
1 Elvis 2.1 Ex Mode 1

4. EX COMMAND MODE

 Ex is an editing mode in which elvis acts like a line editor. This
 means that you type in a command line, and when the line is complete
 elvis executes it on the current text buffer. I.e., in ex each line
 (or group of lines) is a command, as opposed to vi where each
 character (or group of characters) is a command.

 Typically, ex commands are used to do perform complex actions such
 as global search & replace, or actions which require an argument
 such as writing the edit buffer out to a different file.

 Ex is also used as the configuration language for elvis;
 configuration scripts such as elvis.ini, .exrc (or elvis.rc), and
 elvis.arf contain a series of ex commands.

 You can switch freely between vi and ex. If you’re in vi mode, you
 can enter a single ex command line via the visual : command, or more
 permanently switch via the visual Q command. If you’re in ex mode,
 you can switch to vi mode via ex’s :vi command.

 Normally elvis will start in vi mode, but you can force it to start
 in ex mode by supplying a −e command line flag. On UNIX systems, you
 can link elvis to a name which ends with "x" to achieve the same
 effect.

 The remainder of this section discusses how to enter lines, the
 general syntax of an ex command line, and the specific commands
 which elvis supports.

 4.1 Entering lines

 In elvis, when you’re typing in an ex command line you’re really
 inputing text into a buffer named "Elvis ex history". All of the
 usual input mode commands are available, including Backspace to
 erase the previous character, Control−W to erase the previous word,
 and so on.

 Any previously entered lines will still be in the "Elvis ex history"
 buffer, and you can use the arrow keys to move back and edit earlier
 commands. You can even use the Control−O input−mode command with the
 ?regexp visual command, to search for an earlier command line.

 When you hit the Enter key on a line in the "Elvis ex history"
 buffer, elvis sends that line to the ex command parser, which is
 described in the next section.

 4.1.1 An example
 Suppose you enter the command...

 :e ~/proj1/src/header.h

 ...and then realize that you really wanted "header2.h" instead of
 "header.h". You simplest way to get "header2.h" is to...
 1) Hit the : key to start a new ex command line.

2 Elvis 2.1 Ex Mode 2

 2) Hit the Up arrow key, or ^O k to move back to the preceding
 command line (which was ":e ~/proj1/src/header.h"). ^O k works
 because ^O reads and executes one vi command, and the k vi
 command moves the cursor back one line. The Up arrow key works
 because it is mapped to "visual k", which does exactly the same
 thing as ^O k.
 3) Hit the Left arrow key twice, or ^O 2 h, to move the cursor back
 to the ’.’ character in "header.h".
 4) Hit 2 to insert a ’2’ before the ’.’ character. At this point,
 the line should look like ":e ~/proj1/src/header2.h".
 5) Hit Enter to submit the revised command line.

 Or suppose you really wanted "footer2.h" instead of "header2.h".
 This is a little trickier because you want to delete characters in
 the middle of the command line, before inserting the correct text.
 The simplest way to do this is move the cursor to a point just after
 the last character that you want to delete, and then backspace over
 them. The steps are:
 1) Hit the : key to start a new ex command line.
 2) Hit the Up arrow key or ^O k repeatedly to move back to the ":e
 ~/proj1/src/header2.h"command line.
 3) Hit the Left arrow key five times, or ^O 5 h, to move the cursor
 back to the last ’e’ character in "header2.h".
 4) Hit the Backspace key four times to delete the word "head". It
 will still show on the screen, but elvis will know that it has
 been deleted. This is the same sort of behavior that elvis (and
 vi) exhibits when you backspace over newly entered text in input
 mode.
 5) Type f o o t to insert "foot" where "head" used to be. At this
 point, the line should look like ":e ~/proj1/src/footer2.h".
 6) Hit Enter to submit the revised command line.

 4.1.2 The TAB key

 The Tab key has a special function when you’re inputing text into
 the "Elvis ex history" buffer. It is used for name completion.
 (Exception: Under MS−DOS, this feature is disabled in order to
 reduce the size of the program, so it will fit in the lower 640K.)

 Name completion works like this: The preceding word is assumed to be
 a partial name for an ex command, an option, a tag, or a file. The
 type of name is determined by the context in which it appears −−
 commands appear at the start of an ex command line, and the others
 can only occur after certain, specific command names. Elvis searches
 for all matches of the appropriate type.

 If there are multiple matches, then elvis fills in as many
 characters of the name as possible, and then stops; or, if no
 additional characters are implied by the matching names, then elvis
 lists all matching names and redisplays the command line. If there
 is a single match, then elvis completes the name and appends a tab
 character or some other appropriate character. If there are no
 matches, then elvis simply inserts a tab character.

 Also, if while entering a :set command you hit the Tab key
 immediately after "option=" then elvis will insert the current value

3 Elvis 2.1 Ex Mode 3

 of the option. You can then edit that value before submitting the
 command line.

 I tried to make elvis smart enough that the Tab key will only
 attempt file/command/option completion in contexts where it makes
 sense to do so, but that code might not be 100% correct. You can
 bypass the completion by typing a Control−V before the Tab key. You
 can also disable name completion altogether by setting the "Elvis ex
 history" buffer’s inputtab option to "tab", via the following
 command:

 :(Elvis ex history)set inputtab=tab

 or the abbreviated form:

 :("Eeh)se it=t

 By default, elvis ignores binary files when performing filename
 completion. The completebinary option can be used to make elvis
 include binary files. That’s a global option (unlike inputtab which
 is associated with a specific buffer), so you don’t need to specify
 the buffer name; a simple :set completebinary will set it.

 4.2 Syntax and Addressing

 In general, ex command lines can begin with an optional window id.
 This may be followed by an optional buffer id, and then 0, 1, or 2
 line addresses, followed by a command name, and perhaps some
 arguments after that (depending on the command name).

 A window ID is typed in as a decimal number followed by a colon
 character. If you don’t supply a window ID (and you almost never
 will) then it defaults to the window where you typed in the command
 line. The :buffer command lists the buffers, and shows which one is
 being edited in which window. Also, the windowid option indicates
 the ID of the current window.

 A buffer ID is given by typing an opening parenthesis, the name of
 the buffer, and a closing parenthesis. For user buffers, the name of
 the buffer is usually identical to the name of the file that it
 corresponds to. For example, a file named ~/.Xdefaults would be
 loaded into a buffer which could be addressed as (~/.Xdefaults).
 Elvis also assigns numbers to user buffers, which may be more
 convenient to type since numbers are generally shorter than names.
 If ~/.Xdefaults is the first file you’ve edited since starting
 elvis, then its buffer could be addressed as (1). The :buffer
 command shows the number for each user buffer.

 Elvis also has several internal buffers, all of which have names
 that start with "Elvis ", such as (Elvis cut buffer x) and (Elvis
 error list). The :buffer! command (with a ! suffix) will list them
 all. For the sake of brevity, elvis allows you to refer to cut
 buffers as ("x). Similarly, the other internal buffers can be
 referred to via a " character and the initial letter in each word of
 the full name, such as ("Eel) for (Elvis error list).

4 Elvis 2.1 Ex Mode 4

 Commands which don’t access the text, such as ":quit", don’t allow
 any line addresses. Other commands, such as ":mark", only allow a
 single line address. Most commands, though, allow two line
 addresses; the command is applied to all lines between the two
 specified lines, inclusively. The tables below indicate how many
 line addresses each command allows.

 Line addresses are always optional. The first line address of most
 commands usually defaults to the current line. The second line
 address usually defaults to be the same as the first line address.
 Exceptions are :write, :lpr, :global, and :vglobal, which act on all
 lines of the file by default, and :!, which acts on no lines by
 default.

 If you use the visual V command to mark a range of lines, and then
 use the visual : command to execute a single ex command, then the
 default range affected by the ex command will be the visibly marked
 text.

 Line addresses consist of an absolute part and a relative part. The
 absolute part of a line specifier may be either an explicit line
 number, a mark, a dot to denote the current line, a dollar sign to
 denote the last line of the file, or a forward or backward search.
 An explicit line number is simply a decimal number, expressed as a
 string of digits. A mark is typed in as an apostrophe followed by a
 letter. Marks must be set before they can be used. You can set a
 mark in visual command mode by typing "m" and a letter, or you can
 set it in ex command mode via the "mark" command. A forward search
 is typed in as a regular expression surrounded by slash characters;
 searching begins at the default line. A backward search is typed in
 as a regular expression surrounded by question marks; searching
 begins at the line before the default line.

 If you omit the absolute part, then the default line is used.

 The relative part of a line specifier is typed as a + or − character
 followed by a decimal number. The number is added to or subtracted
 from the absolute part of the line specifier to produce the final
 line number.

 As a special case, the % character may be used to specify all lines
 of the file. It is roughly equivalent to saying 1,$. This can be a
 handy shortcut.

 Here are some addressing examples, using the :p command:

 COMMAND ACTION

 :p print the current line
 :37p print line 37
 :’gp print the line which contains mark g
 :/foo/p print the next line that contains "foo"
 :$p print the last line of the buffer
 :20,30p print lines 20 through 30
 :1,$p print all lines of the buffer

5 Elvis 2.1 Ex Mode 5

 :%p print all lines of the buffer
 :(zot)%p print all lines of the "zot" buffer
 :/foo/−2,+4p print 5 lines around the next "foo"

 The optional addresses are followed by the command name. Command
 names may be abbreviated. In the sections that follow, the command’s
 full name is given with the optional part enclosed in square
 brackets.

 Some commands allow a ’!’ character to appear immediately after the
 command name. The significance of the ’!’ varies from one command to
 another, but typically it forces the command to do something
 dangerous that it would ordinarily refuse to do. For example, :w
 file refuses to overwrite an existing file, but :w! file will do it.

 Many commands allow (or even require) additional arguments. The
 descriptions below list which arguments each command accepts with
 optional commands denoted by square brackets. The most common
 argument types are:

 /regexp/
 This is a regular expression. You can use any punctuation
 character to delimit it, but the ’/’ character is the most
 commonly used.

 /regexp/newtext/
 This is a regular expression followed by replacement text.

 count
 This is a number − a string of digits. Generally, it is used as
 the repeat count for certain commands.

 cutbuf
 This is the name of a cut buffer − a single letter. Elvis also
 allows (but does not require) a quote character before the
 letter.

 excmds
 This is another ex command, or list of ex commands.
 Traditionally, the whole list of commands had to appear on the
 same line, delimited by ’|’ characters. Elvis has the added
 versatility of allowing a ’{’ character on the first line, each
 command on a separate following line, and then ’}’ on a line by
 itself to mark the end of the ex command list.

 lhs
 This is string of characters. If whitespace characters are to be
 included in it, then they must be quoted by embedding a ^V
 character before them.

 line
 This is a line address, as described earlier.

 +line
 Some commands which cause a file to be loaded also allow you to
 specify some other command to be executed after the loading is

6 Elvis 2.1 Ex Mode 6

 complete. To use this feature, you mist give a "+" followed by
 the command, in between the command name and the file name.
 Here’s an example that loads foo and then moves the cursor to
 line 40.

 :e +40 foo

 Usually the command is just a line number, so this is denoted as
 "+line" in this documentation. Other commands are allowed
 though, such as "+/text" to search for text, or "+normal" to
 force it to use the normal display mode.

 Traditionally, commands supplied in this manner weren’t allowed
 to contain whitespace, because that makes parsing the command
 line harder. This is too limiting, though, so elvis allows you
 to embed spaces in the command by wrapping the entire deferred
 command in double−quotes, like this:

 :e +"set bufdisplay=man" filedb.8

 mark
 This is the name of a mark − a single lowercase letter. Elvis
 allows (but does not require) an apostrophe before the letter.

 rhs
 This is a string of characters. If it begins with a whitespace
 character, then that character must be quoted by embedding a ^V
 character in the command line before it. Other whitespace
 characters in the string do not need to be quoted.

 expr
 This is an arithmetic expression using the normal syntax.

 shellcmd
 This is a command line which is passed to the system’s command
 interpreter. Within the command line, the following character
 substitutions take place, unless preceded by a backslash:

 CHARACTER REPLACED BY

 % Name of current file
 # Name of alternate file
 #n Name of file whose bufid=n
 ! Previous command line
 \@ Word at cursor location

 Note that the \@ substitution requires a backslash. This quirk
 exists for the sake of backward compatibility − the real vi
 doesn’t perform any substitutions for just plain @.

 file or files
 This is one or more file name, or a "wildcard" pattern which
 matches the names of zero or more files. File names are
 subjected to three levels of processing. First, leading ~

7 Elvis 2.1 Ex Mode 7

 characters and certain other characters are replaced with text,
 as follows:

 SYMBOL REPLACED BY

 ~user (Unix only) Replaced by home directory of user
 ~+ Replaced by current working directory
 ~− Replaced by previous directory (previousdir)
 ~ Replaced by home directory (home)
 % Replaced by the name of the current file
 # Replaced by the name of the alternate file
 #n Replaced by the filename of buffer with bufid=n
 (space) Delimits one file name from another
 ‘program‘ Run program, interpret its output as filenames

 The second stage of processing evaluates each name using the
 simpler expression syntax. This basically means that expressions
 of the form $NAME will be replaced with the value of the
 environment variable named NAME. Also, you can use parentheses
 around option names or more complex expressions. For example, if
 the user option f contains the name of a file, then you could
 say ":e (f)" to edit that file.

 In either of the first two stages, backslashes may be used to
 prevent the special symbols from having their usual meaning;
 they’ll be treated as normal text instead. In particular, a
 backslash−space sequence can be used to give a filename which
 includes spaces; e.g., to edit "C:\Program Files\foo" you would
 type ":e C:\Program\ Files\foo". Note that backslashes which are
 followed by a normal character are simply retained as normal
 characters, so you rarely need to type a double−backslash when
 your file name needs only a single backslash.

 The third stage of processing checks for "wildcard" characters
 in the name, and if there are any then the whole name is
 replaced by the name of each matching file. The exact list of
 supported wildcards will vary from one operating system to
 another, but the following are typical:

 SYMBOL MATCHES

 * Any string of characters, of any length
 ? Any single character
 [a−z] (Unix only) Any single character from A to Z

 In most operating systems, wildcards are only recognized when
 they occur in the last file name part of a longer pathname. In
 other words, you can use wildcards for file names, but not in
 directory names leading up to file names.

 Traditionally, vi has used the Unix shell to expand wildcards.
 However, this interferes with the use of spaces in file names,

8 Elvis 2.1 Ex Mode 8

 isn’t easily portable to non−Unix operating systems, and is a
 potential security hole. So elvis performs all wildcard
 expansion itself. The only disadvantage of this is that you
 loose other shell notations such as ‘command‘ and {alt1,alt2}.

 Most commands can be followed by a ’|’ character and another ex
 command. Others can’t. In particular, any command which takes a
 excmd or shellcmd argument doesn’t treat ’|’ as a command delimiter.

 If a command does treat ’|’ as a delimiter, and you want ’|’ to be
 treated as part of a command argument, then you’ll need to quote the
 ’|’ character by preceding it with a backslash or ^V, depending on
 the command. (Sadly, different commands require different quote
 characters.)

 4.3 Ex Commands, Grouped by Function

 * 4.3.1 The help command itself
 * 4.3.2 Editing commands
 * 4.3.3 Global edit commands
 * 4.3.4 Displaying text
 * 4.3.5 Tags
 * 4.3.6 File I/O commands
 * 4.3.7 The args list, and selecting a file to edit
 * 4.3.8 Quitting
 * 4.3.9 Scripts and macros
 * 4.3.10 Working with a compiler
 * 4.3.11 Built−in calculator
 * 4.3.12 Buffer commands
 * 4.3.13 Window commands
 * 4.3.14 Configuration
 * 4.3.15 Miscellaneous

 4.3.1 The help command itself

 ADDRESS COMMAND ARGUMENTS

 h[elp] topic

 The :help command loads and displays a help file for a given topic.
 There are several help files, covering a wide variety of topics.

 Elvis looks at the topic you supply, and tries to determine whether
 it is an ex command name, vi keystroke, option name, or something
 else. Based on this, it generates a hypertext link to the topic in
 the appropriate help file, and shows the topic in a separate window.
 Elvis uses the following rules to convert your requested topic into
 a hypertext reference:

 COMMAND ELVIS’ INTERPRETATION

9 Elvis 2.1 Ex Mode 9

 :help With no topic, elvis loads the table of
 contents. This has hypertext links that
 can lead you to any other topic.
 :help ex Elvis loads the chapter describing ex
 commands.
 :help vi Elvis loads the chapter describing vi
 commands.
 :help set XXX If XXX is an option name, elvis will show
 the description of that option; else it
 will list groups of all options.
 :help :XXX If XXX is an ex command name, elvis will
 show its description; else elvis will
 list groups of all ex commands.
 :help XXX If XXX appears to be a keystroke then
 elvis will assume it is meant to be a
 vi command and will show the command’s
 description. Else if it is an option
 name elvis will show that. Else if it
 is an ex command, elvis will show that.
 Else elvis will show this description
 of the :help command itself.

 Although this chart only mentions sections on ex commands, vi
 commands, and options, there are many others which are only
 accessible via the table of contents shown by ":help" with no
 arguments.

 All of these help files are HTML documents. Elvis’ standard HTML
 editing facilities are available while you’re viewing the help text.
 Some of the highlights of this are:
 * To close this help window, type ZQ. Actually, this works for all
 windows. (You must hold the Shift key as you type ZQ, because
 lowercase zq does something else entirely: nothing!)
 * Any underlined text is a hypertext reference. This means that
 you can move the cursor onto it, and hit the Enter key, and the
 cursor will move to a topic describing the underlined text.
 * To return to your original position after following a hypertext
 reference, hit ^T (Control−T).
 * The Tab key moves the cursor forward to the next hypertext
 reference.

 You can use elvis to print the document via the :lpr command. This
 assumes you have set the printing options correctly.

 NOTE: In addition to the :help command, most versions of elvis also
 support two aliases which you may find handy. The ":howto words..."
 alias searches for given words in the title lines of a short
 "howto.html" document. The ":kwic word" alias finds every instance
 of a given word in any section of elvis’ documentation, and builds a
 table showing each instance along with some of the surrounding text;
 you can then follow hypertext links to the actual location in the
 manual.

 4.3.2 Editing commands

10 Elvis 2.1 Ex Mode 10

 ADDRESS COMMAND ARGUMENTS

 line a[ppend][!] [text]
 line i[nsert][!] [text]
 range c[hange][!] [count] [text]
 range d[elete] [cutbuf] [count]
 range y[ank] [cutbuf] [count]
 line pu[t] [cutbuf]
 range co[py] line
 range m[ove] line
 range t[o] line
 range ! shellcmd
 range >
 range <
 range j[oin][!]
 u[ndo] [count]
 red[o] [count]

 The :append command inserts text after the current line. If no new
 text is supplied on the command line, then elvis will wait for you
 to type in text; you can then mark the end of the new text by typing
 a "." (period) on a line by itself. In the real vi, adding a ’!’
 suffix temporarily toggles the autoindent option, but elvis just
 ignores the ’!’.

 The :insert command inserts text before the current line. Other than
 that, it is identical to the :append command. In the real vi, adding
 a ’!’ suffix temporarily toggles the autoindent option, but elvis
 just ignores the ’!’.

 The :change command deletes old text lines (copying them into the
 anonymous cut buffer) and then waits for you to enter new text to
 replace it. You can then mark the end of the new text by typing a
 "." (period) on a line by itself. In the real vi, adding a ’!’
 suffix temporarily toggles the autoindent option, but elvis just
 ignores the ’!’.

 The :delete command copies text into a cut buffer, and then deletes
 it from the edit buffer. The :yank command copies text into a cut
 buffer but leaves the edit buffer unchanged.

 The :put command "pastes" text from a cut buffer back into the edit
 buffer. The cut buffer’s contents are inserted after the addressed
 line. If you want to insert before the first line, you can use
 address 0 like this:

 :0put

 The :copy and :to commands are identical. They both make a copy of a
 portion of an edit buffer, and insert that copy at a specific point.
 The destination line can be specified with an optional buffer name
 and the full address syntax as described in section 4.2.
 Consequently, you can use this command to copy part of one edit
 buffer into another edit buffer. The following example copies an

11 Elvis 2.1 Ex Mode 11

 11−line window from the current buffer onto the end of a buffer
 named "otherbuf"

 :−5,+5t(otherbuf)$

 The :move command resembles :copy except that :move deletes the
 original text.

 The :! command allows you to send parts of your edit buffer though
 some external "filter" program. The output of the program then
 replaces the original text. For example, this following will sort
 lines 1 through 10 using the "sort" program.

 :1,10!sort

 If you use the :! command without any line addresses, then elvis
 will simply execute the program and display its output. This is only
 guaranteed to work correctly for non−interactive programs; to
 execute an interactive program you should use the :shell command.

 The :< and :> commands adjust the indentation on the addressed
 lines. The :< command decreases the leading whitespace by the number
 of spaces indicated in the shiftwidth option, and :> does the
 reverse. You can use multiple < or > characters in a single command
 to increase the shift amount; for example, :>>> shifts text by
 triple the shiftwidth amount. Normally elvis’ versions of these
 commands will leave blank lines unchanged, but if you append a ’!’
 (as in :>!) then the command will affect blank lines in addition to
 other lines.

 The :join command joins multiple lines together so they form one
 long line. Normally it will intelligently decide how much whitespace
 it should place between lines, depending on the sentenceend,
 sentencegap, and sentencequote options. When invoked with a ’!’
 suffix (as in :join!), it joins the lines without doing fancy things
 to whitespace.

 The :undo command undoes recent changes. The number of undoable
 changes is controllable on a buffer−by−buffer basis, via the
 undolevels option. The :redo command undoes an undo.

 4.3.3 Global edit commands

 ADDRESS COMMAND ARGUMENTS

 range g[lobal][!] /regexp/ excmds
 range v[global][!] /regexp/ excmds
 range s[ubstitute] /regexp/text/[g .n][x][c][p l #]
 range & [g .n][p l #][x][c]
 range ~ [g .n][p l #][x][c]

 The :global command searches for lines which contain the /regexp/
 and executes the given excmds for each matching line. The :vglobal
 command executes the excmds for each line which does not match the

12 Elvis 2.1 Ex Mode 12

 /regexp/.

 In script files, you can supply multiple command lines to a single
 :global or :vglobal by placing a ’{’ character on the
 :global/:vglobal line, following that with any number of command
 lines, and then finally a ’}’ character on a line by itself to mark
 the end. This notation doesn’t allow nesting; you can’t use {...}
 inside a larger {...} command list. (Hopefully this limitation will
 be lifted soon.)

 The :substitute command searches for the /regexp/ in each line, and
 replaces the matching text with newtext. The interpretation of
 newtext is described in section 5.2

 The newtext can be followed by a g flag to replace all instances in
 each line. Without the g flag, only the first match within each line
 is changed (unless the gdefault option is set). To replace some
 other instance in each line, give a decimal point followed by the
 instance number, such as .3 to replace the third instance of
 matching text in each line.

 You can also supply a p flag. This causes each affected line to be
 printed (like :p), after all substitutions have been made to that
 line. Similarly, l lists it (like :l), and # prints it with a line
 number (like :nu or :#).

 You can also make elvis ask for confirmation before each
 substitution by appending a c flag. The :s command will locate the
 first match and then exit immediately, but it will leave the window
 in an unusual input state in which y performs a substitution and
 then moves on to the next match, n does not perform the substitution
 but still moves to the next match, and Esc cancels the operation.
 Most other keys act like y in this mode.

 NOTE: Elvis doesn’t allow the c flag to be combined with the :g
 command. Instead of using ":g/regexp/s//newtext/gc", I suggest you
 get in the habit of using ":%s/regexp/newtext/gc". However, there is
 no way to do the more complex ":g/regexp1/s/regexp2/newtext/gc" in
 elvis at this time.

 Elvis supports a special x flag. Instead of performing each
 substitution, elvis will execute the final replacement text as an ex
 command line. This is used in the implementation of modelines, like
 this:

 1,5 s/ex:\(.*\):/\1/x
 $−4,$ s/ex:\(.*\):/\1/x

 The :& and :~ commands both repeat the previous :substitute command,
 discarding any previous flags. The difference between them is that
 :& uses the regular expression from the previous :s command, but :~
 uses the most recent regular expression from any context.

 4.3.4 Displaying text

13 Elvis 2.1 Ex Mode 13

 ADDRESS COMMAND ARGUMENTS

 range p[rint] [count]
 range l[ist] [count]
 range nu[mber] [count]
 range # [count]
 line z [spec]
 range =

 The :print command displays lines from the edit buffer. It displays
 them the normal way −− with tabs expanded and so on.

 The :list command also displays lines, but it tries to make all
 non−printing characters visible, and it marks the end of each line
 with a ’$’ character.

 The :number and :# commands are identical to each other. They both
 display lines the normal way except that each line is preceded by
 its line number.

 The :z command shows a "window" of lines surrounding the current
 line. The default size of the "window" is taken from the window
 option. If a line address is supplied, then it becomes the current
 line before this command is executed. The spec can be one of the
 following characters; the default is z+.

 SPEC OUTPUT STYLE

 − Place the current line at the bottom of the window.

 + Place the current line at the top of the window.
 Upon completion of this command, the last line
 output will become the current line.

 ^ Jump back 2 windows’ worth of lines, and then do
 the equivalent of z+. Note that z+ is like paging
 forward and z^ is like paging backward.

 . Place the current line in the middle of the window.
 Upon completion of this command, the last line
 output will become the current line.

 = Place the current line in the middle of the window,
 and surround it with lines containing hyphens.

 The := command displays the line number of the current line, or the
 addressed line if given one address. If given a range of addresses,
 it tells you the line numbers of the two endpoints and the total
 number of lines in the range.

 4.3.5 Tags

14 Elvis 2.1 Ex Mode 14

 ADDRESS COMMAND ARGUMENTS

 ta[g][!] [tag]
 stac[k]
 po[p][!]
 br[owse][!] restrictions

 Tags provide a way to associate names with certain places within
 certain files. Typically, you will run the ctags program to create a
 file named "tags" which describes the location of each function and
 macro used in the source code for your project. The tag names are
 the same as the function names, in this case.

 In HTML mode, elvis uses the tags commands to follow hypertext
 links, but we’ll generally ignore that in the following discussions.

 The :tag command performs tag lookup. It reads the "tags" file to
 locate the named tag. It then loads the source file where that tag
 is defined, and moves the cursor to the specific point within that
 buffer where the tag is defined. Elvis’ implementation of :tag also
 allows you to give extra restrictions and hints. There is also a
 :stag command which creates a new window and moves its cursor to the
 tag’s definition point.

 The :browse command extracts selected tags from the tags file,
 constructs an HTML document listing those tags (with hypertext links
 to their definition points inside your source code) and displays it
 in the current window. There is also a :sbrowse command which
 displays the same list in a new window. If invoked with no args,
 they browse all tags in the current file. If invoked with a ’!’
 suffix, they browse all tags. See chapter 14. Tags for a full
 description of restrictions and hints, and browsing.

 Before moving the cursor, elvis will save the old cursor position on
 a stack. You can use the :stack command to display the contents of
 that stack. Each window has an independent stack.

 The :pop command pops a cursor position off the stack, restoring the
 cursor to its previous position. When you’re browsing though source
 code, you will typically use :tag to go deeper into the call tree,
 and :pop to come back out again.

 In HTML mode, these all work the same except that :tag expects to be
 given an URL instead of a tag name. URLs don’t depend on having a
 "tags" file, so the "tags" file is ignored when in HTML mode. Elvis
 doesn’t support any network protocols, so its URLs can only consist
 of a file name and/or a #label. The following example would move the
 cursor to the start of this section:

 :tag elvisopt.html#TAGS

 4.3.6 File I/O commands

 ADDRESS COMMAND ARGUMENTS

15 Elvis 2.1 Ex Mode 15

 line r[ead] file !shellcmd
 range w[rite][!] [file >>file !shellcmd]
 range lp[r][!] [file >>file !shellcmd]

 The :read command reads a file or external program, and inserts the
 new text into the edit buffer after the addressed line. If you don’t
 explicitly give a line address, then the text will be inserted after
 the current line. To insert the file’s contents into the top of the
 buffer (before line 1), you should specify line 0. For example, to
 insert the contents of "foo.txt" before line 1, you would give the
 command...
 :0 read foo.txt

 The :write command writes either the entire edit buffer (if no
 address range is given) or a part of it (if a range is given) out to
 either a file or an external filter program. If you don’t specify
 the output file or external command, then elvis will assume it
 should write to the file that the buffer was originally loaded from.

 Elvis will normally prevent you from overwriting existing files.
 (The exact details of this protection depend on the edited,
 filename, newfile, readonly, and writeany options.) If you want to
 force elvis to overwrite an existing file, you can append a "!" to
 the end of the command name, but before the file name. In order to
 avoid ambiguity, there must not be any whitespace between the
 "write" command name and the "!" character when you want to
 overwrite an existing file. Conversely, when writing to an external
 program there should be whitespace before the "!" that marks the
 start of the program’s command line. The ">>file" notation tells
 elvis to append to "file" instead of overwriting it.

 The :lpr command sends text to the printer. It is similar to :write
 except that :lpr formats the buffer contents as defined by the
 bufdisplay option and the printing options. If no output file or
 external program is specified, then the printer output is sent to
 the file or external program specified by the lpout option.

 4.3.7 The args list, and selecting a file to edit

 ADDRESS COMMAND ARGUMENTS

 ar[gs] [file...]
 n[ext][!] [file...]
 N[ext][!]
 pre[vious][!]
 rew[ind][!]
 la[st]
 wn[ext][!]
 f[ile] [file]
 e[dit][!] [+line] [file]
 ex[!] [+line] [file]
 vi[sual][!] [+line] [file]
 o[pen][!] [+line] [file]

16 Elvis 2.1 Ex Mode 16

 The "args list" is a list of file names. It provides an easy way to
 edit a whole series of files, one at a time. Initially, it contains
 any file names that you named on the command line when you invoked
 elvis.

 The :args command displays the args list, with the current file name
 enclosed in brackets. You can also use :args to replace the args
 list with a new set of files; this has no effect on whatever file
 you’re editing at that time, but it will affect any :next commands
 that you give later.

 The :next command switches to the next file in the args list. This
 means it loads the next file from the args list into an edit buffer,
 and makes that edit buffer be the current buffer for this window.
 You can also give a new args list on the :next command line; this
 acts like a :args command to set the args list, followed by an
 argumentless :next command to load the next (first) file in that
 list.

 The :Next (with a capital "N") and :previous commands are identical
 to each other. They both move backwards through the args list.

 The :rewind and :last commands switch to the first and last files in
 the args list, respectively.

 The :wnext command is like a :write command followed by a :next
 command. It saves any changes made to the current file before
 switching to the next file. (The autowrite option offers a better
 alternative.)

 The :file command displays information about the current buffer. It
 can also be used to change the filename associated with this buffer.

 The :edit and :ex commands are identical to each other. They both
 switch to a new file, or if no file is named then they reread the
 current file. This has no effect on the args list.

 The :visual and :open commands switch to a new file if one is named;
 otherwise they continue to use the current buffer without reloading
 it from the original file. These commands have the side−effect of
 switching the window mode from ex mode to either the normal visual
 mode or the uglier "open" mode, respectively. "Open" mode allows you
 to use all of the visual commands, but it only displays a single
 line (the line that the cursor is on) at the bottom of the screen.
 The sole advantage that "open" mode has over "visual" mode is that
 "open" mode doesn’t need to know what kind of terminal you’re using.

 4.3.8 Quitting

 ADDRESS COMMAND ARGUMENTS

 cl[ose][!]
 q[uit][!]

17 Elvis 2.1 Ex Mode 17

 wq[uit][!] [file]
 x[it][!] [file]
 qa[ll][!]
 pres[erve]

 Except for :qall, all of these commands attempt to close the current
 window without losing any changes. When the last window is closed,
 elvis exits. The differences between these commands concern how
 modified buffers are handled. In the discussions below, it is
 assumed that tempsession is True and the buffer’s retain option is
 False, which is usually the case.

 The :close command is the simplest. If the current window is the
 only window and one or more buffers have been modified but not yet
 saved, then :close will fail; otherwise the current window will be
 closed. The visual ^Wq command uses this command internally. If the
 window’s buffer was modified, then elvis will just have a modified
 buffer lying around, which may or may not be visible in some other
 window. That’s okay. The other quitting commands won’t allow you to
 lose that buffer accidentally. You can make some other window view
 that buffer by giving that buffer’s name in parentheses on an ex
 command line in that other window.

 The :quit command fails if the current buffer has been modified. If
 you wish to abandon the changes made to the current buffer, you can
 add a "!" to the end of the command name; this has the effect of
 turning off the buffer’s modified flag.

 The :xit command saves the file if it has been modified, and then
 closes the window. The visual ZZ command uses this command
 internally.

 The :wquit command saves the file regardless of whether it has been
 modified, and then closes the window.

 The :qall command tries to close all of the windows at once. It is
 equivalent to giving the :quit command in each window.

 The :preserve command closes all windows and exits, but it doesn’t
 delete the session file. You can restart the same edit session later
 by giving the command...

 elvis −ssessionfile

 ...where sessionfile is the name of the session file, usually
 "/var/tmp/elvis1.ses". You may want to check the value of the
 session option first, just to make sure.

 4.3.9 Scripts and macros

 ADDRESS COMMAND ARGUMENTS

 @ cutbuf
 so[urce][!] file

18 Elvis 2.1 Ex Mode 18

 saf[er][!] file
 al[ias] [name [excmds]]
 unal[ias][!] name

 The :@ command executes the contents of a cut buffer as a series of
 ex command lines.

 The :source command reads a file, and executes its contents as a
 series of ex commands. Normally, elvis would issue an error message
 if the requested file didn’t exist but when a "!" is appended to the
 command name, elvis will silently ignore the command if it doesn’t
 exist.

 The :safer command is exactly like :source, except that :safer will
 temporarily set the safer option while it is executing the commands.
 You should use :safer instead of :source when it is possible that
 the file to be executed could contain potentially harmful commands.
 For example, the default "elvis.ini" file uses :source to execute
 the ".exrc" file in your home directory since it is presumably
 secure, but :safer is used to execute the ".exrc" file in the
 current directory since it could have been created by anybody. As
 with :source!, invoking :safer! (with a ’!’ suffix) prevents elvis
 from complaining about nonexistent script files.

 The :alias and :unalias commands manipulate the alias list. (See the
 Tips section of the manual for a discussion of aliases.) With no
 arguments, :alias displays all aliases. When given a name but no
 commands, :alias displays the complete definition of the named
 alias. When given a name and commands, :alias defines (or redefines)
 an alias. The :unalias command deletes the alias with a given name.

 4.3.10 Working with a compiler

 ADDRESS COMMAND ARGUMENTS

 cc[!] [args]
 mak[e][!] [args]
 er[rlist][!] [file]

 If you use elvis to edit source code for programs, then you can have
 elvis read the output of your compiler and parse that output for
 error messages. When elvis finds an error message, it can move the
 cursor to the file and line number where the error was reported.

 To parse the compiler output, elvis first breaks the output into
 lines. Each line is then broken into words. If a word looks like a
 number, then it is assumed to be a line number. If a word looks like
 the name of an existing file, then it is assumed to be a file name.
 Any line which contains both a line number and a file name is
 treated as an error report (with the remainder of the line serving
 as a description of the error); lines which don’t have both of these
 are simply ignored.

19 Elvis 2.1 Ex Mode 19

 The :cc and :make commands use the ccprg and makeprg options,
 respectively, to run your compiler or "make" utility, and collect
 the output. Elvis will then move the cursor to where the first error
 was detected. (If there were no errors, elvis will say so and leave
 the cursor unchanged.)

 After that, the :errlist command can be used repeatedly to move to
 each successive error. You can also use the :errlist command with a
 file name argument to load a new batch of error messages from a
 file; the cursor is then moved to the first error in that batch.

 4.3.11 Built−in calculator

 ADDRESS COMMAND ARGUMENTS

 ca[lculate] expr
 ev[al] expr

 Elvis has a built−in calculator which uses a C−like syntax. It is
 described in section 12: Arithmetic Expressions. The :if and :let
 commands also use the calculator.

 The :calculate command evaluates an expression and displays the
 result.

 The :eval command evaluates an expression using the simpler syntax
 (which basically means that text outside of parentheses is left
 alone), and then executes the result as an ex command line. This
 provides a way to use expressions with commands which would not
 ordinarily use expressions. For example, the following command line
 inserts the value the elvispath option into the current edit buffer.
 :eval insert elvispath=(elvispath)

 Note: There is a hardcoded limit of (normally) 1023 characters for
 the result of any expression. This limit will sometimes impact the
 use of :eval. For example, if your $EXINIT environment variable is
 longer than 1023 characters then elvis will be unable to interpret
 it during initialization.

 4.3.12 Buffer commands

 ADDRESS COMMAND ARGUMENTS

 al[l][!] excmds
 b[uffer][!] [buffer]
 (buffer
 bb[rowse][!]
 sbb[rowse][!]

 The :all command applies a given ex command line to each edit buffer
 in turn. Normally the command is applied just to the user edit
 buffers, but if you append a "!" to the command name, then the ex

20 Elvis 2.1 Ex Mode 20

 command line is applied to internal buffers as well. For example,
 the following sets the "bufdisplay" option of all user edit buffers:
 :all set bufdisplay=normal

 In script files, you can supply multiple command lines to a single
 :all commands by placing a ’{’ character on the :all line, following
 that with any number of command lines, and then finally a ’}’
 character on a line by itself to mark the end. This notation doesn’t
 allow nesting; you can’t use {...} inside a larger {...} command
 list. (Hopefully this limitation will be lifted soon.)

 The :buffer command lists either all user edit buffers, or (when "!"
 is appended to the command name) all buffers including internal
 ones. If the buffer is being edited in one or more windows, then the
 window ID is also displayed. Buffers which have been modified will
 be marked with an asterisk.

 You can also use the :buffer command to make the current window
 display a different buffer.

 The :(buffer notation causes the current window to display the named
 buffer, instead of the current buffer. This isn’t really a command;
 it is part of an address. Whenever you give an address without
 specifying a command, elvis moves the cursor to the addressed line.
 In this particular case, we’re addressing the most recently changed
 line of a given buffer, so that’s where the cursor is moved to. For
 more information, see the discussion of Buffer IDs earlier in this
 chapter (in the discussion of addresses).

 The :bbrowse and :sbbrowse commands create an HTML document which
 lists the names of all user buffers (or, when a ’!’ is appended to
 the command name, all buffers including internal buffers). You can
 then go to one of the buffers just by following the hypertext link.
 The difference between these two commands is that :bbrowse displays
 the list in the current window, but :sbbrowse creates a new window
 to display it.

 4.3.13 Window commands

 ADDRESS COMMAND ARGUMENTS

 sp[lit] [+line] [file !shellcmd]
 new
 sne[w]
 sn[ext] [file...]
 sN[ext]
 sre[wind]
 sl[ast]
 sta[g] [tag]
 sb[rowse] restrictions
 sa[ll]
 wi[ndow] [+[+] −[−] number buffer]
 di[splay] [modename [language]]
 no[rmal]

21 Elvis 2.1 Ex Mode 21

 The :split command creates a new window. If you supply a file name,
 then it will load that file into an edit buffer and the new window
 will show that buffer. If you supply a shell command line preceded
 by a ’!’ character, then it will create an untitled buffer, and read
 the output of that command line into the buffer. Otherwise, the new
 window will show the same buffer as the current window.

 The :new and :snew commands are identical to each other. They both
 create a new empty buffer, and then create a new window to show that
 buffer.

 The :snext, :sNext, :srewind, :slast, :stag, and :sbrowse commands
 resemble the :next, :Next, :rewind, :last, :tag, and :browse
 commands, respectively, except that these "s" versions create a new
 window for the newly loaded file, and leave the current window
 unchanged.

 The :sall command creates a new window for any files named in the
 args list, which don’t already have a window. (See section 4.3.7:
 The args list... for a discussion of the args list.)

 The :window command either lists all windows (when invoked with no
 arguments) or switches to a given window. You can specify which to
 switch to by giving one of the following arguments.

 ARGUMENT MEANING

 + Switch to the next window, like ^Wk
 ++ Switch to the next window, wrapping like ^W^W
 − Switch to the previous window, like ^Wj
 Switch to the previous window, wrapping
 number Switch to the window whose windowid=number
 buffer Switch to the window editing the named buffer

 The :display command switches the window to a new display mode,
 overriding the value of the bufdisplay option. The display option
 indicates the current display mode. If you omit the new modename,
 then the :display command will list all supported display modes,
 with an asterisk next to the current mode. The "syntax" mode allows
 you to specify which language’s syntax it is supposed to use; if you
 don’t specify a language, elvis will guess the language from the
 file name’s extension.

 The :normal command is equivalent to ":display normal". It can be
 abbreviated to ":no", which is certainly easier to type than ":dis
 normal".

 4.3.14 Configuration

 ADDRESS COMMAND ARGUMENTS

 ab[breviate][!] [lhs rhs]

22 Elvis 2.1 Ex Mode 22

 una[bbreviate][!] lhs
 map[!] [lhs rhs]
 unm[ap][!] lhs
 bre[ak][!] lhs
 unb[reak][!] lhs
 dig[raph][!] [lhs [rhs]]
 col[or] [font color ["on" color]]
 gu[i] text
 se[t][!] [option=value option? all]
 lo[cal][!] [option=value option]
 le[t][!] option=expr
 if expr
 th[en] excmds
 el[se] excmds
 try excmds
 wh[ile] expr
 do excmds
 switch expr
 case value [excmds]
 default excmds
 mk[exrc][!] [file]

 The :abbreviate and :unabbreviate commands add and remove entries to
 the abbreviation table, respectively. Also, the :abbreviate command
 can be used with no arguments to list the current contents of the
 abbreviation table. For a discussion of abbreviations, see section
 3.3: Abbreviations. Normal abbreviations are only active while
 you’re typing in a normal text buffer; adding a ’!’ suffix to the
 command name causes the macro to be active while you’re entering ex
 command lines.

 The :map and :unmap commands add and remove entries to the map
 tables, respectively. When the :map command is given without any
 arguments, it lists the contents of a map table.

 There are two map tables. When a "!" is appended to the command
 name, these commands use the table that applies to input mode;
 without the "!" these commands use the table that applied to visual
 command mode.

 The primary purpose of map tables is to assign actions to the cursor
 keypad and the function keys. Each of these keys sends an arbitrary
 but distinctive sequence of characters when pressed. The map tables
 are used to convert these arbitrary character sequences into command
 keystrokes that elvis can do something useful with. For example,
 arrow keys are normally mapped to the h, j, k, and l commands.

 The first argument to :map is the raw character sequence sent by a
 key, and the remaining arguments are the characters that elvis
 should pretend you pressed. This can be either a literal sequence of
 characters, or a gui−dependent symbol representing a particular
 keystroke. See the User Interfaces chapter for lists of keystrokes.
 Also, function keys can usually be denoted by #1 for the <F1> key,
 #2 for the <F2> key, and so on.

23 Elvis 2.1 Ex Mode 23

 The second argument is character sequence that elvis should pretend
 you typed whenever the raw characters are received. This may be
 preceded by the word "visual" which causes the remaining argument
 characters to be processed as visual commands, even if the key is
 pressed in input mode. This trick is used to allow the cursor to be
 moved via the arrow keys when in input mode.

 The :break and :unbreak commands set and reset the breakpoint flag
 for a given macro, respectively. Using a ’!’ suffix causes the
 breakpoint to be set for an input−mode map. This is used for
 debugging macros, as described in section 16.3: How to debug macros.
 If a macro has its breakpoint flag set, and the maptrace option is
 set to run, then when that map is encountered elvis will
 automatically switch maptrace to step mode.

 The :digraph command manipulates the digraph table. (See section
 3.2: Digraphs for a discussion on digraphs.) With no arguments, it
 lists the digraph table. With one argument, it removes the given
 digraph from the table. With two arguments, it adds the given
 digraph to the table, or if the same two ASCII characters are
 already in the table then it alters the existing entry.

 Normally, the :digraph command sets the most significant bit in the
 last argument’s character. That way you don’t need to be able to
 type a non−ASCII character on your keyboard in order to enter it
 into the table; you can type the ASCII equivalent and allow elvis to
 convert it to non−ASCII before storing the digraph. If you don’t
 want elvis to set the most significant bit, then append a "!" to the
 end of the command name.

 The :color command allows you to choose a color to use for
 displaying each font. Some user interfaces don’t support this. The
 ones that do will vary in the color names that they support. The
 termcap interface supports black, white, gray, red, green, blue,
 brown, yellow, magenta, and cyan, plus light or bright versions of
 most of those. The windows interface supports the same colors,
 except that it is pickier: it doesn’t allow spaces, and only "light"
 is accepted, such as "lightblue". The x11 interface supports all
 standard X color names.

 The first argument should be the name of the font to change. This
 can be "normal", "bold", "emphasized", "italic", "underlined", or
 "fixed". Some user interfaces may also support "standout", "cursor",
 "scrollbar", and/or "toolbar". All of these can be either spelled
 out completely, or abbreviated to the first letter. (Currently no
 user interface supports both "standout" and "scrollbar" so there is
 no ambiguity.) If you omit the font name, then "normal" is assumed.
 The termcap interface requires you to assign a "normal" color before
 any of the other fonts.

 You can specify an optional background color. The word "on" is used
 to delimit the foreground color name from the background color name.
 For example, the command ":color yellow on blue" causes normal text
 to be displayed as yellow characters on a blue background.

 The x11 user interface allows you to specify both the foreground and

24 Elvis 2.1 Ex Mode 24

 background color for the cursor. The cursor is drawn in the
 foreground color normally, but the background color if elvis owns
 the current X selection.

 The :gui command provides a way to pass unusual commands to the user
 interface. Currently, the only user interface which uses this is the
 "x11" interface, which uses it to configure the toolbar.

 The :set command allows you to examine or change the values of
 options. Using :set! (with a "!" at the end of the command name)
 causes it to include the group name of any option that is output. In
 addition, "!" inhibits the setting of any option’s "modified" flag,
 which will then prevent it from being output by a later argumentless
 :set command.

 With no arguments, :set lists the names and values of any options
 that have been altered or are of frequent interest. If given the
 argument "all" it will list the names and values of most (but not
 really all) options. If given the name of an option followed by a
 "?" character, :set will output the option’s name and value. If
 given the name of a group of options, followed by a "?" character,
 :set will output the names and values of all options in that group.

 To turn a Boolean option on, just give the name of the option. You
 can turn it off by adding the prefix "no" to the option name, and
 you can negate it by adding the "neg" prefix to its name.

 To change the value of a non−Boolean option, give the name followed
 immediately by an "=" and the new value. If the new value contains
 whitespace, you should either enclose the entire value in quotes, or
 precede each whitespace character with a backslash.

 If you give the name of a non−Boolean option, without either "=value"
 or "?", then elvis will display its value.

 EXAMPLE WHAT IT DOES

 :set display names & values of changed/interesting options
 :set all display names & values of most POSIX−compliant options
 :set ts? display name & value of the tabstop option
 :set lp? display names & values of all printing options
 :set ts=4 set value of the tabstop option to 4
 :set ai turn on the autoindent option
 :set noai turn off the autoindent option
 :set negai toggle the autoindent option

 The :local command is similar to :set, and is intended to be used in
 aliases and scripts. In addition to setting options’ values, it also
 pushes the old values onto a stack; the old values are automatically
 restored at the end of the alias or script. Another difference is
 that where :set would output an option, :local merely pushes its old
 value, without outputting or changing the option’s value. This means
 that you can save a non−Boolean option simply by mentioning its name
 on a :local command line; Boolean options can also be saved without

25 Elvis 2.1 Ex Mode 25

 altering them, but you must put a question mark after the option’s
 name.

 Here’s a simple alias which uses :local. It totals the numbers in
 all lines from the current line forward to the next line which
 contains the "total:", and stores the total in the "total:" line.

 :alias total {
 local nowrapscan ignorecase t=0
 .,/total:/−1 s/\d\+/let t=t+&/x
 eval /tota:l/ s/total:.*/total: (t)/
 }

 The :let command computes a new value for an option. The :let
 command should be followed by the name of an option, then an "="
 sign, and then an expression that produces the new value. Note that
 even Boolean options use the "=" notation here. When invoked as
 :let! (with a ’!’ suffix), elvis won’t set the option’s "changed"
 flag so it won’t be output by an argumentless :set command.

 The :if command evaluates an expression, and sets an internal
 variable according to whether the result was true or false. Later,
 the :then and :else commands can be used to test that variable, and
 conditionally execute other ex commands.

 Note that after an :if command, any other ex commands which don’t
 start with :then or :else will be executed unconditionally.

 In aliases or script files, you can supply multiple command lines to
 a single :then or :else by placing a ’{’ character on the
 :then/:else line, following that with any number of command lines,
 and then finally a ’}’ character on a line by itself to mark the
 end. The following example demonstrates this syntax, and also shows
 that you can safely use :if inside a :then or :else command:

 :if i <= 0
 :then {
 if i == 0
 then echo zero
 else echo negative
 }
 :else echo positive

 The :try command executes its argument text as an ex command line.
 Regardless of whether that command line succeeds or fails, the :try
 command itself always succeeds. That’s significant because a command
 fails, all pending aliases, macros, and scripts are cancelled; :try
 prevents that. Error messages and warning messages are disabled
 while the command line runs. Afterward, the then/else is set to
 indicate whether the command line succeeded. This command is useful
 for implementing specialized error handing in an alias or script.
 The following example will search for "foo"; if there is no "foo"
 then it will search for "bar":

 :try /foo
 :else /bar

26 Elvis 2.1 Ex Mode 26

 The :while command stores an expression. It should be followed by a
 :do command; the :do command repeatedly evaluates the expression,
 and as long as the result is true it executes the commands which
 follow the :do. The following example counts from 1 to 10:

 :let i=1
 :while i <= 10
 :do {
 calc i
 let i=i+1
 }

 The :switch command evaluates an expression and stores the result.
 The :case command compares that result to a given value, and
 executes an ex command line if it matches. If you omit the command
 line then it will carry forward to the next :case which does have an
 ex command line; this allows multiple cases to share a single ex
 command line. The :default command executes its ex command line if
 no previous case was matched. Here’s an example:

 :switch os
 :case unix
 :case win32 echo Elvis has graphical and text−mode interfaces.
 :case os2 {
 echo Elvis has been ported natively as a text−mode program.
 echo You can also compile it to use the X11 interface from
 echo Unix, but you need the EMX libraries to run it.
 }
 :case msdos echo Elvis is slow and ugly under DOS.
 :default echo How are you even running this?

 Notice that there is no punctuation after the case value, and that
 there is no "break" or "endswitch" command. This example says "Elvis
 has graphical and text mode interfaces" for both the "unix" and
 "win32" cases; the "unix" case has no command, so it falls through
 to the "win32" case.

 The :if/:then/:else, :while/:do, and :switch/:case/:default command
 structures all permit nesting. I.e., the commands in a :then command
 can’t affect the "if" variable to cause the :else command to also be
 executed.

 The :mkexrc command creates a file containing ex commands which
 recreate the current map, abbreviation, and digraph tables, and also
 sets any options which have been changed. Basically it stores your
 current configuration in a file which you can later :source to
 restore your configuration. If you don’t specify a filename, then it
 will write to ".exrc" or "elvis.rc" in the current directory.

 NOTE: The :mkexrc command does not store information for :alias or
 :gui commands. This is expected to be added in a later version of
 elvis.

 4.3.15 Miscellaneous

27 Elvis 2.1 Ex Mode 27

 ADDRESS COMMAND ARGUMENTS

 " text
 cd[!] [directory]
 chd[ir][!] [directory]
 ec[ho] text
 me[ssage] text
 wa[rning] text
 erro[r] text
 sh[ell]
 st[op][!]
 sus[pend][!]
 ve[rsion]
 line go[to]
 line ma[rk] mark
 line k mark
 {

 The " command causes the remainder of the line to be ignored. It is
 used for inserting comments into ex scripts.

 The :cd and :chdir commands are identical. They both change the
 current working directory for elvis and all its windows. If you
 don’t specify a new directory name then elvis will switch to your
 home directory.

 The :echo command displays its arguments as a message. This may be
 useful in ex scripts.

 The :message, :warning, and :error commands all output their
 arguments as a message. The command name indicates the importance of
 the message. This is diffs from :echo as follows: the messages are
 translated via the elvis.msg file, then evaluated using the simpler
 syntax, and finally stuffed into the message queue. The message
 queue collects all messages, and outputs them immediately before
 waiting for the next keystroke. Also, the :error command has the
 side−effect of terminating any macros, aliases, or scripts.

 The :shell command starts up an interactive shell (command−line
 interpreter). Elvis will be suspended while the shell executes.
 (Exception: the "x11" GUI runs the shell in a separate xterm window.
 The elvis and the shell can then run simultaneously.)

 The :stop and :suspend commands are identical to each other. If the
 operating system and user interface support it, they will suspend
 elvis and resume the shell that started elvis. (This is like hitting
 ^Z on many UNIX systems.) If the OS or GUI don’t support it, then
 elvis will generally treat these commands as synonyms for the :shell
 command.

 The :version command identifies this version number of elvis, and
 displays credits.

 The :goto moves the cursor to the addressed line. This is the only

28 Elvis 2.1 Ex Mode 28

 command which can be abbreviated down to zero characters, so if you
 type in a line containing just a line address, then elvis will treat
 that as a :goto command.

 The :mark and :k commands are identical to each other. They set a
 named mark to equal the addressed line, or the current line if no
 address was given.

 The { commands } notation isn’t really a command; it is a feature of
 elvis’ syntax which allows you to pass several command lines to a
 command which normally expects a single command line as its
 argument. It is supported by the :global, :vglobal, :all, :then, and
 :else commands. Instead of placing the argument command at the end
 of one of those command lines, you can place a single ’{’ character
 there. That should be followed by one or more command lines, and
 terminated by a ’}’ on a line by itself.

 4.4 Alphabetical list of ex commands

 ADDRESS COMMAND ARGUMENTS

 ab[breviate][!] [lhs rhs]
 al[l][!] excmds
 line a[ppend][!] [text]
 ar[gs] [file...]
 bb[rowse]
 bre[ak][!] lhs
 br[owse][!] restrictions
 b[uffer][!] [buffer]
 ca[lculate] expr
 cc[!] [args]
 cd[!] [directory]
 range c[hange][!] [count] [text]
 chd[ir][!] [directory]
 cl[ose][!]
 col[or] [font color ["on" color]]
 range co[py] line
 range d[elete] [cutbuf] [count]
 dig[raph][!] [lhs [rhs]]
 di[splay] [modename [language]]
 do excmds
 ec[ho] text
 e[dit][!] [+line] [file]
 el[se] excmds
 er[rlist][!] [file]
 erro[r] text
 ev[al] expr
 ex[!] [+line] [file]
 f[ile] [file]
 range g[lobal][!] /regexp/ excmds
 line go[to]
 gu[i] text

29 Elvis 2.1 Ex Mode 29

 h[elp] topic
 if expr
 line i[nsert][!] [text]
 range j[oin][!]
 line k mark
 la[st]
 le[t][!] option=expr
 range l[ist] [count]
 lo[cal][!] [option=value option]
 range lp[r][!] [file >>file !shellcmd]
 mak[e][!] [args]
 map[!] [lhs rhs]
 line ma[rk] mark
 me[ssage] text
 mk[exrc][!] [file]
 range m[ove] line
 new
 n[ext][!] [file...]
 N[ext][!]
 no[rmal]
 range nu[mber] [count]
 o[pen][!] [+line] [file]
 po[p][!]
 pre[vious][!]
 range p[rint] [count]
 line pu[t] [cutbuf]
 qa[ll][!]
 q[uit][!]
 line r[ead] file !shellcmd
 red[o] [count]
 rew[ind][!]
 sN[ext]
 saf[er][!] file
 sa[ll]
 sbb[rowse]
 sb[rowse] restrictions
 se[t][!] [option=value option? all]
 sh[ell]
 sl[ast]
 sne[w]
 sn[ext] [file...]
 so[urce][!] file
 sp[lit] [file !shellcmd]
 sre[wind][!]
 stac[k]
 sta[g] [tag]
 st[op][!]
 range s[ubstitute] /regexp/newtext/[g][p][x][count]
 sus[pend][!]
 ta[g][!] [tag]
 th[en] excmds
 range t[o] line
 try excmds
 una[bbreviate][!] lhs
 unb[reak][!] lhs
 u[ndo] [count]

30 Elvis 2.1 Ex Mode 30

 unm[ap][!] lhs
 ve[rsion]
 range v[global][!] /regexp/ excmds
 vi[sual][!] [+line] [file]
 wa[rning] text
 wh[ile] expr
 wi[ndow] [+ − number buffer]
 wn[ext][!]
 wq[uit][!] [file]
 range w[rite][!] [file >>file !shellcmd]
 x[it][!] [file]
 range y[ank] [cutbuf] [count]
 line z [spec]
 range ! shellcmd
 " text
 range # [count]
 range &
 (buffer
 range <
 range =
 range >
 @ cutbuf
 {
 range ~

