
1 Elvis 2.1 Cut Buffers 1

11. CUT BUFFERS

 When Elvis deletes text, it stores that text in a cut buffer. This
 happens in both visual mode and EX mode. There are 36 cut buffers:
 26 named buffers ("a through "z), 9 anonymous buffers ("1 through
 "9), and 1 extra cut buffer (".). There is no practical limit to how
 much text a cut buffer can hold.

 11.1 Putting text into a Cut Buffer

 In visual mode, text is copied into a cut buffer when you use the d,
 y, c, C, s, or x commands. There are also a few others.

 By default, the text goes into the "1 buffer. The text that used to
 be in "1 gets shifted into "2, "2 gets shifted into "3, and so on.
 The text that used to be in "9 is lost. This way, the last 9 things
 you deleted are still accessible.

 You can also put the text into a named buffer −− "a through "z. To
 do this, you should type the buffer’s name (two keystrokes: a
 double−quote and a lowercase letter) before the command that will
 cut the text. When you do this, "1 through "9 are not affected by
 the cut.

 You can append text to one of the named buffers. To do this, type
 the buffer’s name in uppercase (a double−quote and an uppercase
 letter) before the d/y/c/C/s/x command.

 The ". buffer is special. It isn’t affected by the d/y/c/C/s/x
 command. Instead, it stores the text that you typed in the last time
 you were in input mode. It is used to implement the . visual
 command, and ^A in input mode.

 In EX mode, the :delete, :change, and :yank commands all copy text
 into a cut buffer. Like the visual commands, these EX commands
 normally use the "1 buffer, but you can use one of the named buffers
 by giving its name after the command. For example...

 :20,30y a

 ... will copy lines 20 through 30 into cut buffer "a.

 You can’t directly put text into the ". buffer, or the "2 through "9
 buffers.

 11.2 Pasting from a Cut Buffer

 There are two main styles of pasting: line−mode and character−mode.
 If a cut buffer contains whole lines (from a command like "dd") then
 line−mode pasting is used; if it contains partial lines (from a
 command like "dw") then character−mode pasting is used. The EX
 commands always cut whole lines.

 Elvis also supports a limited form of rectangular cut and paste.

2 Elvis 2.1 Cut Buffers 2

 This is handy, for example, when you want to swap two columns in a
 table. The only way to put a rectangular area into a cut buffer is
 to select it via the visual ^V command, and then yank or delete it
 with a y or d command, respectively. When a cut buffer has been
 filled this way, it will be pasted using rectangle−mode pasting.

 Character−mode pasting causes the text to be inserted into the line
 that the cursor is on.

 Line−mode pasting inserts the text on a new line above or below the
 line that the cursor is on. It doesn’t affect the cursor’s line at
 all.

 In visual mode, the p and P commands insert text from a cut buffer.
 Uppercase P will insert it before the cursor, and lowercase p will
 insert it after the cursor. Normally, these commands will paste from
 the "1 buffer, but you can specify any other buffer to paste from.
 Just type its name (a double−quote and another character) before you
 type the P or p.

 In EX mode, the :put command pastes text after a given line. To
 paste from a buffer other that "1, enter its name after the command.

 11.3 Macros

 The contents of a named cut buffer can be executed as a series of
 ex/vi commands.

 To put the instructions into the cut buffer, you must first insert
 them into the file, and then delete them into a named cut buffer.

 To execute a cut buffer’s contents as EX commands, you should give
 the EX command :@ and the name of the buffer. For example, :@z will
 execute "z as a series of EX commands.

 To execute a cut buffer’s contents as visual commands, you should
 give the visual command @ and the letter of the buffer’s name. The
 visual @ command is different from the EX :@ command. They interpret
 the cut buffer’s contents differently.

 The visual @ command can be rather finicky. Each character in the
 buffer is interpreted as a keystroke. If you load the instructions
 into the cut buffer via a "zdd command, then the newline character
 at the end of the line will be executed just like any other
 character, so the cursor would be moved down 1 line. If you don’t
 want the cursor to move down 1 line at the end of each @z command,
 then you should load the cut buffer by saying 0"zD instead.

 One way to store keystrokes into a buffer for use with the visual @
 command is via the [key and]key commands. They record keystrokes
 into a cut buffer as you type them.

 11.4 The Effect of Switching Files

3 Elvis 2.1 Cut Buffers 3

 Elvis 2.1 retains the contents of all cut buffers when you switch
 files, e.g. via a :next or :edit command. This differs from the
 traditional behavior of vi.

 In the real vi and in elvis 1.X, the anonymous buffers ("1 through
 "9) were clobbered and the named buffers ("a through "z) were left
 intact. This made sense then, but since elvis 2.1 allows you to edit
 several files at the same time, the rules changed.

 11.5 Cut & Paste Between Applications

 There is a special cut buffer named "^ (doublequote−carat) which
 accesses the GUI’s cut&paste feature. Each time you yank text into
 the "^ cut buffer, it is copied to the GUI’s clipboard. Each time
 you paste text from the "^ cut buffer, elvis reads from the GUI’s
 clipboard.

 Not all GUIs have clipboards. For example, the plain old termcap
 interface doesn’t have one. The "^ cut buffer still exists, but it
 resides inside elvis, just like any other cut buffer. (Exception:
 The Windows version of the termcap interface has been patched to
 access the Windows clipboard.)

 Elvis’ X11 interface does use X’s clipboard. Clicking the middle
 mouse button causes the clipboard’s contents to be inserted at the
 cursor position. When you select text via the mouse, the text is
 immediately copied to the clipboard. Text that you select via
 keyboard commands is not automatically copied because elvis has no
 way of knowing when you’re through selecting it.

 The Win32 version of elvis has the usual Cut/Copy/Paste toolbar
 buttons and menu items.

