
C-Kermit for OS/2

Version 5A(179

)

by Chris Adie, Kai Uwe Rommel, et al.

Copyright (C) 1988 Edinburgh University Computing Service.
Portions of this document are Copyright (C) 1981, 1988 Trustees

of Columbia University in the city of New York.
Portions of this document are Copyright (C) 1992

Kai Uwe Rommel, Muenchen, Germany.

Permission is granted to any individual or institution to use, copy,
or redistribute this document so long as it is not sold for

profit, and provided this copyright notice is retained.

1. Introduction

1.1. Acknowledgements
C-Kermit was written by Frank da Cruz, Bill Catchings, Jeff Damens and Herm Fischer, with contribu-
tions by many others. It was originally written for computers running the Unix operating system, but it
has been ported to the VAX running VMS, the Apple Macintosh and the Commodore Amiga, among
others.

The program was ported at version 4E(79) to OS/2 by Chris Adie (Edinburgh University Computing
Service). The port was adapted to version 5A(179) and parts of it were rewritten by Kai Uwe Rommel.

This documentation is based closely on the C-Kermit manual by Frank da Cruz and Herm Fischer. The
section on the OS/2 file system is based on the MS-DOS Kermit manual, by Christine Gianone, Frank da
Cruz, and Joe Doupnik. It should be read in conjunction with a more general description of Kermit such
as "The Kermit File Transfer Protocol" by Frank da Cruz (Digital Press, ISBN 0-932376-88-6).

1.2. OS/2 Kermit Capabilities
C-Kermit provides traditional (Unix-style) command line operation as well as interactive command
prompting and execution. The command line options provide access to a basic subset of C-Kermit’s
capabilities; the interactive command set is far richer.

C-Kermit is a protected-mode program. It will not run in the DOS compatability environment. This
means that it will continue running (eg transferring files) even when it is not the foreground session.

All numbers in the C-Kermit documentation are decimal unless noted otherwise.

Summary of capabilities:

Local operation: Yes
Remote operation: No
Login scripts: Yes (UUCP style)
Transfer text files: Yes
Transfer binary files: Yes
Wildcard send: Yes

1

File transfer interruption: Yes
Filename collision avoidance: Yes
Can time out: Yes
8th-bit prefixing: Yes
Repeat count prefixing: Yes
Alternate block checks: Yes
Terminal emulation: Yes
Communication settings: Yes
Transmit BREAK: Yes
Support for dialout modems: Yes
IBM mainframe communication: Yes
Transaction logging: Yes
Session logging: Yes
Debug logging: Yes
Packet logging: Yes
Act as server: Yes
Talk to server: Yes
Advanced server functions: Yes
Local file management: Yes
Command/Init files: Yes
Long packets: Yes
Sliding Windows: Yes
File attributes packets: Yes
Command macros: Yes
Raw file transmit: Yes

1.3. Requirements
C-Kermit will run on a computer with an 80286 or 80386 processor running OS/2 version 1.0 or higher.
It runs in character mode - in other words it is not a Presentation Manager application. However, it will
run in a Presentation Manager window as a character application. Normally, though, you would run it
from the command processor (CMD.EXE) prompt.

1.4. The Serial Port
Naturally, a serial port (COM1 through COM4) is required. The OS/2 serial port device driver must be
loaded using a line like one of the following in the CONFIG.SYS file:

DEVICE=COM01.SYS
or DEVICE=COM02.SYS
or DEVICE=COM.SYS

COM01.SYS is used for PC/AT - type machines, while for PS/2s COM02.SYS must be used. C-Kermit
will not work if this device driver is not loaded. (It provides the Category 1 IOCTLs which are used
extensively within the program.) COM01.SYS and COM02.SYS are used for version 1.x of OS/2 only.
For the version 2.0 of OS/2 (soon to be released), only one driver COM.SYS exists for both types of
machines.

The connecting cable and the modem (or other computer, PAD etc to which your computer is connected)
must satisfy the requirements of your computer’s RS232 interface. In particular, the computer will
provide two output control signals (RTS and DTR), and may expect to see signals on four input lines
(DCD, DSR, CTS, RI). The precise behaviour of these lines is software configurable (for instance by
using the OS/2 ’MODE’ command), and C-Kermit makes no attempt to impose a particular method of
using them.

2

By default, the DTR and RTS line will both go ON when C-Kermit opens the comms port, and they will
go OFF when it is closed.

The default behaviour for the input lines is that DSR and CTS must be ON to enable the port to work. If
the modem you are connected to does not provide these signals, you can ’loop back’ the RTS output
signal from the computer to DSR and CTS, using a suitably modified cable. An alternative is to use the
MODE command to disable the DSR and CTS inputs. To do this, type a command similar to the follow-
ing at the OS/2 CMD prompt:

MODE COM1:9600,N,8,1,OCTS=OFF,ODSR=OFF,IDSR=OFF

You can check the effect using:
MODE COM1

which reports the current settings of COM1. Note that on some machines, C-Kermit may appear to work
even although DSR and CTS are not connected to anything, nor disabled using ’MODE’. This is because
unconnected input lines tend to ’float high’. Although this situation may not cause any problems, it is not
good practice - you should explicitly disable the inputs as above.

The ’MODE’ utility also allows you to change the baud rate, parity, number of data bits and number of
stop bits. C-Kermit provides facilities for changing the baud rate and parity too (see later in this manual),
but when it starts up, it resets the parity to none and the number of data bits to 8. Any changes to baud
rate and parity will remain in effect after C-Kermit terminates.

If you change the parity within C-Kermit, it will ajust the number of data bits to cope. There is no way of
changing the number of stop bits within C-Kermit: use ’MODE’ to do this.

There is also no way to change the hardware flow control settings from within C-Kermit. There are too
many possible settings for the OS/2 serial driver to duplicate all ’MODE’ options into C-Kermit. You can
use ’MODE’ to adjust the hardware flow control and the settings are used by C-Kermit without modifica-
tion. You can, however, change the software flow control from within C-Kermit.

1.5. Emergency Exit
EMERGENCY EXIT: The Control-C and Control-Break keys cannot be used to terminate C-Kermit. To

terminate C-Kermit unconditionally, you can select it in the task list and choose ’Terminate’ (OS/2 1.x) or
select it in the window list and choose the ’Close’ option from the menu (OS/2 2.0).

3

2. The OS/2 File System
The features of the OS/2 file system of greatest interest to Kermit users are the form of the file specifica-
tions, and the formats of the files themselves. Note that the following discussion refers to the MS-DOS
compatible file system supported by initial versions of OS/2. Installable file systems are not covered here
- they are significantly different, and the extent to which C-Kermit will work under such file systems is
unknown (because no installable file system has been released at the time of writing).

2.1. File Specifications
OS/2 file specifications are of the form

DEVICE:\PATHNAME\NAME.TYPE

where DEVICE stands for a single character identifier (for instance, A for the first floppy disk, C for the
first fixed disk, D for a RAM disk emulator) followed by a colon (’:’), PATHNAME is up to 63 characters
of identifier(s) (up to 8 characters each) surrounded by backslashes (’\’), NAME is an identifier of up to 8
characters, and TYPE is an identifier of up to 3 characters in length. Device and pathname may be
omitted. The first backslash in the pathname may be omitted if the specified path is relative to the current
directory. In the path field, ’.’ means the current directory, ’..’ means the parent directory.

Note that the name, type and path length restrictions apply to the original FAT file system of OS/2. The
HPFS file system added in later revisions does not have such hard restrictions. However, C-Kermit will
not take much advantage of the long HPFS file names except that it recognizes them when
sending/receiving files.

Pathname is normally omitted, but can be specified in all C-Kermit commands. Device and directory
pathnames, when omitted, default to either the user’s current disk and directory, or to the current directory
search path as specified in the PATH environment variable, depending on the context in which the file
name appears.

The C-Kermit command line parser treats backslash characters specially and thus requires you either to
enter two backslashs when you want to enter one in a file specification or to enter a forward slash instead.

NAME.TYPE is sufficient to specify a file on the current disk and directory, and only this information is
sent along by C-Kermit with an outgoing file (by default).

The device, path, name, and type fields may contain uppercase letters, digits, and the special characters
’-’ (dash), ’_’ (underscore), ’$’ (dollar sign), ’&’ (ampersand), ’#’ (number sign), ’@’ (at sign), ’!’
(exclamation mark), ’’’ (single quote), ’()’ (parentheses), ’{}’ (curly braces), ’^’ (caret or circumflex),
’~’ (tilde), and ’‘’ (accent grave). Normally, you should confine your filenames to letters and digits for
maximum transportability to non-OS/2 systems (by default, C-Kermit will translate filenames being sent
by converting non-alphanumeric characters to ’X’). When you type lowercase letters in filenames, they
are converted automatically to uppercase. There are no imbedded or trailing spaces. Other characters
may not be included; there is no mechanism for "quoting" otherwise illegal characters in filenames. The
fields of the file specification are set off from one another by the punctuation indicated above (ie colon,
backslash and dot).

The name field is the primary identifier for the file. The type, also called the extension or suffix, is an
indicator which, by convention, tells what kind of file we have. For instance FOO.BAS is the source of a
BASIC program named FOO; FOO.OBJ might be the relocatable object module produced by compiling
FOO.BAS; FOO.EXE could be an executable program produced by loading FOO.OBJ, and so forth.
.EXE is the normal suffix for executable programs.

OS/2 allows a group of files to be specified in a single file specification by including the special

4

"wildcard" characters, ’*’ and ’?’. A ’*’ matches any string of characters from the current position to the
end of the field, including no characters at all; a ’?’ matches any single character. Here are some
examples:

*.BAS All files of type BAS (BASIC source files) in the current directory.

FOO.* Files of all types with name FOO.

F*.* All files whose names start with F.

*.? All files with types exactly one character long, or with no type at all.

Wildcard notation is used on many computer systems in similar ways, and it is the mechanism most
commonly used to instruct Kermit to send a group of files.

You should bear in mind that other (non-OS/2) systems may use different wildcard characters. For
instance VMS and the DEC-20 use ’%’ instead of ’?’ as the single character wildcard; when using C-
Kermit to request a wildcard file group from a Kermit-20 server, the OS/2 ’?’ must be replaced by the
DEC-20 ’%’.

2.2. File Formats
OS/2 systems store files as streams of 8-bit bytes, with no particular distinction among text, program
code, and binary files. ASCII text files consist of lines separated by carriage-return-linefeed sequences
(CRLFs), and this conforms exactly to the way Kermit represents text files during transmission.

OS/2 (unlike CP/M) knows the exact end of a file because it keeps a byte count in the directory, so one
would expect no particular confusion in this regard. However, certain MS-DOS and OS/2 programs con-
tinue to use the CP/M convention of terminating a text file with a Control-Z character. This may cause
problems when the file is transferred elsewhere, since other systems may object to the Control-Z. By
default, therefore, C-Kermit treats the first Control-Z it finds in the file as being equivalent to end-of-file.
The Control-Z is not transmitted to the other system. Of course, this leads to problems when transferring
non-text files, when we do want any Control-Zs in the file to be sent. To achieve this, the C-Kermit ’set
file type binary’ command may be used. The opposite, ’set file type text’, is the
default.

Non-OS/2 systems may be confused by nonstandard ASCII files sent by C-Kermit:

• Files containing any of the 8-bit "extended ASCII" characters may need conversion (or trans-
lation) to 7-bit ASCII.

• Files produced by word processing programs like Word Perfect or Wordstar may contain
special binary formatting codes, and could need conversion to conventional 7-bit ASCII for-
mat prior to transmission, using commonly available "exporter" programs.

• Spreadsheet or database files usually need special formatting to be meaningful to non-OS/2
recipients (though they can be transmitted between OS/2 and MS-DOS systems with Kermit).

• BASIC programs are normally saved in a binary "tokenized" form. Use BASIC’s ",a"
option to save them as regular ASCII text, as in

save"foofa",a

In general, when attempting to transfer non-text files between OS/2 and a different kind of system, con-
sult the Kermit manual for that system.

5

3. File Transfer
When C-Kermit is transferring a file, the screen (stdout) is continously updated to show the progress of
the file transer. A dot is printed for every four data packets, other packets are shown by type:

I Exchange Parameter Information
R Receive Initiate
S Send Initiate
F File Header
G Generic Server Command
C Remote Host Command
N Negative Acknowledgement (NAK)
E Fatal Error
T Indicates a timeout occurred
Q Indicates a damaged, undesired, or illegal packet was received
% Indicates a packet was retransmitted

You may type certain "interrupt" commands during file transfer:

F: Interrupt the current File, and go on to the next (if any).
X: Interrupt the entire Batch of files, terminate the operation.
R: Resend the current packet.
E: Error: terminate the current operation immediately and return to prompt.
A: Display a status report for the current operation.

CAUTION: If F or X is used to cancel an incoming file, and a file of the same name previously existed,
and the "file warning" feature is not enabled, then the previous copy of the file will disappear.

The Emergency Exit key (Control-C) can be used to terminate a file transfer. This will not terminate the
transfer gracefully (it is a ’brute force’ method), so the remote Kermit system may be left in an undefined
state.

6

4. Command Line Operation
The C-Kermit command line syntax conforms to the Proposed Syntax Standards for Unix System
Commands put forth by Kathy Hemenway and Helene Armitage of AT&T Bell Laboratories in
Unix/World, Vol.1, No.3, 1984. The implications of this for specifying command-line options are:

• An option name is a single character.
• Options are delimited by ’-’.
• Options with no arguments may be grouped (bundled) behind one delimiter.
• Options which take an argument must not have the argument omitted.
• Arguments immediately follow options, separated by whitespace.
• The order of options does not matter.
• A ’-’ preceded and followed by whitespace means standard input.
• A group of bundled options may end with an option that has an argument.

The following notation is used in command descriptions:

fn An OS/2 file specification, possibly containing the "wildcard" characters ’*’ or ’?’.

fn1 An OS/2 file specification which may not contain ’*’ or ’?’.

rfn A remote file specification in the remote system’s own syntax, which may denote a single file
or a group of files.

rfn1 A remote file specification which should denote only a single file.

n A decimal number between 0 and 94.

c A decimal number between 0 and 127 representing the value of an ASCII character.

cc A decimal number between 0 and 31, or else exactly 127, representing the value of an ASCII
control character.

[] Any field in square braces is optional.

{x,y,z}
Alternatives are listed in curly braces.

C-Kermit command line options may specify any combination of actions and settings. If C-Kermit is
invoked with a command line that specifies no actions, then it will issue a prompt and begin interactive
dialog. Action options specify either protocol transactions or terminal connection.

4.1. Command Line Options

-s fn Send the specified file. If fn is ’-’ then kermit sends from standard input, which may come
from a file:

kermit -s - < foo.bar

or a parallel process:
dir *.txt | kermit -s -

You cannot use this mechanism to send console typein. If you want to send a file whose actual
name is ’-’ you can precede it with a path name, as in

kermit -s .\-

The argument fn may contain wildcards. For instance,
kermit -s ck*.h

7

will send all the files matching the specification ’ck*.h’.

-r Receive a file or files. Wait passively for files to arrive.

-k Receive (passively) a file or files, sending them to standard output. This option can be used in
several ways:
kermit -k

Displays the incoming files on your screen.

kermit -k > fn1
Sends the incoming file or files to the named file, fn1. If more than one file arrives,
all are concatenated together into the single file fn1.

kermit -k | command
Pipes the incoming data (single or multiple files) to the indicated command, as in

kermit -k | sort > sorted.txt

-a fn1 If you have specified a file transfer option, you may give an alternate name for a single file with
the -a ("as") option. For example,

kermit -s foo -a bar

sends the file foo telling the receiver that its name is bar. If more than one file arrives or is
sent, only the first file is affected by the -a option:

kermit -ra baz

stores the first incoming file under the name baz.

-x Begin server operation.

Before proceeding, a few words about remote and local operation are necessary. Kermit (in general, not
just C-Kermit) is "local" if it is running on PC or workstation that you are using directly, or if it is running
on a multiuser system and transferring files over an external communication line -- not your job’s con-
trolling terminal or console. Kermit is remote if it is running on a multiuser system and transferring files
over its own controlling terminal’s communication line, connected to your PC or workstation.

C-Kermit running under OS/2 is always used in local mode, with the serial port at the back of the machine
designated for file transfer and terminal connection. Which serial port to use is determined by the -l
command-line option:

-l dev Line -- Specify a serial line to use for file transfer and terminal connection, as in
kermit -l com2

The default line is COM1.

There are a number of other options associated with the use of the serial port:

-b n Baud -- Specify the baud rate for the line given in the -l option, as in
kermit -l com2 -b 9600

It is good practice to include this with the -l option, since the current speed of the serial port
might not be what you expect.

-p x Parity -- x may be one of e,o,m,s,n (even, odd, mark, space, or none). If parity is other than
none, then the 8th-bit prefixing mechanism will be used for transferring 8-bit binary data,
provided the opposite Kermit agrees. The default parity is none.

-t Specifies half duplex, line turnaround with XON as the handshake character.

8

The following command line options access a remote Kermit server:

-g rfn Actively request a remote server to send the named file or files; rfn is a file specification in the
remote host’s own syntax.

-f Send a ’finish’ command to a remote server.

The following command line options are to do with connecting to the remote system as a terminal:

-c Establish a terminal connection over the specified or default communication line, before any
protocol transaction takes place. Get back to the local system by typing the escape character
(normally Control-]) followed by the letter ’c’.

-n Like -c, but after a protocol transaction takes place; -c and -n may both be used in the same
command. The use of -n and -c is illustrated below.

Several other command-line options are provided:

-i Specifies that files should be sent or received exactly "as is" with no conversions. This option
is necessary for transmitting binary files, and is equivalent to the ’set file type
binary’ interactive command.

-w Write-Protect -- Avoid filename collisions for incoming files.

-e n Extended packet length -- Specify that C-Kermit is allowed to receive packets up to length n,
where n may be between 10 and some large number, like 1000, depending on the system. The
default maximum length for received packets is 90. Packets longer than 94 will be used only if
the other Kermit supports, and agrees to use, the "long packet" protocol extension.

-q Quiet -- Suppress screen update during file transfer, for instance to allow a file transfer to
proceed in the background.

-d Debug -- Record debugging information in the file debug.log in the current directory. Use
this option if you believe the program is misbehaving, and show the resulting log to your local
Kermit maintainer. (debug log disabled)

-h Help -- Display a brief synopsis of the command line options.

-u d File handle -- The argument d is the numerical value of an open file handle which Kermit will
use for its communication line. This option is for use only by other programs which interface
with Kermit, not for typing in the command line (so it’s not described in the help information
from -h). Further details are given in the Appendix.

The command line may contain no more than one protocol action option (ie only one of: -s, -a, -r, -k,
-x, -g, -f).

See the Unix C-Kermit manual for a full description of all available options. Run C-Kermit for OS/2 with
option -h to get a short description of available options online.

Files are sent with their own names, except that lowercase letters are raised to upper, drive specifiers and
pathnames are stripped off, and non-alphanumeric characters (excepting the dot) are changed to ’X’.
Incoming files are stored under their own names. If -w was specified, a "generation number" is appended
to the name if it has the same name as an existing file which would otherwise be overwritten. If the -a
option is included, then the same rules apply to its argument. The file transfer display shows any transfor-
mations performed upon filenames.

9

During transmission, files are encoded as follows:

• Control characters are converted to prefixed printables.

• Sequences of repeated characters are collapsed via repeat counts, if the other Kermit is also
capable of repeated-character compression.

• If parity is being used on the communication line, data characters with the 8th (parity) bit on
are specially prefixed (provided the other Kermit is capable of 8th-bit prefixing; if not, 8-bit
binary files cannot be successfully transferred).

4.2. Command Line Examples

kermit -l com1 -b 1200 -cn -r

This command connects you to the system on the other end of COM1 at 1200 baud, where you presum-
ably log in and run Kermit with a ’send’ command. After you escape back, C-Kermit waits for a file (or
files) to arrive. When the file transfer is completed, you are reconnected to the remote system so that you
can logout.

kermit -l com2 -b 9600 -cntp m -r -a foo.bar

This command is like the preceding one, except the remote system in this case uses half duplex com-
munication with mark parity. The first file that arrives is stored under the name foo.bar.

kermit -nf

This command would be used to shut down a remote server and then connect to the remote system, in
order to log out or to make further use of it. The -n option is invoked after -f (-c would have been
invoked before). This example assumes that the remote server is connected to COM1 (Kermit’s default
comms port), and that the current baud rate of the port is acceptable to the remote server.

kermit -wx

This command starts up C-Kermit as a server. Incoming files that have the same names as existing files
are given new, unique names.

kermit -l com2 -b 9600

This command sets the communication line and speed. Since no action is specified, C-Kermit issues a
prompt and enters an interactive dialog with you. Any settings given on the command line remain in
force during the dialog, unless explicitly changed (eg in this case by ’set line’ or ’set speed’
commands).

kermit

This command starts up Kermit interactively with all default settings. The serial line used will be COM1,
and the speed used will be the current speed of COM1.

A final example shows how an OS/2 compress utility might be used to speed up Kermit file transfers:
compress < file | kermit -is - (sender)
kermit -ik | uncompress > file (receiver)

10

4.3. Exit Status Codes
C-Kermit returns an exit status of zero, except when a fatal error is encountered, when the exit status is
set to one. This can be used in a batch file, to take some action depending on whether the operation was
successful. For instance, suppose the file SEND.CMD contains the following:

echo Sending %1 out port %2
kermit -ql COM%2 -b 9600 -s %1
if ERRORLEVEL 1 goto badend
echo Transferred succcessfully!
goto end
:badend
echo Transfer problems!
:end

To send a file FOO.BAS, you could type:

send foo.bas 2

to send it to another computer running Kermit, connected to port COM2. If the transfer completed OK,
you would get the message ’Transferred successfully!’.

11

5. Interactive Operation
C-Kermit’s interactive command prompt is "C-Kermit>". In response to this prompt, you may type
any valid interactive C-Kermit command. C-Kermit executes the command and then prompts you for
another command. The process continues until you instruct the program to terminate.

Commands begin with a keyword, normally an English verb, such as ’send’. You may omit trailing
characters from any keyword, so long as you specify sufficient characters to distinguish it from any other
keyword valid in that field. Certain commonly-used keywords (such as ’send’, ’receive’,
’connect’) also have special non-unique abbreviations (’s’ for ’send’, ’r’ for ’receive’, ’c’ for
’connect’).

Certain characters have special functions during typein of interactive commands:

? Question mark, typed at any point in a command, will produce a message explaining what is
possible or expected at that point. Depending on the context, the message may be a brief
phrase, a menu of keywords, or a list of files.

ESC (The Escape key) -- Request completion of the current keyword or filename, or insertion of a
default value. The result will be a beep if the requested operation fails.

BS (Backspace) -- Delete the previous character from the command.

^W (Control-W) -- Erase the rightmost word from the command line.

^U (Control-U) -- Erase the entire command.

^R (Control-R) -- Redisplay the current command.

SP (Space) -- Delimits fields (keywords, filenames, numbers) within a command. The tab key may
also be used for this purpose.

CR (Carriage Return or Enter) -- Enters the command for execution. LF (Linefeed or Control-J) or
FF (formfeed or Control-L) may also be used for this purpose.

^ (Circumflex) -- Enter any of the above characters into the command, literally. To enter a ^,
type two of them in a row (^^). A circumflex at the end of a command line causes the next line
to be treated as a continuation line; this is useful for readability in command files, especially in
the ’script’ command.

You may type the editing characters (BS, ^W, etc) repeatedly, to delete all the way back to the prompt.
No action will be performed until the command is entered by typing carriage return, linefeed, or
formfeed. If you make any mistakes, you will receive an informative error message and a new prompt --
make liberal use of ’?’ and ’ESC’ to feel your way through the commands. One important command is
’help’ -- you should use it the first time you run C-Kermit.

A command line beginning with a percent sign ’%’ is ignored. Such lines may be used to include illustra-
tive commentary in Kermit command dialogs.

Interactive C-Kermit accepts commands from files as well as from the keyboard. When you start C-
Kermit, the program looks for a file CKERMIT.INI in the current PATH, and executes any commands it
finds there. The commands in CKERMIT.INI must be in interactive format, not in the command-line
format. A ’take’ command is also provided for use at any time during an interactive session, to allow
interactive-format commands to be executed from a file; command files may be nested to any reasonable
depth.

12

Here is a brief list of C-Kermit interactive commands:

% Comment
! Execute an OS/2 command, or start up CMD.EXE.

bye Terminate and log out a remote Kermit server.
close Close a log file.

connect Establish a terminal connection to a remote system.
cwd Change Working Directory.
dial Dial a telephone number.

directory Display a directory listing.
echo Display arguments literally.
exit Exit from the program, closing any open files.

finish Tell remote Kermit server to exit, but not log out.
get Get files from a remote Kermit server.
help Display a help message for a given command.
log Open log file: debugging, packet, session, transaction.
quit Same as ’exit’.

receive Passively wait for files to arrive.
remote Do some file management on a remote Kermit server.
script Execute a login script with a remote system.

send Send files.
server Begin server operation.

set Set various parameters.
show Display values of ’set’ parameters.

space Display current disk space usage.
statistics Display statistics about most recent transaction.

take Execute commands from a file.

The ’set’ parameters are:

block-check Level of packet error detection.
delay How long to wait before sending first packet.

duplex Specify which side echoes during ’connect’.
escape-character Prefix for "escape commands" during ’connect’.

file Set various file parameters.
flow-control Communication line full-duplex flow control.

handshake Communication line half-duplex turnaround character.
incomplete Disposition for incompletely received files.

line Communication line device name.
modem-dialer Type of modem-dialer on communication line.

parity Communication line character parity.
prompt The C-Kermit program’s interactive command prompt.
receive Parameters for inbound packets.
retry Packet retransmission limit.
send Parameters for outbound packets.

speed Communication line speed.
terminal Terminal parameters.

The ’remote’ commands are:

cwd Change remote working directory.
delete Delete remote files.

directory Display a listing of remote file names.
help Request help from a remote server.
host A command to the remote host in its command language.

space Display current disk space usage on remote system.

13

type Display a remote file on your screen.
who Show who’s logged in, or get information about a user.

Most of these commands are described adequately in the Kermit User Guide or the Kermit book. Special
aspects of certain C-Kermit commands are described below. There are more (special) commands avail-
able. See the Unix C-Kermit manual for a full description.

5.1. The ’send’ command

Syntax: send fn
or send fn1 rfn1

Send the file or files denoted by fn to the other Kermit, which should be running as a server, or which
should have been given the ’receive’ command. Each file is sent under its own name (as described
above, or as specified by the ’set file names’ command). If the second form of the ’send’ com-
mand is used, i.e. with fn1 denoting a single OS/2 file, rfn1 may be specified as a name to send it under.
The ’send’ command may be abbreviated to ’s’, even though ’s’ is not a unique abbreviation for a
top-level C-Kermit command.

The wildcard characters ’*’ and ’?’ are accepted in fn. If ’?’ is to be included, it must be prefixed by ’^’
to override its normal function of providing help. ’*’ matches any string, ’?’ matches any single charac-
ter. When fn contains ’*’ or ’?’ characters, there is a limit to the number of files that can be matched,
which varies depending on the length of the file names involved. If you get the message ’Too many
files match’ then you’ll have to make a more judicious selection.

5.2. The ’receive’ command

Syntax: receive
or receive fn1

Passively wait for files to arrive from the other Kermit, which must be given the ’send’ command -- the
’receive’ command does not work in conjunction with a server (use ’get’ for that). If fn1 is specified,
store the first incoming file under that name. The ’receive’ command may be abbreviated to ’r’. If
the second form of the command is given, and fn1 contains a path specification, then that path must exist
-- C-Kermit will not create a directory for the file.

5.3. The ’get’ command

Syntax: get rfn
or get

rfn
fn1

Request a remote Kermit server to send the named file or files. Since a remote file specification (or list)
might contain spaces, which normally delimit fields of a C-Kermit command, an alternate form of the
command is provided to allow the inbound file to be given a new name: type ’get’ alone on a line, and
you will be prompted separately for the remote and local file specifications, for example

C-Kermit>get
Remote file specification: profile exec
Local name to store it under: profile.ibm

As with ’receive’, if more than one file arrives as a result of the ’get’ command, only the first will be
stored under the alternate name given by fn1; the remaining files will be stored under their own names if
possible. If a ’?’ is to be included in the remote file specification, you must prefix it with ’^’ to suppress
its normal function of providing help.

14

If you have started a multiline ’get’ command, you may escape from its lower-level prompts by typing a
carriage return in response to the prompt, e.g.

C-Kermit>get
Remote file specification: foo
Local name to store it under: (Type a carriage return here)
(cancelled)
C-Kermit>

5.4. The ’server’ command
The ’server’ command places C-Kermit in "server mode" on the currently selected communication
line. All further commands must arrive as valid Kermit packets from the Kermit on the other end of the
line. The OS/2 C-Kermit server can respond to the following commands:

Command Server Response
get Sends files
send Receives files
bye Attempts to log itself out
finish Exits to level from which it was invoked
remote directory Sends directory lising
remote delete Removes files
remote cwd Changes working directory
remote type Sends files to your screen
remote space Reports about its disk usage
remote help Lists these capabilities
remote host Execute an OS/2 command

Note that the ’remote host’ command should be used with great care. It should only be used to
invoke OS/2 commands which produce their output through stdio, and which require no keyboard inter-
action. Commands such as ’copy’ and ’rename’ are OK (although they may sometimes produce output
on stderr, which will appear on the screen of the OS/2 system). It is not possible to use the ’remote
host’ command to run a word proccessor, for instance.

5.5. The ’remote’, ’bye’, and ’finish’ commands
C-Kermit may itself request services from a remote Kermit server. In addition to ’send’ and ’get’, the
following commands may also be sent from C-Kermit to a Kermit server:
remote cwd [directory]

If the optional remote directory specification is included, you will be prompted on a separate
line for a password, which will not echo as you type it. If the remote system does not require a
password for this operation, just type a carriage return.

remote delete rfn
delete remote file or files.

remote directory [rfn]
directory listing of remote files.

remote host command
issue a command in the remote host’s own command language.

remote space
disk usage report from the remote host.

remote type rfn

15

display remote file or files on the screen.

remote who [user]
display information about who’s logged in.

remote help
display remote server’s capabilities.

bye and finish
When connected to a remote Kermit server, these commands cause the remote server to ter-
minate; ’finish’ returns it to Kermit or system command level (depending on the implemen-
tation or how the program was invoked); ’bye’ also requests it to log itself out.

5.6. The ’log’ and ’close’ commands

Syntax: log {debugging, packets, session, transactions} [fn1]
close {debugging, packets, session, transactions}

C-Kermit’s progress may be logged in various ways. The ’log’ command opens a log, the ’close’
command closes it. In addition, all open logs are closed by the ’exit’ and ’quit’ commands. A name
may be specified for a log file; if the name is omitted, the file is created with a default name as shown
below.
log debugging

This produces a voluminous log of the internal workings of C-Kermit, of use to Kermit
developers or maintainers in tracking down suspected bugs in the C-Kermit program. Use of
this feature dramatically slows down the Kermit protocol. Default name: debug.log. (debug
log disabled)

log packets
This produces a record of all the packets that go in and out of the communication port. This log
is of use to Kermit maintainers who are tracking down protocol problems in either C-Kermit or
any Kermit that C-Kermit is connected to. Default name: packet.log.

log session
This log will contain a copy of everything you see on your screen during the ’connect’
command, except for local messages or interaction with local escape commands. Default name:
session.log.

log transactions
The transaction log is a record of all the files that were sent or received while transaction
logging was in effect. It includes time stamps and statistics, filename transformations, and
records of any errors that may have occurred. The transaction log allows you to have long
unattended file transfer sessions without fear of missing some vital screen message. Default
name: transact.log.

The ’close’ command explicitly closes a log, e.g. ’close debug’.

Note: Debug and Transaction logs are a compile-time option; C-Kermit may be compiled without these
logs, in which case it will run faster, it will take up less space on the disk, and the commands relating to
them will not be present.

16

5.7. Local File Management Commands
OS/2 Kermit allows some degree of local file management from interactive command level:
directory [fn]

Displays a listing of the names, sizes, and dates of files matching fn (which defaults to ’*.*’).
Equivalent to ’dir’.

cwd directory-name
Changes Kermit’s working directory to the one given. The directory specification may be
preceeded by a drive specifier, in which case that becomes the current drive. This command
affects only the Kermit process and any processes it may subsequently create.

space
Display information about disk space and/or quota in the current directory and device. Equiv-
alent to ’chkdsk’.

! [command]
The command is executed by the OS/2 command interpreter CMD.EXE. If no command is
specified, then CMD.EXE itself is started; terminating it by typing ’exit’ will return you to
C-Kermit command level. Use the ’!’ command to provide file management or other functions
not explicitly provided by C-Kermit commands. The ’!’ command has certain peculiarities:

• At least one space must separate the ’!’ from the command.
• A ’cd’ or ’chdir’ (change directory) command executed in this manner will have

no effect on returning to Kermit -- use the C-Kermit ’cwd’ command instead.

5.8. The ’set’ Command

Syntax: set parameter [parameter] value

Since Kermit is designed to allow diverse systems to communicate, it is often necessary to issue special
instructions to allow the program to adapt to peculiarities of the another system or the communication
path. These instructions are accomplished by the ’set’ command. The ’show’ command may be used
to display current settings. Here is a brief synopsis of settings available in the current release of C-
Kermit:
block-check {1, 2, 3}

Determines the level of per-packet error detection. "1" is a single-character 6-bit checksum,
folded to include the values of all bits from each character. "2" is a 2-character, 12-bit check-
sum. "3" is a 3-character, 16-bit cyclic redundancy check (CRC). The higher the block check,
the better the error detection and correction and the higher the resulting overhead. Type 1 is
most commonly used; it is supported by all Kermit implementations, and it has proven adequate
in most circumstances. Types 2 or 3 would be used to advantage when transferring 8-bit binary
files over noisy lines.

delay n
How many seconds to wait before sending the first packet after a ’send’ command, in remote
mode only. It is irrelevant for OS/2 Kermit, since it is always in local mode.

duplex {full, half}
For use during ’connect’. Specifies which side is doing the echoing; ’full’ means the other
side, ’half’ means C-Kermit must echo typein itself.

escape-character cc
For use during ’connect’ to get C-Kermit’s attention. The escape character acts as a prefix to
an ’escape command’, for instance to close the connection and return to C-Kermit or OS/2
command level. The normal escape character is Control-] (29).

17

file {display, names, type, warning}
Establish various file-related parameters:
display {on, off}

Normally ’on’; when in local mode, display progress of file transfers on the screen
(stdout), and listen to the keyboard for interruptions. If ’off’ (equivalent to ’-q’ on
command line) none of this is done, and the file transfer may proceed in the back-
ground oblivious to any other work concurrently done at the console terminal.

names {converted, literal}
Normally ’converted, which means that outbound filenames have path specifica-
tions stripped and non-alphanumeric characters changed to X’s (except for the dot).
’literal’ means that none of these conversions are done; therefore, any directory
path appearing in a received file specification must exist and be write-accessible.
When literal naming is being used, the sender should not use path names in the file
specification unless the same path exists on the target system and is writable.

type {binary, text} [{7, 8}]
The file type is normally text, which means that any control-Z in a file being trans-
mitted is treated as an end-of-file mark. Binary means transmit file contents without
conversion. Binary (’-i’ in command line notation) is necessary for binary files.

The optional trailing parameter tells the bytesize for file transfer. It is 8 by default. If
you specify 7, the high order bit will be stripped from each byte of sent and received
files. This is useful for transferring text files that may have extraneous high order bits
set in their disk representation (e.g. Wordstar or similar word processor files).

warning {on, off}
Normally ’off’, which means that incoming files will silently overwrite existing files
of the same name. When ’on’ (’-w’ on command line) Kermit will check if an
arriving file would overwrite an existing file; if so, it will construct a new name for
the arriving file, of the form FZZn.BAR, where FZZ.BAR is the name they share and
n is a "generation number"; if FZZ.BAR exists, then the new file will be called
FZZ00001.BAR. If FZZ.BAR and FZZ00001.BAR exist, the new file will be
FZZ00002.BAR, and so on. If the common name were more than 6 characters long
(eg GOODDATA.DAT), then the new name for the arriving file would be
GOODD001.DAT and so on.

CAUTION: If F or X is used to cancel an incoming file, and a file of the same
name previously existed, and the "file warning" feature is not enabled, then the
previous copy of the file will disappear.

flow-control {none, xon/xoff}
Normally ’xon/xoff’ for full duplex flow control. Should be set to ’none’ if the other
system cannot do xon/xoff flow control, or if you have issued a ’set handshake’ command.
If set to ’xon/xoff’, then ’handshake’ should be set to ’none’. This setting applies during
both terminal connection and file transfer.

incomplete {discard, keep}
Disposition for incompletely received files. If an incoming file is interrupted or an error occurs
during transfer, the part that was received so far is normally discarded. If you ’set incom-
plete keep’ then such file fragments will be kept.

handshake {xon, xoff, cr, lf, bell, esc, none}
Normally ’none’. Otherwise, half-duplex communication line turnaround handshaking is
done, which means Kermit will not reply to a packet until it has received the indicated hand-
shake character or has timed out waiting for it; the handshake setting applies only during file

18

transfer. If you ’set handshake’ to other than ’none’, then ’flow’ should be set to
’none’.

line [dev]
The device name for the communication line to be used for file transfer and terminal connec-
tion, e.g. COM2. If you omit the device name, Kermit will revert to its default device, COM1.

modem-dialer {direct, hayes, racalvadic, ventel, ...}
The type of modem dialer on the communication line. ’direct’ indicates either there is no
dialout modem, or that if the line requires carrier detection to open, then ’set line’ will hang
waiting for an incoming call. ’hayes’, ’ventel’, and the others indicate that ’set line’
(or the ’-l’ argument) will prepare for a subsequent ’dial’ command for the given dialer.
Support for new dialers is added from time to time, so type ’set modem ?’ for a list of those
supported in your copy of Kermit. See the description of the ’dial’ command.

parity {even, odd, mark, space, none}
Specify character parity for use in packets and terminal connection, normally ’none’. If other
than ’none’, C-Kermit will seek to use the 8th-bit prefixing mechanism for transferring 8-bit
binary data, which can be used successfully only if the other Kermit agrees; if not, 8-bit binary
data cannot be successfully transferred.

prompt [string]
The given string will be substituted for ’C-Kermit>’ as this program’s prompt. If the string is
omitted, the prompt will revert to ’C-Kermit>’. If the string is enclosed in double quotes, the
quotes will be stripped and any leading and trailing blanks will be retained.

send parameter
Establish parameters to use when sending packets. These will be in effect only for the initial
packet sent, since the other Kermit may override these parameters during the protocol parameter
exchange (unless noted below).
end-of-packet cc

Specifies the control character needed by the other Kermit to recognize the end of a
packet. C-Kermit sends this character at the end of each packet. Normally 13 (car-
riage return), which most Kermit implementations require. Other Kermits require no
terminator at all, still others may require a different terminator, like linefeed (10).

packet-length n
Specify the maximum packet length to send. Normally 90. Shorter packet lengths
can be useful on noisy lines, or with systems or front ends or networks that have small
buffers. The shorter the packet, the higher the overhead, but the lower the chance of a
packet being corrupted by noise, and the less time to retransmit corrupted packets.
This command overrides the value requested by the other Kermit during protocol
initiation unless the other Kermit requests a shorter length.

pad-character cc
Designate a character to send before each packet. Normally, none is sent. Outbound
padding is sometimes necessary for communicating with slow half duplex systems
that provide no other means of line turnaround control. It can also be used to send
special characters to communications equipment that needs to be put in "transparent"
or "no echo" mode, when this can be accomplished in by feeding it a certain control
character.

padding n
How many pad characters to send, normally 0.

19

start-of-packet cc
The normal Kermit packet prefix is Control-A (1); this command changes the prefix
C-Kermit puts on outbound packets. The only reasons this should ever be changed
would be: Some piece of equipment somewhere between the two Kermit programs
will not pass through a Control-A; or, some piece of of equipment similarly placed is
echoing its input. In the latter case, the recipient of such an echo can change the
packet prefix for outbound packets to be different from that of arriving packets, so
that the echoed packets will be ignored. The opposite Kermit must also be told to
change the prefix for its inbound packets.

timeout n
Specifies the number of seconds you want the other Kermit to wait for a packet before
timing it out and requesting retransmission. Defaults to 10 seconds.

receive parameter
Establish parameters to request the other Kermit to use when sending packets.
end-of-packet cc

Requests the other Kermit to terminate its packets with the specified character.

packet-length n
Specify the maximum packet length to that you want the other Kermit to send, nor-
mally 90. If you specify a length of 95 or greater, then it will be used if the other
Kermit supports, and agrees to use, the Kermit protocol extension for long packets.
In this case, the maximum length depends upon the systems involved, but there would
normally be no reason for packets to be more than about 1000 characters in length.
The ’show parameters’ command displays C-Kermit’s current and maximum
packet lengths.

pad-character cc
C-Kermit normally does not need to have incoming packets preceded with pad
characters. This command allows C-Kermit to request the other Kermit to use cc as a
pad character. Default cc is NUL, ASCII 0.

padding n
How many pad characters to ask for, normally 0.

start-of-packet cc
Change the prefix C-Kermit looks for on inbound packets to correspond with what the
other Kermit is sending.

timeout n
Normally, each Kermit partner sets its packet timeout interval based on what the
opposite Kermit requests. This command allows you to override the normal proce-
dure and specify a timeout interval for OS/2 Kermit to use when waiting for packets
from the other Kermit. If you specify 0, then no timeouts will occur, and OS/2
Kermit will wait forever for expected packets to arrive.

speed {110, 150, 300, 600, 1200, 2400, 3600, 4800, 7200, 9600, 19200,
38400, 57600}

The baud rate for the external communication line. ’set baud’ is a synomym for ’set speed’.
19200 baud and higher rates may not be available, depending on your communications
hardware.

terminal parameter value
Used for specifying terminal parameters. Currently, ’bytesize’ is the only parameter

20

provided, and it can be set to 7 or 8. This controls the width of the data path between the
console and the remote system when C-Kermit is in connect (ie terminal emulation) mode. It’s
7 by default.

5.9. The ’show’ Command

Syntax: show {parameters, versions}

The ’show’ command with the default argument of ’parameters’ displays the values of all the ’set’
parameters described above. If you type ’show versions’, then C-Kermit will display the version
numbers and dates of all its internal modules. You should use the ’show versions’ command to
ascertain the vintage of your Kermit program before reporting problems to Kermit maintainers.

5.10. The ’statistics’ Command
The statistics command displays information about the most recent Kermit protocol transaction, including
file and communication line i/o, timing and efficiency, as well as what encoding options were in effect
(such as 8th-bit prefixing, repeat-count compression).

5.11. The ’take’ and ’echo’ Commands

Syntax: take fn1

echo [text to be echoed]

The ’take’ command instructs C-Kermit to execute commands from the named file. The file may
contain any interactive C-Kermit commands, including ’take’; command files may be nested to any
reasonable depth, but it may not contain text to be sent to a remote system during the ’connect’ com-
mand. This means that a command file like this:

set speed 9600
connect
login myuserid
mypassword
etc

will not send "login myserid" or any of the following text to the remote system. To carry on a canned
dialog, use the ’script’ command, described later.

The ’%’ command is useful for including comments in take-command files. It may only be used at the
beginning of a line.

The ’echo’ command may be used within command files to issue greetings, announce progress, ring the
terminal bell, etc. This command simply displays its text argument (almost) literally at the terminal; the
argument may contain octal escapes of the form \ooo, where o is an octal digit (0-7), and there may be
1, 2, or 3 such digits, whose value specify an ASCII character, such as \007 (or \07 or just \7) for
beep, \012 for newline, etc.

Take-command files are in exactly the same syntax as interactive commands. Note that this implies that
if you want to include special characters like question mark or circumflexes that you would have to quote
with ^ when typing interactive commands, you must quote these characters the same way in command
files. Long lines may be continued by ending them with a single ^.

Command files may be used in lieu of command macros, which have not been implemented in this
version of C-Kermit. For instance, if you commonly connect to a system called ’B’ that is connected to
com2 at 4800 baud, you could create a file called b containing the commands

21

% C-Kermit command file to connect to System B thru com2
set line com2
set speed 4800
% Beep and give message
echo \007Connecting to System B...
connect

and then simply type ’take b’ (or ’t b’ since no other commands begin with the letter ’t’) whenever
you wish to connect to system B. Note the comment lines and the beep inserted into the ’echo’ com-
mand.

For connecting to IBM mainframes, a number of ’set’ commands are required; these, too, can be con-
veniently collected into a ’take’ file like this one:

% Sample C-Kermit command file to set up current line
% for IBM mainframe communication
%
set parity mark
set handshake xon
set flow-control none
set duplex half

Note that no single command is available to wipe out all of these settings and return C-Kermit to its
default startup state; to do that, you can either restart the program, or else make a command file that
executes the necessary ’set’ commands:

% Sample C-Kermit command file to restore normal settings
%
set parity none
set handshake none
set flow-control xon/xoff
set duplex full

An implicit ’take’ command is executed upon your CKERMIT.INI file when C-Kermit starts up, upon
either interactive or command-line invocation. The CKERMIT.INI file should contain ’set’ or other
commands you want to be in effect at all times. For instance, you might want override the default action
when incoming files have the same names as existing files -- in that case, put the command

set file warning on

in your CKERMIT.INI file.

Errors encountered during execution of take files (such as failure to complete dial or script operations)
cause termination of the current take file, popping to the level that invoked it (take file, interactive level,
or the command interpreter).

You may also use the redirection mechanism to cause C-Kermit to execute commands from a file:
kermit < cmdfile

or you can even pipe commands in from another process:
genkcmds | kermit

5.12. The ’connect’ Command
The ’connect’ command (’c’ is an acceptable non-unique abbreviation) links your terminal to another
computer as if it were a local terminal to that computer, through the device specified in the most recent
’set line’ command. All characters you type at your keyboard are sent out the communication line
(and if you have ’set duplex half’, also displayed on your screen), and characters arriving at the
communication port are displayed on the screen. Current settings of speed, parity, duplex, and flow-

22

control are honored, and the data connection is 7 bits wide unless you have given the command ’set
terminal bytesize 8’. If you have issued a ’log session’ command, everything you see on
your screen will also be recorded to your session log. This provides a way to "capture" files from remote
systems that don’t have Kermit programs available.

To get back to your own system, you must type the escape character, which is Control-] (^]) (unless you
have changed it with the ’set escape’ command), followed by a single-character command, such as
’c’ for "close connection". Single-character commands include:

c Close the connection

h Hangup the phone

q Hangup the phone and quit C-Kermit

! Enter a child CMD.EXE command line interpreter

0 (zero) send a null

^] Send Control-] itself (whatever you have defined the escape character to be, typed twice in a
row sends one copy of it).

b Send a BREAK signal for about 275ms

L Send a LONG BREAK signal for about 1.8s

\ Send the value of a backslash escape sequence

? Display help information about these options

Uppercase and control equivalents for (most of) these letters are also accepted. A space typed after the
escape character is ignored. Any other character will produce a beep.

In connect mode, C-Kermit emulates a DEC VT102 terminal. See the section "Terminal Emulation" for
details of how the emulation works.

Note that when in interactive command mode, C-Kermit reads its keyboard input from stdin and writes its
screen output to stdout, allowing command-line redirection to be used as described in the previous sec-
tion. However, in connect mode, keyboard input is obtained through the KBD subsystem, and screen
output is through the VIO subsystem. It is therefore impossible to redirect terminal I/O.

5.13. The ’dial’ command
Syntax: dial telephone-number-string

This command controls dialout modems; you should have already issued a ’set line’ and ’set
speed’ command to identify the terminal device, and a ’set modem’ command to identify the type of
modem to be used for dialing. In the ’dial’ command, you supply the phone number and the Kermit
program feeds it to the modem in the appropriate format and then interprets dialer return codes and
modem signals to inform you whether the call was completed. The telephone-number-string may contain
imbedded modem-dialer commands, such as comma for Hayes pause, or ’&’ for Ventel dialtone wait and
’%’ for Ventel pause (consult your modem manual for details).

At the time of this writing, support is included for quite a number of different modems. See the Unix
C-Kermit manual for a complete list.

A number of these modems are not generally found connected to PCs. The most common modem type
used with an OS/2 system is "Hayes compatible". Support for new modems is added to the program from
time to time; you can check the current list by typing ’set modem ?’.

23

The device used for dialing out is the one selected in the most recent ’set line’ command.

Example:
kermit -l com1 -b 1200
C-Kermit>set modem hayes
C-Kermit>dial 9,5551212
Connected!
C-Kermit>connect hint: abbreviate c
logon, request remote server, etc.
^]c escape back
C-Kermit> ...
C-Kermit>quit hint: abbreviate q

this disconnects modem, and hangs up the line.

C-Kermit requires that the modem track the computer’s "data terminal ready" (DTR) signal. If a switch
setting is available to simulate DTR asserted within the modem, then it should normally not be in that
setting. Otherwise the modem will be unable to hang up at the end of a call.

For Hayes dialers, two important switch settings are no. 1 and no. 6. Switch no. 1 should be normally be
UP so that the modem can act according to your computer’s DTR signal. Switch no. 6 should normally
be UP so carrier-detect functions properly (but put it DOWN if you have trouble with the UP position).
Switches no. 2 (English versus digit result codes) and no. 4 (Hayes echoes modem commands) may be in
either position.

5.14. The ’script’ Command
Syntax: script expect send [expect send] . . .

"expect" has the syntax: expect[-send-expect[-send-expect[...]]]

The ’script’ command carries on a "canned dialog" with a remote system, in which data is sent accord-
ing to the remote system’s responses. The typical use is for logging in to a remote system automatically.

C-Kermit’s script facility operates in a manner similar to that commonly used by the Unix UUCP
system’s ’L.sys’ file entries. A login script is a sequence of the form:

expect send [expect send] . . .

where expect is a prompt or message to be issued by the remote site, and send is the string (names,
numbers, etc) to return, and expects are separated from sends by spaces. The send may also be the
keyword EOT, to send Control-D, or BREAK, to send a break signal. Letters in sends may be prefixed
by ’~’ to send special characters, including:

~b backspace
~s space
~q ’?’(trapped by Kermit’s command interpreter)
~n linefeed
~r carriage return
~t tab
~’ single quote
~~ tilde
~" double quote
~x XON (Control-Q)
~c don’t append a carriage return
~d delay approx 1/3 second during send
~o[o[o]] an octal character

24

~w[d[d]] wait specified interval during expect, then time out

As with some UUCP systems, sent strings are followed by ~r unless they have a ~c.

Only the last 7 characters in each expect are matched. A null expect, e.g. ~0 or two adjacent dashes,
causes a short delay before proceeding to the next send sequence. A null expect always succeeds.

As with UUCP, if the expect string does not arrive, the script attempt fails. If you expect that a sequence
might not arrive, as with UUCP, conditional sequences may be expressed in the form:

-send-expect[-send-expect[...]]

where dashed sequences are followed as long as previous expects fail. Timeouts for expects can be
specified using ~w; ~w with no arguments waits 15 seconds.

Expect/send transactions can be easily be debugged by logging transactions. This records all exchanges,
both expected and actual. The script execution will also be logged in the session log, if that is activated.

Note that ’^’ characters in login scripts, as in any other C-Kermit interactive commands, must be doubled
up. A line may be ended with a single ’^’ for continuation.

Example:

Using a Hayes-compatible modem, dial up a PAD, simulating pressing CR four times to get the ’PAD>’
prompt. (Note how ’~0’ stands for a null expect string and for a null send string - ie just send a carriage
return.) Call a VAX system named ’ERCVAX’. Get the ..name: prompt, and respond with the user
name and password. Notice that the ’^’ character is used to continue the script command onto the next
line.

set modem hayes
set line com2
set baud 1200
dial 0319871234
script ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 PAD> CALL~sERCVAX ^
name: SMITH word: SECRET

Note that ’set line’ is issued after ’set modem’, but before ’set baud’ or other line-related
parameters.

5.15. The ’help’ Command

Syntax: help
or help keyword
or help {set, remote} keyword

Brief help messages or menus are always available at interactive command level by typing a question
mark at any point. A slightly more verbose form of help is available through the ’help’ command. The
’help’ command with no arguments prints a brief summary of how to enter commands and how to get
further help. ’help’ may be followed by one of the top-level C-Kermit command keywords, such as
’send’, to request information about a command. Commands such as ’set’ and ’remote’ have a
further level of help. Thus you may type ’help’, ’help set’, or ’help set parity’; each will
provide a successively more detailed level of help.

25

5.16. The ’exit’ and ’quit’ Commands
These two commands are identical. Both of them do the following:

• Relinquish access to any communication line assigned via ’set line’.
• Hang up the modem, if any, by dropping DTR.
• Close any open logs or other files.
• Exit the program.

After exit from C-Kermit, your current directory will be the same as when you started the program. The
’exit’ command is issued implicitly whenever C-Kermit halts normally, e.g. after a command line
invocation.

26

6. Terminal Emulation
When you issue a ’connect’ command the first time after starting Kermit, the screen clears and the
cursor is positioned at the top left-hand corner. You can log into the remote host computer as normal. In
this mode, the PC emulates a DEC VT102 terminal, so any control codes or escape sequences received
from the host will be actioned appropriately.

The 25th line on the screen is used as a status line, giving the name of the comms port, the current baud
rate and how to obtain help.

Some keys on the VT102 keyboard have no direct equivalent on the PC keyboard. The following table
shows the mapping which obtains between VT102 keys and PC keys. Note that the Alt n combinations
use the number keys along the top row of the keyboard, not the numeric keypad.

VT102 IBMPC

Delete Del
PF1 F1
PF2 F2
PF3 F3
PF4 F4
Keypad 0 Alt 0
Keypad 1 Alt 1
Keypad 2 Alt 2
Keypad 3 Alt 3
Keypad 4 Alt 4
Keypad 5 Alt 5
Keypad 6 Alt 6
Keypad 7 Alt 7
Keypad 8 Alt 8
Keypad 9 Alt 9
Keypad minus F5 or F6
Keypad comma F7 or F8
Keypad dot F9
Keypad enter F10
No Scroll Scroll-Lock

The PC’s ’Scroll-Lock’ key (equivalent to the VT102 ’No Scroll’ key) freezes the data on the
screen. It is typically used when listing a long file, to prevent information being scrolled off the top of the
screen. Note that the Control-S and Control-Q (Xon/Xoff) keys should not be used for this purpose if
’flow’ is set to ’xon/xoff’, because they interfere with the correct operation of the comms device
driver flow control. When the ’Scroll-Lock’ key is pressed, an ’xoff’ will be sent automatically
when the device driver’s receive buffer fills up, and an ’xon’ will be sent as it empties after the
’Scroll-Lock’ key has been pressed a second time to unfreeze the screen. All other keys are ignored
when the screen is frozen. The status line indicates when the emulator is in this state.

Information which scrolls off the top of the screen is not in fact lost, but is stored in an "extended display
buffer", which can be examined by pressing the ’PgUp’ key. The extended display buffer can contain a
number of screenfulls of data, and the ’PgUp’ and ’PgDn’ keys can be used to range freely through this
data. If any other key is pressed while the extended display buffer is visible, the current screen contents
are redisplayed and the keystroke is sent to the host. The ’PgUp’ and ’PgDn’ keys may be used even
when the host is still sending data. If Xon/Xoff flow control is in effect, no data will be lost.

The following VT102 features are not implemented:

• Smooth scrolling

• 132-column mode

27

• Alternate character ROM

• LED lamps

The VT102 keyboard autorepeat mode is always enabled.

When in connect mode, typing the escape character (Control-]) followed by a ? for help will display a
"pop-up" help window, indicating the options available. These options are detailed in the section on the
connect command. If ^]c is typed to close the connection, the screen is restored to its state when the
’connect’ command was issued. A subsequent ’connect’ will re-display the VT102 screen.

The control codes and escape sequences recognised by the VT102 emulation are listed below. For full
details of the effects of these codes, please consult the VT102 manual.

ENQ 5 Send answerback message "OS/2 Kermit"
BEL 7 Sound beep
BS 8 Cursor left
TAB 9 Cursor to next tab stop
LF 10 Cursor down
VT 11 As LF
FF 12 As LF
CR 13 Cursor to left margin
SO 14 Select G1 character set
SI 15 Select G0 character set
CAN 24 Cancel escape sequence
SUB 26 As CAN
ESC 26 See below
Others Ignored

ESC 7 Save cursor position
ESC 8 Restore cursor position
ESC D Index
ESC E Next line
ESC H Set tab at current column
ESC M Reverse index
ESC Z Identify terminal
ESC c Reset
ESC = Enter application keypad mode
ESC > Exit application keypad mode
ESC # 3 Double height and width emulation - top half of line
ESC # 4 Double height and width emulation - bottom half of line
ESC # 5 Single height and width
ESC # 6 Single height and double width emulation
ESC # 8 Screen alignment display
ESC (g G0 designator - g = A,B or 0 only
ESC) g G1 designator - g = A,B or 0 only
ESC [Pn A Cursor up
ESC [Pn B Cursor down
ESC [Pn C Cursor right
ESC [Pn D Cursor left
ESC [Pl ;Pc H Direct cursor address
ESC [Pl ;Pc f Direct cursor address
ESC [Pn c Identify report - response is ESC [? 6 ; 2 c
ESC [3 g Clear all tabs
ESC [0 g Clear tabs at current column
ESC [? Pn h Set DEC private mode - modes supported as shown below
ESC [? Pn l Reset DEC private mode - modes supported as shown below

28

mode no. mode set reset

1 Cursor key Application Cursor
2 ANSI/VT52 N/A VT52
5 Screen Reverse Normal
6 Origin Relative Absolute
7 Wraparound On Off

ESC [Pn h Set mode - modes supported as shown below
ESC [Pn l Reset mode - modes supported as shown below

mode no. mode set reset

2 Keyboard lock On Off
4 Insert Insert Replace

20 Newline CR LF CR

ESC Pn i Printer/screen on/off - 4 to 7 supported
ESC [5 n Status report
ESC [6 n Cursor position report
ESC [Pn x Request terminal parameter
ESC [Pn ;Pn r Set top and bottom margins
ESC [0 J Erase to end of screen
ESC [1 J Erase from beginning of screen
ESC [2 J Erase all of screen
ESC [0 K Erase to end of line
ESC [1 K Erase from beginning of line
ESC [2 K Erase all of line
ESC [Pn L Insert blank lines
ESC [Pn M Delete lines
ESC [Pn @ Insert blank characters
ESC [Pn P Delete characters
ESC [Ps ;Ps ; ..;Ps m Character attributes or
ESC [Ps ;Ps ; ..;Ps } Character attributes, as below:
0 Default settings
1 High intensity
4 Underline
5 Blink
7 Reverse
8 Invisible
30-37 sets foreground colour to be as shown

30 black
31 red
32 green
33 yellow
34 blue
35 magenta
36 cyan
37 white

40-47 sets background colour to be as shown
40 black
41 red
42 green
43 yellow
44 blue
45 magenta
46 cyan
47 white

29

Note that the default character set for both G0 and G1 is ’A’, ie the UK character set.

The following escape sequences are recognised when the emulator is put into VT52 mode by receiving
the sequence ESC [? 2 l.

ESC A Cursor up
ESC B Cursor down
ESC C Cursor right
ESC D Cursor leftup
ESC F Enter graphics mode
ESC G Exit graphics mode
ESC H Cursor to home
ESC I Reverse line feed
ESC J Erase to end of screen
ESC K Erase to end of line
ESC Y l c Direct cursor address
ESC Z Identify
ESC = Enter application keypad mode
ESC > Exit application keypad mode
ESC < Enter ANSI mode

The escape sequences below are accepted but ignored.

ESC O x where x is any character
ESC ? x where x is any character
ESC [Pn q Load LEDs

30

7. Keyboard mapping
The OS/2 version of C-Kermit provides the same keyboard mapping as the Unix version. A particular key
can be mapped to itself (default for all keys), to another key (single key stroke) or to a sequence of key
strokes (a macro text). Use the SET KEY command for this purpose.

An extension was made to the standard SET KEY command to allow mapping of the additional PC
keyboard keys. Unlike the Unix version, the OS/2 version knows of 768 rather than only 256 keys. The
keys 0..255 are the usual ASCII and extended ASCII (8-bit PC-specific) characters while all extended
keys (such as cursor and function keys) in various combinations with SHIFT, CONTROL and ALT are
known as 256..767 to C-Kermit. To find out what the number of some key is, enter the SHOW KEY
command and press that key. The SHOW KEY command will then report the key number and the current
assignment.

Note that a few extended keys have a special meaning to the VT-102 emulator in CONNECT mode. The
cursor keys, for example, send the VT-102 cursor key escape sequences while Page-Up and Page-Down
are used to control the emulator’s scrollback buffer.

That means, the CONNECT mode knows a few key numbers and treats them specially. If you map
another key to the code of one of this special known keys, that other key will also function like this
special key.

31

8. C-Kermit Restrictions and Known Bugs
1. Server breakout: There is no way of stopping server operation from the keyboard, short of

Control-C.

2. Debugging log: There is very little debugging information logged from the OS/2-specific
parts of the program (it was developed using Codeview).

3. Terminal emulation: If the host sends the escape sequence to put the terminal into 132-
column mode, and subsequently sends data which would appear in the rightmost 52
columns, this may mess up the existing data on the screen. Really the emulator should
ignore any data for these columns.

4. Answerback: We should have a ’set terminal answerback ...’ command to let
us change the VT102 answerback message.

5. File type: The way Control-Z is handled could be better. There should be no ’set file
type {binary, text}’; instead we want a ’set ctrlz {on, off}’ rather like
Kermit-MS. A better display of progress of a transfer is needed.

6. Login Scripts: The present login scripts implementation follows the Unix conventions of
UUCP’s ’L.sys’ file, rather than the normal Kermit ’INPUT/OUTPUT’ style.

32

33

Appendix I
Invoking C-Kermit from Another Program

If you are writing a communications program and wish to incorporate the Kermit protocol within it, one
way is to use the OS/2 function call DosExecPgm to call up C-Kermit. You would supply the instruc-
tions for Kermit using command-line options, and Kermit would do the transfer, returning back to your
program when it had finished.

The only problem with this scenario is that you might already have opened up the COM port within your
program, so that when Kermit tries to do the same it gets an error code back from DosOpen. The -u
command line option gets round this problem. It uses the fact that a child process inherits the open file
handles of its parent. -u takes one numeric parameter which is the handle of the COM port in question,
and it must occur in front of any other command-line parameter which accesses the COM port. The
following is a complete C program written using the Microsoft C compiler version 5.1 and the Microsoft
OS/2 Software Development Toolkit, which illustrates how to use the -u command-line option.

#define INCL_BASE
#include <os2.h>
/*
* Example of how to use the C-Kermit -u option to invoke
* Kermit from another program under OS/2.
*/
main(int argc, char *argv[]) {
HFILE ttyfd;
USHORT action;
int err,i;
char failname[80];
char args[80];
RESULTCODES res;
struct dcb { /* Device control block */

USHORT write_timeout;
USHORT read_timeout;
BYTE flags1, flags2, flags3;
BYTE error_replacement;
BYTE break_replacement;
BYTE xon_char;
BYTE xoff_char;

} ttydcb;

/*** Open a file ***/
if (err=DosOpen(argv[1],&ttyfd,&action,0L,0,1,0x0012,0L)) {

printf("Error %d opening %s\n",err,argv[1]);
exit(1);

}
if (err=DosDevIOCtl(&ttydcb,NULL,0x0073,1,ttyfd)) {

printf("Error %d from IOCTL on %s\n",err,argv[1]);
exit(1);

}
ttydcb.flags3 &= 0xF9;
ttydcb.flags3 |= 0x04; /* Read "some" data from line */
DosDevIOCtl(NULL,&ttydcb,0x0053,1,ttyfd);

/*** Call kermit ***/
strcpy(args,"ckoker");
i = strlen(args);
args[i++]=0;
sprintf(&args[i],"-u %d -q -s test.c",ttyfd);
i += strlen(&args[i]);

34

args[i++]=0;
args[i++]=0;
if (err=DosExecPgm(failname,80,EXEC_SYNC,args,NULL,&res,

"KERMIT.EXE")) {
printf("Error %d executing Kermit\n",err);
exit(1);

}

/*** Print out return code ***/
printf("Termination code %d\n",res.codeTerminate);
printf("Result code %d\n",res.codeResult);

/*** Close the file ***/
if (err=DosClose(ttyfd)) {

printf("Error %d closing %s\n",err,argv[1]);
}

}

35

Index
Dialout Modems 22

Emergency Exit 2

File Warning 5

Hayes Modem 23

IBM 21

Modems 22

Warning 5

36

i

Table of Contents
1. Introduction 0

1.1. Acknowledgements 0
1.2. OS/2 Kermit Capabilities 0
1.3. Requirements 1
1.4. The Serial Port 1
1.5. Emergency Exit 2

2. The OS/2 File System 3
2.1. File Specifications 3
2.2. File Formats 4

3. File Transfer 5
4. Command Line Operation 6

4.1. Command Line Options 6
4.2. Command Line Examples 9
4.3. Exit Status Codes 10

5. Interactive Operation 11
5.1. The ’send’ command 13
5.2. The ’receive’ command 13
5.3. The ’get’ command 13
5.4. The ’server’ command 14
5.5. The ’remote’, ’bye’, and ’finish’ commands 14
5.6. The ’log’ and ’close’ commands 15
5.7. Local File Management Commands 16
5.8. The ’set’ Command 16
5.9. The ’show’ Command 20
5.10. The ’statistics’ Command 20
5.11. The ’take’ and ’echo’ Commands 20
5.12. The ’connect’ Command 21
5.13. The ’dial’ command 22
5.14. The ’script’ Command 23
5.15. The ’help’ Command 24
5.16. The ’exit’ and ’quit’ Commands 25

6. Terminal Emulation 26
7. Keyboard mapping 30
8. C-Kermit Restrictions and Known Bugs 31

Appendix I. Invoking C-Kermit from Another Program 33
Index 35

