
Squish Version 1.1
Reference Manual

Created May 6th, 1994

Documentation produced by Scott Dudley, with Don Dawson

Copyright 1990-1994 by SCI Communications. All rights reserved.
Maximus and Squish are trademarks of SCI Communications.



TABLE OF CONTENTS

LICENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 4
About Squish . . . . . . . . . . . . . . . . . . . . . . 4
Features . . . . . . . . . . . . . . . . . . . . . . . . 4
System Requirements . . . . . . . . . . . . . . . . . . 7
Squish, Money and You . . . . . . . . . . . . . . . . . 8
Ordering Information . . . . . . . . . . . . . . . . . . 9

NETWORK PRIMER . . . . . . . . . . . . . . . . . . . . . . . 10
The Basics . . . . . . . . . . . . . . . . . . . . . . . 10
The Outside World . . . . . . . . . . . . . . . . . . . 11
Is There an Echo In Here? . . . . . . . . . . . . . . . 13

INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . 15
Assumptions . . . . . . . . . . . . . . . . . . . . . . 15
16-bit or 32-bit? SQ386 and SQ386P . . . . . . . . . . . 16
Quick Installation . . . . . . . . . . . . . . . . . . . 18

Modifying CONFIG.SYS . . . . . . . . . . . . . . . 20
Customizing SQUISH.CFG . . . . . . . . . . . . . . 21

Configuring NETMAIL and BAD_MSGS . . . . . . . 24
Configuring EchoMail areas . . . . . . . . . . . . 26

Declaring Areas in SQUISH.CFG . . . . . . . . 26
Declaring Areas in AREAS.BBS . . . . . . . . . 27

EchoMail Areas . . . . . . . . . . . . . . . . . . 28
Elementary Routing . . . . . . . . . . . . . . . . . . . 29

The Send Command . . . . . . . . . . . . . . . . . 30
The Route Command . . . . . . . . . . . . . . . . . 31
Wildcards . . . . . . . . . . . . . . . . . . . . . 32

The All and World Wildcards . . . . . . . . . 32
Address Abbreviations . . . . . . . . . . . . 34

Examples . . . . . . . . . . . . . . . . . . . . . 35
Batch Files . . . . . . . . . . . . . . . . . . . . . . 38

Configuring your Mailer . . . . . . . . . . . . . . 38
Configuring your BBS . . . . . . . . . . . . . . . 40

OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Squish Command Line Parameters and Syntax . . . . . . . 42
Command Line Switches . . . . . . . . . . . . . . . . . 47
Running Squish in Multipass Mode . . . . . . . . . . . . 50
SQ386 Usage Notes . . . . . . . . . . . . . . . . . . . 52

AREAS.BBS REFERENCE . . . . . . . . . . . . . . . . . . . . . 53

SQUISH.CFG REFERENCE . . . . . . . . . . . . . . . . . . . . 54
Configuration Options . . . . . . . . . . . . . . . . . 54
Area Definitions . . . . . . . . . . . . . . . . . . . . 78

Area Types . . . . . . . . . . . . . . . . . . . . 78
Area Tags and Paths . . . . . . . . . . . . . . . . 78



Flags . . . . . . . . . . . . . . . . . . . . . . . 79
Split Area Definitions . . . . . . . . . . . . . . 82

ARCHIVERS AND MESSAGE COMPRESSION . . . . . . . . . . . . . . 83

ROUTING . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Generic Routing Commands . . . . . . . . . . . . . . . . 85
Schedules . . . . . . . . . . . . . . . . . . . . . . . 88
BinkleyTerm Routing Commands . . . . . . . . . . . . . . 91
Dynamic Routing (FrontDoor) . . . . . . . . . . . . . . 93

SECURITY . . . . . . . . . . . . . . . . . . . . . . . . . . 94

MULTIZONE OPERATION . . . . . . . . . . . . . . . . . . . . . 96

POINTS (4D, FAKENETS AND BOSSNODES) . . . . . . . . . . . . . 98
Fakenet Points . . . . . . . . . . . . . . . . . . . . . 98
4D Points . . . . . . . . . . . . . . . . . . . . . . . 98
Remapping . . . . . . . . . . . . . . . . . . . . . . . 99

USING SQUISH-FORMAT MESSAGE AREAS . . . . . . . . . . . . . . 100

BROADCAST MODIFY/DELETE . . . . . . . . . . . . . . . . . . . 104

SQUISH-FORMAT MESSAGE UTILITIES . . . . . . . . . . . . . . . 106
SQPACK: Weekly maintenance . . . . . . . . . . . . . . 106
SQCONV: Conversion between *.MSG and *.SQ? . . . . . . 107
SQSET: Control for message deletion . . . . . . . . . . 109
SQINFO: Diagnostics . . . . . . . . . . . . . . . . . . 110
SQREIDX: Repair (minor) . . . . . . . . . . . . . . . . 111
SQFIX: Repair (major) . . . . . . . . . . . . . . . . . 112
SSTAT: Statistics generation . . . . . . . . . . . . . 113

APPENDIX A - Errorlevels . . . . . . . . . . . . . . . . . . 115

APPENDIX B - Problem Reporting . . . . . . . . . . . . . . . 116

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . 117

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



LICENCE

Copyright 1989-1994 by Scott J. Dudley and SCI Communications.
All rights reserved.

COMMERCIAL DISTRIBUTION AND/OR USE PROHIBITED WITHOUT WRITTEN
CONSENT FROM THE AUTHOR.

Noncommercial distribution and/or use is permitted under the
following terms:

1) You may copy and distribute verbatim copies of the Squish
documentation and executable code as you receive it, in any
medium, provided that you conspicuously and appropriately
publish on each copy a valid copyright notice "Copyright
1994 by Scott J. Dudley"; keep intact the notices on all
files that refer to this Licence Agreement and to the
absence of any warranty; PROVIDE UNMODIFIED COPIES OF THE
DOCUMENTATION AS PROVIDED WITH THE PROGRAM; and give any
other recipients of the Squish program a copy of this
Licence Agreement along with the program. You may charge a
distribution fee for the physical act of transferring a
copy, but no more than is necessary to recover your actual
costs incurred in the transfer. Under no circumstances is
Squish to be distributed in such a way as to be construed as
"value added" in a sales transaction, such as, but not
limited to, software bundled with a modem or CD-ROM software
collections, without the prior written consent of the
author.

2) Mere aggregation of another unrelated program with this
program and documentation (or derivative works) on a volume
of a storage or distribution medium does not bring the other
program under the scope of these terms.

3) You may not copy, sublicense, distribute or transfer Squish
and its associated documentation except as expressly
provided under this Licence Agreement. Any attempt
otherwise to copy, sublicense, distribute or transfer Squish
is void and your rights to use the program under this
Licence agreement shall be automatically terminated.

However, parties who have received computer software
programs from you with this Licence Agreement will not have
their licences terminated so long as such parties remain in
full compliance, and notify SCI Communications of their
intention to comply with this Agreement.

Squish v1.10 Reference Manual - Page 1



4) You may not incorporate parts of Squish into a program which
is NOT completely free for ALL users. If you wish to use
Squish in such a way, you must obtain written permission
from SCI Communications before using any of the Squish code.

5) The privileges granted above apply only to noncommercial
users of the Squish software.

You are a NONCOMMERCIAL user only if you are running Squish
as a private individual with no "sponsors", "backers", and
only if your BBS is not making (or helping to make) a
profit.

You are a COMMERCIAL user if you make a profit from running
your BBS.

You are also a COMMERCIAL user if your BBS is being run by
(or for) a corporation, government, company, foundation,
church, or any other organization.

You are also a COMMERCIAL user if your system is used to
advertise for such a commercial organization for the
purposes of making a profit.

This licence only governs NONCOMMERCIAL users. If you are a
COMMERCIAL user, you are not licensed to use or distribute
this software without the prior written consent of SCI
Communications. If you wish to run Squish as a commercial
user, please see the section of the manual entitled
"Ordering Information".

6) This licence may be revoked by SCI Communications without
prior notice.

NO WARRANTY

BECAUSE SQUISH IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY
NO WARRANTY. EXCEPT WHEN OTHERWISE STATED IN WRITING, SCI
COMMUNICATIONS AND/OR OTHER PARTIES PROVIDE SQUISH "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF SQUISH, AND THE
ACCURACY OF ITS ASSOCIATED DOCUMENTATION, IS WITH YOU. SHOULD
SQUISH OR ITS ASSOCIATED DOCUMENTATION PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL SCI COMMUNICATIONS BE RESPONSIBLE IN ANY WAY FOR
THE BEHAVIOUR OF MODIFIED VERSIONS OF SQUISH. IN NO EVENT WILL
SCI COMMUNICATIONS AND/OR ANY OTHER PARTY WHO MAY MODIFY AND

Squish v1.10 Reference Manual - Page 2



REDISTRIBUTE SQUISH AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS) SQUISH, EVEN IF SCI COMMUNICATIONS HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

You can contact the author at any of the addresses listed below:

FidoNet: 1:249/106
Internet: sjd@f106.n249.z1.fidonet.org
CompuServe: >INTERNET:sjd@f106.n249.z1.fidonet.org
BBS: (613) 634-3058 (V.32bis)

Surface mail:

777 Downing St.
Kingston, Ont.
Canada K7M 5N3

The author can also be reached through the FidoNet EchoMail
conferences called MUFFIN (Maximus support) and TUB (Squish
support).

Sending correspondence via electronic mail is strongly preferred,
and the use of surface mail is discouraged. However, if you
really have to send paper mail (and expect to receive a reply),
please enclose a self-addressed, stamped envelope. (Users
outside of Canada should include an international postal reply
coupon instead of a stamp.)

DO NOT ATTEMPT TO CONTACT THE AUTHOR BY TELEPHONE! VOICE SUPPORT
WILL NOT BE PROVIDED FOR NONCOMMERCIAL USERS!

Please feel free to contact the author at any time to share your
comments about this software and/or licensing policies.

Our thanks to the Free Software Foundation for most of the
wording of this licence.

Squish v1.10 Reference Manual - Page 3



INTRODUCTION

About Squish

Squish is a multi-featured, FidoNet-compatible EchoMail
processor. Squish incorporates most of the common EchoMail
functions into one integrated package, including tossing,
scanning, packing, point remapping and topic linking.

Although Squish was designed to be used with Maximus 2.0 or
above, Squish is compatible with other software which supports
either the Squish or the *.MSG message base standards. Squish is
not merely a "giveaway" utility; rather, Squish is a full-
featured conference manager, making it highly competitive with
most stand-alone packages on the market today.

To install Squish, your first task is to PRINT OUT AND READ THIS
DOCUMENT. At the very least, you should print the section on
installation. The "Quick Installation" section can guide you
through the standard installation procedure.

Features

Some of the features in Squish version 1.1 include:

* One-pass tossing and scanning, with full support for
"passthru" areas. Outbound messages can be built directly
from the inbound *.PKT files, without needing to stop over
in the message areas.

* A 32-bit "industrial-strength" version of Squish is
available (under both DOS and OS/2) for systems which carry
many areas and which have large numbers of downlinks.

* Support for "feature DLLs" under OS/2. Third-party
developers can write dynamic link libraries which perform
actions while Squish is tossing or packing mail.

* Support for MSGID-based message linking and dupe checking.

* Internal support for both BinkleyTerm and FrontDoor-style
routing.

* Squish supports both the standard *.MSG format and the
proprietary, flat-file *.SQ? format on an area-by-area
basis.

* Superior multi-zone operation. Primary addresses can be
selected on an area-by-area basis, as can SEEN-Bys and

Squish v1.10 Reference Manual - Page 4



numerous other features. It's now easily possible (and
practical!) to use a single configuration file for multiple,
unrelated FidoNet-technology networks.

* True support for BinkleyTerm and InterMail "busy flags".
Instead of remaining blocked while the mailer is
transmitting to another node (and therefore holding up
processing), packets are simply queued for later use.

All processing is performed in a separate working directory,
and packets are only transferred to the mailer's outbound
area as necessary. Since Squish stays out of the way of
other mail-handling tasks, Squish offers a significant
performance advantage over other mail processors.

* Areas can be defined in AREAS.BBS for compatibility with
other programs, but areas can also be defined in the main
Squish configuration file.

* Support for all archiving and dearchiving programs, past and
future, through the use of a flexible archiver control file.

* Verbose binary statistical information (optional). Squish
provides enough information for external utilities to
provide a 100% accurate billing report for NECs or hubs,
based on mail volume.

* Point support, running as either a bossnode or a point, for
both 4D and "fakenet" points.

* Support for the "2+" 4D packet header proposal, including
zone and point numbers.

* "Point directory" support for BinkleyTerm 2.50 and above.
Squish is the first publicly-available program to support
the Binkley point directories both conveniently and
efficiently.

* Squish also features a built-in node remapper and message
linker for BinkleyTerm-style systems. The remapper is not
limited to points; it also supports wildcards and soundex
name matching. The message linker supports both *.MSG and
*.SQ? areas, so no external reply linker is required.

* Squish can optionally swap to XMS, EMS or disk when running
external programs. Squish can therefore be used in many
tight-memory situations, since Squish will only occupy 3K of
memory when swapped out. (DOS only.)

Squish v1.10 Reference Manual - Page 5



* Squish runs under OS/2 in protected mode, in addition to
running under DOS in real mode. The OS/2 version of Squish
includes a special serialization feature to allow Squish to
be run conveniently in a multi-line environment.

Squish v1.10 Reference Manual - Page 6



System Requirements

Although Squish was designed to be as generic as possible, the
following system configuration is required as a minimum:

* An IBM PC, XT, AT or PS/2, or a 100% compatible. To run the
32-bit version of Squish, an 80386SX, 80386DX, 80486SX,
80486DX, Pentium, or compatible processor is required.

* A hard drive, with at least two megabytes of free space for
the installation, plus space to hold the inbound packet
files, local message areas, and generated packets.

* Software supporting either the *.MSG or *.SQ? message
formats.

* A front-end which is compatible with either BinkleyTerm or
FrontDoor.

In addition, Squish-DOS requires MS/PC-DOS 3.0 or above, and
Squish-OS/2 requires OS/2 (IBM or MS) 1.2 or above. If you wish
to handle compressed mail, Squish will also require an external
archiving program.

Squish v1.10 Reference Manual - Page 7



Squish, Money and You

In general, Squish is a freeware program. If you are a
noncommercial user and you abide by the terms given in the
licence, there is NO CHARGE for running Squish. NONCOMMERCIAL
USERS ARE STILL WELCOME TO RUN SQUISH WITHOUT PAYING A CENT.

Unlike other software, this program has no crippled features,
extra bells'n'whistles or "registration incentives". There is
one simple difference between the commercial and noncommercial
versions of Squish: the commercial version entitles you to
legally use Squish in a commercial environment.

If you are a COMMERCIAL USER as defined in point 8) of the
licence above, you must obtain a licence before using Squish.
Please see ORDER.FRM for more information. If you did not
receive a copy of the order form with this document, contact the
author at one of the addresses listed in the licence for more
information.

If you are a NONCOMMERCIAL user as defined in the licence above,
you are welcome to use Squish for free. However, Squish is an
extremely large and complex program, and simply maintaining the
existing code is consuming a large percentage of my time.
Donations of any value (or even just a postcard) will be gladly
accepted. However, noncommercial donations are on a VOLUNTARY
basis and are NOT REQUIRED.

However, BOTH commercial and noncommercial users must abide by
several restrictions before using Squish. The main points in the
licence are:

* You may not distribute Squish on a CD-ROM, WORM, or as any
other form of a "value added" good in a sales transaction.
You may not bundle Squish with other software without prior
written permission of the author.

* You may not incorporate parts of Squish into another program
which is not completely free for all users.

Other than the above, there are few restrictions on the use of
Squish. Please read the licence agreement carefully, since
additional restrictions or qualifications may apply to you.

Squish v1.10 Reference Manual - Page 8



Ordering Information

Please see the ORDER.FRM file (included in the Squish
distribution package) for information on ordering a copy of
Squish for commercial use.

Squish v1.10 Reference Manual - Page 9



NETWORK PRIMER

This section is intended as a primer for SysOps who are new to
FidoNet or a FidoNet Technology Network (FTN). This section
covers many of the terms and concepts which are required for
everyday FidoNet operations. Those who are familiar with
EchoMail and mail routing should feel free to skip on to the next
section, entitled "Installation".

The Basics

The term "FidoNet" refers to an amateur electronic mail network,
run collectively by a group of system operators. In the
beginning, FidoNet started out as a simple system for exchanging
private messages between different bulletin boards. Since then,
FidoNet has grown into a full-fledged electronic mail and
conferencing network which has members in most countries of the
world.

FidoNet itself is organized into a numerical hierarchy of
"zones", "regions", "nets", "nodes" and "points". Each member of
FidoNet, individually known as a "node", can be uniquely
identified by that system's zone, net, node and point numbers.
To define each term:

Zones are wide geographical areas, usually covering one or more
continents. At the time of writing, FidoNet currently has six
zones: zone 1 (North America), zone 2 (Europe), zone 3
(Oceania), zone 4 (South America), zone 5 (Africa) and zone 6
(Asia).

Nets cover a much smaller area than zones; a net usually
encompasses a large city and the surrounding area. There are
usually many nets within each zone, each of which represents a
small geographical area within that zone.

Nodes are individual systems. Most nodes consist of bulletin
board systems, although a few nodes are devoted exclusively to
handling mail. If you wish to become a member of FidoNet and you
are running a BBS, this is probably where you will start.

Points are users on an individual system. Normally, points do
not run full-time systems, since they simply send and receive
mail through their "bossnodes" (the nodes where the points pick
up their mail). As the size of the network grows, points are
becoming increasingly popular. If you don't wish to run a full-
time system, this is probably where you'll start.

Squish v1.10 Reference Manual - Page 10



These four terms can be combined to give a "network address"
which identifies any one node in the network. The format of a
FidoNet address is as follows:

zone:net/node[.point]

For example, given a user in zone 1, in net 249, with a node
number of 106, and a point number of 2, that user's full address
would be '1:249/106.2'. The point number is optional, so both
1:249/106 and 1:249/106.0 refer to the bossnode of 1:249/106.2.

This mode of addressing is sometimes referred to as "4D" or four-
dimensional, since it includes the four basic elements of a
network address.

The Outside World

Like other electronic mail systems, it's possible to enter a
private message on a FidoNet system and have that message be
delivered to its final destination in a short period of time.
FidoNet systems "talk" with each other over telephone lines,
using one or more sophisticated handshaking protocols. To get a
message (known in this context as "NetMail") from system "A" to
system "B", the following sequence of events has to occur:

* The message is created. Most Fido-compatible software
packages can be used to generate a private message to a user
on another node. The destination address is entered, using
the standard 4D addressing scheme.

* The on-disk message is then converted to packet (or *.PKT)
form. If you are running BinkleyTerm, this will be
performed by Squish after a user logs off. If you are
running FrontDoor or a similar mailer type, this will be
performed by the mailer itself on startup, or while your
mailer is connected to other systems.

There are four reasons for converting a message into a
packet:

1) The packet structure is much more flexible than the
local message structure. All of the fields (such as
the To:, From: and Subject: fields) in a packet are
variable length, whereas the fields in stored messages
are fixed-length.

2) Packets are the "compatibility layer". Since all
systems convert messages to the *.PKT format before
sending them to another system, there are few

Squish v1.10 Reference Manual - Page 11



compatibility problems. This means that systems can
store their local message bases in different formats,
but still be able to exchange messages easily. In
addition, more than one message can be stored in a
single packet. Sometimes hundreds (or even thousands)
of messages can be stored in a single packet.

3) Messages in a packet can have a different address from
the packet itself. The packet itself has a destination
(the system where you'll be sending that packet
directly to), but each message has an individual
destination address. This is useful, for example, when
a long-distance call is required to connect with
certain parts of the network. The message's final
destination always stays the same, but by sending the
packet to someone who is local to you (and then having
that someone send it to another local system, and so
on), costs can be controlled quite effectively. Since
the interim destination of a packet does not need to be
the same as the final destination of the message,
routing of messages via the lowest-cost route can be
performed.

4) Packets can be given a "flavour". A "flavour" (or a
behaviour characteristic) helps your system decide what
to do with an individual message. For example, the
"hold" flavour instructs your system to hold the
message and wait for the destination system to call and
pick it up. Other flavours include "crash" (send a
message directly to the destination), "direct" (same as
crash), and "normal" (wait for later routing commands).

Packets always have an extension of *.PKT. (Qualifier: if
you are running a BinkleyTerm system, they may have an
extension of *.HUT, *.OUT, *.CUT, or *.DUT on your local
system, but Binkley always changes them to *.PKT files
before they are sent to another system.)

* After the packet is created, it can be optionally archived
using a file compression utility. Compression is useful
when transferring large volumes of mail or sending to long-
distance sites, since compressing mail saves both time and
money.

* The system which created the message then tries to call the
destination system. Obviously, if both systems are fairly
busy, this may take a while. Messages are sent back and
forth between systems through the use of mailers, also known
as "front ends". Mailers call out to deliver waiting mail,

Squish v1.10 Reference Manual - Page 12



handle incoming messages and files, and in general,
supervise the entire file transfer.

* After the two mailers connect (using one of several FidoNet
protocols), waiting mail and files are transferred between
the two systems.

* After the transfer completes, the receiving system then
tries to import the message with Squish (or any other mail
processor). If the packet was compressed by the sender, it
will be decompressed. The *.PKT files will then be imported
(otherwise known as "tossed") into the local message base,
ready for the recipient to read.

Although transferring NetMail can involve much more than just
what is given above, this should give you a grasp on NetMail
fundamentals.

Is There an Echo In Here?

In the beginning, FidoNet consisted solely of nodes exchanging
NetMail. The only way to get a message from "here" to "there"
was to send a private NetMail message. However, a technology
called "EchoMail" was developed in late 1985; EchoMail is
analogous to a public message area or conference, but EchoMail
areas (sometimes known as "echoes") are shared among several
other systems.

EchoMail is organized into different groups of echoes, each with
a different topic. For example, the topics of FidoNet echoes
range from Maximus Support to deep-sea fishing and many more
special-interest groups. To facilitate topic-oriented EchoMail,
each echo must given a tag (or area name). This tag is used to
uniquely identify that EchoMail area when transferring messages
with other systems. (It doesn't matter what you call the echo on
YOUR system, as long as you are using the same tag as everyone
else.) Area tags are one word only, although they can include
periods and underscores. To start receiving an echo area, you
need to know the tag of that area. For example, the area tag for
the echo dealing with hardware and other technical issues is
"TECH".

EchoMail messages are normally public, and they are entered in a
message area just like a normal message. EchoMail messages also
look like normal, locally-entered messages, but with some special
control information at the bottom of each message.

After an EchoMail message is saved, an EchoMail utility (such as
Squish) is invoked to "scan" that message out to the rest of the

Squish v1.10 Reference Manual - Page 13



network. Unlike NetMail, EchoMail areas have an electronic
topology. Some echoes are very large, and as such, the cost to
directly send a message to each system which carried that echo
would be prohibitive. Instead, each system carrying that echo
only transfers EchoMail messages to neighbouring systems. (The
neighbour you receive an echo from is also known as your "feed".)
EchoMail messages get sent from the originating system to its
neighbours, and from those systems to their neighbours, and so
on. Despite this "hoppity-hop" method of transferring messages,
EchoMail is fairly quick; it can often take less than three days
for a message to travel from the USA to Australia and back.

Just like NetMail, echoes are sent to other systems in packets.
EchoMail messages are almost always compressed, since most of the
popular echoes have a daily throughput anywhere from 20 to 200
messages per day.

Squish handles EchoMail automatically, just like NetMail.
However, you have to tell Squish the names of the areas that you
wish to carry, in addition to who your "neighbours" are for each
echo. (Information on doing this is covered in greater detail in
the installation section.)

There is much more to both NetMail and EchoMail than mentioned
above; however, you should now be comfortable enough with FidoNet
terminology to start installing Squish.

Squish v1.10 Reference Manual - Page 14



INSTALLATION

Assumptions

Before proceeding any further, you should already have a FidoNet-
compatible front end installed, in addition to a software package
which reads either *.MSG or *.SQ? format message areas. In
addition, you should have a set of working batch files for your
system.

This installation guide only covers the bare essentials, and it
glosses over what is required to run Squish as an EchoMail "leaf
node" (a system which only transfers mail with one other system).

Before reading this section, you should be at least somewhat
familiar with network terminology and operations; if not, read
over the prior section entitled "NETWORK PRIMER". A minimal
knowledge of batch files is helpful.

The quick installation also assumes that you will be using the
*.MSG format for storing messages. If you wish to use the Squish
format, please see the section entitled "USING SQUISH-FORMAT
MESSAGE AREAS".

This installation procedure doesn't deal with any advanced
topics, so most of the command examples have been simplified to
make the installation process easier. For full descriptions of
each command, please consult the reference material contained
later in this manual.

Squish v1.10 Reference Manual - Page 15



16-bit or 32-bit? SQ386 and SQ386P

The main Squish executable currently comes in four flavours. You
may want to use a different version of Squish depending on your
operating system and computer type.

The examples in this documentation assume that "SQUISH.EXE" is
the name of the Squish executable being used.

The DOS distribution includes both SQUISH.EXE and SQ386.EXE:

SQUISH is the 16-bit version of Squish that runs on all
computers. SQUISH requires at least an 8088 processor.

SQUISH can address up to 640 kilobytes of memory.

SQ386 is the 32-bit, DOS-extended version of Squish. SQ386
requires at least an 80386 processor. (SQ386 is optimized
to run the fastest on an 80486, but it will still work on an
80386.)

SQ386 can address up to 4 gigabytes of memory. SQ386
usually runs faster than SQUISH.

The OS/2 distribution includes both SQUISHP.EXE and SQ386P.EXE:

SQUISHP is the 16-bit version of Squish that runs under all
versions of OS/2. SQUISHP requires at least an 80286
processor.

SQUISHP can address up to 16 megabytes of memory.

SQ386P is the 32-bit version of Squish that requires OS/2
2.0 or above. SQ386P requires at least an 80386 processor.
(SQ386P is optimized to run the fastest on an 80486, but it
will still work on an 80386.)

SQ386P can address up to 512 megabytes of memory. SQ386P
usually runs faster than SQUISHP.

All versions of Squish support the same basic feature set, but
the 32-bit versions have some extra options (such as larger
buffer settings) that allow for faster execution.

SQUISH, SQUISHP and SQ386P are native applications that run
without extra support from the operating system.

SQ386 is a DOS-extended application that requires a DOS extender
to operate. The DOS distribution of Squish includes a copy of

Squish v1.10 Reference Manual - Page 16



the DOS/4GW DOS extender. While this DOS extender should work
with other operating environments (such as Windows, DESQview, and
the OS/2 DOS box), not all combinations have been thoroughly
tested.

Running SQ386 may not be a simple "plug-and-play" exercise. DOS
extenders are kludges to get around the limitations of DOS, but
this means that they may not be compatible with all environments.

For example, DOS-extended applications may not work properly on a
non-dedicated DOS fileserver. DOS-extended applications may also
steal system interrupts for longer than the usual amount of time,
possibly causing errors if another task is performing an upload
or download while SQ386 is running.

These are limitations of the DOS extender, and from the point of
view of the application developer, very little that can be done
about it. DOS extenders are rickety by nature, and they may not
be able to coexist with certain hardware or software
configurations.

WHILE SQ386 WAS TESTED AS THOROUGHLY AS POSSIBLE, THERE IS NO
GUARANTEE THAT IT WILL WORK PROPERLY IN ALL ENVIRONMENTS. IF
SQ386 DOES NOT WORK FOR YOU, GO BACK TO USING THE STANDARD SQUISH
EXECUTABLE.

While we welcome problem reports regarding SQ386, remember that
it may not be possible to make SQ386 work for you.

For more information on using SQ386, please see the section
entitled "SQ386 Usage Notes".

Squish v1.10 Reference Manual - Page 17



Quick Installation

After reading the installation section at least once, you should
decompress all of the Squish files from the distribution archive
into a separate directory. You can place Squish anywhere you
desire, although all of the examples in this manual use C:\Squish
as the base directory.

After everything has been decompressed, you will need to load an
ASCII text editor to modify the Squish configuration files. Any
plain text editor will do, including Qedit, DOS 5.0's EDIT, any
word processor in "non-document" mode, or even EDLIN.

The four main Squish configuration files are:

SQUISH.CFG

This is the main configuration file. Information about your
system is kept in here, including your system addresses,
passwords, run-time options, and (optionally) EchoMail area
definitions. Squish will first look for a "SQUISH"
environment variable. If found, it will try to use the
named file as the Squish configuration file. Otherwise,
Squish will look for a file called SQUISH.CFG in the current
directory.

ROUTE.CFG

This is the control file used for mail routing and
schedules. This file is used for both FrontDoor and
BinkleyTerm-style systems, although it plays only a minimal
role when used with FD.

COMPRESS.CFG

This holds information about all of the archiving programs
on your system. Squish uses this information to
automatically identify the type of incoming archives, and it
uses the commands within to add to and extract from
archives. This file is compatible with the compression
configuration file used by Maximus 2.0 or above.

AREAS.BBS (optional)

AREAS.BBS has historically been used to define EchoMail
conference information, including the name of the
conference, where to store the local message base, where to
send the messages to, and so on. Squish fully supports the
AREAS.BBS format; however, Squish also supports message area

Squish v1.10 Reference Manual - Page 18



definition in SQUISH.CFG. For flexibility, areas can be
declared in both AREAS.BBS and SQUISH.CFG, which provides
for complete compatibility with all existing software.

Squish v1.10 Reference Manual - Page 19



Modifying CONFIG.SYS

This section applies only to DOS users. OS/2 users can skip this
step and go on to the next section, "Customizing SQUISH.CFG".

Before modifying the Squish configuration files, you must first
make sure that your system has been configured properly. Squish
is a disk-intensive program, and it keeps a number of files open
at the same time. To make sure that your system is set up to
allow this, use an ASCII text editor to edit C:\CONFIG.SYS.

Inside CONFIG.SYS, there should be a line which reads 'FILES=n',
where 'n' is a number from 8 through 255. If this line doesn't
exist, it should be added. For Squish, you must make sure that
'n' is no less than 30. If you are running a multitasking
system, even more file handles (50 or 60) may be necessary.
Having more than 30 file handles is allowable, but having less
than 30 will certainly cause problems.

After you have changed your FILES statement, save CONFIG.SYS.
Since CONFIG.SYS is only read once when the computer starts up,
you must reboot to make sure that your changes are recognized by
the operating system.

WARNING! IF YOU INTEND TO USE SQUISH-FORMAT MESSAGE AREAS IN A
MULTITASKING OR NETWORK ENVIRONMENT, YOU *MUST* INSTALL
SHARE.EXE! Squish uses SHARE for file and record locking, and if
two programs are accessing the flat-file Squish format without
SHARE loaded, message base corruption will occur.

To install SHARE.EXE, either add this line:

INSTALL=C:\DOS\SHARE.EXE

to your CONFIG.SYS, or add the following line:

SHARE

to the end of your AUTOEXEC.BAT. Both methods have the same
effect. (Note: DOS 5.0 users must install SHARE by the
CONFIG.SYS method.)

Squish v1.10 Reference Manual - Page 20



Customizing SQUISH.CFG

After modifying CONFIG.SYS and rebooting your machine, you can
now start configuring Squish itself. For starters, SQUISH.CFG
needs to be modified to suit your system. Although you will see
many options in the configuration file, only a few need to be
modified to get a minimal Squish system up and running. When
performing a new installation, most of the options in SQUISH.CFG
should be left alone, since the defaults are acceptable in most
cases. However, you will need to modify the following keywords:

Address

This keyword must be modified to match your system's actual
network address. If you are already a member of FidoNet or
some other network, include your full 4D address here,
including your zone, net and node number. If you do not
have a node number, set your address to "1:-1/-1" until you
receive an official address.

If you are running a point system, please see the SQUISH.CFG
reference for more information on configuring Squish for use
in a point environment.

NetFile

This keyword tells Squish where to find inbound files. This
is commonly referred to as a "NetFile path" or an "inbound
directory", since this is where your front end places
inbound *.PKT files and compressed archives.

AreasBBS

This keyword points Squish to the location of an AREAS.BBS
file. This file is optional, so if you do NOT have any
software which uses an AREAS.BBS, this statement can be
commented out. If you are new to FidoNet, please see the
section entitled "Configuring EchoMail Areas" to decide
which format is best for you.

ArcmailAttach

If you are running FrontDoor, InterMail, D'Bridge, or any
other front-end which requires a "NetMail attach message" to
send files, then this keyword should be enabled.

Otherwise, if you are running BinkleyTerm or any other
program that uses the "outbound area" concept, this
statement should be commented out (disabled).

Squish v1.10 Reference Manual - Page 21



Compress

The "Compress" keyword specifies the location of the
archiver configuration file. If you wish to put
COMPRESS.CFG somewhere else (or if you wish to use a
compatible COMPRESS.CFG, as used by Maximus), you can
specify an alternate path and filename here. Otherwise,
this option should be left alone.

Routing

The "Routing" keyword gives the location of your routing
control file. If you are using the default configuration,
you can leave this as is.

Outbound

This keyword specifies a directory to use for building
packets and file attaches. This keyword is required for
both FrontDoor and Binkley-style systems.

In a Binkley environment, this should be the "root name" of
the BinkleyTerm outbound area.

In a FrontDoor environment, this will be the base directory
used for building packets and compressed mail archives.

No directory extensions should be given for this keyword.
For multi-zone systems, Binkley adds an extension to the
base directory (to separate the mail for each zone).
However, Squish will add the OUTBOUND.### zone extensions
AUTOMATICALLY, you should just specify the path (without an
extension). Squish will also create a private work area
(with a .SQ extension) for both Binkley and FrontDoor-style
systems.

LogFile

The LogFile keyword specifies the path and filename of the
Squish log file. This log file uses a Binkley and Maximus-
compatible log format.

Origin

The Origin keyword is only required if you are not using
AREAS.BBS. (AREAS.BBS includes a default origin line, so
you can skip this keyword if you are using AREAS.BBS.)
Squish needs a default origin line to place at the end of
messages, just in case a message being scanned didn't
already contain one. Generally, this line should contain

Squish v1.10 Reference Manual - Page 22



the name of your system, your location, and your phone
number. The text in your origin line text should be no more
than 60 characters (letters/numbers) long.

For a normal system, the above changes should be enough to get
your system up and running. Later, once your system is running
reliably, the control files can be modified to suit your personal
preferences.

Squish v1.10 Reference Manual - Page 23



Configuring NETMAIL and BAD_MSGS

After customizing the main configuration file, you need to
declare at least three messages areas. For starters, a NetMail
area is required. This is where private messages addressed to
specific users on other systems are stored. Squish requires at
least one netmail area. Secondly, a bad messages area is also
required, since Squish needs a place to store invalid messages.

Netmail areas are declared by placing a 'NetArea' line in
SQUISH.CFG. A sample NetArea declaration might look like this:

NetArea NETMAIL C:\Max\Msg\Net

'NetArea' is the area type. This tells Squish that the area
contains netmail.

The next part of the line is a one-word 'area tag', which is
simply a short form for the area name. In the case above,
'NETMAIL' is the area tag. All areas must be given a unique area
tag, but aside from that, the area tag you give to a NetMail area
(whether it be 'NETMAIL' or 'WOMBAT') is of little importance.

Finally, the last item in the line is the path to the area
itself. For *.MSG format areas, this should be a separate
directory on your hard drive. Squish will create nonexistent
directories when importing messages, so you don't have to create
the directory right away.

* Tip for advanced users: A Squish-format netmail area can be
used instead of *.MSG. For more information, see the
documentation for 'NetArea' in the SQUISH.CFG reference.

Next, an area to hold bad messages must be created. This area
will be used to store insecure messages, messages destined for
unknown areas, and other messages that Squish can't process. The
format for a 'BadArea' line is very similar to that of netmail
areas:

BadArea BAD_MSGS C:\Max\Msg\Bad

'BadArea' is the area type, and it tells Squish that the area
will be used to hold bad messages. WARNING! If you are using
MsgTrack or some other message-bouncing utility, ensure that each
program has its own "bad messages" area. Otherwise, Squish will
erroneously attempt to toss bounced messages.

Squish v1.10 Reference Manual - Page 24



The next part of the line is the area tag, which has the same
restrictions as the tag for netmail areas. 'BAD_MSGS" is
suggested for the area tag, but any other single word will do.

As with netmail areas, the last part of the line contains the
path to your bad messages directory. Again, the bad messages
area defaults to the *.MSG format, so this should be the name of
a separate directory on your hard drive.

Finally, an area for storing duplicate messages is also required.
This area will be used to store messages that were erroneously
sent to your system more than once. The format for a 'DupeArea'
line is similar to that of netmail and bad message areas:

DupeArea DUPES C:\Max\Msg\Dupes

'DUPES' is the suggested area tag for the dupes area.

Squish v1.10 Reference Manual - Page 25



Configuring EchoMail areas

After creating the definitions for both NETMAIL and BAD_MSGS, the
next task is to define one or more EchoMail areas. Squish
supports two different methods of declaring echoes; the best
method for you depends on your system configuration.

First of all, EchoMail areas can be declared in SQUISH.CFG. The
format for defining echoes is almost identical to the formats for
NETMAIL and BAD_MSGS, so it's easy to remember. In addition,
several Squish-specific flags can only be used in SQUISH.CFG.

Secondly, areas can also be declared in AREAS.BBS. This file is
the "standard" for EchoMail area definitions, and many other
programs support AREAS.BBS. The format of AREAS.BBS is less
flexible than the format of SQUISH.CFG, so several Squish-
specific options are not available when using AREAS.BBS.
However, if you are converting from another program and already
have an AREAS.BBS, this is probably the wisest option.

* Tip for advanced users: Squish can handle areas defined in
both SQUISH.CFG and AREAS.BBS. You can even declare one
area in both places, if you need compatibility with other
programs and also Squish-specific features. For more
details, please see the EchoArea portion of the SQUISH.CFG
reference.

Declaring Areas in SQUISH.CFG

If you have decided to declare your EchoMail areas in SQUISH.CFG,
then read on. Otherwise, skip ahead to "Elementary Routing".
Remember, if you are not using AREAS.BBS to define your echoes,
you must enable the 'Origin' statement in SQUISH.CFG. (See the
"Customizing SQUISH.CFG" section for more details.)

Defining an EchoMail area in SQUISH.CFG is similar to defining
netmail and bad message areas. A sample echo definition might
look like this:

EchoArea MUFFIN E:\Msg\Muffin 1:123/456

'EchoArea' tells Squish that the area we are defining is an
EchoMail area.

'MUFFIN' is the tag for this area. Unlike the tags defined for
NetMail and bad message areas, the tag that you specify for
EchoMail areas is important, since the tag is used as the area
name when sending EchoMail to other systems. Area tags are

Squish v1.10 Reference Manual - Page 26



usually short, and spaces are not allowed. You must ensure that
your system is using the same echo tag as your feed, so it's best
to call your feed and get the required tag information in
advance.

'E:\Msg\Muffin' is the path to the EchoMail area. By default,
echoes use the *.MSG format, so a separate directory is required
for each echo. If this directory does not exist, Squish will
create it automatically.

Finally, '1:123/456' is the address of the system from which you
receive the echo. This tells Squish that it's okay to accept
mail from that address, and it also tells Squish to send locally-
entered messages to that system. As many addresses can be listed
as desired, with a space between each address. If you are a leaf
node, you'll only need to list the address of your feed. Full 4-
dimensional addresses (zone, net, node and point) are acceptable.

In addition, a number of special flags can follow the addresses.
These flags can be used for many purposes, including declaring
the area to be Squish format, defining a primary address, or
declaring an area as 'passthru'. For more information, please
see the EchoArea portion of the SQUISH.CFG reference.

Any number of EchoMail areas can be defined, limited by available
memory. However, each area must be defined on a separate line in
the configuration file.

Declaring Areas in AREAS.BBS

If you have already defined your EchoMail areas in SQUISH.CFG,
then skip ahead to "Elementary Routing". Otherwise, read on.

AREAS.BBS is the de facto standard for defining EchoMail areas,
so you'll have the highest degree of compatibility if you declare
your areas using this method. AREAS.BBS contains two separate
components: a default origin line, and also a number of echo
definitions.

Default Origin Line

The very first line of AREAS.BBS is interpreted in a special
manner. The line should have the following format:

<default_origin>! <sysop_name>

Squish v1.10 Reference Manual - Page 27



<default_origin> is the default origin line to use for all of
your echoes. Normally, this should include your system name,
location, and phone number, or anything else that will fit in
under 60 characters.

<sysop_name> should be your name. For historic purposes, this
should be separated from the default origin line by an
exclamation point. Squish doesn't use the name you specify here,
but it should be included for compatibility with other programs.

For example, the first line in AREAS.BBS might look like this:

MyBBS * Anytown, Anystate * (123) 456-7890! Joe SysOp

In this example, the default origin line would be "MyBBS *
Anytown, Anystate * (123) 456-7890", and the SysOp name would be
"Joe SysOp".

EchoMail Areas

Following the default origin line can be any number of EchoMail
areas. All echoes must each be defined on a separate line, using
the following format:

<path> <tag> <nodes>

<path> is the name of the directory in which the *.MSG files are
to be kept. As with other *.MSG-type areas, each echo should
have its own separate directory. If the directory does not
exist, it will be automatically created.

<tag> specifies the area tag for this area.

<nodes> is a list of zero or more nodes to which will be sending
the specified echo to you. Normally, for a leaf node, you will
only be sending the echo to one place: to your feed. All of the
addresses go after the area tag, with at least one space between
each address.

For example, the following line could be used as an entry for the
MUFFIN echo:

C:\MAX\MSG\MUFFIN MUFFIN 1:123/999 888 777

Squish v1.10 Reference Manual - Page 28



Elementary Routing

After you have configured the EchoMail areas available on your
system, your attention should be turned to mail routing. In
Squish, routing is based on the idea of schedules and control
files. A schedule is simply a set of routing commands which can
be performed as a single unit. Schedules can be run either all
day, during certain times of the day only, or on manual request.
Most nodes will only need one schedule, since the majority of
systems use the same set of routing commands 24 hours a day.

Commands in ROUTE.CFG have three purposes:

* Firstly, routing can direct NetMail from one system to
another. (Normally, EchoMail is not routed.) For example,
routing commands could redirect all NetMail destined for
1:123/456 to 1:987/654. If 1:987/654 is a local call, but
1:123/456 is not, then it's obviously useful to send mail
via the system which is local to you. For ArcmailAttach
systems, this feature is usually handled by your mailer.

* Secondly, routing can control whether or not mail is
compressed. When sending large volumes of EchoMail,
external programs such as ARC and ZIP can be used to
compress mail packets. This reduces the amount of time it
takes to transmit mail, which in turn reduces long-distance
phone charges.

* Finally, routing also controls the 'flavour' of outbound
mail. All outbound mail has a flavour (or priority) which
controls when the mail gets sent. By default, Squish
creates all outbound packets with a "normal" flavour.
However, the routing commands can be used to change this
flavour to "crash" (send this mail immediately), "direct" (a
synonym for crash), or "hold" (do not call out; hold mail
for pick-up). The flavour of messages can also be changed
by your mailer (depending on when phone rates are the
cheapest, for example), but ROUTE.CFG is used to assign a
default flavour to each outbound packet.

In general, ROUTE.CFG starts off with a section of global routing
commands (which are run every time Squish scans the netmail
area), followed by a set of zero or more schedules. The commands
within the global section and each schedule all use the same
format; the only difference is when the commands are executed.

No matter what, commands in the global section of the routing
control file are ALWAYS executed. Even when explicitly running a
different schedule, the global commands are still run first.

Squish v1.10 Reference Manual - Page 29



Therefore, the global section should contain commands that you
want to run every time that Squish is executed. Everything
between the first line of ROUTE.CFG and the first 'Sched'
statement is considered to be a global command and is treated
accordingly.

Since most nodes will not require schedules, only basic routing
information is described here. Most nodes will have all of their
routing commands in the global section of the routing file, which
is what this quick installation describes.

Routing commands in ROUTE.CFG are executed from top to bottom in
sequence. In other words, if you place a certain routing command
before another, you can be assured that Squish will process each
command in the order you specified.

By default, unless routing commands are used for a given node,
mail will be sent directly to that node, uncompressed, using the
normal message flavour. However, various routing commands can be
used to modify this behaviour.

The Send Command

The most basic form of routing is the 'Send' command. This
command instructs Squish to compress mail for the specified
nodes, and to give the resulting mail a flavour. The Send
command does NOT perform any readdressing; it simply modifies the
flavour and compression of the mail, without changing that mail's
destination.

The format for the Send command is as follows:

Send <flavour> <node> [<nodes>...]

<flavour> specifies the flavour to use for the resulting
compressed mail archive. Valid flavours are normal, crash, hold
and direct.

Following the flavour comes a list of one or more nodes. Squish
will search for normal-flavoured, uncompressed mail destined to
any of the specified nodes, and compress and flavour that mail
accordingly. For example, given the following command:

Send Crash 1:123/456

Squish would take all normal-flavoured packets for 123/456,
compress them using the default archiver, and send the compressed
mail archive to 123/456 using the crash flavour.

Squish v1.10 Reference Manual - Page 30



You can specify more than one node for a Send command, but Squish
behaves exactly as if each node were in a separate Send command
of its own. If you wish to route mail for one system through
another, then the Route command must be used instead.

In other words, the following command:

Send Crash 123/456 234/567 345/678

is completely identical to this:

Send Crash 123/456
Send Crash 234/567
Send Crash 345/678

Both of these commands would compress normal-flavoured packets
for 123/456, 234/567 and 345/678, give the compressed mail the
crash flavour, and send the resulting archives to 123/456,
234/567 and 345/678 (respectively).

If you are using an ArcmailAttach mailer, then the 'Send' command
is probably the only one you'll need. Dynamic routing is
performed by your mailer, so the only reason for using ROUTE.CFG
is to compress and flavour mail, which is exactly what the Send
keyword does.

The Route Command

The Route command is similar to the Send command; however, Route
can be used to change the destination address of mail (otherwise
known as routing that mail), whereas Send only sends mail
directly to its destination. The Route command is normally NOT
required for systems using the ArcmailAttach keyword. If you are
running an ArcmailAttach mailer, most messages will be routed on-
the-fly, so you can safely skip this section.

The format of the Route command is as follows:

Route <flavour> <target> [<nodes>...]

As with the Send command, <flavour> specifies the message flavour
to give the resulting archive. Valid flavours are normal, crash,
direct, and hold.

<target> specifies the address of the routing target. Mail for
all of the other nodes will be packaged up, given the specified
flavour, and sent to this address. In other words, this is where
all of the routed mail will be sent. In addition, mail addressed
to the target itself will also be flavoured and sent accordingly.

Squish v1.10 Reference Manual - Page 31



Make sure that you have the permission of the target node before
routing mail through his/her system.

<nodes> is the optional list of network addresses for which
Squish should readdress mail. Squish will look for normal-
flavoured, uncompressed packets for these nodes, and then route
them through the specified target.

For example, the following route command:

Route Crash 123/456 234/567 345/678

would take mail for 123/456, 234/567 and 345/678, compress it
using the default archiver, and send it all to 123/456 using the
crash flavour. Note the difference between Route and Send:
whereas Send will send the mail to each node individually, Route
will send all of the mail to the first node specified. The
difference between Route and Send is a fundamental concept in
Squish routing.

Wildcards

The Route and the Send commands provide the framework for a very
flexible routing system. However, the Route and Send commands
are often not enough to accomplish a particular task. For
example, to route mail for all nodes in net 123 through another
node, is it necessary to explicitly give the node number for each
system? Fortunately, the answer is no.

The All and World Wildcards

In both SQUISH.CFG and ROUTE.CFG, Squish supports a form of
wildcards. These wildcards can be used to specify a particular
node or range of nodes for a particular routing command. The
most basic form of wildcard is 'All'. 'All' can be used in place
of a zone, net, node or point number, and it instructs Squish to
process mail for all nodes which match the rest of the address.

For example, given the following command:

Send Crash 106/All

Squish would then scan for normal packets destined to any node in
net 106, compress the packet, give it the crash flavour, and send
the resulting archive directly to its destination.

Squish v1.10 Reference Manual - Page 32



Wildcards can also be used with the 'Route' command. To use the
same example, but to have all of net 106's mail routed through
one node, the following could be used:

Route Crash 106/123 106/All

As above, this would compress normal-flavoured packets for nodes
in net 106, and give the resulting archives the crash flavour.
However, all of the archives would be sent to 106/123, where they
could be handled by routing commands on 106/123's system.

Squish also supports zone wildcards. For example, the following
command:

Route Crash 2:123/456 2:All

would take mail for all addresses in zone 2, compress it, and
send it all through 2:123/456.

Finally, the 'World' wildcard can be used to specify all
uncompressed and normal-flavoured packets, no matter where they
are addressed. This is typically useful for "clean-up"
situations and for taking care of mail that has no applicable
routing commands. 'World' is equivalent to 'All:All'. For
example, the following command:

Route Crash 1:987/654 World

would cause all remaining, normal-flavoured mail to be compressed
and sent to 987/654.

As before, all of these wildcards can be used for both the Send
and Route commands, in addition to most of the other commands in
ROUTE.CFG and SQUISH.CFG.

IMPORTANT NOTE FOR ARCMAILATTACH SYSTEMS:

By default, Squish leaves outbound packets in an uncompressed
form. However, ArcmailAttach mailers only recognize compressed
archives, so you MUST ensure that all packets that Squish creates
are compressed. To do this, you must add the following statement
to the end of your ROUTE.CFG:

Send Normal World

This instructs Squish to archive all remaining packets, and to
give the resulting archives a normal flavour. This makes sure
that your mailer can see all of the packets that Squish
generates, even if you have not added specific routing commands
for an individual node.

Squish v1.10 Reference Manual - Page 33



Address Abbreviations

Although full 4D addresses can be specified almost everywhere,
Squish also permits several shortcuts to save on typing. When
Squish encounters a node number, it will save a copy of that
address. Later, if Squish comes across an incomplete address, it
will use that saved copy to fill in missing information. Squish
can use short forms to handle zone and net numbers; however, a
node number must always be specified.

For example, the following Route command:

Route Crash 1:12/34 1:12/45 1:23/45 2:23/56 2:23/67 2:34/67

could be rewritten as follows:

Route Crash 1:12/34 45 23/45 2:23/56 67 34/67

which has the same effect. In this case, Squish assumes zone 1
and net 12 when it comes to the lone "45", based on the previous
address. The "23/45" address is also assumed to be in zone 1,
again because of the earlier zone 1 address. The "2:23/56" is
used to start a new set of zone and net defaults, so the full
address is required. As with "45, the "67" assumes the zone and
net numbers of the last address. Finally, a zone number of 2 is
assumed for the last address because of the earlier "2:".

Squish v1.10 Reference Manual - Page 34



Examples

This section contains several simple routing files, including
comments, which should demonstrate the uses of the various
routing commands. In ROUTE.CFG, comment lines start with either
a semi-colon (;) or a percent sign (%). (Everything on the line
following either of those characters will be ignored.)

Example 1: Simple ArcmailAttach routing

% Sample routing file #1. This example demonstrates a minimal
% system configuration. This type of routing file is the most
% useful when using the ArcmailAttach keyword: since all
% routing is performed by your mailer, the only purpose for
% ROUTE.CFG is to tell Squish which messages to compress.
%
% This routing file simply compresses all mail and sends it
% to the mail's final destination. (However, these messages
% can be routed by your mailer using dynamic routing.)

Send Normal World

% The above statement tells Squish to take mail for everyone
% (ie. 'World'), place it into an archive, and give it the normal
% flavour. Unless you have a special configuration, this is all
% of the routing that you have to do for ArcmailAttach systems.

Example 2: Simple BinkleyTerm Routing

% Sample routing file #2. This example demonstrates a minimal
% system configuration for a BinkleyTerm mailer. This example
% assumes several things:
%
% 1) You will be connecting with another node on a fairly
% frequent basis, and you'll be routing most of your
% long-distance netmail through this system. (Most
% Net Echo Coordinators are willing to route netmail
% for little or no charge, but you should ask before
% doing so.)
%
% 2) You want to send mail directly to nodes in your own
% net. Since those nodes are local to your system, sending
% netmail directly is usually much faster.
%
% 3) You may also be sending netmail to selected long-distance

Squish v1.10 Reference Manual - Page 35



% nodes, and you want EchoMail for those systems to be sent
% directly, as opposed to being sent through your local
% coordinator.
%
% This example also uses a fictitious network address of
% 123/456. Obviously, your own net and node number should
% be substituted for this address, or -1/-1 if you have no
% network address.

% The first command instructs Squish to send netmail directly
% to all systems in net 123. Mail will be archived, given
% the "crash" flavour, and sent directly to its destination.
%
% Most of your mail will probably be to and from local systems,
% so sending it directly is usually the best route.

Send Crash 1:123/All

% The next command also tells Squish to send mail directly
% to nodes 111/222, 222/333 and 333/444. These addresses
% are presumably long-distance nodes with which you talk
% frequently, and you therefore want to send your
% NetMail directly, as opposed to routing it. If you
% don't communicate with any long-distance nodes, this
% command can be commented out.
%
% However, if you are running any EchoMail conferences of
% your own, and you are feeding the conference to other nodes
% from your system, you should include the addresses of those
% nodes here. It is considered to be impolite and against
% FidoNet policy to route unsolicited EchoMail through
% other systems, so you should usually send EchoMail
% directly. All of the routing commands apply to both
% NetMail and EchoMail, so you should make sure that you have
% added the appropriate commands to deal with systems that
% receive EchoMail from you.

Send Crash 1:111/222 333/444 555/666

% The third and last command tells Squish to send mail for
% everywhere else to 1:123/3, which is presumably your area
% coordinator.
%
% Notice how this statement is positioned below all of the
% other routing commands. Since Route and Send only operate
% on uncompressed packets with a normal flavour, this command
% ignores mail which has been processed by the two other
% commands; it will only route mail which has not been already
% processed.
%

Squish v1.10 Reference Manual - Page 36



% However, if this command was mistakenly placed above the
% other two commands, you would find that ALL of your mail
% was being sent to 123/3 regardless. Since the mail
% is archived and changed to a crash flavour by this
% command, the following Send commands would not find any
% mail to process, which was probably not your original
% intent.

Route Crash 1:123/3 World

Squish v1.10 Reference Manual - Page 37



Batch Files

After adding the appropriate routing commands, the final step in
the installation is to modify the batch files for your mailer and
your BBS. At a bare minimum, Squish must be run in two different
situations:

1) After receiving mail. When your mailer receives mail from
another system, Squish needs to be executed to decompress
the mail and import it into your own message base.
Optionally, Squish can also scan out or export mail at the
same time, if you are sending an echo to someone else.

2) After entering messages locally. When a message is entered,
either through a BBS or an external editor, Squish must be
called to export the locally-entered messages. There are
several variations on this theme (after entering EchoMail,
after entering NetMail, or both), but the same general
process is followed for each variation.

Configuring your Mailer

First of all, your mailer must be configured to either run an
external program when mail has been received, or else to drop
back to the calling batch file with an errorlevel. If you don't
know how errorlevels work, you should refer to the Maximus
Operations Manual for a hand-holding tutorial. Section eight of
the Maximus installation covers errorlevels and batch files.
This gives a general overview of concepts and terminology, which
will be helpful when setting up Squish.

Assuming that you have batch file basics covered, the first step
is to find out which errorlevel your mailer uses when mail is
received. For BinkleyTerm, this errorlevel is specified by the
'E2' and 'E3' flags in your BINKLEY.EVT configuration file. For
FrontDoor, this errorlevel is specified in the Mailer /
Errorlevels / ReceivedMail option in SETUP.EXE. For other
systems, please consult your mailer's documentation.

The next step is to invoke Squish when the specified errorlevel
is found. Assuming that your mailer exits with an errorlevel of
100 after receiving mail, the following should be placed in your
batch file, immediately after running your mailer:

:Loop
bt unattended ; Other commands here
if errorlevel 100 goto SquishIn ; Toss messages
if errorlevel 96 goto BBS ; Call a BBS program

Squish v1.10 Reference Manual - Page 38



if errorlevel 48 goto BBS ; Call a BBS program
... and so on ...

Only the lines labelled ':Loop' and 'SquishIn' are required by
Squish itself. The other lines should have be added so that your
BBS is run for human callers; they are not mandatory for Squish's
operation, and the errorlevels may be different (depending on
which BBS package you run). The errorlevel procedure is the same
for FrontDoor, except that 'fd' should be substituted for 'bt
unattended'. Please consult your mailer's documentation to learn
how to start up a different type of mailer.

The ':Loop' label should be placed just before your mailer's
command-line. After tossing and scanning mail, Squish will jump
back up to this label and restart your mailer.

The 'if errorlevel 100' statement checks for the "received mail"
errorlevel, and if found, it jumps to the part of the batch file
which starts up Squish.

Keep in mind that all errorlevels must be given in DESCENDING
ORDER. When interpreting each 'if errorlevel' statement, the
operating system performs a check to see if the current
errorlevel is GREATER THAN OR EQUAL TO the specified errorlevel.
To ensure that each line is executed only when you want it to,
all of the errorlevels have to be in descending order.

After adding the check for receiving mail, you should now create
the portion of the batch file which actually invokes Squish.
Near the end of your batch file, but before any final 'exit' or
':end' statements, add the following:

:SquishIn
cd\Squish
squish in out squash link
cd\Bink
goto Loop

This does five things:

1) The ':SquishIn' label is referenced by the earlier 'if
errorlevel' statement. This is where your batch file will
jump to if mail is received.

2) The 'cd\Squish' changes the current directory to \Squish,

Squish v1.10 Reference Manual - Page 39



which is presumably where SQUISH.EXE and its associated
configuration files are kept.

3) The 'squish in out squash link' command starts Squish in
one-pass mode. This command will cause Squish to check for
incoming mail, decompress it, toss it to the local message
bases, scan it out to other nodes (if necessary), pack
messages and create ARCmail attaches in your netmail area,
and finally, to link reply chains. For more information on
Squish's command-line parameters, please see the section
entitled "Squish Command Line Parameters and Syntax".

4) The 'cd\Bink' command tells DOS to change back to your
mailer's directory. (If you are running FrontDoor, this
will probably be 'cd\FD' or something similar.) Unless this
line is included, your mailer may not operate properly after
Squish runs.

5) The 'goto Loop' command causes your batch file to loop back
to the top again, and to restart your mailer. Unless this
command is included, Squish would simply drop back to the
operating system, or possibly execute other unwanted
commands in your batch file. To make sure that this looping
works, ensure that there's a ':Loop' label right above the
line that calls your mailer. (See above for more details.)

Configuring your BBS

After making the above modifications, Squish should be fully
operational when receiving mail. The only other modification you
need to make are to your BBS's or off-line reader's batch files.
The procedure is similar: determine which errorlevel is used
when mail is entered, and jump to the appropriate portion of the
batch file.

For example, Maximus uses the following errorlevels:

Errorlevel 12: Caller entered EchoMail (and maybe NetMail)
Errorlevel 11: Caller entered NetMail (but not EchoMail)
Others: Caller entered neither NetMail nor EchoMail

The two separate cases -- NetMail/EchoMail, and NetMail only --
must be treated differently. When EchoMail is entered (and
possibly NetMail as well), the echoes must be scanned for
messages to export, and the netmail area must be packed (or
scanned for ARCmail attaches). However, when only NetMail is
entered, only the packing/scanning needs to be performed. What
follows is a simple batch file which demonstrates how to
implement Squish on a Maximus system. This assumes that you have

Squish v1.10 Reference Manual - Page 40



configured Max's "Log EchoMail" feature and that it points to the
file C:\MAX\ECHOTOSS.LOG.

max -p%1 -b%2 -t%3 ; Other parameters here
if errorlevel 12 goto SquishOut
if errorlevel 11 goto SquishSquash
if errorlevel 5 goto Recycle
... and so forth ...

As before, only the 'SquishOut' and 'SquishSquash' lines are
required by Squish.

After taking care of the other errorlevels, you should insert the
following two sections in your BBS's batch file:

:SquishOut
cd\Squish ; Chg to Squish dir.
squish out squash -fc:\max\echotoss.log ; Export messages
del c:\max\echotoss.log
goto End

:SquishSquash
cd\Squish
squish squash ; Pack msgs and do ArcAttaches
goto End

The section marked ':SquishOut' invokes Squish and instructs it
to scan the EchoMail areas listed in ECHOTOSS.LOG. If your BBS
program or off-line reader is not capable of generating an
ECHOTOSS.LOG, then simply omit the '-fc:\max\echotoss.log'.
Omitting that command-line option will cause Squish to scan all
EchoMail areas every time it is run, which is usually much slower
than using ECHOTOSS.LOG for scanning. (Please see the section
entitled "Squish Command Line Parameters and Syntax" for
information on the format of ECHOTOSS.LOG.)

After exporting messages, the 'squash' portion of the command
line tells Squish to pack netmail messages, create ARCmail
attaches, and execute the commands in ROUTE.CFG.

The ':SquishSquash' portion of the batch file does the same
thing, except that it skips scanning the EchoMail areas, and
simply runs Squish in a mode which packs netmail messages and
executes ROUTE.CFG.

This concludes the Squish installation procedure. If you have
followed all of these steps, you should have a working version of
Squish that tosses, scans, packs, links, slices and dices. For
advanced tricks and tips on operating Squish, please read through
the rest of this manual at your leisure.

Squish v1.10 Reference Manual - Page 41



OPERATION

Squish Command Line Parameters and Syntax

Squish operates in several modes, all of which are controllable
from the command line. The command line itself is broken down
into a series of "actions" and "switches". Actions are single
words which control Squish's processing modes, such as tossing
and scanning messages. Switches are used to modify the behaviour
of those modes, such as only scanning certain areas, not
displaying any output, and so on. The format of the command line
is as follows:

SQUISH <switches> <mode>

Modes

<mode> consists of one or more of the following keywords:

IN Toss (import) messages. This option causes Squish to
check for packets and compressed mail archives in all
of the NetFile directories, and to import any messages
that it finds.

OUT Scan (export) messages. This option causes Squish to
scan all EchoMail areas for new messages. If Squish
finds a new message, that message will be exported to
all of the nodes listed in that area's definition.
Squish uses the SEEN-BYs to keep track of which nodes
the message has already been sent to, so the message
may not be exported to all of the nodes listed.

If both the IN and OUT actions are specified on the
same command line, Squish will function in "single
pass" mode. "Single pass" means that Squish will both
toss and scan messages at the same time (which yields
higher performance). Single pass mode is especially
useful for systems running many "passthru" areas, since
messages will be written directly to the output *.PKT
files, as opposed to making a temporary stop in a
message area. Consequently, using passthru message
areas in multipass mode is MUCH slower than using
passthru areas in single-pass mode.

However, you should ONLY use the "IN" parameter when
there are messages to be tossed. When running with
"IN" and "OUT", Squish will only scan those areas to
which messages are being tossed. Therefore, when you

Squish v1.10 Reference Manual - Page 42



wish to only scan messages, the `IN' parameter should
NOT be specified.

When the OUT command is specified alone, Squish will
scan all EchoMail areas on the system. When used in
conjunction with the IN command, Squish will scan
messages as it tosses. In addition, if Squish detects
that unsent messages exist in an EchoMail area, Squish
will invoke a full scan of that area before tossing to
it.

SQUASH For a BinkleyTerm system, the SQUASH command packs
messages from the NetMail areas, scans the outbound
areas, performs mail routing, and compresses packets.

For a FrontDoor-style system, the SQUASH command
compresses packets, scans the NetMail area, creates
ARCmail attach messages, and optionally kills any
orphaned archives.

If the SQUASH command is specified on the same command
line as IN and OUT, the single pass MaxMsgs mode can
also be used to limit outbound packet sizes.

LINK Relink reply chains. The LINK command will read all
messages in an EchoMail area and create reply links for
each message (based on the subject fields). Relinking
allows other software to perform "threaded reading" on
message bases, which is an easy and convenient way of
viewing messages.

When combined with the IN and OUT commands, only those
areas which received messages will be linked. By
default, the LINK command only processes EchoMail
areas. However, by using the "-f" parameter to specify
one explicit area, a link can be forced for any type of
area. (For example, "squish link -fNETMAIL" will force
the NetMail area to be linked.)

RESCAN Rescan one or more EchoMail areas. The RESCAN command
provides a convenient way to rescan EchoMail areas from
the command line, instead of fiddling with 1.MSG and
other system files.

Unlike the other modes, RESCAN cannot be combined with
other switches or actions. The format for the RESCAN
command is:

SQUISH RESCAN <echo_or_tosslog> <node>

Squish v1.10 Reference Manual - Page 43



<echo_or_tosslog> is either the tag of an EchoMail
area, or the name of an ECHOTOSS.LOG-format file
(containing a list of area tags).

<node> specifies the node number for which the
specified EchoMail areas should be rescanned.

After processing the command line, Squish will
immediately rescan ALL of the messages in the specified
areas. The SEEN-BYs will not be updated in the on-disk
message base, the high water mark will be left
untouched, and the messages will not be sent to anyone
except the listed node.

This command was designed for NECs and other EchoMail
hubs who wish to rescan entire message bases for nodes
who have just connected to a particular echo.

Warning! If you wish to specify command line switches
in conjunction with the RESCAN command, those switches
must precede the rescan command on the command line.
In other words, to leave all packets in the OUTBOUND.SQ
area, use `SQUISH -L RESCAN AREANAME NET/NODE'.

GET This command instructs Squish to request a file from a
node given on the command line. THIS COMMAND IS NOT
SUPPORTED FOR ARCMAILATTACH SYSTEMS.

The format of the GET command is shown below:

SQUISH GET <filename>[!<pwd>] [FROM] <node> [flavour]

<filename> is the name of the file to be requested.
The filename can contain wildcards.

<pwd> can be used to specify the password for a
password-protected file. A single exclamation mark
must separate the filename and password.

The optional literal "FROM" can be used to make the
Squish command line more readable.

<node> specifies the node number to which the file
request should be sent.

<flavour> specifies the optional flavour of the
request. It can be one of CRASH, DIRECT, HOLD, or
NORMAL (the default).

Squish v1.10 Reference Manual - Page 44



Examples:

SQUISH GET FILES FROM 249/106 CRASH

Request "files" from 249/106 using a "crash"
priority.

SQUISH GET TEST.ZIP!MYPWD 2:254/1

Get "test.zip" from 2:254/1 using a password of
"mypwd".

UPDATE This command instructs Squish to perform an update
request for the node given on the command line. THIS
COMMAND IS NOT SUPPORTED FOR ARCMAILATTACH SYSTEM.

The format of the UPDATE command is shown below:

SQUISH UPDATE <filespec>[!pwd] [FROM] <node> [flavour]

The command-line syntax of the UPDATE command is
identical to that of the GET command. However, this
command instructs Squish to perform an update request
instead of a simple file request. In addition, a
fully-qualified pathname must be provided, instead of
just a filename.

SEND This command instructs Squish to send a file to a node
given on the command line. THIS COMMAND IS NOT
SUPPORTED FOR ARCMAILATTACH SYSTEMS.

The format of the SEND command is shown below:

SQUISH SEND [^|#]<filename> [to] <address> [flavour]

<filename> gives the name of the file that is to be
transmitted to the remote system.

If a "#" is placed in front of the filename to send,
the file will be truncated after it is sent.

If a "^" is placed in front of the filename to send,
Squish will delete the file after it is sent.

IMPORTANT NOTE FOR OS/2 AND 4DOS USERS: Since the "^"
character has special significance on the OS/2 and 4DOS
command lines, one must enclose the entire filename
(including the "^") in quotes.

Squish v1.10 Reference Manual - Page 45



Examples:

SQUISH SEND C:\CONFIG.SYS TO 249/1 CRASH

Send c:\config.sys to 249/1 using a priority of
CRASH.

SQUISH SEND "^E:\Max\Max.Exe" to 106/114 Hold

Send e:\max\max.exe to 106/114 using a priority of
HOLD. The file will be deleted after it is sent.

SQUISH SEND #e:\*.* 273/703

Send all of the files in the root directory of E:
to 273/703, using a priority of NORMAL. The files
will be truncated after they are sent.

POLL This command instructs Squish to poll a specified node.

The format of the POLL command is as follows:

SQUISH POLL <address> [flavour]

<address> is the node which is to be polled.

Examples:

SQUISH POLL 1:249/106 Crash

Generate a crash poll to 1:249/106.

SQUISH POLL 2:253/68

Generates a normal poll to 2:253/68.

With the exception of RESCAN, SEND, GET, UPDATE and POLL, all of
these modes can be specified at the same time for optimum
performance. The command "SQUISH IN OUT SQUASH LINK" instructs
Squish to toss and scan messages in single pass mode, to pack
messages from the NetMail area, to route and compress packets,
and to relink reply chains.

Certain combinations of the Squish command line parameters are
useful only in certain situations. Namely, the "IN" command must
only be used when there are packets to be tossed, so care must be
taken to use "IN" only when necessary.

Squish v1.10 Reference Manual - Page 46



The following command lines are recommended for various
situations:

After receiving EchoMail or NetMail from another system:

SQUISH IN OUT SQUASH LINK (with an optional -fECHOTOSS.LOG)

After EchoMail and/or NetMail has been entered locally:

SQUISH OUT SQUASH LINK (with an optional -fECHOTOSS.LOG)

After NetMail has been entered locally:

SQUISH SQUASH

Command Line Switches

In addition to <mode>, Squish accepts any of the following
command line switches:

-a<file> The -a switch instructs Squish to use the specified
AREAS.BBS-like file, overriding the filename specified
in SQUISH.CFG.

-c<file> The -c switch instructs Squish to use a configuration
file with the specified path and filename, as opposed
to looking for SQUISH.CFG in the current directory.
This switch will override the config name specified by
the SQUISH environment variable (if any).

-f<file> The -f switch specifies the name of an ECHOTOSS.LOG-
type file which contains a list of echo tags to
process. When used in conjunction with the IN command,
Squish will create a log of all non-passthru echoes
that received messages during the current session.
When used in conjunction with the OUT or LINK commands,
Squish will only process echoes listed in the
ECHOTOSS.LOG file.

Although the -f switch was designed to be used with a
tosslog filename, it can also specify the name of a
single EchoMail area to be processed. For example,
"SQUISH OUT -fMUFFIN" would instruct Squish to scan the
MUFFIN echo for new messages.

WARNING! Squish will never delete ECHOTOSS.LOG. When
tossing, Squish will simply append to the log you
specify (to fully supporting multi-line systems). It
is assumed that your batch files will delete

Squish v1.10 Reference Manual - Page 47



ECHOTOSS.LOG after performing all necessary processing;
this must always be done, or else ECHOTOSS.LOG will
grow and grow after each successive invocation of
Squish.

-l The -l switch (BinkleyTerm systems only) instructs
Squish to leave *.OUT packets in the OUTBOUND.SQ
holding area. Before Squish terminates, it normally
moves all unrouted packets from OUTBOUND.SQ to the
proper zoned outbound area. However, if you are
running Squish in a multipass environment, you may wish
to leave the packets in the OUTBOUND.SQ area between
passes to shield the packets from other programs on
multitasking or multi-line systems.

-n<file> The -n switch instructs Squish to use a different log
file for the current run only. This switch overrides
the LogFile keyword in SQUISH.CFG.

-o The -o switch (BinkleyTerm systems only) instructs
Squish NOT to pack messages in the NetMail area when
performing a SQUASH command. Squish will still scan
the outbound area and archive packets, but no NetMail
messages will be processed.

If you need to run an external utility over your
NetMail area (such as a message tracker or
readdresser), this option will allow you to use MaxMsgs
with a one-pass IN OUT SQUASH command line. Squish can
be run with IN OUT SQUASH and the -o switch, and then
your external utility can be run, followed by a
separate SQUISH SQUASH without the -o switch.

-q The -q switch enables "quiet mode". Quiet mode
suppresses most of the information displayed while a
packet is tossing, although Squish will still display
the name and origination addresses for each packet.
Although this option makes the Squish screen display
less informative, the -q makes Squish run slightly
faster.

-s<sched> The -s switch instructs Squish to process the specified
schedule when performing the SQUASH command. If no
schedule is specified, Squish will execute the global
commands, plus any schedule which is within the current
time period. If an explicit schedule is specified on
the command line, only that schedule and the global
commands will be executed.

-t The -t switch toggles the status of Squish's secure

Squish v1.10 Reference Manual - Page 48



mode. In other words, if you have `Secure' turned ON
in SQUISH.CFG, using -t will temporarily turn OFF
Secure more. Likewise, if you have Secure turned OFF
in SQUISH.CFG, using -t will temporarily turn ON secure
mode.

-u The -u switch toggles the use of the TossBadMsgs
keyword. If TossBadMsgs is enabled in SQUISH.CFG, this
switch will disable TossBadMsgs processing. If
TossBadMsgs is not enabled in SQUISH.CFG, this switch
will enable TossBadMsgs processing.

-v The -v switch toggles the use of "Statistics Mode". If
"Statistics" is turned ON in the configuration file,
this switch will temporarily disable statistics mode.
Similarly, if "Statistics" is turned OFF in the
configuration file, -v will temporarily turn it back
on. This switch can be used to create statistics
information only when mail is received from a certain
node.

-z The -z switch instructs Squish to scan non-passthru
areas only. Normally, when Squish is invoked with the
OUT command, it will scan all of the areas defined in
SQUISH.CFG and/or AREAS.BBS. However, if you normally
do not keep any messages in your passthru areas, this
switch will cause Squish to skip those areas and
marginally speed up processing.

Squish v1.10 Reference Manual - Page 49



Running Squish in Multipass Mode

The easiest and most efficient way to run Squish is in "single
pass" mode, meaning that Squish will toss, scan, and pack
messages all at the same time. However, Squish can also be run
in multipass mode, meaning that tossing, scanning and packing can
be separated into two or three different passes. Some of the
reasons for using multipass mode are:

* Decreased memory requirements. When running in single pass
mode, Squish needs enough memory to buffer the packet being
tossed, to hold the incoming messages, and buffers for
outbound messages. When running in multipass mode, Squish
only needs to keep one part of the message in memory at a
time, thereby reducing memory requirements of the DOS
version by 60K or more.

* Some preprocessing utilities may need to be run between
passes. For example, several utilities may need to be run
over the message bases after a message has been tossed, but
before that message is scanned out to other systems.
Multipass mode allows for this type of external utility.

The key to multipass mode is the use of ECHOTOSS.LOG. The -f
switch should be used to keep a log of tossed messages, such that
Squish scans and links only those areas which received messages.

Invoking Squish in multipass mode is usually done in the
following manner:

SQUISH IN -fECHOTOSS.LOG

rem * Other external utilities here

SQUISH OUT -fECHOTOSS.LOG

rem * Other external utilities here

SQUISH SQUASH

rem * Other external utilities here

SQUISH LINK -fECHOTOSS.LOG

del ECHOTOSS.LOG

Depending on your processing requirements, you may wish to run
two passes at the same time (such as SQUASH and LINK, or IN and
OUT), but the general format remains the same. Squish will be

Squish v1.10 Reference Manual - Page 50



somewhat slower when running in multipass mode, especially when
the IN and OUT passes are separated. However, this method of
operation allows for flexibility and allows other external
utilities to be inserted into the tossing/scanning process.

Squish v1.10 Reference Manual - Page 51



SQ386 Usage Notes

The 32-bit DOS version of Squish uses the DOS/4GW extender from
Rational Systems, Inc. This file is included in the Squish
distribution as DOS4GW.EXE. The DOS extender is automatically
loaded whenever SQ386.EXE is run. DOS4GW.EXE must be in the same
directory as SQ386.EXE, and it must be on your path.

To operate properly, SQ386 requires either an XMS or a DPMI
memory driver:

Under DOS, this means that you should have HIMEM.SYS installed,
or an equivalent DOS memory manager (such as QEMM or 386^MAX).

Under OS/2 or Windows, nothing needs to be done. Both OS/2 and
Windows act as DPMI hosts.

The 32-bit version of Squish is also memory-hungry. While SQ386
does not require much conventional memory, A MINIMUM OF TWO
MEGABYTES OF XMS/DPMI MEMORY IS REQUIRED. In general, SQ386's
performance will increase as you give it more memory.

For more information on the 32-bit version of Squish, please see
the installation subsection titled, "16-bit or 32-bit? SQ386 and
SQ386P".

Squish v1.10 Reference Manual - Page 52



AREAS.BBS REFERENCE

Squish supports the definition of EchoMail areas in the standard
AREAS.BBS file. However, this format was designed for use with
older systems, and as such, it doesn't support many of the new
features that Squish offers. Regardless, some users may find it
advantageous to declare areas in AREAS.BBS for compatibility
reasons.

The first line of AREAS.BBS is always your default origin line;
this text will be added to messages which do not already have an
origin line. After the text of the origin line, you should place
an exclamation mark, followed by your name. Squish doesn't use
the SysOp name, but other programs may require it.

For example, the first line in AREAS.BBS might look like this:

Fowl Weather Post * Kingston, Ont., Canada !Scott Dudley

Following the default origin line should be one or more EchoMail
area definitions. An EchoMail area definition has the following
format:

[#][$]<path> <tag> [nodes...]

Both the '#' and '$' characters are optional. If a '#' is placed
before the path, that area will be treated as a passthru area.
(For more information on passthru areas, please see the section
entitled "Area Definitions" in the SQUISH.CFG reference.)

If a '$' is placed before the path, that area will be treated as
a Squish (*.SQ?) format message area. (For more information,
please see the section entitled "USING SQUISH-FORMAT MESSAGE
AREAS".)

Both the '#' and '$' characters should come immediately before
the first character of the area's path. No spaces are permitted.

<path> should specify the path of the EchoMail area. For a *.MSG
area, this should be the name of directory in which the *.MSG
files are kept. For a Squish (*.SQ?) area, this should specify
the path and root filename of the message area.

<tag> should be the one-word area tag to be used for that area.

[nodes] is the optional list of nodes to whom you send that echo.

For examples, please see the distribution copy of AREAS.BBS.

Squish v1.10 Reference Manual - Page 53



SQUISH.CFG REFERENCE

SQUISH.CFG is the main Squish configuration file. SQUISH.CFG
controls most aspects of Squish's operation, including the
message areas it uses, the directories where it places files, and
even how to remap messages addressed to certain users.

SQUISH.CFG is divided into two logical sections: firstly, there
is the main configuration section. This section contains
information about your system and everything else that Squish
needs to know. Secondly, there is an optional area configuration
section. This part of the configuration file allows you to
define NetMail, EchoMail, dupe storage and bad message areas for
your system.

SQUISH.CFG is an ASCII file, so it can be edited using a text
editor (or a word processor in non-document mode). Lines which
begin with a semicolon (;) are treated as comments and are
ignored.

Configuration Options

This section describes all of the commands and options available
in the system information section of SQUISH.CFG. For information
on defining EchoMail, NetMail, bad message or dupe storage areas,
please see the next section.

The following is an alphabetical listing of keywords in
SQUISH.CFG. Descriptions are given for all keywords, and
examples are given where appropriate.

AddMode (BinkleyTerm systems only)

The AddMode keyword enables the "add mode" functionality of
the outbound directory manager. Add mode causes new file
attaches to be merged into existing attaches of different
flavours. When add mode is turned on, Squish will perform
some special processing before creating a file attach.
Instead of simply creating an attach with the specified
flavour, it will first scan the outbound directory to see if
any other attaches exist for the same node. If a non-
normal-flavoured attach is found, add mode will cause Squish
to add the current file to that attach, regardless of the
flavour specified for the "Route" or "Send" commands.

This verb is useful in many situations, such as when a node
goes down for a short period of time. With add mode turned
on, simply change the flavour of the existing attaches in
the outbound area to "hold". When Squish scans out more

Squish v1.10 Reference Manual - Page 54



mail for that node, it will notice the hold attach and it
will hold all new mail as well. This means that no
modifications to your routing control files are necessary,
even if you are using "Route Crash" or "Send Crash" for that
particular node.

By default, with add mode disabled, Squish will simply use
the given flavour, without attempting to check for other
existing attaches.

Address <node> [<node>...]

The Address keyword defines one or more network addresses
used by your system. The first address specified in
SQUISH.CFG is considered to be your "primary address", and
this address will be used for all outbound mail (unless told
otherwise -- see the documentation on the EchoArea keyword
in the "Area Definitions" section of the SQUISH.CFG
reference).

Squish handles full 4D addresses and is capable of running
as either a bossnode or a point.

For a normal network node, only one address statement is
required. Your primary address should be declared in this
format:

Address 1:123/456

where "1:123/456" is your full network address, including
zone number.

For fakenet points, two addresses are required. The first
address declared in SQUISH.CFG should be your fakenet
address, and the second address should be your full 4D point
address. Both addresses must include the proper zone
number. For example, a fakenet point at 1:123/456.1 (using
a fakenet of 12345) might use the following set of address
statements:

Address 1:12345/1
Address 1:123/456.1

In addition, fakenet points must also use the "PointNet"
verb, below.

For 4D points, only one address is required. This address
should be your full 4D point address, and it should be
declared as the first address in your configuration file.

Squish v1.10 Reference Manual - Page 55



For example, a 4D point of 1:123/456 might use the following
address statement:

Address 1:123/456.1

However, to use 4D points, all of your software must be able
to handle 4D addresses, and your mailer and EchoMail
processors must compliant with the "2+" packet type.

After you have defined your primary address, any number of
AKA (Also-Known-As) addresses may be listed. These
addresses won't be used for outgoing mail, but Squish will
use these AKAs to determine whether or not a packet is
destined for your system.

Any number of AKAs may be specified, up to the limit of
available memory.

AddToSeen <node> [<node>...]

The AddToSeen keyword globally adds a node number to the
SEEN-BYs of all EchoMail areas which are processed by your
system. The AddToSeen keyword specifies one or more two-
dimensional address (net/node only) which are to be added.
This keyword adds these addresses to ALL echoes, so it
should be only used in special situations. By default, your
primary address is added to the SEEN-BYs for all areas. For
information on changing your primary address, or for adding
to the SEEN-BYs on an area-by-area basis, please see the
"Flags" section of the SQUISH.CFG reference.

ArcmailAttach

The ArcmailAttach keyword informs Squish that your mailer
requires "ARCmail file attaches" to transmit EchoMail to
other systems. Mailers such as FrontDoor, D'Bridge, and
InterMail require this keyword, whereas others (such as
BinkleyTerm) do not. If you are not running any of the
above pieces of software, please consult your mailer's
documentation to determine whether or not it requires
ARCmail attaches.

When this keyword is enabled, Squish operates differently in
several ways:

* Packing of the NetMail area is disabled. Mailers which
require ARCmail attaches perform dynamic packing on
their own, so this portion of the Squish code is
automatically disabled.

Squish v1.10 Reference Manual - Page 56



* ARCmail attach messages will be generated for outbound
EchoMail. This support is internal to Squish, so no
external utilities are required.

* Most of the routing code for the SQUISH SQUASH command
is disabled. Again, since ARCmail attach mailers
perform dynamic routing, these features are not
required.

* Squish will only write packets to the OUTBOUND.SQ area,
and it will disable the use of BinkleyTerm-style "zoned
outbound directories".

* Squish will enable 4D point support, since most ARCmail
attach mailers are capable of handling 4D points.

By default, ARCmail attach support is disabled. This means
that:

* Squish will perform packing of the NetMail area.
Squish will gateroute messages, handle file attaches,
file requests and update requests, in addition to the
optional deletion and truncation of attached files.
Messages will be packed from all areas declared using
the 'NetArea' keyword.

* Squish will perform static routing and packing in the
outbound areas. If the BinkPoint verb is implemented,
Squish will enable support for 4D points on a
BinkleyTerm-style system.

* Squish will directly process BinkleyTerm-style zoned
outbound directories and enable full support for all
commands in ROUTE.CFG.

Unless the ArcmailAttach verb is set correctly, Squish may
produce unpredictable and unreliable results on your system.
Make sure that this verb is set appropriately before running
Squish.

AreasBBS <filespec>

The AreasBBS keyword specifies the path and name of a
ConfMail-compatible AREAS.BBS file, which is one way of
defining EchoMail areas. Please see the section entitled
"AREAS.BBS REFERENCE" for more information on using this
command. Note: the '-a' command-line switch can also be
used to override the filename given for this command.

Squish v1.10 Reference Manual - Page 57



BatchUnarc

The BatchUnarc keyword instructs Squish to decompress all
compressed mail bundles at the same time. By default,
Squish will decompress one mail bundle, toss all of the
packets in it, decompress the next bundle, toss those
packets, and so on. Although this method makes efficient
use of disk space, there is a slight chance that messages
may get out-of-order, depending on the order in which the
compressed mail archives arrived on your system.

The BatchUnarc keyword instructs Squish to decompress all of
the compressed mail archives at once, and to then toss the
*.PKT files. Squish always sorts packets by date before
tossing, so this ensures that messages will not get out of
order.

BinkPoint (BinkleyTerm systems only)

The BinkPoint keyword enables the BinkleyTerm 2.50+ point
directory support. When this keyword is enabled, Squish
will turn on full 4D address support, and Squish can then
communicate freely with 4D points running BinkleyTerm.

If you are using 4D points with Binkley 2.50 or above, BOTH
the boss and the point must have this keyword enabled.

Buffers <type>
or

Buffers <writebuf> <outbuf> <msgbuf>

The Buffers keyword can be used to limit Squish's memory
usage. Two different forms of the keyword can be used:

With "Buffers <type>":

<type> is any of "Small", "Medium" or "Large". These
types are just short-hand for certain predefined buffer
sizes. (See below for more information.)

With "Buffers <writebuf> <outbuf> <msgbuf>":

<writebuf> controls the amount of memory used to buffer
writes to disk. (This parameter does not provide for
much of a speed increase beyond 16k.)

<outbuf> controls the amount of memory used to buffer
messages for various nodes. This parameter controls
how often Squish has to stop tossing and place packets
in the outbound area. For systems which forward mail

Squish v1.10 Reference Manual - Page 58



to many nodes, this parameter will have a significant
impact on processing speed.

<msgbuf> controls the maximum message size that Squish
is able to process, for either inbound or outbound
mail. Under the 16-bit versions of Squish, this
parameter is limited to 63K.

The defaults for the 16-bit versions of Squish (SQUISH and
SQUISHP) are:

BUFFERS writebuf outbuf msgbuf
Small 16k 16k 16k
Medium 26k 40k 32k
Large 57k 57k 63k

The defaults for the 32-bit versions of Squish (SQ386 and
SQ386P) are:

BUFFERS writebuf outbuf msgbuf
Small 64k 64k 64k
Medium 76k 128k 128k
Large 128k 512k 256k

The buffer sizes shown for "Small" are the lowest values
that can be specified. In addition, buffer sizes for the
16-bit versions of Squish cannot be larger than 63K.

Note that the small, medium and large buffer sizes have
changed from Squish 1.01. To use the same buffer sizes as
the "large" mode of Squish 1.01, use:

Buffers 57 57 16

If no "Buffers" statement is specified, Squish will use the
LARGE setting for writebuf and outbound and the MEDIUM
setting for msgbuf.

Keep in mind that while reducing the level of buffering will
provide the DOS versions of Squish with more memory,
reducing the buffer sizes will also have an impact on speed.
If you want Squish to run as fast as possible, use large
buffer values. If you want Squish to run in as little
memory as possible, use small buffers. If you want a
compromise, try using medium buffers.

Other tips for reducing memory usage:

Squish v1.10 Reference Manual - Page 59



* Disable the "Statistics" keyword. Keeping statistics
almost doubles Squish's memory requirements for storing
AREAS.BBS information.

* Reduce the "MaxAttach" and "MaxPkt" settings. A value
of 64 for each setting works for most systems.

* Reduce the "Duplicates" setting. However, since this
impairs Squish's ability to identify duplicate
messages, doing so is not recommended.

* Run SQUISH SQUASH in a separate pass from SQUISH IN
OUT. If memory is really tight, run everything in its
own separate pass. (See the section entitled "Running
Squish in Multipass Mode" in the OPERATION section for
more information.)

BusyFlags

The BusyFlags keyword enables "busy flag" support for
BinkleyTerm and InterMail systems. This option is required
when using more than one copy of your mailer with the same
outbound area; the busy flags provide for file locking,
which prevent collisions when two different nodes attempt to
send mail at the same time.

Squish has full support for the busy flag mechanism. To
further help throughput, Squish also performs most of its
operations in a separate holding directory, outside of the
main zoned outbound directories. Files are only transferred
to the outbound directories as necessary, which minimizes
the "down time" for any given node.

In addition, if Squish attempts to send mail to a node which
is busy due to mailer activity on another line, the packet
will be simply queued for later use, as opposed to waiting
for that node to become free again.

Unlike other mail processors, this means that Squish never
has to wait because of mail activity occurring on other
lines of a multi-line system, which makes Squish the ideal
choice for a multi-line installation.

If ArcmailAttach mode is enabled, Squish uses a busy flag
format that is compatible with InterMail (and certain other
ArcmailAttach mailers).

If ArcmailAttach mode is not enabled, Squish uses
BinkleyTerm-style busy flags.

Squish v1.10 Reference Manual - Page 60



When using BinkleyTerm, make sure to turn on busy flag
support by enabling the "Flags" directory and setting a non-
zero task number.

CheckZones

The CheckZones keyword instructs Squish to check the zone
numbers on all incoming packets. This option is enabled in
the default configuration file; however, it may cause
problems in secure mode with older, non-zone-aware systems.
Commenting out this option tells Squish not to check the
zone number when performing security checks on inbound
packets, which may help if you have to deal with such older
software.

Compress <filespec>

The Compress keyword gives the path and filename of the
compression configuration file. Squish can use almost any
external program to compress mail, including ARC, PKArc,
PKZip, LHarc (both 1.xx and 2.xx), ZOO, PAK, ARJ, and more.
Squish's compression support is completely user-definable,
so new archivers can be added to the configuration file with
ease. For more information, please see the documentation on
the "Pack" and "DefaultPacker" keywords, and also the
section entitled "ARCHIVES AND MESSAGE COMPRESSION".

DefaultPacker <packer>

The DefaultPacker keyword instructs Squish to use <packer>
as the default packer for compressed mail. <packer> must be
the name of a packer defined in the compression
configuration file.

NOTE! The official standard for compressed mail in FidoNet
is the version 5 ARC format. Unless you have a good reason
for changing the default, ARC should be left as the default
packer. Packer types can be changed on a node-by-node basis
through the "Pack" verb, so DefaultPacker should only be
used when necessary.

DupeCheck [<type>...]

The DupeCheck keyword controls the dupe-checking algorithm
used by Squish:

<type> can be either or both of "Header" or "MSGID".

"Header" instructs Squish to check the message header to
determine whether or not a message is a dupe. Squish will

Squish v1.10 Reference Manual - Page 61



hash the "To", "From" and "Subject" fields into a 32-bit
identifier. It will append the message date to this,
resulting in a 64-bit duplicate identifier.

"MSGID" instructs Squish to check the MSGID kludge to
determine whether or not a message is a dupe. Squish will
hash the text of the MSGID "address" field into a 32-bit
identifier. It will append the MSGID serial number to this,
resulting in a 64-bit duplicate identifier.

If only one of the above settings is enabled, Squish will
only use that method when determining whether or not a
message is a dupe.

However, if both MSGID and Header are specified, Squish will
perform both checks. If EITHER the MSGID or the header is
duplicated, Squish will declare the message to be a dupe.

Duplicates <number>

The Duplicates keyword instructs Squish to keep up to
<number> duplicate message IDs for each message area. By
default, Squish stores the IDs of the past 1000 messages.
Unlike other mail processors, Squish uses a highly-accurate
64-bit duplicate identifier, so increasing <number> will NOT
significantly increase the chances of a duplicate message
being falsely detected.

Feature <name> (OS/2 only)
Feature32 <name> (OS/2 only)

The Feature and Feature32 keywords instruct Squish to load a
third-party DLL file. <name> should be the root name of the
file to load, without the ".DLL" suffix.

The Feature keyword should only be used with 16-bit DLLs.
The Feature32 keyword should only be used with 32-bit DLLs.
(By convention, the name of the feature DLL will include a
"32" if it is a 32-bit DLL.)

See the Squish Developers Kit (to be made available shortly
after the release of Squish 1.1) for information on writing
feature DLLs.

Squish v1.10 Reference Manual - Page 62



ForwardFrom [FILE] <node> [<nodes>...]

The ForwardFrom keyword tells Squish that the forwarding of
in-transit NetMail messages is allowed, as long as the
messages originated FROM any of the specified nodes. If the
"FILE" keyword is added before the first node number, Squish
will also properly forward in-transit files. Any number of
nodes may be listed, and wildcards may be used.

NOTE! The ForwardFrom verb allows the specified nodes to
forward messages ANYWHERE. If you have your routing set up
to crash all messages to their destinations, this should
only be enabled for systems that you trust. For a more
conservative approach, see the ForwardTo keyword.

ForwardTo [FILE] <node> [<nodes>...]

The ForwardTo keyword tells Squish that the forwarding of
in-transit NetMail messages is allowed, as long as the
messages are destined TO any of the specified nodes. If the
"FILE" keyword is added before the first node number, Squish
will also properly forward in-transit files. Any number of
nodes may be listed, and wildcards may be used.

This option is appropriate for most systems, since it allows
anyone to forward mail to the specified systems, but to
those systems only. Unlike ForwardFrom, this means that you
have control over where the messages end up, as opposed to
the person who sent the message.

GateRoute <flavour> <gate> <node> [<nodes>...] [EXCEPT <node>
[<nodes>...]]

The GateRoute keyword causes Squish to perform gaterouting
on NetMail messages addressed to the specified gate or any
of the following nodes. Squish follows the FTS-0001
standard for gaterouting, so the messages produced by this
command should be acceptable to SEAdog and other non-zone-
aware mailers.

Gaterouting will only be performed on NetMail messages with
a flavour of normal. Messages marked as crash or hold will
never be gaterouted; instead, they will be classified as
direct interzone messages and will be treated accordingly.

<flavour> specifies the flavour to which messages will be
converted after gaterouting has taken place. The gaterouted
flavour should usually be normal (so that other commands in
ROUTE.CFG can compress and route the mail normally), but you
can specify an alternate flavour if you so desire.

Squish v1.10 Reference Manual - Page 63



<gate> specifies the address of the system to which messages
should be gaterouted. This should be the address of an
official network zonegate.

<node> and <nodes> specify the list of nodes for which
gaterouting is to be performed, including wildcards. All
NetMail messages which are addressed to these nodes will be
gaterouted through the specified gate system. (EchoMail
should NEVER be gaterouted.)

Optionally, a list of exceptions can be given for each
zonegate. Simply add the 'EXCEPT' keyword to the GateRoute
line, and for the current GateRoute keyword, Squish will
ignore all messages addressed to those nodes. Wildcards are
also supported for gaterouting exceptions.

For example, to gateroute all messages going from zone 1 to
zone 2, with the exception of messages destined for
2:123/456, the following gateroute statement could be used:

GateRoute 1:1/2 2:All Except 2:123/456

In zone 1 of FidoNet, the standard set of gaterouting
statements for other zones looks like this:

GateRoute 1:1/2 2:All
GateRoute 1:1/3 3:All
GateRoute 1:1/4 4:All
GateRoute 1:1/5 5:All
GateRoute 1:1/6 6:All

Include <filename>

This keyword instructs Squish to read in another file as
part of the standard SQUISH.CFG processing. The contents of
<filename> will be processed just as if they were placed
directly in SQUISH.CFG. Include files can be nested, but no
more than 16 levels of nesting are supported.

KillBlank

The KillBlank verb instructs Squish to delete blank NetMail
messages. Blank netmail messages are commonly generated by
ARCmail attach systems, manual file requests, file attaches,
and update requests. By definition, a "blank message" is a
message which consists only of a message header, kludge
lines and blank lines.

Squish v1.10 Reference Manual - Page 64



KillDupes

The KillDupes verb instructs Squish to delete duplicate
messages as they are received, as opposed to placing the
dupes in the DUPES message area. If you are encountering a
large number of dupes and you already know where the problem
is, this keyword can then be enabled to delete the dupes as
they are tossed. However, having a copy of the dupes tossed
into the DUPES area is instrumental to determining which
system originated the duplicate messages, so this keyword
should not be used for normal operation.

KillIntransit

The KillIntransit verb instructs Squish to delete in-transit
NetMail messages. Normally, Squish leaves in-transit
messages in the NetMail area for review by the SysOp, but
this keyword will cause Squish to delete in-transit messages
as soon as they have been packed up and sent to their
destination.

KillIntransitFile (non-ArcmailAttach systems only)

The KillIntransitFile verb instructs Squish to delete in-
transmit files. Squish will add a "delete-after-sending"
flag when writing the *.?LO file for the forwarded file.
This option is only valid for non-ArcmailAttach systems.

LinkMsgid

The LinkMsgid keyword instructs Squish to perform reply
linking on the basis of MSGID and REPLY keywords. This
style of linking ensures that the "read original" and "read
reply" fields in the message header always point to the
correct message. However, MSGID-based linking requires more
memory than the default subject-based reply linking.

LogFile <filespec>

The LogFile keyword instructs Squish to keep a log of
message information in the specified file. The log file is
Maximus and Binkley-compatible, so it's safe to keep all
three logs inside one file.

The Squish log file includes information on archives, packet
headers, areas which received mail, the amount of mail that
was sent from your system, and to whom. The log file
provides one way of obtaining EchoMail statistics; the other
way is through analysis of the binary statistics file. For

Squish v1.10 Reference Manual - Page 65



more information on binary statistics, please see the
"Statistics" keyword.

LogLevel <number>

The LogLevel keyword instructs Squish to include only a
certain subset of messages in the log file. <number> must
be a log level number from 0 to 6. (The default log level
is 6.)

The types of lines logged for each log level are shown
below:

Level Flags
0 !
1 !+
2 !+*
3 !+*-
4 !+*-#
5 !+*-#:
6 !+*-#: (and a space)

MaxArchive <k>

When used in conjunction with MaxMsgs, this keyword helps to
control the maximum size of archive files that Squish
generates.

<k> specifies the approximate size, in kilobytes, of the
largest ARCmail file that Squish should create.

The MaxArchive value controls Squish's selection of archive
files when compressing messages. With MaxArchive set to
'x', Squish will not ADD any packets to archives which
exceed a size of 'x' kilobytes. Instead, it will create a
new archive for the same node, assuming that all of the
*.MO0 to *.MO9 filename extensions have not been used. If
all *.??0 through *.??9 have been used, Squish will add
packets to the *.??9 archive, regardless of its size, to
ensure that packets remain in order.

This keyword does not provide a strict upper limit on the
size of archives, but it does help to control archive size.
For example, assume that a value of "MaxArchive 100" is
used, and assume that a 99k file already exists. This file
is less than 100k, so Squish will add more mail to that
archive. Depending on your MaxMsgs setting, the mail to be
added could range from a few kilobytes to a few megabytes.

Squish v1.10 Reference Manual - Page 66



However, a relatively low value for MaxMsgs (100-200) allows
Squish to control the size of generated archives within
50-75k of the value specified by MaxArchive.

MaxAttach <number> (ArcmailAttach systems only)

The MaxAttach keyword specifies the maximum number of
ARCmail attach messages which can be in your NetMail
directory at any given time. For internal reasons, Squish
needs to know how many attaches you'll have concurrently.
The default, 256, is more than enough for most systems.
However, if you transfer an extremely large volume of mail
with an ArcmailAttach mailer, you may need to increase this
to 512 attaches or more.

MaxMsgs <msgs>

The MaxMsgs keyword instructs Squish to create a new set of
outbound packets after processing every <msg> messages. The
MaxMsgs keyword is useful in NEC situations, especially when
a large volume of mail is processed at the same time. This
verb helps to limit the size of packets that Squish
generates, by making it taking a break from tossing and
scanning after sending every <msgs> messages, and to then go
and archive the packets generated so far.

This keyword is completely automatic when running in single
pass mode; as long as IN, OUT and SQUASH are specified on
the command line, Squish will interleave the tossing,
scanning and packing automatically. However, when running
Squish in multipass mode, some batch file modifications are
required.

For multipass mode, after Squish finishes scanning every
<msgs> messages, it will stop execution and exit with an
errorlevel of 5. This errorlevel should be trapped by your
batch file, and SQUISH SQUASH should be called at that
point. After packing the NetMail area, your batch file
should call SQUISH IN OUT again. For example, the following
batch file segment could be used to run Squish in multipass
mode:

:TossIt
rem * Perform the main toss/scan cycle

SQUISH IN OUT -fECHOTOSS.LOG
if errorlevel 5 goto PackIt
goto DoneToss

:PackIt

Squish v1.10 Reference Manual - Page 67



rem * If we got here, it's because we exceeded MaxMsgs.
rem * We use -o, since we don't want to pack the netmail
rem * area right now.

SQUISH SQUASH -o
goto TossIt

:DoneToss
rem * Now, perform a full pack to take care of remaining
rem * archives, and also to handle any in-transit NetMail.
SQUISH SQUASH

When using the MaxMsgs keyword, Squish will create a file
called MAX_MSGS.DAT in the current directory. This file is
used to maintain information that is required between
passes, such as the current location in the packet file and
information about the packet itself.

MaxPkt <num>

The MaxPkt keyword informs Squish that there may be up to
<num> packets queued in the OUTBOUND.SQ directory. For
internal reasons, Squish needs to know the maximum number of
packets that you'll be keeping in OUTBOUND.SQ. MaxPkt
defaults to 256 packets, which should be more than enough
for most systems. Unless you run a very busy system, you
won't need to use this keyword.

NetFile [NoPkt] [NoArc] [NoEcho] <path>

The NetFile keyword specifies the path to one of your
inbound directories. When tossing mail, Squish will look in
all of the NetFile directories you specify in the
configuration file, and it will attempt to toss from each
one.

If the 'NoPkt' modifier is added before the directory name,
Squish will never toss plain *.PKT files from that
directory.

If the 'NoArc' modifier is added before the directory name,
Squish will never toss compressed mail files from that
directory.

If the 'NoEcho' modifier is added before the directory name,
Squish will never toss EchoMail messages from that
directory. NOTE! The NoEcho modifier cannot be used if
"BatchUnarc" is enabled. Squish must be able to toss one

Squish v1.10 Reference Manual - Page 68



incoming archive at a time to properly apply NoEcho
processing.

These modifiers can be used in conjunction with
BinkleyTerm's three-tiered inbound areas to make your system
slightly more secure.

Nuke (ArcmailAttach systems only)

The Nuke keyword instructs Squish to delete any orphaned
compressed mail files in the OUTBOUND.SQ directory. Before
performing a SQUISH SQUASH, Squish will scan the NetMail
area for ARCmail attach messages. It will then scan
OUTBOUND.SQ and delete any compressed mail file for which
there is no attach.

WARNING! This keyword is dangerous, since Squish will
delete compressed mail bundles if an ARCmail attach message
is accidentally deleted.

Most systems do NOT require this keyword. If your mailer
supports the ^aFLAGS kludge for truncating files, this is
not necessary.

As of this writing, the only mailers which is known to
require the Nuke keyword is D'Bridge. Some users have also
reported that the Fido mailer also requires this keyword.

NoSoundex

The NoSoundex keyword instructs Squish to disable the
automatic "Soundex" feature for remapping point mail. In
certain cases, the Soundex feature may incorrectly map the
name of a point, so this keyword can be used to ensure that
Squish uses exact name matching when processing remapped
mail.

NoStomp

The NoStomp keyword instructs Squish to leave packet headers
alone when routing mail with the "Route" keyword in
SQUISH.CFG. (Packet stomping is normally required to ensure
that the packet is addressed properly, including the packet
password and destination address.)

Squish v1.10 Reference Manual - Page 69



OldArcmailExts

This keyword instructs Squish to use the old file extension
format when creating compressed mail archives. Normally,
Squish creates files with extensions of .MO?, .TU?, .WE?,
and so on. If OldArcmailExts is enabled, Squish will use
the .MO? extension only, for compatibility with older
systems such as Opus 1.03.

Origin <text>

The Origin keyword specifies a default origin line to use
for EchoMail messages. If no origin can be found in the
body of a message which was originated locally, Squish will
use this text as the default origin line.

If you are using AREAS.BBS, this keyword is not required.
The AREAS.BBS format includes a default origin line, and
that origin will override the one given in SQUISH.CFG.

Outbound <path> [zone]

This keyword is required for both ArcmailAttach and
BinkleyTerm systems.

When running Binkley, this keyword gives the path to the
base outbound directory. Specify only the base path of your
outbound directory, such as "D:\Bt\Outbound". If you are
using a BinkleyTerm system, Squish will add the zoned
directory extensions automatically, so only one outbound
path needs to be declared for most systems. If a particular
outbound directory does not exist, Squish will create it on
the fly.

Squish also creates a directory with an extension of .SQ for
both BinkleyTerm and ArcmailAttach systems. This is used by
Squish as a temporary work directory for packets.

With the optional [zone] parameter, Squish supports
BinkleyTerm's domain outbound directories, using zone-based
domain resolution.

The first "Outbound" keyword in SQUISH.CFG must not contain
a zone number. This keyword will be used as the default
outbound directory for your primary domain.

After the first default "Outbound" keyword, any number of
domain-specific "Outbound" keywords can follow. The [zone]
parameter instructs Squish that mail for the given zone

Squish v1.10 Reference Manual - Page 70



belongs to a different domain and should be placed into a
different directory.

For example, given the following definitions:

Outbound \squish\outbound
Outbound \squish\alternet 7
Outbound \squish\foonet 123

Mail for zone 7 will be placed into \squish\alternet,
since the zone number matches the second "Outbound"
keyword.

Mail for zone 123 will be placed into \squish\foonet,
since the zone number matches the third "Outbound"
keyword.

Mail for your primary zone number will be placed into
\squish\outbound. The zone number does not match any
of the zone-specific outbound directories, so the mail
goes into the default directory.

Mail for zone 9 will be automatically placed into
\squish\outbound.009. The zone number does not match
any of the zone-specific outbound directories, so it
goes into a zoned version of the default directory.

Pack <packer> <node> [<nodes>...]

The Pack keyword instructs Squish to use the specified mail
compression program when compressing mail for the listed
nodes. By default, if a node is not listed after any Pack
keywords, Squish will use the compressor defined with the
DefaultPacker keyword. If no default packer is declared,
Squish will simply use the first packer listed in
SQUISH.CFG. Since the FidoNet standard for mail compression
is ARC, you are urged not to change the default. Instead,
the Pack keyword can be used to change the compression
method on a node-by-node basis.

<packer> specifies the name of a packer, as specified in
COMPRESS.CFG. Please see the section entitled "ARCHIVERS
AND MESSAGE COMPRESSION" for information on COMPRESS.CFG.

<node> and <nodes> specify the nodes for which this packer
should be used. Any number of nodes may be listed here,
including wildcards. When packing mail for any of the nodes
listed after a particular packer, Squish will attempt to run
that packer using the information given in COMPRESS.CFG.

Squish v1.10 Reference Manual - Page 71



You can specify as many nodes as you like, and you can also
use as many packers and Pack lines as desired. When
unpacking compressed archives, Squish will determine the
archive type automatically, again using the information
given in COMPRESS.CFG.

WARNING! Squish will not attempt to convert archives from
one type to another. Before changing the compression type
for a certain node, make sure that no other compressed mail
archives are waiting to be sent to that system. If there
was, Squish would attempt to add a packet to that archive
using the wrong archiver, which would certainly cause
problems.

Password <node> <password>

The Password keyword allows passwords to be assigned to
individual systems. For more information on using
passwords, please see the section entitled "SECURITY".

<node> should specify a single node address. No wildcards
are permitted.

<password> is the case-insensitive password to use for the
specified node. Passwords must be eight characters or
fewer, with no spaces allowed.

PointNet <net>

PointNet specifies the "fakenet" number to use for non-4D
points. The fakenet point scheme was designed to work with
systems which were unable to support true points, such as
BinkleyTerm 2.40 and lower.

When this keyword is used on the bossnode system, it causes
the specified net number to be stripped from the SEEN-BYs
for messages being exported to non-point systems. The
fakenet number will also be used on the bossnode for
remapping point addresses.

If used on a point system, this keyword ensures that the
right address is used on the point's origin line, if Squish
is actually forced to add an origin line to a message.

NOTE! The point software should be responsible for placing
the correct origin line in messages generated by that point.
Squish will use the correct address if Squish itself inserts
the origin, but Squish will never modify an existing origin
line.

Squish v1.10 Reference Manual - Page 72



QuietArc

The QuietArc keyword instructs Squish to suppress the screen
output of external compression utilities. This option makes
the screen look tidier, but it doesn't make any functional
changes.

Remap <node> <name> (non-ArcmailAttach systems only)

The Remap keyword is used to readdress mail with specified
addresses in the "To:" field. Unlike other mail processors,
Squish's remapping facility is a full node remapper.
Messages can be remapped anywhere, from a point across the
street to another system across the world.

<node> specifies the network address of the system for which
mail is to be remapped. This address must be EXPLICIT; if
you are remapping mail to a 4D point, then you must specify
the address in a 4D format. If you are remapping mail to a
fakenet point, you must specify the node's fakenet address.

<name> should be the name to check for in the "To:" field of
inbound messages. When a NetMail message arrives that is
destined for your system, Squish will scan the "To:" field
for all of the names listed in Remap statements. If it
finds a match, it will readdress the mail to the appropriate
address and write the message back to disk.

The <name> field has two special features:

* Name wildcards. By placing a "*" at the end of a name,
Squish will automatically remap messages which begin
with that text. For example, using a remap name of
"Jes*" would remap messages which were to "Jesse
Hollington", "Jesse", and so forth.

* Soundex support. If Squish can't find an exact match,
it will perform a soundex compare of both the "To:"
field and the Remap names. If a misspelled match is
found, the message will still be readdressed (and noted
in the log). To disable Soundex support, see the
"NoSoundex" keyword.

Remap statements are processed in sequential order, from top
to bottom. Therefore, if you wish to have a "clean up"
statement to remap messages which were not caught by other
Remap statements, include the command "Remap <node> *" after
all other Remap statements. This will cause Squish to remap
all remaining messages to the specified address, even if it

Squish v1.10 Reference Manual - Page 73



couldn't find a match using any of the other Remap
statements.

Routing <filespec>

This keyword specifies the location of the routing
configuration file. By default, Squish will look for
ROUTE.CFG in the current directory.

SaveControlInfo (Squish message areas only)

When this keyword is enabled (as it is in the default
configuration file), Squish will preserve SEEN-BY and path
information in *.SQ?-style message areas. If this keyword
is commented out, Squish will strip SEEN-BY information from
*.SQ? areas (when running in single pass mode ONLY).

If you are really tight on disk space, stripping the SEEN-
BYs is one way to reduce disk requirements. As long as you
are running in one-pass mode, the *.SQ? format is safe to
use without having SEEN-BYs written to the local message
base. However, Squish will always write SEEN-BY information
for *.MSG areas, as it will for *.SQ? areas when running in
multipass mode.

Secure

The Secure keyword enables Squish's packet security
features. For more information, please see the section
entitled "SECURITY".

Statistics [filename]

The Statistics keyword turns on a binary statistics file,
SQUISH.STT, which is used to hold extremely verbose
statistics information about inbound and outbound messages.

The Squish statistics file includes enough information to
create a 100% accurate billing report for NECs and other
EchoMail hubs. A minimal program (SSTAT) is included to
parse this statistics file and display a billing report.

[filename], if specified, overrides the default filename for
the statistics file. For example, to instruct Squish to
place the statistics file in d:\squish\squish.stt, the
following keyword should be used:

Statistics d:\squish\squish.stt

Squish v1.10 Reference Manual - Page 74



Note that the "Statistics" keyword will approximately double
the memory requirements for reading the SQUISH.CFG and
AREAS.BBS files.

StripAttributes [node [node...] [EXCEPT node [node...]]]]

The StripAttributes keyword instructs Squish to strip the
crash, hold and direct bits from incoming messages.

This keyword is enabled in the default configuration file,
since it prevents other systems from overriding your routing
by sending a crash-flavoured message through your system.

However, some systems run "power points" which have file
attach privileges, so this keyword may need to be disabled
to give full control of the system to the points (and
everyone else).

If no [node] parameter is specified, Squish will strip
attributes from all incoming mail by default. If nodes are
specified, Squish will strip attributes on incoming mail
from those nodes only.

In addition, the EXCEPT keyword can be used to exclude
certain nodes from StripAttributes processing.

For example, the following line:

StripAttributes 1:All 2:All EXCEPT 1:123/456

instructs Squish to strip attributes from all messages from
zone 1 and zone 2, except those which originate from
1:123/456.

Swap [filespec] (DOS version only)

The Swap keyword instructs Squish to swap itself out of
memory before calling external archiving programs. If you
are running Squish in a restricted environment, swapping can
save 200K of conventional memory (or more).

By default, Squish will first try to swap itself to XMS and
then EMS. If unsuccessful, Squish will try to swap itself
to disk. When swapping to disk, Squish will use a default
swap filename of __SQUISH.ÜÜÜ in the current directory.
However, if you wish to specify an alternate path and
filename (such as a file on a RAMdisk), you can do so here.

THIS KEYWORD MUST SPECIFY A FILENAME, NOT JUST A PATH!

Squish v1.10 Reference Manual - Page 75



TinySeenBys <node> [<nodes>...] [EXCEPT <nodes>...]

The TinySeenBys keyword instructs Squish to strip down the
SEEN-BYs to a bare minimum when exporting or scanning
messages to the specified nodes. The SEEN-BYs in the
messages sent to those nodes will contain only the addresses
of those systems which are listed for the EchoMail area in
question. Any number of nodes may be specified, and
wildcards can be used.

The "EXCEPT" keyword can be used to except certain nodes
from tiny SEEN-BY processing.

For example, the following line

TinySeenbys 1:249/All 1:12/All Except 1:12/12

instructs Squish to generate tiny SEEN-BYs for all nodes in
nets 249 and 12, with the exception of node 12/12.

TossBadMsgs

Uncommenting the TossBadMsgs keyword indicates that it's
safe to toss messages from your BAD_MSGS area. Normally,
when Squish finds a message with an unknown area tag, or if
it finds an insecure message, Squish will place that message
in the BAD_MSGS area. However, if the message later becomes
valid (such as when the SysOp adds an EchoArea definition
for a previously-unknown area), Squish can automatically
toss messages from that area. This feature can save you
from manually moving dozens of misdirected messages.

Note that the -u command-line parameter can be used to
toggle this mode.

Track <filespec>

The Track keyword specifies a filename to use as a separate
log for in-transit NetMail. If this keyword is enabled,
Squish will log the To:, From: and Subject: lines of all in-
transit netmail, in addition to the messages' origination
and destination addresses.

This keyword is useful for determining exactly who is
forwarding messages through your system, and where the final
destinations of those messages were. In addition, Squish
will also place a note in the log if an AREA: line was found
in the forwarded message, which indicates that the message
in question was a routed EchoMail message.

Squish v1.10 Reference Manual - Page 76



WARNING! This keyword must point to a separate log file.
You cannot use the same log for both Track and LogFile.

ZoneGate <target> <node> [<nodes>...]

The ZoneGate keyword is used to strip the SEEN-BYs on
messages destined for other zones. According to the FidoNet
Technical Standards Committee, SEEN-BYs should be stripped
whenever a message crosses a zone boundary. The procedure
of stripping the SEEN-BYs on such a message is called
"zonegating".

<target> specifies the node for which you are zonegating
mail. All EchoMail messages destined to this node will have
their SEEN-BYs stripped.

<node> and <nodes> specify one or more nodes to add to the
SEEN-BYs of the zonegated messages, AFTER the original SEEN-
BYs have been stripped. These addresses should be two-
dimensional (net and node only), since there are no
provisions for zone or point numbers in SEEN-BYs.

WARNING! Unlike other mail processors, Squish does not
automatically add any addresses to the SEEN-BYs of zonegated
messages. As a bare minimum, you should add your own
address and the address of the zonegate.

For example, to zonegate messages from 1:123/456 to
2:987/654, the following ZoneGate line might be used:

ZoneGate 2:987/654 123/456 987/654

Notice that both our address (123/456) and the zonegate's
address (987/654) were included in the <nodes> section of
the command. Failing to add both of these nodes may cause
dupes.

Squish v1.10 Reference Manual - Page 77



Area Definitions

Squish supports a flexible method for defining message areas in
the Squish configuration file. The same mechanism is used for
defining EchoMail, NetMail, BAD_MSGS and duplicate message areas.
The general format of an area declaration is:

<type> <tag> <path> [flags] [nodes]

Area Types

<type> specifies the type of area to define. A type must be
specified for all areas. This type should be one of the
following keywords:

NetArea This area is defined as a NetMail area. For
BinkleyTerm systems, Squish will pack messages from all
NetAreas specified. For ArcmailAttach systems, Squish
will use the first NetArea declared for creating
ARCmail file attaches.

EchoArea This area is defined as an EchoMail area. Messages can
be tossed to and scanned from this area using the
standard Squish commands.

BadArea This area is defined as a "bad messages" (or BAD_MSGS)
area. This will be used to store messages with
security violations, messages for unknown areas, and
other messages for which Squish couldn't find a proper
home.

DupeArea This area is defined as a duplicate message area. If
Squish receives duplicate messages from another system
(and if KillDupes is NOT enabled), those messages will
be placed into this area for review by the SysOp.

Area Tags and Paths

<tag> specifies a short, one-word area tag (name) to use for the
area being defined. For EchoMail areas, this tag should be the
name of the echo. For other area types, such as NetAreas and
BadAreas, any unique tag can be used.

<path> specifies the directory and/or filename to use for this
message area. If using the *.MSG format, the name of a separate
directory should be given for each area. If using the Squish
format (*.SQ?), a path and root filename (up to eight characters

Squish v1.10 Reference Manual - Page 78



with no extension) should be given. Squish will automatically
create areas which do not exist.

WARNING! The <tag> and <path> fields in AREAS.BBS are
"reversed", meaning that the path comes before the tag. If you
are used to defining areas in AREAS.BBS, make sure that you use
the proper order when defining areas in SQUISH.CFG (tag and then
path).

Flags

[flags] specifies an optional set of flags and options. A flag
consists of a single dash followed by a letter, plus an optional
modifier. The flags currently supported by Squish are:

-f This flag tells Squish that the area is stored in
FTS-0001 (*.MSG) format. *.MSG is the default
storage format, so this flag usually is not
required. When the *.MSG format is being used,
the name of the *.MSG directory should be given
for <path>.

-h This flag tells Squish to ensure that all incoming
messages have the PRIVATE bit enabled. This is
useful for NetMail areas or other area types where
confidential information may be exchanged.

-p<node> This flag specifies an alternate primary address
for the current area. <node> should be a full 4D
address, including zone and point numbers (if
appropriate).

Using an alternate primary address will affect
Squish's operation in the following ways:

* The alternate address will be added to the
SEEN-BYs for the specified area, as opposed
to adding the first address declared in
SQUISH.CFG.

* The alternate address will be added to the
^aPATH line instead of your normal address.

* The alternate address will be used when
creating packets with messages from the
specified area.

Squish v1.10 Reference Manual - Page 79



This flag permits "clean" multi-zone operation
with only one configuration file, even when using
a diverse range of addresses and message areas.

-s This flag strips the private bit from all messages
which are tossed to this area. Unlike other
EchoMail processors, handling of private messages
can be controlled on an area-by-area basis.

-u<node> This flag instructs Squish to accept broadcast
modify/delete messages from the node in question.
See the section entitled "BROADCAST MODIFY/DELETE"
for more information.

-x<node> This flag instructs Squish NOT to accept any
inbound messages in this echo from the specified
address. This flag can be used to make a certain
node "read only" for one area, since messages
coming from that node will trigger a security
violation and be placed in BAD_MSGS.

-0 (That's a zero, not the letter "o".) This flag
tells Squish that the current area is a "passthru"
area. This means that messages from this area
don't stay on your system; they are simply scanned
out to the other systems listed for this area and
then deleted. If you are running Squish in single
pass mode, messages will be scanned directly from
the inbound *.PKT files and will never touch your
message areas.

-+<node> This flag adds a node to the SEEN-BYs for the
current area only. <node> should be a two-
dimensional address (net/node only).

Note! If you are using an alternate primary
address, that address will be added to the SEEN-
BYs automatically.

-$ This flag tells Squish that the area is stored in
the Squish (*.SQ?) format. When using this flag,
<path> should specify the full path and root
filename of the Squish area. (A root filename is
the path and the first eight characters of a DOS
filename, with no extensions permitted.)

-$d<num> This flag specifies that no more than <num> days

Squish v1.10 Reference Manual - Page 80



worth of messages should be kept in a Squish-style
area. This causes SQPACK to delete all messages
which are more than <num> days old. NOTE! Unlike
-$m, this flag does NOT cause Squish to purge
messages on the fly. If you choose to delete
message by date, you must run SQPACK once a day.
Otherwise, if you choose to delete by message
number, you can allow Squish to renumber and purge
the area as it tosses.

-$m<msgs> This flag specifies the maximum number of messages
to keep in a Squish-style area. Normally, Squish
leaves the maximum message counter alone in a
*.SQ? area. However, if Squish has to create the
area for one reason or another, the maximum
message counter will be set to a value of <msgs>
messages. Using the -$m switch also implicitly
activates the -$ switch.

-$s<msgs> This flag specifies the number of messages to skip
killing <msgs> messages at the beginning of a
Squish-style area. This flag must be used in
conjunction with the -$m flag. See the section
entitled "USING SQUISH-FORMAT MESSAGE AREAS" for
more details.

Squish v1.10 Reference Manual - Page 81



Split Area Definitions

Squish allows EchoMail areas to be defined in SQUISH.CFG,
AREAS.BBS, and it even allows area definitions to be split
between both. Such splitting is necessary, especially if you
want to use Squish-specific features and also wish to remain
compatible with the AREAS.BBS file format.

When declaring a split area in either SQUISH.CFG or AREAS.BBS,
Squish will check to see if that area exists in the list of
existing areas. If it does, Squish will simply add to that
area's definition, as opposed to creating a new logical area.
Nodes and flags specified in one file will be automatically
applied to the other; in other words, the following two
definitions:

AREAS.BBS:

$C:\Msg\Magic XXYZY 1:123/456 789

SQUISH.CFG:

EchoArea XXYZY C:\Msg\Magic -$ -p1:234/567

would be equivalent to the following definition in SQUISH.CFG
only:

EchoArea XXYZY C:\Msg\Magic -$ -p1:234/567 1:123/456 789

Declaring areas using this method enables all of the new Squish
features, but it also allows for compatibility with utilities
which use AREAS.BBS for node information, including Areafix and
many others.

Squish v1.10 Reference Manual - Page 82



ARCHIVERS AND MESSAGE COMPRESSION

Through the use of external file archiving utilities, Squish is
capable of compressing mail that it sends to other systems. If
you are using the Send and Route keywords in ROUTE.CFG, Squish
will automatically compress mail for the specified nodes.
Instead of sending *.PKT files, Squish will then send *.MO?,
*.TU?, *.WE?, *.TH?, *.FR?, *.SA? and *.SU? files. (The last
part of the file extension will be a single digit; this digit is
incremented after creating each archive, which ensures that
compressed mail files do not get overwritten once an archive
arrives at its destination.)

In addition, Squish allows you to define a separate compression
program for individual nodes. Some of the systems you connect
with may wish to use ARC, while others may elect to use ZIP and
LZH. The Pack and DefaultPacker statements in SQUISH.CFG can be
used to select different archivers for each node.

However, Squish takes a new approach to message compression.
Instead of hardcoding support for all of the archivers currently
available, Squish uses a "compression configuration file". Using
such a file allows Squish to support as many archive types as
possible. The flexibility of this file even allows Squish to use
archiving programs which have not been invented at the time of
this writing.

In SQUISH.CFG, the Compress keyword controls the location of the
compression configuration file. As distributed, COMPRESS.CFG
comes configured for use with ARC, ZIP, PAK, ZOO, ARJ, LHarc 1.13
and LHarc 2.xx. However, new programs can be added to Squish's
repertoire on a moment's notice.

COMPRESS.CFG is divided into a number of entries, one per
archiver. (As many archivers can be defined as you like, memory
limiting.) Each entry in COMPRESS.CFG looks like this:

Archiver <name>
Extension <ext>
Ident <pos>,<hexstr>
Add <cmd>
Extract <cmd>
View <cmd>

End Archiver

The "Archiver" keyword starts off the definition of an archiving
program. <name> specifies the short-form name of the archiver;
this short form should be a single word, since Squish uses it to
select compression types with the Pack statement in SQUISH.CFG.

Squish v1.10 Reference Manual - Page 83



<ext> is the file extension normally used by the specified
archiver. At present, this information is not used by Squish,
but it may be used by other programs which share the same
COMPRESS.CFG file.

Next comes the Ident keyword: the information provided by this
keyword allows Squish to identify archives of unknown types.
Most archiving programs place a special signature at the
beginning of a compressed file, so when Squish encounters such a
file, these special signatures are used to determine how to
unpack the archive.

The <pos> number tells Squish where to look for the archiver's
signature. If <pos> is greater than or equal to zero, it is
interpreted as an offset from the start of the file, with the
first byte being offset 0, the second byte being offset 1, and so
on. If <pos> is negative, Squish will interpret it as an offset
from the END of the file, with -2 being the last byte in the
file, -3 being the second-last byte in the file, and so on.

<hexstr> is an ASCII representation of the archiver's signature.
Every byte in the archiver's signature should be converted to
hexadecimal, and then entered into the compression configuration
entered as two hexadecimal digits. Since most archivers use
special control characters in their signatures, entering the
signatures directly is not possible. However, by representing
each byte as two hexadecimal digits in the range 0-9 and A-F,
even the simplest of editors can read the compression
configuration file.

The Add keyword specifies the command which should be used to add
files to the specified type of archive. Similarly, the Extract
and View keywords specify the commands to use for extracting from
and viewing archives (respectively).

Before executing the archiver, Squish will make two special
translations: all occurrences of the string "%a" will be changed
to the name of the archive being processed. Similarly, all
occurrences of the string "%f" will be changed to the name of the
file(s) to be added or extracted. These tokens allow the utmost
in flexibility when handling multiple archiving programs.

The "End Archiver" keyword signifies the end of an archiver
definition. Each "Archiver" keyword must be followed by an "End
Archiver" keyword later in the file.

In addition, if Squish encounters a line prefixed with the "DOS"
or the "OS2" keywords, it will only parse that line when running
under the indicated operating system. This allows different
archiving programs to be used under DOS and OS/2.

Squish v1.10 Reference Manual - Page 84



ROUTING

Squish includes a complete routing control system for both
BinkleyTerm and ArcmailAttach mailers. Squish is capable of
generating ARCmail attach messages for systems with dynamic
routing, and it also includes a full complement of commands for
handling static routing.

All of Squish's routing is performed via the ROUTE.CFG file.
Whether you are using dynamic (ArcmailAttach) or static (Binkley)
packing, all of the Squish routing commands must be placed in
this file.

As distributed, all of the commands in your routing control file
are executed every time a SQUISH SQUASH is performed. However,
Squish's routing system can be used to implement "schedules",
which cause certain routing commands to be performed at certain
times. (Schedules can be run on the basis of the time of day, or
they can be simply run on demand.)

Commands which are to be always run, regardless of schedules,
must be placed in the "global section", or before the first
"Sched" statement in ROUTE.CFG. The only difference between
schedules and the global section is when the commands are
performed; otherwise, after Squish has started processing a
section of the control file (whether it be the global section or
a schedule), all routing commands are treated the same.

Generic Routing Commands

Several routing commands apply to both static and dynamic
packing. Namely, all of following commands can be used equally
well on both BinkleyTerm and ArcmailAttach systems:

Send <flavour> [NoArc] <node> [<nodes>...]

The Send command scans for uncompressed mail with a normal
flavour, compresses it, and changes the mail's flavour. The
Send command changes the attributes of the mail, but it
never changes the mail's destination address. (If you wish
to change the destination address, please see "Route",
below.)

<flavour> specifies the flavour to use for the resulting
compressed mail file. Squish will assign this flavour to
the compressed mail archive after archiving all of the
packets for this node.

Squish v1.10 Reference Manual - Page 85



The optional NoArc modifier stops Squish from archiving the
packet that is created for the specified system. Squish
will simply change all normal-flavoured packets to the
specified flavour, placing all of the original packets into
one large packet file. The command "Send <flavour> NoArc
<node>" has the same net effect as "Change Normal <flavour>
<node>". This modifier apples to BinkleyTerm systems only.

<node> and <nodes> are simply a list of nodes to which mail
should be sent. Squish will expand all node number
wildcards and process all normal-flavoured packets for those
nodes.

In the BinkleyTerm outbound area, using Send (without the
NoArc modifier) has the following result:

xxxxyyyy.OUT --> xxxxyyyy.MO? + xxxxyyyy.?LO

With the NoArc modifier, the result will be as follows:

xxxxyyyy.OUT --> xxxxyyyy.?UT

Route <flavour> [NoArc] [File] <target> [<nodes>...]

The Route command scans for uncompressed mail with a normal
flavour, compresses it, changes the mail's flavour, and
(unlike Send) readdresses the mail. The Route command scans
for mail addressed to any of the specified nodes, but
readdresses that mail to the target. In other words, Route
scans for uncompressed mail destined to <nodes>, archives
the mail, and finally sends it to <target>.

<flavour> specifies the flavour to use for the resulting
compressed file.

The NoArc modifier (optional) stops Squish from archiving
the resulting mail. Squish will simply combine all of the
specified packets into one, give it the appropriate flavour,
and send it to the target without any form of compression.
This modifier applies to BinkleyTerm systems only. WARNING!
The NoArc modifier causes all 4D zone and point information
to be lost! Only net and node numbers will be maintained
for mail routed with the NoArc keyword.

The File modifier (optional) instructs Squish to route file
attaches in addition to messages. By default, all file
attaches are sent to the specified destination, regardless
of flavour. However, if the File modifier is used, Squish
will also scan for and route file attaches. This modifier
applies to BinkleyTerm systems only.

Squish v1.10 Reference Manual - Page 86



<target> is the address of the system which will receive the
routed packets. Make sure that you have made prior
arrangements with the target to route your mail, since it's
discourteous to route mail through someone else's system
without asking permission. Wildcards should not be used
when specifying the target address.

<nodes> are the addresses for which mail will be routed.
All of the normal-flavoured mail for these addresses will be
packaged up and sent to the target.

In the BinkleyTerm outbound area, using Route (without any
modifiers) has the following result:

xxxxyyyy.OUT --> XXXXYYYY.MO? + XXXXYYYY.?LO

When using the NoArc modifier, the Route command has the
following result:

xxxxyyyy.OUT --> XXXXYYYY.?UT

The File modifier causes the following changes to take
place, in addition to the above:

xxxxyyyy.FLO --> XXXXYYYY.?LO

Define <token> <text>

The Define token is used to provide a short-form for routing
commands. The Define command acts as a macro facility,
since it causes all further occurrences of <token> to be
replaced by <text>. As an example, the Define command is
useful if there is a common set of nodes for which different
routing commands must be applied over and over again. Given
the following Define statement:

Define Hub300 300 301 302 303 304 305 306

Squish would translate the word "Hub300" to "300 301 302 303
304 305 306" wherever that word occurred later in the file.
If the following route command were given:

Route Crash 1:123/300 Hub300

all of the mail for nodes 300 through 306 would be routed
through 1:123/300.

However, replacements will only take place when the defined
<token> is surrounded by whitespace or punctuation.

Squish v1.10 Reference Manual - Page 87



Dos <cmd>

The Dos command can be used to pass the name of an external
command to the operating system. The command will simply be
run via the default command processor (normally COMMAND.COM
for DOS, or CMD.EXE for OS/2).

Schedules

Squish supports the concept of "schedules", which are routing
commands that can be run at different times of the day. Squish
also supports a section of global routing commands which are
always run.

The "Sched" statement in ROUTE.CFG is used to begin a schedule.
All routing commands which precede the first Sched statement are
in the "global section", and they are always run when a SQUISH
SQUASH is performed. Squish will execute statements inside a
schedule up to the next Sched statement, or until the end of the
file is reached.

The format of the Sched statement is as follows:

Sched <tag> [day] [start] [end]

<tag> is a one-word identifier for this schedule. If you wish to
explicitly execute this schedule on demand, then this tag must be
specified on the command line through the -s command-line switch.
Otherwise, the name given to each schedule is irrelevant.

<day> instructs Squish to execute the schedule on certain days of
the week. To always execute a schedule, use the word "All". To
execute a schedule on weekends only, use the word "WkEnd". To
have it executed only on weekdays, use "WkDay". To execute the
schedule on a particular day of the week, use the words "Mon",
"Tue", "Wed", "Thu", "Fri", "Sat" or "Sun". To execute the
schedule on more than one day of the week, use the "|" (pipe)
character to string together two or more of the above words. For
example, "Tue|Wed|Fri" would cause the schedule to be run only on
Tuesdays, Wednesdays and Fridays.

<start> specifies the starting time for the schedule, specified
in 24-hour format (hours:minutes). The schedule will only be
executed if the current time is equal to or greater than the time
specified.

<end> specifies the ending time for the schedule, specified in
24-hour format. The schedule will only be executed if the
current time is equal to or less than the time specified.

Squish v1.10 Reference Manual - Page 88



WARNING FOR EX-QMAIL USERS!

IF YOU WILL BE RUNNING A SCHEDULE BY THE COMMAND LINE, <tag> IS
THE ONLY REQUIRED PARAMETER! When Squish is scanning through
ROUTE.CFG, it will automatically execute any schedules which fall
within the specified time frame, regardless of those schedules'
tags. This means that ALL schedules with a date/time of "All
00:00 23:59" will be executed. Unless you want to run all of
your schedules each time a SQUISH SQUASH is performed, only use
the date and time for schedules which actually need to be run at
different times.

Example

For example, the following ROUTE.CFG segment has a set of global
routing commands which are run all the time, a set of commands
which are run in the morning, and a set which are run in the
afternoon/evening:

; GLOBAL COMMANDS
; Always route mail for net 123.

Route Crash 1:123/1 123/All

; Route mail for my NC to the right place.

Route Crash 1:222/0 1

; MORNING COMMANDS

Sched Morning All 00:00 11:59

; Convert previously-held mail to crash for nodes in zone 2

Change Hold Crash 2:All
Send Crash 2:All

; AFTERNOON/EVENING COMMANDS

Sched Afternoon All 12:00 23:59

; Convert crash zone 2 mail back to hold

Change Crash Hold 2:All

; Now send all new zone 2 mail as hold

Send Hold 2:All

; COMMANDS RUN ON DEMAND

Squish v1.10 Reference Manual - Page 89



Sched PollNEC

Poll Crash 1:222/2

When run in the morning, Squish would handle routing for nets 123
and 222, in addition to sending crashmail to all zone 2 systems.
When run in the afternoon, Squish would still handle routing for
nets 123 and 222, but it would send mail to zone 2 systems as
hold. When run with the command line switch "-sPollNEC", Squish
would generate a crash poll to node 222/2.

Squish v1.10 Reference Manual - Page 90



BinkleyTerm Routing Commands

The following commands can only be used on a BinkleyTerm-style
system. These commands directly modify the outbound directories,
so there are no equivalent commands for ArcmailAttach systems.

Leave <node> [<nodes>...]

The Leave command modifies outbound mail so that it won't be
sent by BinkleyTerm. Squish will rename both *.?UT and
*.?LO to an extension which is not recognized by
BinkleyTerm, thereby preventing the mail from being sent or
picked up.

Leaving mail is useful for mail hubs and NECs, since it
stops all mail from being given to the specified nodes. If
your system has a crucial polling window and you want to
stop others from receiving mail when they call in, the Leave
command can be used to make that mail inaccessible.

To convert mail back to its original form after using
"Leave", see the documentation for the Unleave command.

As many nodes can be specified for the Leave command as
necessary. Wildcards are permitted.

In the BinkleyTerm outbound area, using Leave has the
following result:

xxxxyyyy.?UT --> xxxxyyyy.N?T
xxxxyyyy.?LO --> xxxxyyyy.N?O

Unleave <node> [<nodes>...]

The Unleave command undoes all of the changes which were
made by the Leave command. Mail which was left for the
specified nodes will be converted back to its original
flavour, such that the mail can once again be sent or picked
up.

As many nodes can be specified for the Unleave command as
necessary. Wildcards are permitted.

In the BinkleyTerm outbound area, using Unleave has the
following result:

xxxxyyyy.N?T --> xxxxyyyy.?UT

xxxxyyyy.?LO --> xxxxyyyy.N?O

Squish v1.10 Reference Manual - Page 91



Change <from_flavour> <to_flavour> <node> [<nodes>...]

The Change command is used to change the flavour of existing
packets and file attaches.

<from_flavour> specifies the flavour to convert FROM. Only
mail of this flavour will be converted. Valid flavours are
crash, hold, direct and normal.

<to_flavour> specifies the flavour to convert TO. All types
of mail with a <from_flavour> will be converted to the
<to_flavour>. Valid flavours are crash, hold, direct and
normal.

<node> and <nodes> specify the nodes for which mail should
be converted. Squish will process mail which are addressed
to these nodes only, and apply the specified conversions.

In the BinkleyTerm outbound area, using Change has the
following result:

xxxxyyyy.?UT --> xxxxyyyy.?UT
xxxxyyyy.?LO --> xxxxyyyy.?LO

Poll <flavour> <node> [<nodes>...]

The Poll command is used to generate a poll to another
system, even if there is no other mail waiting for that
node.

<flavour> specifies the flavour to use when creating the
poll. Valid flavours are normal, crash, hold, and direct.

<node> and <nodes> specify the node numbers which should be
polled. Wildcards are NOT permitted.

In the BinkleyTerm outbound area, using Poll has the
following result:

Create: xxxxyyyy.?LO

HostRoute <flavour> [File] [NoArc] <node> [<nodes>...]

HostRoute is similar to the Route and Send commands, except
that HostRoute will route normal-flavoured mail to each
node's net host, as opposed to routing it all through a
central hub. (In other words, mail for 123/456 will be
routed through 123/0, just as mail for 678/901 will be
routed through 678/0.)

Squish v1.10 Reference Manual - Page 92



<flavour> specifies the flavour to use when creating the
routed packets.

The File modifier instructs Squish to route files in
addition to messages. In general, the HostRouting of files
is discouraged.

The NoArc modifier stops Squish from archiving the resulting
packets. Messages will be sent to the net hosts in an
uncompressed form.

<node> and <nodes> specify the nodes for which routing will
take place. Wildcards are permitted.

In the BinkleyTerm outbound area, using HostRoute has the
following result:

xxxxyyyy.OUT --> xxxx0000.?UT

The File modifier causes the following changes to take
place, in addition to the above:

xxxxyyyy.FLO --> xxxx0000.?LO

Dynamic Routing (FrontDoor)

Squish has only minimal support for dynamic routing, since
dynamic routing is always performed by your mailer. The Route
command CAN be used to route mail, but using your mailer to
perform all routing is recommended.

All schedules for an ArcmailAttach mailer should end with the
command "Send Normal World". This command compresses all
remaining mail and gives it a flavour of normal. Since
ArcmailAttach mailers only recognize compressed mail, this
command is required to ensure that all mail is properly sent.

Squish v1.10 Reference Manual - Page 93



SECURITY

In most environments, EchoMail security is not a problem.
However, in some instances, other systems may attempt to inject
unwanted mail into normal EchoMail areas. Squish provides two
forms of protection against this:

* "Secure mode". When the "Secure" keyword is added to
SQUISH.CFG, Squish will check the origination addresses of
all incoming packets, and it will only toss messages from
systems which are listed in the "<nodes>" section of your
area definitions. In other words, unless you have added the
address 123/456 to the definition for a particular echo,
that node will not be able to send messages in that echo to
your system.

Secure mode provides protection against unlisted systems
"crashing" messages into an EchoMail area through your
system. If messages cannot be tossed due to a security
violation, they will be placed in your BAD_MSGS area.

* Packet passwords. Although secure mode protects against
most unwanted packets, other systems may try to send you
mail using the address of another node. Squish protects
against this by allowing packet passwords to be used; by
using Password statements in SQUISH.CFG, you can declare a
password for nodes that you regularly connect with.

Passwords are "bidirectional", meaning that the same
password is used for both sending and receiving mail. The
packet password must be the same for both sides of the link.
In other words, if node 123/456 wants to use the password
"qwerty" for node 234/567, the configuration file on 123/456
must look like this:

Password 234/567 Qwerty

and the configuration file on 234/567 must look like this:

Password 123/456 Qwerty

In either case, the intent is to list the password to use
when sending mail to the other system. When creating
packets for that system, Squish will insert the specified
password into the packet. In addition, when tossing packets
from that system, Squish will check to make sure that the
password is the same as the one listed in your configuration
file. If the two passwords do not match, the incident will
be noted in the log, and the packet will be renamed to *.BAD
and will not be tossed.

Squish v1.10 Reference Manual - Page 94



* Multiple NetFile paths. Squish supports multiple NetFile
paths with varying attributes in SQUISH.CFG. When used with
a mailer which allows different inbound directories to be
declared for passworded and non-passworded systems, the
modifiers for the NetFile keyword (such as NoArc and NoPkt)
can be used to stop Squish from tossing certain types of
mail from certain systems. This helps prevent so-called
"ARCmail bombs" from being decompressed and filling up all
of your disk space.

* Receive-only nodes. The -x<node> flag can be used with an
EchoArea definition to stop Squish from tossing messages
from a certain node in a certain echo. This allows an echo
to be sent to a system, but it stops that system from
sending any messages back into the echo.

If all of these security features are enabled, Squish becomes a
very secure and rigid mail processor. Most of these features
won't be necessary for day-to-day operation, but they will become
extremely useful when trying to stop unwanted mail from entering
your system.

Squish v1.10 Reference Manual - Page 95



MULTIZONE OPERATION

Squish was designed especially for use on a multizone system. In
addition to full zone and point support, Squish can use an
alternate primary addresses for each individual message area on
your system. Squish can control the SEEN-BYs on an area-by-area
basis, generate packets with proper 4D addressing information,
and more.

The first key to multizone operation is the -p flag in
SQUISH.CFG. This flag allows an alternate primary address to be
selected for each individual message area. Squish will use the
alternate address when adding to the ^aPATH line, SEEN-BYs and
the message origin. In addition, the origination address in
outbound packets will also use your alternate address for that
area.

To use the -p flag, simply place that flag and your alternate
primary address before all the addresses of the systems that you
feed. For example, to declare an alternate primary address of
89:487/106, in an area called "IMEX.R82" (which you receive from
89:487/0), the following line should be used in SQUISH.CFG:

EchoArea IMEX.R82 C:\Msg\ImexR82 -p89:487/106 89:487/0

The alternate primary address also changes your default address
for the area definition, so the following would have the same
effect:

EchoArea IMEX.R82 C:\Msg\ImexR82 -p89:487/106 0

Squish can support an unlimited number of alternate primary
addresses, as long as you use the proper -p flag for each area.
The -p flag is not required for areas which use your primary
address (the first address declared in SQUISH.CFG), since Squish
will use your first address by default.

Squish is also capable of adding node numbers to the SEEN-BYs for
one area only. In a manner similar to using alternate primary
addresses, simply add a -+<node> flag for each area and for each
node that you wish to add. (Your alternate primary address will
be added automatically, so you don't need to worry about adding
it as well.)

For example, if you wanted to add the nodes 487/2 and 487/3 to
messages passing through your system in the ABC echo, using an
alternate address of 89:487/106, the following declaration in
SQUISH.CFG would do the job:

EchoArea ABC C:\Msg\ABC -p89:487/106 -+487/2 -+3 487/0

Squish v1.10 Reference Manual - Page 96



Finally, you should make sure that you have declared all of your
alternate primary addresses using the Address keyword in
SQUISH.CFG. Otherwise, Squish won't realize that messages for
your alternate address are really for your system, and it will
try to forward them as in-transit netmail.

That's all there is to it! No secondary configuration files, and
more importantly, no kludges are required. Squish provides
transparent support for multizone systems, with a minimum amount
of hassle and with no speed drawbacks.

Squish v1.10 Reference Manual - Page 97



POINTS (4D, FAKENETS AND BOSSNODES)

Squish incorporates full support for 4D and fakenet points, both
as a point itself and as the managing bossnode. Bossnodes can
also transparently support both types of points, still using the
same configuration file.

Fakenet Points

In the early days of FidoNet, support for true points was minimal
or nonexistent. As a workaround, instead of giving true 4D
addresses to a system's points, a dummy net number was created.
In turn, the node numbers in that net would actually represent
points of the bossnode. Since this dummy net/node combination
was a simple net/node address (with no point numbers), adapting
existing software was no problem. This net number would be used
for internal communication between the bossnode and the points.
For example, if 123/456 were using a dummy net number of 14122,
the fakenet version of the address 123/456.1 would be 14122/1.

When using the fakenet scheme, it is vitally important to ensure
that fakenet numbers do not "escape" out into the rest of the
net. Since many systems could theoretically be using the same
dummy network number, the fakenet addresses are usually stripped
or converted by the boss system before messages are sent to the
rest of the network.

Squish supports fakenet points through the use of the "PointNet"
keyword in SQUISH.CFG. Simply specify which dummy net you are
using, and Squish will automatically handle the details of
stripping and adding SEEN-BYs.

NOTE! As the boss of a fakenet system, you should make sure to
use the actual fakenet number whenever you refer to one of your
points. Since Squish supports both 4D and fakenet points in the
same configuration, you must be careful to use the correct
address. In other words, if you have a fakenet point at
123/456.1, with a fakenet address of 14122/1, you must ensure
that your control files and AREAS.BBS always refer to this point
as 14122/1. 4D addresses can only be used when dealing with true
4D points.

4D Points

Squish supports true 4D points in addition to fakenet points.
However, to use 4D points, both the bossnode and the point must
be running 4D-capable tossers, scanners and mailers. As of this
writing, the only 4D mailers in common use are FrontDoor,
InterMail, D'Bridge, and BinkleyTerm 2.50+. 4D tossers and
scanners include Squish, TosScan, Imail and others. Unless all

Squish v1.10 Reference Manual - Page 98



of your software supports 4D addressing and the "2+" packet
header proposal, you won't be able to use 4D points.

Squish supports 4D points in an extremely simple manner; just
use the 4D point address like a normal address. Squish will
automatically handle the tossing and scanning of messages from 4D
points, and there is no need to remap addresses. SEEN-BYs are
ignored when sending messages to 4D points, since SEEN-BY lines
are only two-dimensional.

As with fakenet points, make sure that you always use the 4D
address when referring to 4D points. If you attempt to mix and
match 4D and fakenet addresses for the same node, Squish may not
work the way you intended it to.

IF YOU USE *.MSG FORMAT MESSAGE AREAS AND WISH TO SUPPORT 4D
POINTS, SINGLE-PASS MODE MUST ALWAYS BE USED. *.MSG areas cannot
hold the origination and destination point numbers that Squish
requires for 4D operation. However, Squish can use 4D points
with *.MSG areas, as long as "SQUISH IN OUT" is always used.

Squish message areas contain proper zone and point operation, so
4D points can be used with both the single-pass and multipass
modes.

Remapping

Squish includes a built-in node remapper. This remapper
readdresses inbound netmail based on the "To:" field, and it also
remaps outbound netmail by changing the fakenet back to a 4D
address, if applicable.

When specifying point numbers in the remapper, make sure that you
specify either a 4D or a fakenet address, as appropriate. Again,
since Squish supports both 4D and fakenet points in the same
configuration, you must make sure to use ONLY fakenet addresses
for fakenet points, and ONLY 4D addresses for 4D points.

For more information on the remapper, please see the "Remap"
keyword in the SQUISH.CFG reference.

Squish v1.10 Reference Manual - Page 99



USING SQUISH-FORMAT MESSAGE AREAS

In addition to the FidoNet standard *.MSG format, Squish also
supports the proprietary, flat-file *.SQ? message base. This
message base was designed from the ground up to be fast, reliable
and small. Some of the key features of the Squish message format
are:

* Flat-file message areas. A separate message database per
message area. Using a separate message file for each area
still provides for quick access, but if disaster should
happen (such as a message base crash), only one area will be
damaged.

* Maintainability. The Squish format utilizes a customized
circular file structure. For the most part, Squish message
areas are completely self-maintaining. If a message is
deleted in a Squish message base, the space left by that
message can be reused when more messages are written to the
area.

Squish attempts to fill the message base in an optimal
manner, so "packing" is not as important as it is with other
message base types. Depending on the volume of mail you
process, Squish areas may only need to be packed once a
week! Squish areas are also renumbered on the fly, so an
external renumbering utility is not required.

Finally, the Squish file format also allows for a "maximum
message limit" to be set for any given area. This limit
will be used to automatically purge old messages as new ones
are written to the message base, which eliminates the need
for an external message deletion utility. A separate set of
message numbers is maintained for each message area, which
eliminates the "messages in this area are numbered 89,216
through 90,784" eyesore of other message formats.

* Reliability. The Squish format was designed to make message
recovery an easy task, even in the event of a total message
base crash. The SQFIX utility can be used to fix a damaged
Squish area with no user intervention. SQFIX has a high
success rate; in most cases, not a single message will be
lost!

* Speed. Since Squish uses a flat-file message base, it is
much faster than the FTS-0001 *.MSG format. Based on
preliminary testing, Squish is also faster at tossing
messages than QECHO 2.66 and several other utilities which
use the Hudson message format.

Squish v1.10 Reference Manual - Page 100



* Size. Messages are stored in the equivalent of a random-
access file with a record length of 1 byte, so no "blocks"
are necessary. Unlike the Hudson format, Squish stores
messages directly after one another with no padding. When
the SEEN-BY information is turned off, Squish message bases
are consistently smaller than the equivalent Hudson-format
message base.

* Multitasking and LAN awareness. Squish was designed from
the ground up to be compatible with multitasking and network
systems. Multiple programs, such as Squish and Maximus, can
access the same message base at the same time with no danger
of corruption.

* Flexible structure. Squish areas have built-in support for
full 4D origination and destination addresses, date-of-
creation and date-of-arrival binary timestamps, and more.
In addition, ^A kludge lines are stored in a separate
logical record before the message body, providing a unified
way for developers to access message control information.

Even with all of these advanced features, the Squish format is
easy to use. Squish format areas can be declared in both
SQUISH.CFG and AREAS.BBS, although the maximum message limit can
only be set in SQUISH.CFG for compatibility reasons.

On disk, Squish message bases are stored using two files per
message area. To name a Squish area, you must specify a path and
a "root filename". A root filename is the base part of a
filename, eight characters or fewer, with no extension. Squish
will then add the appropriate extensions to access the message
data and index files.

The Squish message format itself only requires two files per
message area:

areaname.SQD This file is used to store the message data.
Information about the area, the number of
messages, message headers, the message body, and
the linked lists are all stored in this file.

areaname.SQI This file is used to store the message index.
This contains a copy of the "To:" field in the
message header, and it allows the Squish format to
be accessed quickly in a non-linear fashion.

The above are the only required files for a Squish-format area.

Squish v1.10 Reference Manual - Page 101



However, other programs create files with similar extensions,
such as:

areaname.SQB This file is used by the Squish tosser to store
duplicate message information.

areaname.SQL This file is used by Maximus to store lastread
pointer information. This file is an array of
UMSGID numbers, using the user's lastread_ptr
field as the index.

areaname.SQO This file is used by the Squish tosser to provide
a custom origin line for the given area. If an
.SQO file is present for a given message area, the
first line in the file will be used as the origin
line for messages in that area, overriding the
"Origin" setting in SQUISH.CFG. Squish will
automatically add the "* Origin" prefix and the
trailing "(zone:net/node)" text.

For more information on the Squish file format, see the Squish
Developer's Kit, to be released shortly after Squish 1.1 is made
available.

To declare a Squish-format area in AREAS.BBS, simply add a "$"
character to the beginning of the path. In other words, to
convert the following to a Squish-format area:

E:\MSG\ASDF ASDF 249/99

simply add a "$" at the beginning to make it look like this:

$E:\MSG\ASDF ASDF 249/99

For an area declared in SQUISH.CFG, simply add a "-$" flag to the
area definition. In other words, given the following definition
for a *.MSG area:

EchoArea ASDF E:\MSG\ASDF 249/99

a "-$" should be inserted to convert the area to the Squish
format, like this:

EchoArea ASDF E:\MSG\ASDF -$ 249/99

To add a maximum message limit to a Squish area, the "-$m" flag
can be used in SQUISH.CFG. For example, to limit the ASDF area
to 100 messages, the following definition could be used:

EchoArea ASDF E:\MSG\ASDF -$m100 249/99

Squish v1.10 Reference Manual - Page 102



When using the above definition, Squish will automatically purge
messages such that no more than 100 messages are in the area at
once time.

A limit on the maximum age of messages can also be set using the
-$d flag. However, purging messages by date is only performed
when SQPACK is run, so Squish won't perform date deletion when
tossing messages. For more information on the -$, -$d and -$m
flags, please see the SQUISH.CFG reference.

In terms of usage, Squish will automatically create nonexistent
areas, so you don't have to worry about creating them manually.
Squish treats *.SQ? areas just like *.MSG areas in all respects,
including direct tossing and scanning. However, Squish areas can
be accessed much faster than their *.MSG counterparts, and Squish
areas will also use less disk space.

Once you have tossed messages to a Squish-format message base,
those messages can be accessed with any program which supports
the Squish format.

If you are using the -$m flag, Squish areas are mostly self-
maintaining. However, small "holes" can creep into the message
base over time, even with the circular file format. For this
reason, the SQPACK program can be run at predefined intervals to
pack and compress message bases.

Also, if you are using the -$d option, SQPACK must be run to
delete old, expired message. For information on installing
SQPACK, please continue reading in the next section, entitled
"SQUISH-FORMAT MESSAGE UTILITIES".

Squish v1.10 Reference Manual - Page 103



BROADCAST MODIFY/DELETE

Squish 1.10 introduces support for broadcast message deletion and
modification. This feature allows users on remote systems to
write an EchoMail message, and even after the message has been
sent to a remote system, it allows the user to amend or delete
the message on all of the systems which carry that conference.

First, broadcast messages are currently only supported in Squish
message areas. While the concept of broadcast messages could be
easily applied to other area types, Squish needs to maintain a
database of MSGID values for broadcast message processing. In
the interests of speed, Squish currently does not maintain this
information for *.MSG areas.

Note that the broadcast feature also relies on the Squish .SQB
file to store information on messages being tossed. The dupe
file must also be large enough (as defined by the "Duplicates"
keyword) to store information for all of the messages in the
area.

THE BROADCAST FEATURE ONLY WORKS ON MESSAGES THAT WERE ORIGINALLY
TOSSED TO A SQUISH AREA BY SQUISH 1.10 OR ABOVE.

The broadcast feature must be enabled on an area-by-area basis,
using the "-u<node>" flag for each EchoArea definition.

<node> specifies the address of a trusted uplink which is allowed
to submit update/delete requests. (The actual origin of the
update/delete message is not important. However, Squish will
only process update/delete messages if it receives them from the
node specified by -u.)

For example, the following definition sends PVT_ECHO to both
249/106 and 107, but it only accepts update/delete messages that
it receives from 249/106. Note that 249/106 is specified twice;
it is listed once in the scan list, and it is listed once for the
-u flag.

EchoArea PVT_ECHO \path\pvt_echo -$ 1:249/106 107 -u106

An automatic update/delete message has the same format as a
normal message in an EchoMail area, except that it contains an
"Area Control Update" kludge in the following format:

^aACUPDATE: MODIFY <addr> <serial>
or

^aACUPDATE: DELETE <addr> <serial>

Squish v1.10 Reference Manual - Page 104



For either format of the command, Squish will scan the area for a
message containing a MSGID kludge of the format "MSGID: <addr>
<serial>".

When processing an ACUPDATE MODIFY, if the message containing
that MSGID is found, it will be replaced in its entirety by the
update message. The old message will retain its original message
number. Note that Squish will strip the "ACUPDATE" line from the
modified message before writing it to disk.

When processing an ACUPDATE DELETE, if the message containing
that MSGID is found, that message will be deleted. The contents
of the ACUPDATE message are ignored.

Note that all ACUPDATE processing is performed during "SQUISH
OUT" phase. If an ACUPDATE message passes the "-u" security
check, the ACUPDATE message (in its original form) will be
scanned out to all of the nodes before the ACUPDATE operation
takes place.

In other words, ACUPDATE acts as a broadcast message to all nodes
listed for an area. The modification/deletion is performed by
each node that receives the message; the messages which are
consequently modified are NOT transmitted to other nodes.

All remote modify/delete transactions are noted in the Squish log
file.

Squish v1.10 Reference Manual - Page 105



SQUISH-FORMAT MESSAGE UTILITIES

In addition to the main tosser/scanner/packer, the Squish package
includes several utility programs designed to help users of
Squish-format message bases.

SQPACK: Weekly maintenance

The SQPACK program is used to "pack" Squish-format message areas.
Over the course of time, small holes can develop in Squish
message areas, so SQPACK can be used to recover this wasted
space. If you are using the -$m flags on your areas, you
probably won't need to run SQPACK more than once a week.
However, if you are killing messages by age (through the -$d
flag), you'll need to run SQPACK whenever you wish to delete
messages.

The command-line format for SQPACK is as follows:

SQPACK <filespec>

<filespec> should specify the name and path of a Squish-format
message data file. Wildcards are allowed. For example, to pack
the message in the file D:\MSG\MUFFIN.SQD, the following command
should be issued:

SQPACK D:\MSG\MUFFIN.SQD

In addition, if there are a number of message areas in the D:\MSG
directory, the following command could be given to pack all of
those areas:

SQPACK D:\MSG\*.SQD

When SQPACK finishes processing all of the selected areas, it
will print out a short statistics report detailing how much space
was used before, how much space is used now, and a percentage
savings. This percentage can guide you when figuring out how
often to run SQPACK.

Note to Maximus users

In addition to the name of a Squish data file, SQPACK can also
accept the name of a Max 2.00 AREA.DAT file. If you enter
"SQPACK D:\MAX\AREA.DAT", SQPACK will automatically pack all of
the Squish-format areas defined in AREA.DAT.

Squish v1.10 Reference Manual - Page 106



SQCONV: Conversion between *.MSG and *.SQ?

The SQCONV utility is used to convert message areas between the
*.MSG and Squish message formats. SQCONV is normally run from
the OS prompt, and it can only be run on one area at a time.

SQCONV uses the following command-line format:

SQCONV <from_path> <from_type> <to_path> <to_type> <zone>

<from_path> specifies the directory or root filename of the area
that you wish to convert.

<from_type> specifies the type of the <from_path> area. Valid
types are either "*.MSG" or "Squish".

<to_path> specifies the directory or root filename for the area
to be created.

<to_type> specifies the type of the <to_path> area. Valid types
are either "*.MSG" or "Squish".

<zone> specifies your default zone number. Since *.MSG format
messages don't always have zone numbers available, you must tell
SQCONV which default zone number is used in that area.

For example, to convert a *.MSG area in C:\MAX\MSG\LOCAL to a
Squish area called C:\MAX\MSG\PRIVATE.SQ?, the following command
line would be used:

SQCONV C:\Max\Msg\Local *.MSG C:\Max\Msg\Private Squish 1

The above assumes that you are in zone 1; for other zones, simply
substitute your default zone number for the "1".

To convert an area back from Squish format to *.MSG, the
following could be used:

SQCONV C:\Msg\Sqarea Squish C:\Msg\Msg_Area *.MSG 1

Also, please note that both Squish and *.MSG areas can have the
same name. Since *.MSG messages are placed inside a separate
directory, and Squish areas are placed in *.SQ? files in the
directory above, the following command is perfectly acceptable:

SQCONV C:\Msg\Local *.MSG C:\Msg\Local Squish 1

Squish v1.10 Reference Manual - Page 107



The above command would convert all of the messages in
C:\Msg\Local\*.MSG and place those messages in the files called
C:\Msg\Local.SQ?.

WARNING! You must exercise caution when converting a Squish area
back to the *.MSG format. Since SEEN-BYs are not updated in
Squish EchoMail messages, converting a Squish area to *.MSG may
cause messages in that area to be rescanned.

You should make sure that the high water marker is properly set
when converting a Squish area back to *.MSG. (Converting *.MSG
areas to Squish is not a problem, since Squish will never scan a
converted Squish-format message.)

Squish v1.10 Reference Manual - Page 108



SQSET: Control for message deletion

The SQSET utility is used to manually update the "maximum message
limit" and "protected messages" for a given message area. These
limits can be set automatically in SQUISH.CFG using the -$m and
-$s flags in SQUISH.CFG, but some users may prefer to set these
limits from the OS prompt.

The command-line format of SQSET is as follows:

SQSET <area> [<max_msgs> [<skip_msgs>] [<days_to_keep>]]

<area> specifies the path and root filename of a Squish-format
message area.

<max_msgs> specifies the maximum number of messages to keep in
this area at one time. The next time a message is written to
this area, Squish will automatically delete and renumber messages
such that there are no more than <max_msgs> in the area. If this
parameter is omitted, Squish will simply display the current
settings for <max_msgs> and <skip_msgs>.

<skip_msgs> specifies the number of messages to skip at the
beginning of the area, before starting to automatically delete
messages. When <skip_msgs> is used, <max_msgs> must also be
specified. When Squish is deleting old messages, this command
causes it to only start deleting after the first <skip_msgs>
messages. This is useful for keeping "posting rules" as the
first message in each area, or for keeping a certain number of
messages for an indefinite length of time.

<days_to_keep> specifies the maximum age of messages in this
area. Any messages which are more than <days_to_keep> days old
will be deleted during the next SQPACK run.

Squish v1.10 Reference Manual - Page 109



SQINFO: Diagnostics

SQINFO is a diagnostics and information utility for Squish-format
message areas. SQINFO will walk through both the chain of
message frames and also the chain of free frames, displaying
information about each message and reporting any errors it comes
across. SQINFO can be used to quickly diagnose problems in a
Squish-format message area.

This program is not required for normal use, so it can be deleted
if disk space is at a premium. SQINFO is primarily of interest
for third-party utility authors who are writing *.SQ?-compatible
programs.

The command line format of SQINFO is as follows:

SQINFO <area> [-q] [-b] [-e]

<area> is the path and root filename of a Squish-format message
area.

-q is the optional "quick" switch. Instead of displaying a
verbose report on each message, SQINFO will simply list the
location of each message. SQINFO will still check for and notify
the user of errors, since this option simply disables most screen
output.

-b is the optional "bug-find" switch. When in this mode, SQINFO
will display nothing except the area name. SQINFO will still
check for errors, but it won't tell you where the error occurred.
This mode is useful when checking a large number of areas for
problems; simply run "SQINFO <area> -b" over all message areas,
and then rerun SQINFO (without the -b) on areas which have
problems.

-e is the optional "errorlevel" switch. When in this mode,
SQINFO will operate as in "bugfind" mode, but it is also geared
for batch operation. SQINFO will not prompt the user to press a
key, and it will return an errorlevel based on the condition of
the base. If the message area is okay, SQINFO returns an
errorlevel of 0. If the message area is damaged, SQINFO will
return an errorlevel of 1.

The -q, -b and -e options are mutually exclusive. Only one of
the above switches can be specified on the command line.

Squish v1.10 Reference Manual - Page 110



SQREIDX: Repair (minor)

SQREIDX is an indexing utility for Squish-format message areas.
This utility can be used to correct simple indexing problems, but
it is not required for normal use. If more than just the index
is damaged (as reported by SQINFO), SQFIX should be used instead.

The command-line format of SQREIDX is:

SQREIDX <area>

<area> should be the path and root filename of the Squish-format
message area with the grunged index.

SQREIDX will recreate the index for <area> by walking through the
message chains in the data file, and then by rewriting the
original index. If the index is not the only problem with the
area, the full-fledged SQFIX should be used instead.

Squish v1.10 Reference Manual - Page 111



SQFIX: Repair (major)

SQFIX is a full-fledged restoration utility for Squish-format
message areas. Even when run on a heavily-damaged area, SQFIX
can recover all of the messages which were not individually
damaged. SQFIX is completely automated and requires no operator
assistance. The command-line format for SQFIX is:

SQFIX <area>

<area> is the path and root filename of the message area to be
fixed.

Squish will automatically restore a damaged fixed area. If the
area can be fixed, the old data files will be renamed to
<areaname>.XXD and <areaname>.XXI.

Squish v1.10 Reference Manual - Page 112



SSTAT: Statistics generation

If the Statistics option is enabled in the Squish configuration
file, Squish will create a binary statistics log. This log
contains a great deal of information, but not in a human-readable
format. The SSTAT utility included with Squish is very minimal,
but it does provide useful information.

SSTAT is more of a billing report generator than an analysis
utility; unless you are scanning mail to someone else, SSTAT
won't produce any output. However, if your system does scan mail
to more than one system, SSTAT is capable of producing a 100%
accurate billing report for each system, based on the volume of
mail sent to each node that you feed.

SSTAT works from a configuration file called SSTAT.CFG. This
file must be in the current directory when SSTAT is run, as must
SQUISH.STT (the statistics log produced by Squish).

SSTAT.CFG is a free-format configuration file, similar in nature
to SQUISH.CFG and ROUTE.CFG. At the current time, SSTAT only
handles the following two keywords:

Track <node> [<nodes>...]

This keyword causes SSTAT to track mail for the specified
nodes. <node> can be a full-fledged address, including
zone, net, node and point number. SSTAT will track all mail
which is addressed to that node. Wildcards may NOT be used.

Area <tag> [<tag>...]

This keyword causes SSTAT to track mail for the specified
area tags only. SSTAT will only report mail for the
specified areas, and these areas will be the only ones
included as part of the billing reports.

A sample SSTAT.CFG is included in the distribution archive.
After you have customized SSTAT.CFG, let Squish run for a while,
and then run SSTAT. If all goes well, and if you are scanning
mail to at least one other node, SSTAT should produce a highly-
detailed report describing all of the message activity on your
system.

SSTAT performs two sets of calculations: one set is based on the
number of messages sent to each node, while the other is based on
the quantity of bytes sent to each node. In most cases, the
number representing the quantity of bytes sent is usually more
reflective of long-distance telephone charges.

Squish v1.10 Reference Manual - Page 113



At the end of the report, SSTAT will include an overall summary
with percentage totals, suitable for use in a cost-sharing
arrangement. SSTAT uses a sophisticated algorithm for
determining the TRUE cost of messages, but in short, the billing
scheme works like this:

1) For each area listed in SSTAT.CFG, SSTAT will determine the
total quantity of mail (whether that be bytes or messages)
that you received in the area. Squish will divide this
number by the total quantity of mail received in ALL areas
listed in SSTAT.CFG. The result of the division is a
percentage for the area; this percentage represents the area
as a portion of your total inbound mail. In other words, if
you multiply your long-distance charges by this percentage,
the result will represent how much it cost to bring in the
specified area.

2) For each area listed in SSTAT.CFG, and for each node listed
within each area, SSTAT will calculate the total quantity of
mail sent to that node for that area. SSTAT will then
divide this by the total quantity of mail sent to all nodes
within that area. The result of this division represents
the percentage of mail (within that area) which is being
consumed by the node in question.

3) For each node in each area, the percentage determined in
step 2) is then multiplied by the percentage determined in
step 1) for that area. This figure now represents the
actual percentage that this node must pay for receiving the
mail in that area.

4) The percentages for each node are then added up for each
area, which represents the percentage total as shown at the
end of the billing report. This percentage represents the
actual amount that this node should pay for any long-
distance charges in a cost-sharing system.

Squish v1.10 Reference Manual - Page 114



APPENDIX A - Errorlevels

Squish will set one of several errorlevels after termination.
The errorlevels currently supported by Squish are:

Erl Action

0 No tossing or scanning took place.

1 Error. Squish encountered some sort of fatal error and had
to abort.

2 Sent EchoMail. This means that Squish exported one or more
EchoMail messages. (This errorlevel is only used when
performing "SQUISH OUT" as part of a multipass operation.)

3 Tossed NetMail only. This means that Squish tossed one or
more packets, but only NetMail was received.

4 Tossed EchoMail and/or NetMail. This means that Squish
tossed one or more packets containing EchoMail (and possibly
NetMail).

5 MaxMsgs was reached. This means that Squish reached the
MaxMsgs limit when processing mail in a multipass
environment. This means that SQUISH SQUASH should be
invoked, followed by another round of exporting.

With the exception of errorlevel 1, higher errorlevel numbers
will take precedence. In other words, if EchoMail and/or NetMail
was tossed, but MaxMsgs was also reached, Squish will exit with
an errorlevel of 5.

Squish v1.10 Reference Manual - Page 115



APPENDIX B - Problem Reporting

If you discover a problem in the Squish software package, you are
encouraged to report the problem to the author. Problem reports
can be placed in the TUB or MUFFIN echomail areas (for Squish and
Maximus, respectively). If the problem is urgent, you can also
send a NetMail message to the author at 1:249/106.

If you encounter a "trap" error with the 32-bit DOS version (or
any of the OS/2 versions), information from the register dump
should be included when submitting a problem report.

Under OS/2 1.x, the screen will be presented right away and will
start with a "TRAP 000D".

Under OS/2 2.0, you will get a "A program in this session
encountered an error" pop-up screen. Cursor down to the
"register dump" option and write down the information in the
register dump window.

Under SQ386, the extender will display "Trap 000d" and the
registers will be simply dumped to the console.

In all cases, the most important registers to write down are CS
and IP (or CS and EIP). If possible, the register values for AX,
BX, CX, DX, SI and DI are also helpful. (The 32-bit equivalents
are EAX, EBX, ECX, EDX, ESI and EDI.)

In addition, you should include any other files needed to
recreate the problem, such as SQUISH.CFG, AREAS.BBS, ROUTE.CFG,
and any relevant packets or message bases.

Squish v1.10 Reference Manual - Page 116



GLOSSARY

*.MSG

The message format originally used by Fido, also used as the
FidoNet standard for local message storage The *.MSG system
requires a separate directory for each message area, and a
separate file for each message. This makes the *.MSG format
inefficient, in terms of both disk space and time. For
compatibility reasons, Squish uses the *.MSG format by
default.

*.SQ?

The message format originally used by Maximus. *.SQ? (or
"Squish format") uses two files per area; a .SQI file
contains a message index, and the other contains the message
headers and text.

*.PKT

The "transport layer" for FidoNet-compatible messages.
Packets are used when transferring messages between two
different FidoNet systems. Since all systems use the same
type of packet, *.PKT can be used to transfer messages
between systems which use unlike message bases (such as
*.MSG and the QuickBBS/Hudson format). See also "2+" and
"StoneAge".

2+

A new, backwards-compatible form of *.PKT files. The
original packet design had no allowances for zone and point
information; the 2+ packet format corrects this shortcoming.
Squish creates 2+ packets by default, but it can also handle
StoneAge packets. See also "*.PKT" and "StoneAge".

4D

A term used to refer to a full FidoNet address. An address
in the form "zone:net/node.point" is called 4D because it
allows for four-dimensional addressing.

Squish v1.10 Reference Manual - Page 117



archiver

An archiver is a program used to compress files. Archivers
are very useful in a FidoNet environment, since compressing
mail can reduce its size by up to 80%.

ARCmail

ARCmail refers to both a program from System Enhancement
Associates and to a mail compression format. Mail which is
compressed using the ARC archiver is referred to as
"ARCmail". Similarly, mail compressed with ZIP is called
"ZIPmail", mail compressed with LHarc is referred to as
"LZHmail", and so on.

ArcmailAttach

An ArcmailAttach system is a mailer which requires "file
attaches" to send compress mail bundles. ArcmailAttach is
not specific to the ARCmail compression method; it simply
means that a different method is used for creating
compressed mail bundles. Mailers such as FrontDoor,
InterMail, D'Bridge and Dutchie require the "ArcmailAttach"
keyword in SQUISH.CFG.

AREAS.BBS

A ConfMail-compatible file containing a list of message
directories, addresses, and area tags. Squish can use
AREAS.BBS, but areas must be declared in SQUISH.CFG to use
some of Squish's advanced features.

busy flag

A semaphore file used in the BinkleyTerm outbound area.
Busy flags are used to ensure that two programs don't access
the same file at the same time, when running in a
multitasking or a network environment.

crash

A message flavour. Crash means that a message should be
sent directly to its destination, with no routing implied.
Crash usually implies "send it NOW".

Squish v1.10 Reference Manual - Page 118



direct

A message flavour. Direct is identical to crash in all
respects, except that the message will be governed by your
mailer's event schedule.

downlink

A downlink is a system that receives mail from your system.
For example, if 1:1/1 sends mail to 1:1/2 and 1:1/3:

1:1/2 and 1:1/3 are downlinks of 1:1/1.
1:1/1 is the feed for 1:1/2 and 1:1/3.

duplicate messages (dupes)

A second copy of an EchoMail message. When problems crop up
in EchoMail topology, copies of old messages occasionally
get dumped into the system. Squish usually detects and
stops most duplicate messages.

EchoMail

A message conferencing system originally devised by Jeff
Rush. Squish fully supports the EchoMail format.

errorlevel

An errorlevel is a number set by a DOS or OS/2 program when
that program terminates. This number can be later checked
for in a batch or command file, and various actions can be
taken based on that number.

FD

An acronym for the FrontDoor front-end mailer.

feed

A "feed" is the system which sends you mail for a particular
EchoMail area.

flavour

A 'flavour' (or the American "flavor") is also known as a
priority. Flavours can be used to override other routing
commands and to explicitly send mail directly to a given
node. For more information, see the glossary entries for
"hold", "normal", "crash" and "direct". Also see the

Squish v1.10 Reference Manual - Page 119



"Leave", "Unleave", "Send" and "Route" commands in the
ROUTE.CFG reference.

front end

A synonym for "mailer".

FTS-0001

A document describing the base level of FidoNet
compatibility. "FTS" is an acronym for "FidoNet Technical
Standard". Squish is compliant with FTS-0001.

hold

A message flavour indicating that the message in question
should be placed on hold for pick-up.

host-routed

Host-routed means that the messages in question will be sent
to the network host (net/0), as opposed to being sent
directly to the destination. Squish can optionally perform
host routing.

leaf node

A system which only communicates with one other system when
sending and receiving EchoMail. Leaf nodes do not forward
EchoMail to other systems.

mailer

A FidoNet-compatible program which answers the phone and
interacts with other systems, which includes transferring
files, messages, and system information. Common mailers
include BinkleyTerm, FrontDoor and D'Bridge.

maximum message limit

In Squish-format message areas, a limit can be set on the
maximum number of messages to allow in a given area. Once
this limit is exceeded, messages will be purged from the
beginning of the message area until the message count falls
below the maximum.

Squish v1.10 Reference Manual - Page 120



net
network

As part of a 4D network address, a "net" is a small
geographical area, usually encompassing a large city and the
surrounding area.

NetMail

NetMail is a direct, point-to-point transfer of private
messages. NetMail is analogous to "Email".

node

As part of a 4D network address, a "node" is a single system
or computer within a net.

normal

A message priority. Normal-flavoured messages can be
routed, but if no routing is applied, a normal message will
be sent directly to its destination.

origin line

A control line near the bottom of an EchoMail message. The
origin line identifies the origination point of a message.
Most origin lines have the following form:

* Origin: name (address)

where "name" is a brief description of the system, and
"address" is a full 4D network address.

outbound areas (outbound directories)

A set of directories used for storing outbound mail.
BinkleyTerm and Opus are the only common mailers which use
outbound areas.

point

As part of a 4D network address, a "point" normally
represents a single-user system that connects with a full-
fledged network node to receive mail.

Squish v1.10 Reference Manual - Page 121



remap

Remapping is the process of readdressing inbound messages
based on the name in the "To:" field. For example, messages
are commonly remapped for points, since the point number may
be occasionally omitted when specifying a system address.

SEEN-BY

A control line at the bottom of an EchoMail message. SEEN-
BYs are used to determine which systems have already been
sent a particular message.

SHARE.EXE

A DOS program used to enable file locking. SHARE must be
loaded if you wish to use Squish-format message areas in a
multitasking environment. SHARE is only required for DOS
systems.

StoneAge

A term applied to the original *.PKT design. StoneAge
packets do not support zone or point information. See also
"2+" and "*.PKT".

tear line

A control line at the bottom of an EchoMail message. A tear
line is used to end the message body, and it usually
contains a short, product-specific banner. A tear line
begins with three dashes, such as "--- Squish v1.10".

wildcards

Squish uses wildcards to specify multiple nodes for routing
commands. For more information, please see the section
entitled "Wildcards".

zone

In a 4D network address, a "zone" is a wide geographical
area, usually covering one continent or more.

Squish v1.10 Reference Manual - Page 122



zonegate

A zonegate is a system which sends EchoMail to more than one
zone. Squish is capable of acting as a zonegate.

Squish v1.10 Reference Manual - Page 123



INDEX

.MO? . . . . . . . . . 70, 83 99, 101, 117, 121,
-$ . . . . . . 80-82, 102-104 122
-$m . . 81, 102, 103, 106, 109 Address . . . . . . . . . . 21
-$s . . . . . . . . . 81, 109 alternate primary
-+ . . . . . . . . . . 80, 96 address . 79, 80, 96
-0 . . . . . . . . . . . . 80 ARC . . . 29, 61, 71, 83, 118
-a . . . . . . . . . . 47, 57 archive . . 18, 30-33, 35, 48,
-c . . . . . . . . . . . . 47 66, 67, 69, 72,
-f . . . . . . 43, 47, 50, 79 83-85, 113
-l . . . . . . . . . . 44, 48 archiver . 5, 22, 30, 32, 72,
-o . . . . . . . . . . 48, 68 83, 84, 118
-p . . . . . . . . 41, 79, 96 ARCmail . 40, 41, 43, 56, 57,
-q . . . . . . . . . 48, 110 64, 66, 67, 69, 78,
-s . . . . . . . . 48, 80, 88 85, 95, 118
-x . . . . . . . . . . 80, 95 ARCmail bombs . . . . . . . 95
-z . . . . . . . . . . . . 49 area tag 13, 24, 25, 28, 53,
*.?LO . . . . . . . . . 65, 91 76, 78
*.?UT . . . . . . . . . . . 91 Areafix . . . . . . . . . . 82
*.BAD . . . . . . . . . . . 94 AREAS.BBS . 5, 18, 19, 21, 22,
*.FR? . . . . . . . . . . . 83 26-28, 47, 49, 53,
*.MO? . . . . . . . . . . . 83 57, 60, 70, 75, 79,
*.MSG . . 4, 5, 7, 15, 24, 25, 82, 98, 101, 102,

27, 28, 53, 74, 78, 116, 118
79, 99, 100, 102, AreasBBS . . . . . . . 21, 57

103, 104, 107, 108, ARJ . . . . . . . . . . 61, 83
117 AUTOEXEC.BAT . . . . . . . 20

*.OUT . . . . . . . . . 12, 48 BAD_MSGS . 24-26, 76, 78, 80,
*.PKT . 4, 11-13, 21, 42, 58, 94

68, 80, 83, 117, batch file . . . . 38-41, 67
122 BINKLEY.EVT . . . . . . . . 38

*.SA? . . . . . . . . . . . 83 BinkleyTerm . 4, 5, 7, 11, 12,
*.SQ? . . 4, 5, 7, 15, 53, 74, 18, 21, 22, 35, 38,

78, 80, 81, 100, 43, 48, 54, 56-58,
103, 107, 110, 117 60, 61, 69, 70, 72,

*.SQD . . . . . . . . . . 106 78, 85-87, 91, 92,
*.SU? . . . . . . . . . . . 83 93, 98, 118, 120,
*.TH? . . . . . . . . . . . 83 121
*.TU? . . . . . . . . . . . 83 BinkleyTerm 2.50 . 5, 58, 98
*.WE? . . . . . . . . . . . 83 bossnode . 5, 11, 55, 72, 98
^aFLAGS . . . . . . . . . . 69 busy flag . . . . 60, 61, 118
^aPATH . . . . . . . . 79, 96 Change . . . . . . 86, 89, 92
<areaname>.XXD . . . . . 112 comment . . . . . . . . . . 35
<areaname>.XXI . . . . . 112 Compress . . . . . . . . . 22
<areaname>.XXI. . . . . . 112 COMPRESS.CFG 18, 22, 71, 72,
1.MSG . . . . . . . . . . . 43 83, 84
2+ . . . 5, 56, 99, 117, 122 CONFIG.SYS . . . . 20, 21, 46
4D 5, 11, 21, 34, 55-58, 72, ConfMail . . . . . . 57, 118

73, 79, 86, 96, 98, crash . . . 12, 29-34, 36, 37,

Squish v1.10 Reference Manual - Page 124



44-46, 55, 63, 75, host-routed . . . . . . . 120
87, 89, 90, 92, HostRoute . . . . . . . 92, 93
100, 118, 119 Imail . . . . . . . . . . . 98

D'Bridge 21, 56, 69, 98, 118, InterMail . 5, 21, 56, 60, 98,
120 118

decompress . . 18, 38, 40, 58 label . . . . . . . . . 39, 40
direct 12, 29-31, 44, 63, 75, LAN . . . . . . . . . . . 101

92, 103, 119, 121 LHarc . . . . . . 61, 83, 118
Dos . . . . . . . . . . . . 88 link . 4, 39, 40, 43, 46, 47,
dupe . . . 4, 54, 61, 62, 104 50, 94
DUPES . . . . 25, 65, 77, 119 mailer 5, 11, 29, 31, 33, 35,
duplicate 25, 60, 62, 65, 78, 38-40, 56, 60, 67,

102, 119 69, 93, 95, 118,
dynamic packing . . . . 56, 85 119, 120
dynamic routing . 31, 35, 57, mailers . 12, 13, 33, 56, 57,

85, 93 60, 63, 69, 85, 93,
ECHOTOSS.LOG 41, 44, 47, 48, 98, 118, 120, 121

50 MAX_MSGS.DAT . . . . . . . 68
errorlevel . 38-41, 67, 110, maximum message

115, 119 limit100-102, 109,
EXCEPT 1, 2, 39, 41, 44, 64, 120

75, 76, 92, 104, Maximus . 1, 3, 4, 13, 18, 22,
110, 119 38, 40, 65, 101,

exceptions . . . . . . . . 64 102, 106, 116, 117
fakenet 5, 55, 72, 73, 98, 99 multi-line . . 6, 47, 48, 60
FD . . . . . 18, 39, 40, 119 multi-zone . . . . 4, 22, 80
feed 14, 27, 28, 96, 113, 119 multipass 42, 48, 50, 51, 60,
FidoNet . 3-5, 10, 11, 13-15, 67, 74, 99, 115

21, 36, 61, 64, 71, name wildcards . . . . . . 73
77, 98, 100, 117, NEC . . . . . . . . . . . . 67

118, 120 net . . . 10, 11, 21, 24, 27,
file attaches 22, 54, 56, 57, 32-36, 44, 56, 72,

64, 78, 86, 92, 118 77, 80, 86, 89, 92,
file requests . . . . . 57, 64 93, 98, 102, 113,
flavour 12, 29-33, 35-37, 44, 117, 120, 121

54, 55, 63, 85, 86, NetMail . . . 11, 13, 14, 21,
91-93, 118-120 24-26, 29, 35, 36,

front end . . . . 15, 21, 120 38, 40, 41, 43,
FrontDoor . 4, 7, 11, 18, 21, 46-48, 54, 56, 57,

22, 38-40, 43, 56, 63-65, 67-69, 73,
93, 98, 118, 119, 76, 78, 79, 97, 99,

120 115, 116, 121
FTS-0001 . . 63, 79, 100, 120 NoArc . . . 68, 86, 87, 93, 95
gateroute . . . . . 57, 63, 64 node . 5, 10, 11, 15, 21, 27,
gaterouting . . . . . . 63, 64 28, 30, 31, 32-36,
global section 29, 30, 85, 88 43-46, 49, 54-56,
hold . 7, 12, 24, 29-31, 44, 60, 61, 63, 64, 66,

46, 50, 54, 55, 63, 71-73, 75, 76, 77,
74, 75, 89, 90, 92, 79, 80, 82, 83, 85,

99, 119, 120 86, 90-96, 98, 99,

Squish v1.10 Reference Manual - Page 125



102, 104, 105, 113, RESCAN . . . . . . 43, 44, 46
114, 117, 119-121 root filename . . 53, 78, 80,

NoPkt . . . . . . . . . 68, 95 101, 107, 109-112
normal 12, 13, 23, 29-33, 35, ROUTE.CFG . 18, 29-33, 35, 41,

36, 44, 46, 54, 55, 57, 63, 74, 83, 85,
63, 65, 79, 85-87, 88, 89, 113, 116,

92-94, 99, 104, 120
110, 111, 119, 121 Define . 10, 18, 26, 54,

Opus 1.03 . . . . . . . . . 70 78, 83, 87
origin line . 22, 23, 27, 28, Leave . 22, 44, 48, 69,

53, 70, 72, 102, 91, 120
121 Poll . . . . . 46, 90, 92

OS/2 4, 6, 7, 16, 17, 20, 45, Route 12, 18, 29-37, 41,
52, 62, 84, 88, 46, 54, 55, 57, 63,

116, 119 69, 74, 83, 85-89,
OUT . 3-5, 10, 12, 13, 21, 29, 92, 93, 113, 116,

36, 38, 39-43, 120, 31, 32, 83,
46-51, 54, 58, 60, 86, 87
61, 67, 74, 75, 80, Sched 30, 48, 85, 88-90
86, 87, 93, 98, 99, Send . 30-32, 36, 37, 54,

105, 106, 115 83, 85
outbound area . 5, 21, 22, 48, Unleave . . . . 91, 120

54, 58, 60, 86, 87, routing . . 4, 10, 12, 18, 22,
91-93, 118 26, 27, 29, 30,

outbound directories 57, 60, 31-33, 35, 36, 38,
70, 71, 91, 121 43, 55, 57, 63, 69,

OUTBOUND.### . . . . . . . 22 74, 75, 85, 87-93,
OUTBOUND.SQ . 44, 48, 57, 68, 118-122

69 scan . . . 13, 32, 38, 40-43,
packet . 5, 7, 11-13, 29, 32, 46-50, 54, 67, 69,

43, 48, 50, 56, 60, 73, 86, 104, 105,
65, 68, 69, 72, 74, 108, 113

86, 94, 99, 117 schedule 29, 48, 85, 88, 89,
PAK . . . . . . . . . . 61, 83 119
passthru . 4, 27, 42, 47, 49, SEAdog . . . . . . . . . . 63

53, 80 secure mode . . . . 49, 61, 94
point . . 4, 5, 8, 10, 11, 17, security 61, 72, 74, 78, 80,

21, 27, 28, 32, 94, 95, 105
55-58, 65, 67, 69, SEEN-BY . 74, 76, 99, 101, 122
72, 73, 77, 79, 86, semaphore . . . . . . . . 118

96, 98, 99, 113, SHARE.EXE . . . . . . 20, 122
117, 121, 122 single pass . 42, 43, 46, 50,

point directory . . . . . . 5 67, 74, 80
primary address . 27, 55, 56, soundex . . . . . . 5, 69, 73

79, 80, 96 split area . . . . . . . . 82
private messages 10, 24, 80, SQFIX . . . . . 100, 111, 112

121 SQINFO . . . . . . . 110, 111
quiet mode . . . . . . . . 48 SQPACK . . 81, 103, 106, 109
remapper . . . . . 5, 73, 99 SQREIDX . . . . . . . . . 111
reply chains . . . 40, 43, 46 SQSET . . . . . . . . . . 109

Squish v1.10 Reference Manual - Page 126



SQUASH 39-41, 43, 46-48, 50, Origin . . 22, 23, 26-28,
57, 60, 67, 68, 69, 53, 70, 72, 96,

85, 88, 89, 115 102, 104, 121
SQUISH . 1-9, 11, 13-22, 24, Outbound . 4, 5, 21, 22,

26-36, 38, 39, 29, 33, 43, 44, 48,
40-50, 52-120, 122, 50, 54, 55, 57-60,

123 67-71, 74, 86, 87,
SQUISH.CFG 18-21, 24, 26, 27, 91-93, 96, 99, 118,

32, 33, 47, 48, 49, 121
53-56, 64, 69-71, Pack . . . . . 61, 71, 72
75, 79, 82, 83, Password 44, 45, 69, 72,
94-99, 101-103, 94

109, 113, 116, 118 PointNet . . . 55, 72, 98
AddMode . . . . . . . 54 QuietArc . . . . . . . 73
Address . . . . . 55, 97 Remap . 54, 73, 74, 99,
AddToSeen . . . . . . 56 122
ArcmailAttach . 21, 29, SaveControlInfo . . . 74

31, 33, 35, 44, 45, Secure . 48, 49, 61, 69,
56, 57, 60, 65, 67, 74, 94, 95
69, 70, 73, 78, 85, Statistics . 49, 60, 65,

91, 93, 118 66, 74, 75, 106,
BadArea . . . . . 24, 78 113
BatchUnarc . . . . 58, 68 StripAttributes . . . 75
BinkPoint . . . . 57, 58 Swap . . . . . . . 5, 75
Buffers . . . . . . . 58 TinySeenBys . . . . . 76
BusyFlags . . . . . . 60 TossBadMsgs . . . 49, 76
CheckZones . . . . . . 61 ZoneGate . . 64, 77, 123
Compress . . . 22, 61, 83 SSTAT . . . . . . 74, 113, 114
DefaultPacker . 61, 71, Track . 42, 76, 77, 113

83, 61 SSTAT.CFG . . . . . . 113, 114
DupeArea . . . . . 25, 78 StoneAge . . . . . . 117, 122
Duplicates . 60, 62, 104 tag . . 13, 24-28, 44, 53, 76,
EchoArea 26, 27, 55, 76, 78, 79, 88, 89, 113

78, 82, 95, 96, tear line . . . . . . . . 122
102, 104 toss 24, 38, 40, 42, 46, 50,

ForwardFrom . . . . . 63 58, 67, 68, 76, 94
ForwardTo . . . . . . 63 TosScan . . . . . . . . . . 98
GateRoute . . 57, 63, 64 update requests . . . . 57, 64
KillBlank . . . . . . 64 wildcard . . . . . . . 32, 33
KillDupes . . . . 65, 78 World 10, 11, 32, 33, 35, 37,
KillIntransit . . . . 65 73, 93
LogFile . 22, 48, 65, 77 ZIP . . . . . 29, 45, 83, 118
MaxAttach . . . . 60, 67 zone . 4, 5, 10, 11, 21, 22,
MaxMsgs . 43, 48, 66-68, 27, 32-34, 55, 61,

115 63, 64, 70, 71, 75,
MaxPkt . . . . . . 60, 68 77, 79, 80, 86, 89,
NetArea . . . 24, 57, 78 90, 96, 99, 102,
NetFile . 21, 42, 68, 95 107, 113, 117, 122,
Nuke . . . . . . . . . 69 123
OldArcmailExts . . . . 70

Squish v1.10 Reference Manual - Page 127



zoned outbound
directories . 57, 60

zonegating . . . . . . . . 77
ZOO . . . . . . . . . . 61, 83

Squish v1.10 Reference Manual - Page 128


