
1 ctags.man.html 1

 ctags − Generates "tags" and (optionally) "refs" files

 SYNOPSIS

 ctags [−D word] [−FBNitvshlpxra] files...

 DESCRIPTION

 This page describes the elvis version of ctags.

 ctags generates the "tags" and "refs" files from a group
 of C source files. The "tags" file is used by Elvis’
 ":tag" command, ^] command, and −t option. The "refs"
 file is sometimes used by the ref(1) program.

 Each C source file is scanned for #define statements and
 global function definitions. The name of the macro or
 function becomes the name of a tag. For each tag, a line
 is added to the "tags" file.

 The filenames list will typically be the names of all C
 source files in the current directory, like this:

 $ ctags *.c *.h

 OPTIONS

 If no options are given, then ctags acts as though the −l
 −i −t −v and −s option flags were given. If you want to
 omit those options, you can do so by explicitly giving a
 harmless option such as −F.

 −Dword This causes elvis to ignore any instance of word in

2 ctags.man.html 2

 your source code. This is handy if you’re using a
 macro for conditionally declaring the arguments to
 functions, in order to make your code be backward−
 compatible with older K&R C compilers. ctags
 always ignores "P_" and "__P"; the −Dword flag
 allows you to make it ignore a third word.

 −F Enclose regular expressions in slashes (/regexp/)
 which will cause elvis(1) to search form the top of
 the file. This is the default.

 −B Enclose the regular expressions in question marks
 (?regexp?) so elvis(1) will search backward from
 the bottom of the file. The search direction
 rarely matters; this option exists mostly for com­
 patibility with earlier versions of ctags.

 −N This causes ctags to use line numbers for all tags.
 Without this flag, it would use numbers for
 #define’ed macros, and regular expressions for any­
 thing else.

 being inline, __inline, or __inline__.

 −t Include typedefs. A tag will be generated for each
 user−defined type. Also tags will be generated for
 struct and enum names. Types are considered to be
 global if they are defined in a header file, and
 static if they are defined in a C source file.

 −v Include variable declarations. A tag will be gen­
 erated for each variable, except for those that are
 declared inside the body of a function.

 −s Include static tags. ctags will normally put
 global tags in the "tags" file, and silently ignore
 the static tags. This flag causes both global and
 static tags to be added.

 −e Include extern tags. ctags will normally ignore
 extern declarations of functions or variables;
 that’s handy when generating tags for your own pro­
 grams. A tags file for the extern declarations in
 the system’s standard header files can be a very
 handy resource, so this −e flag was created.

 −h Add hints that may help elvis handle overloaded
 tags better. The resulting tags file may be
 unreadable by programs other than elvis, though.

 −l Add "ln" line number hints. This implies −h, since
 it would be pointless if hints weren’t allowed.
 The "ln" hints are used by elvis(1) to make its
 "showtag" option work much faster.

 −p Write parsing information to stdout. This is

3 ctags.man.html 3

 intended mainly as an aid to debugging the ctags
 command itself. If ctags doesn’t generate all of
 the tags that you expect it to, then try studying
 the −p output to determine what syntax feature is
 tripping it up.

 −x Generate a human−readable tag list instead of a
 "tags" file. The list is written to stdout. Each
 line contains a tag name, the line number and file
 name where the tag is defined, and the text of that
 line.

 −r This causes ctags to generate both "tags" and
 "refs". Without −r, it would only generate "tags".

 −a Append to "tags", and maybe "refs". Normally,
 ctags overwrites these files each time it is
 invoked. This flag is useful when you have too
 split the arguments among several invocations.
 This may result in an unsorted tags file.

 FORMAT OF THE TAGS FILE

 The "tags" file is a text file. Each line stores the
 attributes of a single tag. The basic format of a line
 is:
 − the name of the tag
 − a tab character
 − the name of the file containing the tag
 − a tab character
 − the tag’s address within that file

 The tag address may be given as either line number (a
 string of digits), or a regular expression using ex/vi’s
 "nomagic" syntax, delimited by either slashes or question
 marks. Regular expressions are allowed to contain tab
 characters.

 The authors of elvis, vim, and "exuberant" ctags have
 agreed on a standard format for adding additional
 attributes to tags. In this format, the first three
 fields of all tags are identical to the traditional for­
 mat, except that a semicolon−doublequote character pair is
 appended to the tag address field, with the extra
 attributes appearing after that.

 The semicolon−doublequote character pair is present
 because it has the surprising side−effect of making the
 original ex/vi ignore the remainder of the line, thus

4 ctags.man.html 4

 allowing the original ex/vi to read new−format tags files.
 The original ex/vi will simply ignore the extra
 attributes.

 Any additional attributes are appended to the tag’s line.
 They may be appended in any order. Each attribute will
 use the following format:
 − a tab character
 − the name of the attribute
 − a colon character, ’:’
 − the value of the attribute.
 Note that each additional attribute has an explicit name.
 Different tags files may use totally different names for
 additional attributes, and even within a single file, most
 tags will use only a subset of the possible attributes.
 This version of ctags uses the following names:

 file This attribute is used to mark static tags −− i.e.,
 tags for C/C++ functions or variables whose scope
 is limited to the function in which they are
 defined. The value is the name of the file where
 it is defined, except that if the file is the same

 class This is used to mark member functions of C++
 classes. The value is the class name. However,
 currently ctags doesn’t do a very good job of
 detecting whether a function is a member function
 or not.

 kind This attribute’s value is a single letter, indicat­
 ing the lexical type of the tagged identifier: f
 for a function, t for a typedef, s for a struct
 tag, u for a union tag, v for a variable, d for a
 macro definition, or x for an extern declaration.

 Note that in the tags file, the "kind:" label is
 omitted, for the sake of compactness.

 ln This gives the line number where the tag was
 defined. It is redundant, but it is still somewhat
 useful because it allows elvis(1)’s "showtag"
 option to work faster.

 The values can only contain tabs if those tabs are con­
 verted to the ’\t’ (backslash−t) notation. Similarly, a
 newline, carriage return, or literal backslash can be
 given as ’\n’, ’\r’, or ’\\’ respectively. For MS−DOS
 file names, this means the names must use double back­
 slashes. Space characters don’t require any special
 encoding. (This doesn’t apply to file names in the tag­
 file field, where names can be given without any special
 encoding. It only applies to file names in extra fields.)

 As a special case, if an extra attribute contains no ’:’
 to delimit the name from the value, then the attribute
 string is assumed to be the value of an attribute named

5 ctags.man.html 5

 "kind". Usually this will be a single letter indicating
 what type of token the tag represents −− ’f’ for function,
 ’v’ for variable, and so on.

 Here’s an example of a new−format tag:
 bar foo.c /^void Foo::bar(int zot)$/;" class:Foo
 The tagname is "bar", to match its function’s name. The
 tagfile is "foo.c". The tagaddress is a regular expres­
 sion containing the whole definition line. Note that a
 semicolon−doublequote character pair has been appended to
 the tagaddress. There is only one additional attribute,
 with the name "class" and the value "Foo".

 FILES

 tags A cross−reference that lists each tag name, the
 name of the source file that contains it, and a way
 to locate a particular line in the source file.

 file can be useful, for example, when licensing
 restrictions prevent you from making the source
 code to the standard C library readable by every­
 body, but you still want everybody to know what
 arguments the library functions need.

 BUGS

 ctags is sensitive to indenting and line breaks. Conse­
 quently, it might not discover all of the tags in a file
 that is formatted in an unusual way.

 The −a flag causes tag files to be appended, but not nec­
 essarily sorted. Some programs expect tags files to be
 sorted, and will misbehave if they aren’t. Also, the new
 format allows a "!_TAG_FILE_SORTED" marker near the top of
 the file to indicate whether the file is sorted, but that
 might not be accurate after new tags are appended to the
 file. Consequently, you should avoid the use of −a.

 The new standard doesn’t specify how overloaded operators
 are to be labelled. If your C++ source contains a defini­
 tion of operator+=(), then this version of ctags will

6 ctags.man.html 6

 store a tag named "operator+=". Other versions of ctags
 could simply use the name "+=".

 SEE ALSO

 elvis(1), ref(1)

 AUTHOR

 Steve Kirkendall
 kirkenda@cs.pdx.edu

 Man(1) output converted with man2html

