A C++ Browser for GNU Emacs

Gerd Moellmann

Copyright (© 1993-1995 Gerd Moellmann. All rights reserved.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Distribution” and
“General Public License” are included exactly as in the original, and provided that the
entire resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“Distribution” and “General Public License” may be included in a translation approved by
the author instead of in the original English.

1 Distribution

The C++ browser is “free”; this means that everyone is free to use it and free to redistribute
it on a free basis. The browser is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of the C++ browser that they might get from you.
The precise conditions are found in the GNU Emacs General Public License that comes
with Emacs and also appears following this section.

The easiest way to get a copy of the browser is from someone else who has it. You need
not ask for permission to do so, or tell any one else; just copy it.

If you have access to the Internet, you can get the latest distribution version
of GNU Emacs from host ‘prep.ai.mit.edu’ using anonymous login. See the file
‘/u2/emacs/GETTING.GNU.SOFTWARE’ on that host to find out about your options
for copying and which files to use.

You may also receive GNU Emacs when you buy a computer. Computer manufacturers
are free to distribute copies on the same terms that apply to everyone else. These terms
require them to give you the full sources, including whatever changes they may have made,
and to permit you to redistribute the GNU Emacs received from them under the usual
terms of the General Public License. In other words, the program must be free for you
when you get it, not just free for the manufacturer.

If you cannot get a copy in any of those ways, you can order one from the Free Software
Foundation. Though Emacs itself is free, our distribution service is not. An order form is
included at the end of manuals printed by the Foundation. It is also included in the file
‘etc/DISTRIB’ in the Emacs distribution. For further information, write to

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

The income from distribution fees goes to support the foundation’s purpose: the devel-
opment of more free software to distribute just like GNU Emacs.

If you find GNU Emacs useful, please send a donation to the Free Software Foundation.
This will help support development of the rest of the GNU system, and other useful software
beyond that. Your donation is tax deductible.

2 GNU Emacs General Public License

(Clarified 11 Feb 1988)

The license agreements of most software companies keep you at the mercy of those com-
panies. By contrast, our general public license is intended to give everyone the right to
share GNU Emacs. To make sure that you get the rights we want you to have, we need to
make restrictions that forbid anyone to deny you these rights or to ask you to surrender the
rights. Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of Emacs,
that you receive source code or else can get it if you want it, that you can change Emacs
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of Emacs, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for GNU Emacs. If Emacs is modified by someone else and passed on, we
want its recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the
following terms which say what you must do to be allowed to distribute or change GNU
Emacs.

2.1 Copying Policies

1. You may copy and distribute verbatim copies of GNU Emacs source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
file a valid copyright notice "Copyright (C) 1988 Free Software Foundation, Inc." (or
with whatever year is appropriate); keep intact the notices on all files that refer to this
License Agreement and to the absence of any warranty; and give any other recipients
of the GNU Emacs program a copy of this License Agreement along with the program.
You may charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GNU Emacs source code or any portion of
it, and copy and distribute such modifications under the terms of Paragraph 1 above,
provided that you also do the following:

e cause the modified files to carry prominent notices stating who last changed such
files and the date of any change; and

e cause the whole of any work that you distribute or publish, that in whole or in
part contains or is a derivative of GNU Emacs or any part thereof, to be licensed
at no charge to all third parties on terms identical to those contained in this
License Agreement (except that you may choose to grant more extensive warranty
protection to some or all third parties, at your option).

e if the modified program serves as a debugger, cause it, when started running in
the simplest and usual way, to print an announcement including a valid copyright
notice "Copyright (C) 1988 Free Software Foundation, Inc." (or with the year that

4 A Class Browser for C++

is appropriate), saying that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License Agreement.

e You may charge a distribution fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative)
on a volume of a storage or distribution medium does not bring the other program
under the scope of these terms.

3. You may copy and distribute GNU Emacs (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and
2 above provided that you also do one of the following:

e accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

e accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal shipping charge) a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Paragraphs
1 and 2 above; or,

e accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

For an executable file, complete source code means all the source code for all modules it
contains; but, as a special exception, it need not include source code for modules which
are standard libraries that accompany the operating system on which the executable
file runs.

4. You may not copy, sublicense, distribute or transfer GNU Emacs except as expressly
provided under this License Agreement. Any attempt otherwise to copy, sublicense,
distribute or transfer GNU Emacs is void and your rights to use GNU Emacs under
this License agreement shall be automatically terminated. However, parties who have
received computer software programs from you with this License Agreement will not
have their licenses terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GNU Emacs into other free programs whose distri-
bution conditions are different, write to the Free Software Foundation. We have not
yet worked out a simple rule that can be stated here, but we will often permit this. We
will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software.

Your comments and suggestions about our licensing policies and our software are wel-
come! Please contact the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139.

2.2 NO WARRANTY

BECAUSE GNU EMACS IS LICENSED FREE OF CHARGE, WE PROVIDE
ABSOLUTELY NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE

Chapter 2: GNU Emacs General Public License 5

STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE
SOFTWARE FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER
PARTIES PROVIDE GNU EMACS "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE GNU EMACS
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL FREE SOFT-
WARE FOUNDATION, INC., RICHARD M. STALLMAN, AND/OR ANY OTHER
PARTY WHO MAY MODIFY AND REDISTRIBUTE GNU EMACS AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH PROGRAMS NOT DISTRIBUTED BY FREE SOFTWARE
FOUNDATION, INC.) THE PROGRAM, EVEN IF YOU HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

3 Introduction

I am myself working in C++ commercial software projects for several years now, and in these
projects I always missed software support for two things:

e When a new class library is introduced or you have to work on some source code you
haven’t written yourself (or written sufficiently long ago) you need a tool letting you
navigate through class hierarchies and investigate features of the software. Without
such a tool you often end up grep’ing through dozens or even hundreds of files.

e Once you are productive, it would be nice to have a tool that knows your sources and
can help you while you are editing source code. Imagine to be able to jump to the
definition of an identifier while you are editing, or something that can complete long
identifier names because it knows what identifiers are defined in your program. . ..

The design of the C++ class browser reflects these two needs; therefore the name class
browser is really only half the truth.

How does it work?

A fast parser, and I mean fast, for a subset of C++ written in C is used to parse C++
source and header files. The parser generates a database containing information about
identifiers—classes, members, global functions, types etc.

The second part of the C++ browser is a Lisp program comprised of a number of Lisp
source files—those with names br-*.el. This package reads the database generated by the
parser; it displays its contents in various forms and allows you to perform operations on it,
or with the help of the knowledge contained in it.

Navigational use of the browser is centered around two main buffer types which define
their own major modes:

Tree buffers are used to view class hierarchies in tree form. They allow you to quickly
find classes, find or view a class declaration, perform operations like query replace on sets of
files containing classes, and finally they are used to produce the second buffer form: member
displays.

Members are displayed in member buffers. The browser distinguishes between six dif-
ferent types of members; each type is displayed as a member list of its own:

e Instance member variables,
e Instance member functions,
e Static member variables,
e Static member functions,
e Friends,
e Types (enums, and typedefs defined with class scope).
You can quickly switch member buffers from one list to another, or to another class, you

can include inherited members in a display, you can set filters, and most important of all
you can edit or view member declarations and definitions with a keystroke.

These two buffer types and the commands they provide support the navigational use of
the browser. The second form resembles the tags package for C and some other procedural
languages that is part of the standard Emacs distribution; its commands are not bound to
special buffer types but are most often used while you are editing your source code.

8 A Class Browser for C++

To list just some of what you can use the tags part of the browser for:
e Quickly jump to the definition or declaration of an identifier in your source code.

e Complete identifiers in your source—just type in a few characters and let Emacs fill in
the rest.

e Perform search and query replace operations over some or all of your source files.
e Show all identifiers matching a regular expression—and jump to one of them, if you
like.

The browser has already been used in projects containing hundreds of classes. The
maximum project size that has been successfully tried so long was about 500,000 lines of
code. With Emacs 18.55 it runs on a MS-D0OS notebook with 4 Mb of RAM and has no
problems to handle projects up to about 70,000 lines of code.

3.1 Current Program Versions

The version number of the browser described in this manual is 3.1. This version is the first
released on the Internet. Version 1.x has been published on Compuserve, versions 2.x have
never seen the light of the public due to its lack of documentation.

Beginning with this version of the package, support for Emacs 18 will begin to be dropped
because there is now an Emacs version 19.27 which runs on MS-DOS (thanks to Eberhard
Mattes for his OS/2 port).

3.2 Author

These programs were written by

Gerd Moellmann, Duesseldorf Germany
mmann@ibm.net

Compuserve: 100025,3303

Suggestions, comments, bug reports, and requests for improvements are welcome.

4 Installation

The following sections describe how the browser package can be installed on your system.
At the time of writing, the package has been used with Emacs 18.55 and 19.19 through
19.27 on DOS and OS/2. With this version I am beginning to drop support for Emacs 18
but I kept the installation instructions in the document this time.

Unfortunately I currently do not have access to a Unix system, so it hasn’t been tested
on these platforms yet. From my knowledge of Unix and Emacs running under Unix I think
there should barely be any problems.

4.1 Distribution Contents

The following files are part of the browser distribution. All files are needed to successfully
use the browser; please check that you got them all.

lex.h, lex.c, parse.c, sym.c
These C source files contain the parser ebrowse that generates the Lisp data-
base. They are written in K&R C so that they should compile with pre-ANSI
compilers. There is no platform specific code in the parser except for special
handling of carriage return characters under OS/2 and DOS (that might come
handy under VMS). The code is 32-bit clean; it has been used under MS-DOS
and 32-bit OS/2 with various C and C++ compilers (Borland, IBM, Gnu).

makefile A DMAKE v3.8 makefile for the OS/2 version of ebrowse. This makefile is not
essential. The compilation of the C source files is so easy that you can easily
type in the single command.

br-brows.el

br-add.el

br-compl.el

br-loop.el

br-macro.el

br-membe.el

br-menu.el

br-posit.el

br-save.el

br-stat.el

br-struc.el

br-tags.el

br-tree.el

br-trees.el

br-utils.el

br-rev.el
Emacs Lisp source files that together form the Lisp part of the browser. These
files are compatible with Emacs 18 and Emacs 19 (I am now dropping the
support for Emacs 18 because there is an Emacs 19.27 running under DOS—
i.e. on my notebook computer;-))

10 A Class Browser for C++

If you are using Emacs 18, two other Lisp packages are needed to run the
browser; for convenience I have included them in the browser package, they are
described below.

cl-compa.el

cl-extra.el

cl-macs.el

cl-seq.el

cl.el This is the unchanged CL-19 package from Emacs 19.19. If you are not using
Emacs 18, you should have these files already.

byte-opt.el

byte-run.el

bytecomp.el
This is the optimizing byte compiler that came with Emacs 19.19. Unfortu-
nately, RMS removed a lot of code from the original 19.19 bytecomp.el that
made it compatible with Emacs 18. Fortunately he didn’t delete the code (god
bless his soul) but commented it out instead, so I could reconstruct a version
of the compiler that works with Emacs 18.

These files are MS-DOS only. If you already have a working optimizing com-
piler, or if you are running Emacs 19, you don’t need them.

The optimizing compiler must be installed with Emacs 18 because the original
compiler has a number of flaws that make it unusable with the CL-19 Common
Lisp compatibility package. Besides that the new compiler produces much
better code than the old one so there is no reason to stick with it.

browser.texi
This file is the Texinfo source code of the file you are currently reading. It
contains the documentation of the browser package. This file is for Texinfo 3.0.
Make sure that you have that package if you are using Emacs 18.

4.2 Building and Installing ebrowse

In order to build ebrowse, first of all make sure that you have all files of the parser (see
also See Section 4.1 [Files|, page 9, for a description of what is part of the distribution).

On Unix and OS/2 the following simple command should do the job of compiling
ebrowse:

gcc -02 -DPROTOTYPES lex.c parse.c sym.c -o ebrowse

Use an equivalent command line for your compiler if you don’t have the GNU C compiler.

4.3 Installing the Lisp Source

The installation of the Lisp source differs between Emacs version 18 and Emacs 19. The
reason for this is that the Emacs 18 byte compiler and its Common Lisp compatibilty
package CL both have to be replaced.

If you are an Emacs 19 user, skip the first two sections.

Chapter 4: Installation 11

4.3.1 Emacs 18 Byte Compiler Patch

The standard Emacs 18 byte compiler, located in bytecomp.el, has problems compiling
some forms generated by the CL-19 package. CL-19 already applies one patch to the byte
compiler (related to macro expansion of top-level forms), but this is not sufficient as I had
to find out.

This package therefore includes the new optimizing byte compiler written by Jamie
Zawinski and Hallvard Furuseth which in its original form ran both under Emacs 18 and
19. Since I only had access to a modified source that was part of the Emacs 19.19 distribution
I had partly to port it back to Emacs 18. If you have the original source of the optimizing
byte compiler running under Emacs 18, do not install the files in the browser package.

To install the compiler, save your original bytecomp.el (usually located in some
directory like /usr/local/emacs/lisp in some backup directory, copy the new files
byte-opt.el, byte-run.el and bytecomp.el to where it was located, start your
Emacs and compile the files with M-x byte-compile-file. Do that again after loading
bytecomp.elc with M-x load-library to ensure that the optimizing compiler has
generated optimized code for itself.@Qrefill

4.3.2 Installing the CL-19 Package

The CL-19 package included in the browse package is the one that was part of Emacs
19.19. This package has a bug in the function add-hook that is fixed in br-fixes.el
without modifying the original source. (The CL-19 package defines this function for the
benefit of Emacs 18 users that want to use the convenient Emacs 19 add-hook.)

Save the original c1.el in some backup directory. Then copy the Lisp source files cl.el,
cl-extra.el, cl-macros.el, cl-compat.el, and cl-seq.el to your Emacs lisp directory
and compile the files via M-x byte-compile-file.

4.3.3 Installing the other Lisp Files

After installing the optimizing byte compiler for Emacs 18 and the CL-19 package, the
browser Lisp files (br-*.el can be compiled. I recommend not to copy the files into your
Emacs Lisp directory. Choose some other directory to make upgrading both the browser
and Emacs easier.

First compile the files br-macros.el and br-structs.el via M-x byte-compile-file;
then load both compiled files br-macros.elc and br-structs.elc with M-x Ioad-library.
As a final step compile the rest of the files prefixed with br-.

4.4 Installing the Texinfo file

There are two ways to generate the hypertext documentation from the input file
browser.texi. The preferred one used the command makeinfo as shown below:

makeinfo browser.texi

This generates the file browser.info in the current directory which can then be copied
to where you keep your other info files.

The second method uses the internal Texinfo compiler: Load the file browse.inf into
an Emacs buffer and run the command M-x texinfo-format-buffer. Save the resulting

12 A Class Browser for C++

file in the same directory where your other Texinfo files are kept (usually something like
/usr/local/emacs/info).

As a last step, add a line like
* C++ Browser: (browser). The C++ browser...

at the end of the file dir found there. The file name browser following the colon above
has to be replaced with the name under which you saved the result of M-x texinfo-format-
buffer.

4.5 Modifying your Startup File
In order the be able to run the C++ browser, the following line has to be added to your
.emacs (_emacs for the MS-DOS version of Emacs):

(require ’browse "br-brows")

Under MS-DOS/ Emacs 18 you should include the following lines in your _emacs in front
of the above line. This makes sure that a CL-19 fix is installed before CL-19 is loaded.

(require ’br-fixes)
(require ’cl-19 "cl1")

You might also want to bind some browser commands to global keys. The file
br-utils.el binds keys prefixed with \C-c b to browser commands, and provides an
electric buffer menu displaying tree buffers only. If you want to install these utilities, add
to your .emacs:

(require ’br-utils)

When you are using Emacs 19 under a windowing system like X11 or PM, you might find
it usefull to have some browser commands available via the menu bar. If you want to do
that, add to your .emacs:

(require ’br-menu)

See See Chapter 13 [Customization|, page 37, for advanced customization of the be-

haviour of the browser program.

13

5 Processing Source Files

Before you can start browsing a class hierarchy you must run ebrowse (ebrowse.exe on
MS-DOS or OS/2) on your source files to generate a Lisp database.

The operation of ebrowse can be tailored with command line switches described below.
Under normal circumstances it suffices to let the parser use its default settings. If you want
to do that, call it with a command line like:

ebrowse *.h *.cc
or, if your are using a response file (see below),
ebrowse -i files.list

Ebrowse prints a list of available command line switches when it is called with no argu-
ments.

5.1 Specifying Input Files

‘file...’ Specify one or more files to parse.

Depending on the operating system on which ebrowse is used, you might be
able to specify all input files to be parsed on the command line. On some
systems (MS-DOS and OS/2), the maximum command line length is normally
insufficient for the number of files in even small C++ programs. This is one
reason for the introduction of response files described below.

‘-i file’ This command line switch specifies a response file containing a list of files to
be parsed by ebrowse. Each line in the response file has to contain one file
name. More than one option of this kind is allowed. The maximum number of
response file options is set at compilation time of ebrowse. The default value
is 50.

It is generally a good idea to form the input files list so that header files are parsed before
source files are. Header files normally contain class declarations. This facilitates the parsers
work of properly identifying friend functions of a class. If a global function is parsed before
the parser knows that the function is a friend function of a class, this friend relationship
information is currently lost.

5.2 Changing the Output File Name

‘-0 file’ By default, ebrowse produces a data base named BROWSE in the directory in
which it is called. You can change the output file name by giving a different
name on the command line following the above command line switch.

-a By default, each run of ebrowse erases the old contents of the output file when
writing to it. You can append output to an existing file by giving an ‘-a’
anywhere on the command line.

14 A Class Browser for C++

5.3 Friend Function Processing

-1’ Friend functions are global functions that do not have a direct syntactic linkage
to classes like member functions have. When seeing a global function, the parser
therefore has to search its symbol table for a friend declaration matching the
function just parsed.

You can suppress this search by giving the above command line option.

Normally you need not do so because the number of global functions in a C++
program tends to be quite small so that the overhead of the symbol table search
is neglectable. If you are gradually converting large C programs to C++ so that
the number of classes is initially small and the number of global functions is
high, this option can prove usefull because it improves parsing speed.

5.4 Structs and Unions

3)

-s This switch suppresses all classes declared as struct or union in the output.

This is for the case that you are converting an existing C program to C++, and
do not want to see C structs in the tree.

5.5 Regular Expressions

By default, the parser only records a member’s or class’ name in the output file along with
the file and the position in the file where its declaration or definition was found. The Lisp
program part then builds suitable regular expressions to find a class or member in the file
even if the file has been edited since the last time ebrowse was run on it. This works almost
always fine if you have a normal coding (indentation) style.

For those cases where the regular expression guessing algorithms in the Lisp package
prove to be too weak you can instruct the parser to produce regular expressions from
what is found in the source files. These regular expressions can be stored either as part of
the normal output file (for small to medium databases), or in a separate file (for big, fat
databases). In the latter case, the file containing the regular expressions is loaded on an as
needed basis; you are always free to remove its buffer to free memory.

‘-x’ This option turns regular expression production on.

‘-r file’ Instead of writing regular expressions to the file BROWSE, write them to file.
The file will be loaded by the Lisp program when it is needed and can be
discarded by the user when it is no longer used.

‘~m#’ The number following this option specifies the minimum length of the regular
expressions produced to match class and member declarations and definitions.
The default value is set at compilation time of ebrowse. The smaller the mini-
mum length the higher the probability that the browser will find a wrong match.
The larger the value the larger the output file and therefore the memory con-
sumption once the file is read from Emacs.

-M#’ The number following this option specifies the maximum length of the regular
expressions used to match class and member declarations and definitions. The
default value is set at compilation time of ebrowse. The larger the maximum

Chapter 5:

‘—e<file>’

Processing Source Files 15

length the higher the probability that the browser will find a correct match,
but the larger the value the larger the output file and therefore the memory
consumption once the data is read from Emacs. As a second effect, the larger
the regular expression the higher the probability that it will no longer match
after editing the file.

(S

When this option is given on the command line, a is displayed for each
file parsed, and a ‘+’ is displayed for each class written to the output file. A
summary of the memory used by the parser is displayed when parsing is finished.

This option makes ebrowse print out the names of the files while it is parsing
them and the names of the classes added to the symbol table.

This option is only used when ebrowse is called from the Lisp package. It
lets ebrowse read from standard input and write to standard output, file
is assumed to be the name of the file from which the input originally comes
from—this name is written as part of the position information in the resulting
Lisp database.

17

6 Starting to Browse

You start browsing a Lisp database produced by ebrowse by just finding the output file
with \C-x \C-f. The browser installs an Emacs find file hook that checks every file loaded
into memory for a certain magic number. If it finds a browser database, it is converted into
internal form that is subsequently displayed in a tree buffer.

This way of loading a database integrates smoothly with other Emacs features: you can
set bookmarks on browser databases, you can start browsing with f in dired mode, you can
temporarily display a tree with M-x view-file etc.

An example of a tree buffer display is shown below.

| Collection

[IndexedCollection
| Array

| FixedArray

| Set

| Dictionary

When you run Emacs 19.27 or greater under a windowing system like X11 you will notice
that that certain areas in the tree buffer are highlighted when you move the mouse over
them. This highlight marks sensitive regions in the buffer. Clicking mouse-2 on such a
region will pop up an object menu depending on the type of region you are in. This menu
contains functions that can be performed on the object that is highlighted.

Each buffer has a buffer object menu that is similarily opened with a click of mouse-2
somewhere in the buffer where no highlight is displayed.

19

7 Tree Buffers

Class trees are displayed in tree buffers which install their own major mode named
tree-mode (the tree prefix is one of the prefixes used in the browser Lisp library to avoid
name conflicts with other packages.)

Most Emacs keys work in tree buffer mode in the usual way, e.g., you can move around
in the buffer with the usual C-f, C-v etc., or you can search incrementally with C-s.

Since tree buffers are read-only most tree buffer specific commands are bound to simple
keystrokes, similar to dired mode. You can take a look at the key assigments by entering
? which calls M-x describe-mode in both tree and member buffers.

7.1 Viewing and Finding Class Declarations

You can view or find a class declaration with a single keystroke in the line containing the
class name.

v This command views the declaration of the class in another buffer if the data-
base contains informations about it. If you don’t parse the entire source you
are working on, some classes will only be known to exist but the location of
their definitions will not be known.

f Works like v, except that it finds the class declaration in another buffer rather
than viewing it, so that it is ready for editing.

SPC Is the same as v.
RET Is the same as f.

The same functionality is available from the object menu opened with mouse-2 on the
class name.

7.2 Displaying Members

There are six different sorts of members, each of which is displayed as a separate member
list: member instance variables, member instance functions, static (class) variables, static
member functions, friend functions, and locally defined (nested) types.

Each of these lists can be displayed in a member buffer with a single keystroke in the line
containing the class name. By default, there is only one member buffer named *Members*
that is reused each time you display a member list—this has proven to be more practical
than to clutter up the buffer list with dozens of member buffers.

If you want to display more than one member list at a time you can freeze its member
buffer. Freezing a member buffer prevents it from being overwritten the next time you
display a member list. You can toggle this buffer status at any time.

Every member list display command in the tree buffer can be used with a prefix argument
(C-u). Without a prefix argument, the command will pop to a member buffer displaying
the member list. With prefix argument, the member buffer will additionally be frozen.

a This command displays the list of instance member variables.

A Display the list of static member variables.

20

+ v " ™

mouse-2

A Class Browser for C++

Display the lits of friend functions.

Display the list of instance member functions (the ‘p’ comes from ‘procedures’).
Display the list of static member functions.

Display a list of types (enums and typedefs) defined with class scope.

Under Emacs 19 a double click with mouse-2 on a class is a synonym for p.

These lists are also available from the class’ object menu invoked with mouse-2 on the

class name.

7.3 Finding a Class

g

This command reads a class name from the minibuffer with completion and
positions the cursor on the class in the class tree.

If the branch of the class tree containing the class searched for is currently
collapsed, the class itself and all its base classes are recursively made visible.
(See also See Section 7.6 [Expanding and Collapsing], page 21.)

This function is also available from the tree buffer’s object menu.
Repeat the last search done with g. Every tree buffer has its own local copy of

the regular expression last searched in it. This command can be used to find
all occurrences of a class with multiple base classes in the tree buffer.

7.4 Killing or Burying a Tree Buffer

q

Is a synonym for M-x bury-buffer.

7.5 Displaying File Names

S

This command toggles the display of file names in the tree buffer. If file name
display is switched on, the names of the files containing the class declaration
are shown to the right of the class names. If the file is not known, the string
‘unknown’ is displayed.

This command is also provided in the tree buffer’s object menu.

Display file names for the current line, or for the number of lines given by a
prefix argument. When Emacs 19 is in use under a windowing system and
hilighting is turned on the speed of the display operation is dominated by the
highlighting speed which can be rather slow. That is the reason to include a
command that avoids excessive redisplay.

Here is an exmaple of a tree buffer with file names displayed.

Collection <unknown>

IndexedCollection <indexedcltn.h>
Array <array.h>
FixedArray <fixedarray.h>
Set <set.h>
Dictionary <dict.h>

Chapter 7: Tree Buffers 21

7.6 Expanding and Collapsing a Tree

You can expand and collapse parts of the class tree to reduce the complexity of large class
trees. Expanding or collapsing branches of a tree has no impact on the functionality of
other commands, like g. (see also See Section 7.3 [Go to Class|, page 20.)

Collapsed branches are displayed with an ellipsis behind the class name like in the
example below.

| Collection

| IndexedCollection...
| Set

| Dictionary

- This command collapses the branch of the tree starting at the class the cursor
is on.

+ This command expands the branch of the tree starting at the class the cursor
is on. Both commands for collapsing and expanding branches are also available
from the class’ object menu.

* This command expands all collapsed branches in the tree. With a prefix ar-
gument (C-u *) all branches are collapsed. You can do the same thing via the
buffer’s object menu.

mouse-1 If you are running Emacs 19 under a windowing system, a double click with
mouse-1 (usually the left mouse button) will expand or collapse the branch you
click on.

7.7 Changing the Tree Indentation

W This command reads a new indentation width from the minibuffer and redis-
plays the tree buffer with the new indentation. It is also available from the
class’ object menu.

7.8 Removing Classes from the Tree

\C-d This command removes the class the cursor is on and all its derived classes
from the tree. The user is asked for confirmation before the deletion is actually
done. After the deletion the buffer is marked as modified.

7.9 Saving a Tree

\C-x\C-s This command writes the class tree in the tree buffer to the file it was read
from. This is usefull after classes and/or members have been deleted from or
added to the tree.

\C-x\C-w Writes the tree to a file whose name is read from the minibuffer.

b'e Display statistics for the tree, like number of classes in it, number of member
functions, etc. This command can also be found in the buffer object menu.

22 A Class Browser for C++

Classes can be marked for operations similar to the standard Emacs commands M-x
tags-search and M-x tags-query-replace (see also See Chapter 9 [Tags-like Functions],
page 27.)

m Toggle the mark of the line point is in or for as many lines as given by a prefix
command. This command can also be found in the class’ object menu.

u With prefix argument \C-u, mark all classes in the tree. Otherwise, unmark all
classes. Since this command operates on the whole buffer it can also be found
in the buffer’s object menu.

Marked classes are displayed with an > in column one of the tree display like in the
following example
|> Collection
[IndexedCollection. ..
| > Set
| Dictionary

23

8 Member Buffers

Member buffers are used to operate on lists of members of a class. The browser knows six
kinds of lists:

e Instance variables (normal member variables),

e Instance functions (normal member functions),

e Static variables,

e Static member functions,

e Friend functions,

e Types (enums and typedefs defined with class scope. Nested classes will be shown in

the class tree like normal classes.

Like tree buffers, member buffers install their own major mode member-mode, whose
commands are explained below. Also like in tree buffer, object menus are provided for the
different object types in the buffer: members, classes, and the buffer itself.

8.1 Switching Member Lists

+ This command switches the member buffer to display the next member list.

- This command switches the member buffer to display the previous member
list.
Both commands cycle through the member list.

Equivalent commands are available from the object menu of the buffer itself. Invoke this
menu by clicking mouse-2 in a region of the buffer that is not highlighted (not on a member
or class name).

8.2 Finding and Vlewing Member Source

f This command finds the definition of the member the cursor is on. Finding
involves roughly the same as the standard Emacs tags facility does: Loading
the file and searching for a regular expression matching the member.

F This command finds the declaration of the member the cursor is on.

v This is the same command as f, but views the member definition instead of
finding the file the definition is in.

|4 This is the same command as F, but views the member declaration instead of
finding the file the declaration is in.

SPC A synonym for v.
RET A synonym for f.

You can install a hook function to perform actions after a member or class declaration or
definition has been found, or when it is not found (see also See Chapter 13 [Customization],
page 37.

All these commands can also be found in the object menu displayed when clicking mouse-
2 on a member name.

24 A Class Browser for C++

8.3 Display of Inherited Members

* This command toggles the display of inherited members in the member buffer.
This is also in the buffer’s context menu.

8.4 Searching Members

M-g Position the cursor on a member whose name is read from the minibuffer; only
members shown in the current member buffer appear in the completion list.

g Like the above command, but all members for the current class appear in the
completion list. If necessary, the current member list is switched to the one
containing the member.

With a prefix argument (\C-u), all members in the class tree, i.e., all members
the browser knows about appear in the completion list. The member display
will be switched to the class and member list containing the member.

Look into the buffer’s object menu for a convenient way to do this with a mouse.

8.5 Switching to Tree Buffer

TAB Pop up the tree buffer to which the member buffer belongs.

t Do the same as TAB but also position the cursor on the class displayed in the
member buffer.

8.6 Filters

This command toggles the display of public members.
This command toggles the display of protected members.
This command toggles the display of private members.
This command toggles the display of virtual members.
This command toggles the display of inline members.
This command toggles the display of const members.

This command toggles the display of pure virtual members.

S N O O B W N =

This command removes all filters.

These commands are also in the buffer’s object menu.

8.7 Displaying Member Attributes

a Show additional information about members:
e Is the member virtual? If yes, a v is displayed. If no, a - is displayed.
e Is the member inline? If yes, an i is displayed. If no, a - is displayed.

e Is the member a const function? If yes, a c is displayed. If no, a - is
displayed.

Chapter 8: Member Buffers 25

e Is the member a pure virtual function? If yes, an 0 is displayed. If no, a
- is displayed.

These commands are also in the buffer’s object menu.

8.8 Long and Short Member Display

L This command switches the member buffer back and forth between short and
long display form. The short display form displays member names, only:

| isEmpty contains hasMember create
| storeSize hash isEqual restoreGuts
| saveGuts

The long display shows one member per line with member name and regular
expressions matching the member (if known):

| isEmpty Bool isEmpty () comnst...
| hash unsigned hash () const...
| isEqual int isEqual (...

Regular expressions will only be displayed when the Lisp database has been
produced with the ebrowse option ‘-x’.

8.9 Display of Regular Expressions

r This command toggles the long display form from displaying the regular expres-
sions matching the member declarations to those expressions matching member
definitions.

Regular expressions will only be displayed when the Lisp database has been produced
with the ebrowse option ‘-x’.

8.10 Displaying Another Class

c This command lets you switch the member buffer to another class. It reads the
name of the new class from the minibuffer with completion.

u This is the same command as ¢ but restricts the classes shown in the completion
list to immediate base classes, only. If only one base class exists, this one is
immediately shown in the minibuffer.

d Same as u, but for derived classes.

P Switch to the previous class in the class hierarchy on the same level as the class
currently displayed.

n Switch to the next sibling of the class in the class tree.

8.11 Killing and Burying a Member Buffer

q This command is a synonym for M-x bury-buffer.

26 A Class Browser for C++

8.12 Setting the Column Width

W This command sets the column width depending on the display form used (long
or short display).

8.13 Forced Redisplay

1 This command forces a redisplay of the member buffer. If the width of the
window displaying the member buffer is changed this command redraws the
member list with the appropriate column widths and number of columns.

? This key is bound to describe-mode which display the current key bindings in
another window.

27

9 Tags-like Functions

The C++ class browser provides tags functions similar to those of the standard Emacs
distribution file tags.el, but better suited to the needs of C++ programmers.

In the following descriptions two keys are listed for each available command. Keys
prefixed with \C-c b are only defined if you (require ’br-utils) in your .emacs. (See
also See Section 4.5 [Startup|, page 12).

9.1 Finding and Viewing Members

M-x browse-tags-find, \C-c b .
When standing on an identifier in some source file, you can call this function
to find the declaration or definition of the identifier. If you invoke this function
with a prefix argument (C-u), the declaration is searched.

You can use completion for the identifier, if the variable browse-fast-member-
lookup is non-nil which is the default. (See also See Chapter 13 [Customization],
page 37.)

If more than one class contains an identifier/ member with the given name you
can select the class with completion. If there is a scope declaration in front
of the member name this class name is read and used as initial input for the
completion.

M-x browse-tags-view, \C-c b v
This command works like M-x browse-tags-find, except that is views the
member’s declaration or definition.

9.2 The Position Stack

When jumping to a member declaration or definition with M-x browse-tags-find or M-
x browse-tags-view, the position from where you performed the jump and the position
where you jumped to are recorded in a position stack. There are several ways in which you
can quickly move to positions in the stack:

M-x browse-tags-back, \C-c b b
This command sets point to the previous position in the position stack. Directly
after you performed a jump, this will put you back to the position where you
came from. If the buffer the recorded position is in is currently not in memory,
it is loaded.

The stack is not popped, i.e., you can always switch back and forth between
positions in the stack. To avoid letting the stack grow to infinite size there is
a maximum number of positions defined. When this number is reached, older
positions are discarded when new positions are pushed on the stack (see also
See Chapter 13 [Customization], page 37.)

M-x browse-tags-forward \C-c b f
This command moves forward in the position stack, setting point to the next
position stored in the position stack.

28 A Class Browser for C++

M-x browse-tags-position-list, \C-c b p
Displays an electric buffer showing all positions saved in the stack. You can
select a position by pressing SPC in a line. You can view a position with v.

9.3 Searching and Replacing

The C++ browser allows you to perform operations on all or a subset of the files containing
class and member declarations or definitions of a class tree. When you invoke one of the
following functions and more than one class tree is loaded, you must choose a class tree to
use from an electric tree menu. If the selected tree contains marked classes, the following
commands operate on the files mentioned in the marked classes only. Otherwise all files in
the class tree are used.

M-x browse-search, \C-c b s
This function performs a regular expression search in the chosen set of files.

M-x browse-search-member-usage, \C-c b u
This command performs a search for calls of a given member that is selected in
the usual way with completion.

M-x browse-query-replace, \C-c b },
Perform a query replace over the set of files.

M-x browse-loop, \C-c b ,
All three operations above stop when finding a match. You can restart the
operation with this command.

M-x browse-next-file, \C-c bn
This restarts the last tags operation with the next file in the list.

9.4 Members in Files

The command M-x browse-tags-1ist, \C-c b 1, displays all members in a given file whose
name is read from the minibuffer with completion.

9.5 Member Usage

The command M-x browse-search-member-usage is a special form of M-x browse-search
that searches for a regular expression that looks like a call to a given member. This command
is bound to \C-c b u by br-utils.

9.6 Member Apropos

The command browse-tags-apropos, \C-c b a can be used to display all members match-
ing a given regular expression. This command can be very usefull if you remember only a
part of a member name, and not its beginning.

A special buffer is popped up containing all identifiers matching the regular expression,
and what kind of symbol it is (e.g., a member function, or a type). You can switch to this
buffer, and use the command M-x browse-tags-find to jump to a specific member.

Chapter 9: Tags-like Functions 29

9.7 Symbol Completion

The command M-x browse-complete-symbol, which is bound to C-tab under Emacs 19 in
C++ buffers by br-utils.el completes the symbol in front of point.

9.8 Quick Member Display

You can quickly display a member buffer containing the member the cursor in on with the
command M-x browse-tags-find-member-buffer; this command is on \C-c b m if you use
use br-utils.el.

31

10 Utilities

The file br-utils.el contains several utilities like key bindings that are usefull when using
the C++ browser.

33

11 Global Key Bindings

All global keys are prefixed with \C-c b. Here is a list of what is defined when you load
br-utils:

a M-x browse-tags-apropos

b M-x browse-tags-back

f M-x browse-tags-forward

1 M-x browse-tags-1list

m M-x browse-tags-find-member-buffer

n M-x browse—next-file

p M-x browse-electric-position-list
M-x browse-search

u M-x browse-search—-member-usage
M-x browse-tags-view

% M-x browse-query-replace
M-x browse-tags-find

, M-x browse-loop

+r M-x browse-add-region

+ b M-x browse-add-buffer

35

12 Electric Tree Buffers

The command \C-c b SPC pops up an electric buffer list containing browser related buffers
only.

37

13 Customization

13.1 Verbose Mode

On slow machines when working with large class hierarchies, it is sometimes a good idea to
let the browser display what it is doing while loading a database into memory. This can be
switched off by something like

(setq browse-options (remq ’verbose browse-options))

somewhere in your .emacs after the browser has been loaded.

13.2 Fast Member Lookup

The variable browse-fast-member-lookup makes the browser use a faster member lookup
scheme that cost additional memory. If you are short of RAM or working on very large
class hierarchies, you may want to turn this option off by setting the variable to NIL.

13.3 Highlighting

The browser normally highlightes tree and member buffers when Emacs 19 is used under
a windowing system (it doesn’t use the hilight.el package to do this because it can be
done more efficient in these special cases). You can turn the highlighting off by setting the
variable browse-hilit-on-redisplay to nil.

13.4 Colors

The colors used for highlighting tree and member buffers can be changed by setting the
following variables:

tree-mark-face
This is the face of the mark sign > in tree buffers.

tree-root-class-face
The face used for the display of root classes.

tree-multiply-derived-face
The face used for classes with more than one base class.

tree-filename-face
The face for the filename display in tree buffers.

tree—-normal-face
The face for normal class names.

member-attributes-faces
The face used for attributes display in member buffers.

member-class-face
The face used for class titles in member buffers.

You can set these faces by installing an appropriate tree-mode-hook or member-mode-
hook

38 A Class Browser for C++

13.5 Hooks
The following hooks can be installed:

browse-find-hook
Run after finding or viewing a definition or declaration.

browse-not-found-hook
Run when finding or viewing was not successfull.

member-mode-hook
Run when switching a buffer to member-mode.

browse-electric-position-mode-hook
Run for electric position buffers.

tree-mode-hook
Hook for tree buffers.

Here is an expample of using browse-find-hook to do something that might be usefull
to some degree. when finding or viewing a member. it narrows the buffer containing the
function to just the function definition.

(defun test-hook ()
(if (save-excursion (beginning-of-line)
(and (looking-at "~.*(")
(not (looking-at "~.*;"))))
(progn
;; function definition assumed
(let ((org (point)) start)
;5 Skip backward until we reach a line that doesn’t start with
;5 a char that might be part of the name or type.
(while (progn (forward-line -1)
(looking-at "~ [a-zA-Z_1")))
(setq start (point))
;; Find opening brace of function definition.
(when (search-forward "{" nil t)
(goto-char (1- (point)))
(forward-list)
(narrow-to-region start (point))
(goto-char (min start (max (point) org)))
(message "Use %s to see the whole buffer..."
(key-description (where-is-internal ’widen nil t)))
(sit-for 2))
(goto-char org)))
(recenter)))

(add-hook ’browse-find-hook ’test-hook)

14 Concept Index

39

Concept Index

Concept Index

PP 14
SIFE o 14
M 14
0 13
S e e e e 14
SV e 15

123 2= Yo7 N 12

BIMAC S . o v ettt et 12

Appending Output........ ..ot 13
Attributes ... 24
Author 8
autoload e 12

B

Base classes.......... ... i 25
Base Classes ... 24
BROWSE ... 13
Browsing o 17
Buffer Switching o 24
Burying Member Buffers....................... 25

CL-19 oo 11
Class Declarationcooo.. 19
Class Display ...t 25
CollapSe . vt 21
Column Width................................. 26
Command Line ..., 13
Compilerooiii 11
Compiling ..o 10
COMS T vttt et e 24
Customizationcooiiiiiiiin... 37

D

Declarations i 23
Definitions............cco i 23
Derived class. ...t 25
Display Form 25

Distribution........... 9

41
E
EbrOWSE ..o e 10
Expand.............. 21
F
File Names i 20
Files. .. oo 9
Filters. ... 24
Finding......... ... i i 19
Finding Members 23
Friend Functions............... 14
Friends oo i 23
General Public License.......................... 3
Global Keys ..oouvviiiii i 12
I
Indentationl 21, 26
Inherited Members............................. 24
S 5 = PO 24
Input Files. ... 13
K
Killing Classesvvvenrvieiiiaennnn. 21
Killing Member Buffers........................ 25
L
LD oo e 10
Loading ... i 17
Long Display ... 25
M
Major Modes ... 7
Maximum Length....... 14
Member Buffer............... ... o 7, 23
Member Buffer Mode 23
Member Declarations 23
Member Definitions.................coovia.. 23
Member Lists.............. ..., 23
member-mode..........uiiiii 23
Memberso. i 23
Memory Summaryccooueenueennen... 15
Minimum Length 14

42

@)

OPHIONS . « ot 13
Output File Name, 13

P

Privatet 24
protected........ ...l 24
Public.......oo i 24
Pure virtualo 24

R

Redisplayooooiiii i 26
Regular Expressions........................ 14, 25
Response Files. ..., 13

S

SavVINg . ..o 21
Searching Memberscooiia. 24
Short Displayvvveiiii i 25
Static Members. ... 23
Struct. 14
Subclasses 25
SUperclasses.o.oiiiiiiii 24, 25

Switches. ... 13

A Class Browser for C++

Switching Buffers...........o L 24

T

Texinfo........ ... 11
rCe . oot 19
Tree Buffer................ ... 7,19, 24
Tree Buffer Mode 19
tree—modet e 19
TYPES oo 23

Verbose. ... 15
VErSiOn .. ovve et 8
Viewing ... 19
Viewing Members................ooooiiiii 23
Virtual ... 24

Table of Contents

1 Distribution......... ... 1
2 GNU Emacs General Public License........... 3
2.1 Copying Policies. 3
2.2 NO WARRANTY .. e 4

3 Introduction............... 7
3.1 Current Program Versions ..., 8
3.2 Author. ... 8

4 Installation..............., 9
4.1 Distribution Contents............ooiiiiiiiiiiiii .. 9
4.2 Building and Installing ebrowse oL 10
4.3 Installing the Lisp Source......... ... 10
4.3.1 Emacs 18 Byte Compiler Patch........................... 11

4.3.2 Installing the CL-19 Package.......................oo ... 11

4.3.3 Installing the other Lisp Files................ 11

4.4 Installing the Texinfo file........o o i iiiiiin, 11
4.5 Modifying your Startup File......... i 12

5 Processing Source Files........................ 13
5.1 Specifying Input Files i 13
5.2 Changing the Output File Name............... 13
5.3 Friend Function Processing, 14
5.4 Structs and Unionso, 14
5.5 Regular EXpressions, 14

6 Starting to Browse............................. 17
7 TreeBuffers............ ... 19
7.1 Viewing and Finding Class Declarations 19
7.2 Displaying Members......... ..ot 19
7.3 Finding a Class.ooutiiiii 20
7.4 Killing or Burying a Tree Buffer................ 20
7.5 Displaying File Names. 20
7.6 Expanding and Collapsing a Tree............ ...t 21
7.7 Changing the Tree Indentation.............., 21
7.8 Removing Classes from the Tree........ 21

7.9 Saving a Tree.o 21

ii

8 Member Buffers..................... 23
8.1 Switching Member Lists ... 23
8.2 Finding and VIewing Member Source.......................... 23
8.3 Display of Inherited Members............... i 24
8.4 Searching Members.ot 24
8.5 Switching to Tree Buffer........o 24
8.6 Filters.o 24
8.7 Displaying Member Attributes.............. 24
8.8 Long and Short Member Display..................ooiiiii. 25
8.9 Display of Regular Expressionsoooiiiiiiiiie. .. 25
8.10 Displaying Another Class............ooiiiiiiii ... 25
8.11 Killing and Burying a Member Buffer......................... 25
8.12 Setting the Column Width oL, 26
8.13 Forced Redisplayooiiiiiii e 26

9 Tags-like Functions............................. 27
9.1 Finding and Viewing Members.............. i 27
9.2 The Position Stack 27
9.3 Searching and Replacing...........o i, 28
9.4 Membersin Files....... ..o 28
9.5 Member Usagecovuuiiiii e 28
9.6 Member APropos. .. .ouuit et 28
9.7 Symbol Completion. 29
9.8 Quick Member Display ... 29

10 Utilities. ... 31

11 Global Key Bindings 33

12 Electric Tree Buffers.......................... 35

13 Customization...................... 37
13.1 Verbose Mode.o 37
13.2 Fast Member Lookup...........cooiii i 37
13.3 Highlighting...... .o 37
1304 COlOTS. o ottt e 37
13.5 HOOKS. . oo 38

14 Concept Index 39

	1 Distribution
	2 GNU Emacs General Public License
	Copying Policies
	NO WARRANTY

	3 Introduction
	Current Program Versions
	Author

	4 Installation
	Distribution Contents
	Building and Installing ebrowse
	Installing the Lisp Source
	Emacs 18 Byte Compiler Patch
	Installing the CL-19 Package
	Installing the other Lisp Files

	Installing the Texinfo file
	Modifying your Startup File

	5 Processing Source Files
	Specifying Input Files
	Changing the Output File Name
	Friend Function Processing
	Structs and Unions
	Regular Expressions

	6 Starting to Browse
	7 Tree Buffers
	Viewing and Finding Class Declarations
	Displaying Members
	Finding a Class
	Killing or Burying a Tree Buffer
	Displaying File Names
	Expanding and Collapsing a Tree
	Changing the Tree Indentation
	Removing Classes from the Tree
	Saving a Tree

	8 Member Buffers
	Switching Member Lists
	Finding and VIewing Member Source
	Display of Inherited Members
	Searching Members
	Switching to Tree Buffer
	Filters
	Displaying Member Attributes
	Long and Short Member Display
	Display of Regular Expressions
	Displaying Another Class
	Killing and Burying a Member Buffer
	Setting the Column Width
	Forced Redisplay

	9 Tags-like Functions
	Finding and Viewing Members
	The Position Stack
	Searching and Replacing
	Members in Files
	Member Usage
	Member Apropos
	Symbol Completion
	Quick Member Display

	10 Utilities
	11 Global Key Bindings
	12 Electric Tree Buffers
	13 Customization
	Verbose Mode
	Fast Member Lookup
	Highlighting
	Colors
	Hooks

	14 Concept Index
	Concept Index

