Generally this value will be interpreted as a number, but

2 Elvis 2.1 Arithmetic Expressions 2

 internally the expression evaluator always stores values as
 strings. Some operators look at their arguments and act
 differently depending on whether those strings happen to look
 like numbers or Boolean values.

 0octaldigits
 0xhexdigits
 ’character’
 Octal, hex, and character constants can be used in expressions.
 These are converted to decimal when they are parsed, before they
 are passed to any operator or function. Passing an octal, hex,
 or character constant therefore is exactly like passing the
 equivalent decimal number. Elvis supports escapes as character
 constants: ’\0’, ’\b’, ’\E’, ’\f’, ’\n’, ’\r’, and ’\t’.

 true
 false
 These can be used as Boolean literals. Technically, they are
 implemented via options (as described below) named true and
 false. All of the boolean operators accept "false", "0", "", or
 the value of the false option as Boolean false values, and
 anything else as a Boolean true value.

 The following examples produce exactly identical results.

 :calc "8"
 8
 :calc 8
 8
 :calc 010
 8
 :calc 0x8
 8
 :calc ’\b’
 8

 You can also use option names in elvis the same way you would use
 variable names in C.

 :calc list
 false
 :calc scroll
 12
 :calc display
 normal

 Additionally, a dollar sign followed by the name of an environment
 variable is replaced by the value of that environment variable. If
 there is no such environment variable, then elvis will act as though
 it exists and has a null value.

 In some circumstances, you can use a dollar sign followed by a digit
 to access special arguments. This is used in error messages and also
 in the values of a few options, as described in section 13.6. These

3 Elvis 2.1 Arithmetic Expressions 3

 special arguments can only be supplied by elvis’ internal code, and
 it only supplies them in a few special circumstances so you can’t
 use them in :calculate, for example.

 13.1.2 Operators
 The following operators are available. When passed integer values,
 these operators act like their C counterparts. When passed string
 values, most of them concatenate their arguments with the operator
 name in between, but some of them do something that is useful for
 strings, as described below. Items at the top of this list have a
 higher precedence than those lower down.

 (no operator)
 Any two expressions placed side−by−side with no operator between
 them will be concatenated as strings. C does this for literal
 strings, but elvis does it for anything.

 ~
 Perform a bitwise NOT operation on the argument, if it is a
 number.

 !
 Return true if the argument is false and vice versa.

 * / %
 The usual arithmetic operators. (% is the modulo operator.)

 Also, the / operator can be used to combine a directory name and
 a file name, to form an absolute pathname. Here are some
 examples showing how this works in DOS:

 :set dir home
 directory=C:\temp home=C:\
 :calc dir/"tempfile"
 C:\temp\tempfile
 :calc home/"elvis.rc"
 C:\elvis.rc

 + −
 The usual arithmetic operators. Note that there is no special
 unary − sign; the minus sign serves double−duty. Because C
 normally gives the unary − sign a higher precedence than other
 operators and elvis doesn’t, you may occasionally need to
 enclose negated values in parentheses to achieve the same
 effect.

 << >>
 For integers these operators perform bitwise shifting, exactly
 like C. However, if the left argument is a string and the right
 argument is a number then elvis will pad or truncate the string
 to make its length match the number argument. << pads/truncates
 on the right, and >> pads/truncates on the left.

 :calc \[("port" << 6)\]
 [port]
 :calc \[("starboard" >> 6)\]

4 Elvis 2.1 Arithmetic Expressions 4

 [rboard]

 < <= > >= == !=
 Compare the arguments and return true if the comparison holds,
 and false otherwise. If both arguments look like numbers, then
 they will be compared as numbers; otherwise they will be
 compared as strings.

 &
 Bitwise AND of the arguments, if they’re numbers.

 ^
 Bitwise XOR of the arguments, if they’re numbers.

 |
 Bitwise OR of the arguments, if they’re numbers.

 &&
 Returns false if either argument is one of the four false string
 values, and true otherwise. Both arguments are always evaluated;
 this is different from C, where the right argument is only
 evaluated if the left argument is true.

 ||
 Returns false if both arguments are one of the four false string
 values, and true otherwise. Both arguments are always evaluated;
 this is different from C, where the right argument is only
 evaluated if the left argument is false.

 ?:
 This one is tricky because internally elvis always uses binary
 (two operand) operators. In C this is a ternary operator but in
 elvis it is implemented as two binary operators which cooperate
 in a subtle way so they seem like a single ternary operator. You
 probably don’t need to know the details, but the upshot of it
 all is that 1) It associates left−to−right (instead of
 right−to−left as in C), and 2) The : and third argument are
 optional; if omitted, then elvis mentally sticks :"" on the end
 of the expression.

 ,
 (That’s a comma, not an apostrophe.) Concatenates two strings,
 with a comma inserted between them. This can be handy when
 you’re passing arguments to the quote() and unquote() functions.

 ;
 Concatenates two strings without inserting any extra characters.
 The result is exactly like (no operator), except that (no
 operator) has an extremely high precedence, and ; has an
 extremely low precedence.

 :calc 1+2 3*4
 93
 :calc 1+2;3*4
 312

5 Elvis 2.1 Arithmetic Expressions 5

 13.2 Simpler Syntax

 In comparison to the normal expression syntax, the simpler syntax
 makes it easier to enter literal strings because outside of
 parentheses the only special characters are the backslash, dollar
 sign, and parentheses. (These may be escaped by preceding them with
 a backslash.) Inside parentheses, the normal syntax is used.

 The :eval command uses the simpler syntax, and the :echo command
 displays its arguments. These commands can be used together to
 experiment with the simpler syntax, the same way we used :calculate
 to experiment with the normal syntax.

 :eval echo TERM=$TERM
 TERM=xterm
 :eval echo home=(home)
 home=/home/steve
 :eval echo 2+2=(2+2)
 2+2=4

 13.3 Functions

 There are several built−in functions. When you call one of these
 functions, there must not be any whitespace between the function
 name and the following parenthesis. The built−in functions are:

 FUNCTION(ARG) RETURN VALUE

 strlen(string) number of characters in the string
 toupper(string) uppercase version of string
 tolower(string) lowercase version of string
 isnumber(string) "true" iff string is a decimal number
 htmlsafe(string) convert characters from ASCII to HTML
 hex(number) string of hex digits representing number
 octal(number) string of octal digits representing number
 char(number) convert number to 1 ASCII char, as a string
 quote(list,str) insert backslashes before chars in list
 unquote(list,str) remove backslashes before chars in list
 exists(file) "true" iff file exists
 dirperm(file) string indicating file attributes
 dirfile(file) filename.ext part of a path
 dirname(file) directory part of a pathname
 dirdir(file) directory, like dirname(file)
 dirext(file) extension (including the .)
 basename(file) filename without extension
 fileeol(file) newline style of the file
 absolute(file) return a full path−name for a given file
 getcwd() return the current working directory name
 elvispath(file) locate a file in elvis’ configuration path

6 Elvis 2.1 Arithmetic Expressions 6

 shell(program) run program, and return its output
 knownsyntax(file) language of a file if in elvis.syn, else ""
 buffer(bufname) "true" iff buffer exists
 alias(name) "true" iff an alias exists with that name
 current(item) value indicating an aspect of elvis’ state
 line(bufname,num) return the contents of a given line
 feature(name) "true" iff a given feature is supported

 (Note: "iff" is short for "if and only if")

 Some of these deserve further comment.

 The isnumber() function uses the same test that the operators use
 when deciding whether to use the string version or the number
 version of their behavior. You can use isnumber() to predict how
 operators will behave.

 The hex() and octal() functions return strings which look like
 C−style hex or octal constants, respectively. The isnumber()
 function will return false when passed one of these strings; they
 are no longer considered to be numbers. In fact, the only reason you
 can use hex and octal literals is because they are converted into
 decimal strings by the parser, before evaluation even begins. The
 following example demonstrates that hex literals are converted to
 decimal, and that the value returned by hex() is something else.

 :calc strlen(0xff)
 3
 :calc strlen(hex(255))
 4

 The char() function returns a one−character string; that character’s
 decimal value will be the argument number. For example, "char(65)"
 returns "A". Note that the returned value does not look quite like a
 character constant.

 The quote() and unquote() functions add and remove backslashes
 before special characters. The backslash character itself is always
 considered to be "special," so backslashes are converted to
 double−backslashes and vice versa. In the argument, any characters
 which precede the first comma are used as a list of other special
 characters, and the remainder of the argument is the string to be
 quoted/unquoted. For example...
 :set t="/* regexp */"
 :set r="*^$/.["
 :eval /(quote(r, t))/
 ... will search for the next instance of of the literal string
 "/* regexp */". The ’/’ and ’*’ characters won’t be treated as
 metacharacters in the regular expression, because the quote()
 function inserts backslashes before them. Also, notice that the
 comma operator concatenates two strings and inserts a comma between
 them. That’s handy!

 The dirperm() function returns one of the following strings to
 indicate the file’s type and permissions:

7 Elvis 2.1 Arithmetic Expressions 7

 "invalid"
 The argument is malformed; it could not possibly be a valid file
 name.

 "badpath"
 The argument is a pathname, and one or more of the directories
 named in that pathname either doesn’t exist or is something
 other than a directory.

 "notfile"
 The argument is the name of something other than a file; for
 example, it may be a directory.

 "new"
 There is no file, directory, or anything else with the given
 name.

 "unreadable"
 The file exists but you don’t have permission to read it.

 "readonly"
 The file exists and you can read it, but you don’t have
 permission to write to it.

 "readwrite"
 The file exists and you can read or write it.

 The fileeol() function opens the file in binary mode, reads the
 first hundred bytes, and inspects those bytes to make a guess about
 the file’s newline format. It is commonly used for setting the
 readeol option. fileeol() returns one of the following strings:

 "unix"
 It appears to be a text file which uses Line Feed characters for
 newlines.

 "dos"
 It appears to be a text file which uses Carriage Return/Line
 Feed pairs for newlines.

 "mac"
 It appears to be a text file which uses Carriage Return
 characters for newlines.

 "binary"
 It appears to be a binary file. Note that all HTTP and FTP URLs
 are assumed to be binary.

 "text"
 Anything else; e.g., a non−existent file or empty file.

 The elvispath() function searches through the directories listed in
 the elvispath option’s value, looking for the argument file name. If
 it is found, then the full pathname of the file is returned;
 otherwise it returns a null string.

8 Elvis 2.1 Arithmetic Expressions 8

 The absolute() function attempts to construct a full pathname for a
 given file name. If the given file name is actually a URL, or if it
 is already a full pathname, then this function returns it unchanged.
 Otherwise it combines the getcwd() value with the given name.

 The knownsyntax() function determines whether the given file can be
 displayed in the syntax display mode. It does this by looking for
 the file name extension in the elvis.syn configuration file. If the
 file’s extension is listed there, then this function returns the
 name of the language. Otherwise, it just returns an empty string.

 The current() function examines elvis’ internal variables, and
 returns a string indicating the value of one of them. The argument
 determines which variable is examined, as follows:

 current("line")
 Current line number.

 current("column")
 Current column number.

 current("word")
 The word at the cursor location. If the cursor isn’t on a word,
 then this returns an empty string. (Note: To get the contents of
 the current line, use the line() function.)

 current("tag")
 If the showtag option is true, then this returns the name of the
 tag that is defined at the cursor location, or the nearest one
 before it. If the showtag option is false, or the cursor is
 located above the first tag defined in this file, then
 current("tag") will return an empty string.

 current("mode")
 Current key parsing mode. This returns the same string that the
 showmode option displays, except that this function converts it
 to all lowercase, and strips out whitespace. The usual return
 values are "command", "input", and "replace". If the window
 isn’t editing the its main buffer (i.e., if you’re entering an
 ex command line, regular expression, or filter command) then
 this function will return an empty string.

 current("selection")
 Visible selection type. This returns one of "character",
 "rectangle", or "line" to indicate the type of visible selection
 which is currently marked in the window, or an empty string if
 no visible selection is marked.

 current("next")
 Next file. This returns the name of the file that the :next
 command would load, or an empty string if you’re at the end of
 the args list.

 current("previous")
 Previous file. This returns the name of the file that the

9 Elvis 2.1 Arithmetic Expressions 9

 :previous command would load, or an empty string if you’re at
 the start of the args list.

 current("tagstack")
 If the window’s tag stack is empty, this returns "". Otherwise
 it returns the name of the buffer to which :pop would move the
 cursor.

 The line() function returns the contents of a single line from an
 edit buffer. If two arguments are given, then the first argument is
 taken to be the name of the edit buffer, and the second argument is
 used as the line number. If only one argument is given, then it is
 assumed to be a line number within the current buffer. If no
 arguments are given, then it assumes it should use the current line
 of the current buffer. If the line is too long to fit in the result
 variable, then it is truncated.

 The feature() function is intended to allow you to write EX scripts
 which work with different configurations of elvis. For example, you
 can compile elvis without support for the hex display mode; if you
 do that, then feature("hex") will return false. Currently feature()
 returns true for all supported display modes, network protocols, and
 maybe "showtag" and "lpr"; it returns false for anything else. As
 new features are added to future versions of elvis, I expect to add
 them to feature()’s list.

 13.4 EX Commands Which Use Expressions

 The :calculate command evaluates its argument using the normal
 syntax, and displays the result.

 The :if command evaluates its argument using the normal syntax. If
 the resulting value is any Boolean true value then a flag is set;
 otherwise the flag is reset. After that, you can use :then and :else
 commands to conditionally execute some commands, depending on the
 state of that flag.

 The :eval command evaluates its arguments using the simpler syntax.
 The resulting string value is then interpreted as an EX command
 line. This gives you a way to use the expression evaluator with
 commands which otherwise wouldn’t evaluate expressions.

 The :let command allows you to change the values of options. Its
 syntax is ":let option=expression", where expression is any
 expression using the normal syntax. You can use this to change the
 value of any unlocked option, similarly to :set.

 :set i=14
 :calc i
 14
 :let i=i+1
 :set i?
 i=15
 :eval set i=(i*2)
 :calc i

10 Elvis 2.1 Arithmetic Expressions 10

 30

 :let elvispath="."
 :let list="false"
 :let sidescroll=0x10

 13.5 VI Commands Which Use Expressions

 There is only one way to use expressions in a visual command: Move
 the cursor to the start of some expression in your edit buffer, hit
 the lowercase v key, move to the other end, and then hit the = key.
 Elvis will then evaluate the highlighted expression, and replace the
 original expression with the result.

 Note that the = operator only works this way when used with the v
 command for marking characters. If you visibly mark lines, or use
 the traditional =movement syntax, then elvis will send the selected
 lines though the external filter program named in the equalprg
 option.

 The # command doesn’t use expressions, but it does perform some
 simple math.

 13.6 Other Uses of Expressions

 13.6.1 Messages
 All of elvis’ warning and error messages are actually expressions,
 using the simpler syntax. When outputting a message, elvis may
 supply other parameters which are accessible as $1 through $9. See
 the Messages chapter for a longer description of how elvis handles
 messages.

 13.6.2 Options
 The ccprg and makeprg options’ values are expressions, using the
 simpler syntax. When evaluating these expressions, $1 is replaced by
 whatever arguments are supplied on the ex command line, and $2 is
 replaced by the the name of the file being edited.

 13.6.3 File Names
 File names are evaluated as expressions (using the simpler syntax),
 primarily as a means for expanding environment variable names. This
 is done prior to wildcard expansion.

 The full power of the expression evaluator is available; you can use
 it to do more than just expand environment variable names. For
 example, you could store the name of a file in one of the user
 options, and then later use that option name in parentheses wherever
 a filename was expected.

 :set f=myfile.txt
 :w (f)

11 Elvis 2.1 Arithmetic Expressions 11

 wrote myfile.txt, ...

 If you use this trick, remember that it only works when elvis is
 expecting a file name. It won’t work when invoking external
 programs, because elvis doesn’t know which program arguments are
 supposed to be file names. Elvis always passes program arguments
 literally.

 Recall that when a backslash character is followed by an
 alphanumeric character, both the backslash and the alphanumeric
 character become part of the resulting value. This was done mostly
 for the benefit of file names. If the backslash was always dropped
 then MS−DOS users would have a heck of a time entering pathnames of
 files! By making the backslash a little smarter, we avoid that
 problem.

 :eval echo c:\tmp \(notice the backslashes\)
 c:\tmp (notice the backslashes)

 To simplify the task of writing portable ex scripts, the behavior of
 the / operator has been extended. When one or both of its arguments
 are strings, it concatenates them as a directory name and a file
 name, yielding a full pathname.

