
____ ___ ___ ____ __
/ / / /__/ / / \/
/ /__/ / __/__ /__ /\

The Maximus-Compatible Topic Extraction Program

Copyright 1988, 1989 by Scott Dudley. All Rights Reserved.

TopicX has been designed to provide a high-quality
topic extraction service for SysOps of systems with a Fido or
Max -compatible message structure. TopicX is the exclusive
property of Scott Dudley, and in no way shall it or the
accompanying documentation be distributed in any modified
form. Full credit should be left to Scott Dudley, as the
developer and creator of this utility.

TopicX v1.00 Documentation Page 1

Table of Contents

What TopicX Does 3
System Requirements 3
Starting TopicX 3
Command-Line Parameters 4
Configuration File Format 6
Pre-Compiled Configuration Files 6
Including Date Information in Configuration Files 7
Quoting 7
Configuration File Verbs 9

Log 9
Archiver 9
Origin 9
Area 10
NetArea 10
EchoArea 10
SkipBlank 10
Macro 10
Divider 11
Local 11
MultiPass 11

Area Definitions 12
Low/High Water Marks 13
Topics 14

Flag Groups 14
Message Attribute Control 16
Keywords and Operators 17

Order of Topics 18
Regular Expressions 19
Advanced Techniques 21
Examples 23
Troubleshooting 25
Revision History 31
Credits 31
Shareware License 31
No Warranty 31

TopicX v1.00 Documentation Page 2

WHAT TOPICX DOES

TopicX is a utility program written for systems with a
Fido or Max -compatible message structure. TopicX allows
extraction of messages based on keywords found within each
message. TopicX extracts the messages to a flat ASCII file
(and optionally inserted into an archive), which can be read
or downloaded by users. TopicX is much more than a simple
find utility -- TopicX has a set of sophisticated options
which allow you to do everything from the normal to the
sublime. Since time is valuable, especially when searching
large EchoMail areas, TopicX has been hand-optimized to give
the fastest performance possible, while searching for and
extracting messages. TopicX is perfect for systems that
carry a large number of EchoMail areas: The SysOp can create a
configuration file that will create concise topical extracts
from each EchoMail area, and make them available to users for
downloading. In this way, a large volume of extracts can be
collected, and made available to the general public.

Not only can a user find the information s/he wants on
a particular topic FAST, but they don't have to wade through
all of the "noise" usually involved with the average
EchoMail conference. The extracts can also be compressed
using your favorite archiving program and inserted into a
download area, which reduces users' on-line time even
further. Not only does TopicX make things easier for your
users, the configuration file is also easy for the SysOp to
maintain. By keeping all the information in one centralized
control file -- rather than three or four -- TopicX allows the
SysOp to maintain a topic extraction system with a minimum of
effort. Although TopicX is primarily EchoMail oriented, there
are several features that allow TopicX to be used in other
situations as well. EchoMail is a rich flow of information,
that TopicX can compile to create interesting and informative
extracts.

SYSTEM REQUIREMENTS

TopicX requires an MS-DOS or PC-DOS based system
running MS/PC-DOS version 3.0 or higher. TopicX also requires
a maximum of 128K free RAM, plus (optionally) enough memory to
load and run your favorite archiving program. To use TopicX
effectively, your system must use a Fido or Max -compatible
message system. It may be possible to convert other message
base types, but that is beyond the scope of this document.

STARTING TOPICX

TopicX is capable of being run from the DOS prompt, or
from within a batch file. The extraction of messages is
configuration-file based, although there are some options
which must be specified on the command line. The format for
starting TopicX is:

TopicX v1.00 Documentation Page 3

TOPICX [[-X]...]

where -X is an optional command-line parameter.

COMMAND-LINE PARAMETERS

TopicX accepts seven different command-line
parameters, which are all case-insensitive. Parameters
supported by TopicX are:

-C Specifies the name and location of the configuration file.
If no configuration file is specified, then TOPICX.CFG in
the current directory is used by default. If the
configuration file does not exist, or if an invalid
command-line switch was specified, TopicX will abort with
an errorlevel of 1. Example: TOPICX -Cc:\max\topicx.cfg

-A Specifies that TopicX should scan all messages in each
area. This is the default, and will be used if neither -T
nor -Y is specified.

-T Specifies that TopicX should only scan messages that were
entered/received today. This option is not recommended,
for reasons detailed below.

-Y Specifies that TopicX should only scan messages that were
entered/received yesterday. This is the best option to
use if you run TopicX once per day.

-F Specifies fast scanning of messages. This switch should
only be used in conjunction with either -T or -Y, and
TopicX will warn you if it isn't. This option tells
TopicX to look at the DOS datestamp of each message,
instead of the internal datestamp inside each message.
This is provided as a command-line option, since it may
not work correctly with some message-base renumberers or
reply-chain linkers. However, it has been tested and is
known to work with Renum 3.3, Renum 4.1, ConfMail Renum,
ConfMail Maint, and ReplyLnk.

-P Specifies that you wish to compile the configuration file
into a format more quickly usable by TopicX. See the
section entitled "Pre-Compiled Configuration Files" for
more information on how this option works.

-D Turns the "Date Debugging Mode" on. This option triggers
the display of dates contained in each message processed.
This option isn't normally needed, and should only be used
when running TopicX manually. See the "Troubleshooting"
section for more details.

If you are running TopicX once per day, it is
advisable that you either enable the low/high water marks
(covered in a separate section), or use the -Y parameter.
Using this ensures that no message will be extracted twice,

TopicX v1.00 Documentation Page 4

and that all messages containing the specified keywords will
be extracted. If you use the -T parameter instead, there is a
chance you will miss messages entered/imported later in the
day after TopicX is run, so that switch isn't
recommended. There are also options provided to run TopicX
more frequently than once a day -- See the section on Low/High
Water Marks.

TopicX v1.00 Documentation Page 5

CONFIGURATION FILE FORMAT

TopicX uses an ASCII-based control file to determine
where and how to extract messages. Each line in the
configuration file must be terminated by a carriage-
return/linefeed pair, and each line must be no longer than 255
characters. TopicX will try to detect either of the above
conditions, and issue an error message.

The ';' character is used as a comment character, and
may be inserted anywhere in the configuration file. Any text
on the same line following a comment character will be
ignored. Most options in the configuration file are specified
in the following format:

<verb> [[<parameters>]...]

Parsing a large configuration file may take a little
bit of time, so please be patient. Also note that almost all
options in the configuration file are case-insensitive; Those
which are case-sensitive are clearly labelled.

PRE-COMPILED CONFIGURATION FILES

If you specify the -P command-line parameter, it is
possible to compile a configuration file to an intermediate
form, which is more quickly usable by TopicX. It may reduce
the parsing time of a large control file to one tenth of the
time required to parse an uncompiled version. The compiled
configuration file will use the same "stem" as the normal
configuration file you specify, but will use a .DAT extension.
TopicX will regenerate the .DAT file if it detects the date on
the ASCII control file has changed, or doesn't exist.
Otherwise, TopicX will read the pre-compiled configuration
information instead. The -P parameter must be used both to
generate and use the pre-compiled configuration file.

TopicX v1.00 Documentation Page 6

INCLUDING DATE INFORMATION IN CONFIGURATION FILES

For creating "timely" extracts, there is a method that
allows you to insert controls characters into the
configuration file, which translate into the current date and
time. TopicX will substitute the date on which TopicX
started execution throughout the entire file: In other words,
the minutes and seconds will be the same for all occurrences
of each parameter in the configuration file. However, these
control characters are only allowed in the following
locations:

o Normal keywords. Date information may NOT be included
in regular expressions (topics which specify the 'R' flag).

o Output, archive and message area paths.

The format of the date/time codes is a percent sign,
followed by a CASE-SENSITIVE identifier. The identifiers, and
their translations, are as follows:

%a - The abbreviated weekday name
%A - The full weekday name
%b - The abbreviated month name
%B - The full month name
%c - Standard date and time string (mm-dd-yy hh:mm:ss)
%d - Day-of-month as a decimal (01-31)
%H - Hour, in the range of 00-23
%I - Hour, in the range of 01-12
%j - Day-of-year as a decimal (001-365)
%m - Month as a decimal (01-12)
%M - Minute as a decimal (00-59)
%p - Local AM or PM as a string
%S - Second as a decimal (00-59)
%U - Week-of-year, Sunday being the first day (00-52)
%w - Weekday as a decimal (0-6), Sunday being 0
%W - Week-of-year, Monday being the first day (00-52)
%x - Standard date string (mm-dd-yy)
%X - Standard time string (hh:mm:ss)
%y - Year as a decimal w/o century (00-99)
%Y - Year, including century as a decimal
%Z - Time zone (Must have TZ environment variable defined)

To use an actual percent sign in the text of the
configuration file, either use two percent signs in a row
("%%"), or see the following section regarding quoting.

QUOTING

Since TopicX uses several commonly-used ASCII
characters as configuration-file delimiters and comment
characters, it becomes obvious that there must be a way to
specify such a character as the topic of a search. If you
wish to specify a "special" character, such as mentioned
above, simply prefix it with a backslash. For example,
instead of searching for "Hello; Look over there!", you would
search for: "Hello\; Look over there!". Similarly, to use an

TopicX v1.00 Documentation Page 7

actual backslash, use two backslashes in a row instead. These
quote characters are only used inside keywords -- Outside of
keywords (such as in an output path), the quote character will
be taken for a literal backslash. The only instance in which
the quote character will NOT work is in conjunction with
the macro character. To use a literal '@', use two "at"
signs in a row (ie. "@@").

TopicX v1.00 Documentation Page 8

CONFIGURATION FILE VERBS

What follows are descriptions and implementation notes
for all of the currently available configuration-file verbs.
If you enter an invalid verb or incorrect parameter, TopicX
will exit with an errorlevel of 2.

Verb:
LOG

This option tells TopicX where to log its run-time
output to. The log details such occurrences as errors,
message areas processed, messages processed, etc. The output
is in an Max -compatible format, and may be included in a
normal system log (MAX.LOG) if desired. If no log file is
specified, then none will be used, and TopicX will only output
to the local console.

Example:
Log C:\Max\Max.Log

Verb:
ARCHIVER

Using this verb, TopicX allows you to take the ASCII
extracts it generates, and insert them into a compressed
archive file. This verb also tells TopicX which archiving
program to use, and what command-line arguments to use when
executing it. Almost any archiving program can be used in
conjunction with TopicX, as long as you specify the command-
line arguments correctly. This function is optional, your
message extracts can remain in an uncompressed form if you so
desire.

TopicX will pass the string following the Archiver
keyword directly to DOS, with the exception of two run-time
translations: If TopicX finds the token '%archive%' in the
text to be passed to the archiver, it will replace it with the
name of the archive to be added to. If TopicX finds the token
'%extract%' in the text to be passed to the archiver, it will
be replaced with the name of the extract to insert into the
archive.

Examples:
Archiver LHarc m %archive% %extract%

or
Archiver PKzip -aex %archive% %extract%

or
Archiver PKarc u %archive% %extract%

Verb:
ORIGIN

The Origin verb controls handling of origin and
tearlines in messages. Using the command 'Origin NoPrint',

TopicX v1.00 Documentation Page 9

TopicX will disable the exporting of origins/tearlines to the
ASCII extracts. Using the command 'Origin NoScan', TopicX
will not include the origin/tearline as part of its message
body searches, which means it won't serach for keywords past
the origin line. Using 'Origin None' will neither print nor
scan the origin/tearlines, and 'Origin All' (the default) will
both print and scan the origins and tearlines.

Verbs:
AREA
NETAREA
ECHOAREA

These three verbs control the actual searching for and
extraction of messages. Due to the depth of this topic, they
will be discussed in the next section.

Verb:
SKIPBLANK

The SkipBlank verb controls how TopicX handles blank
lines in messages. By default, TopicX will export the entire
message, with or without blank lines. Some may want to use
the SkipBlank option, since it disables the exporting of blank
lines, thereby saving a few bytes in the ASCII extracts.

Verb:
MACRO

The Macro keyword allows for definition of
configuration-file macros, which can be substituted into any
number of different places in the configuration file. Please
note that macros must be defined before they are used, and
they MUST be defined before the first Area/NetArea/EchoArea is
used, or else an error will occur.

A macro definition has the following format:

Macro <macroname> <macro expansion>

<macroname> is the name of the macro to define, and <macro
expansion> is the text to insert in its place when encountered
in the configuration file.

Once a macro has been defined, it may be used anywhere
in the configuration file, in place of normal text. TopicX
will expand the macro before passing it through the date
routines. (see "Including Dates in a TopicX Configuration
File") To use a macro, enclose the case-insensitive macro
name in "at" (@) signs.

Examples:
Macro OutDir D:\Path
Macro MessagePath E:\Msg

TopicX v1.00 Documentation Page 10

Given the above definitions, the following lines:

@outdir@\Myfile.Txt
@messagepath@\Meadow

would expand to:

D:\Path\Myfile.Txt
E:\Msg\Meadow

Verb:
DIVIDER

The Divider verb specifies what to insert between each
message extracted message, as a divider. The divider may
consist of any characters, and may be up to 79 characters
long. If no divider is specified, then TopicX will use a
string of 79 dashes as a default.

Example:
Divider ---= Brought to you compliments of Yogi]I[BBS =---

Verb:
LOCAL

The Local verb controls TopicX's handling of local
messages. Some of the more brain-dead Sysop message editors
may not include proper date information inside the message, so
they won't get scanned when using the -T or -Y command-line
parameters. The "Local Redate" option specifies that you want
TopicX to check the DOS datestamp on local messages, and scan
the message according to that. However, this may not work
with some message-base renumberers and reply-chain linkers, so
this option may not be advisable. If your message base
utilities are incompatible, the end result will be a local
message being extracted each day TopicX is run, rather than
just once. The "Local Import" option (the default) specifies
that you want TopicX to try to import the ASCII datestamp
contained inside the message, and use that as the message's
date. If the ASCII date is invalid, then TopicX will check
the binary datestamp which tells when the message was written.
Failing that, TopicX will fall back to the "Local Redate"
method. To disable this feature and use the standard
datestamps (and thereby risk not scanning all locally-entered
messages), use the "Local None" option. If TopicX doesn't
seem to be scanning ANY messages with the date options, then
please read through the Troubleshooting section.

Verb:
MULTIPASS

The MultiPass verb is a command normally not needed,
unless you are running with a very large configuration file.
When using a large configuration file (more than about 20k),
TopicX will quickly run out of memory in which to load

TopicX v1.00 Documentation Page 11

messages. The MultiPass verb specifies that TopicX is to
make multiple passes through the configuration file, while
keeping a certain amount of memory free for reading in
messages.

The format for the MultiPass verb is:

MultiPass <messagemem>

<messagemem> specifies the amount of memory to save for
holding the message body, in bytes. (A value from 10000 to
20000 is ideal)

The rest of available memory will be used for storing
the configuration file information. When executing, TopicX
will state which pass it is on, and the approximate amount of
memory available for holding messages.

AREA DEFINITIONS

This is the bulk of the TopicX extraction system.
Using the three area verbs (AREA, ECHOAREA, and NETAREA), you
can configure TopicX to specify how to search for messages,
where to search for messages, and what to do with them.

The general format of an Area statement is as follows (split
in two to fit inside this document):

[Area|EchoArea|NetArea] <path> [desc] [<low water mark>
[<high water mark>]]

There can be up to 512 Area/EchoArea/NetArea
statements in a single configuration file. If you need more
than this, either split the configuration file in two, or
contact the author for an expanded version. Following the
area line is a sequence of topic lines, which tells TopicX
what to search for. An area definition runs from the first
Area/EchoArea/NetArea keyword, UNTIL THE NEXT BLANK LINE, or
until end-of-file. (This is important! If you do not insert a
blank line between areas, TopicX will try to process the next
Area verb as part of the previous area!)

The three different area verbs are used to specify
which type of area TopicX is to search:

AREA - A normal, local message area. All messages are
processed, with no special maneuvers on TopicX's
part.

NETAREA - Process a NetMail area. This is the same as a
normal area, except TopicX will add the
origin/destination addresses to any messages
extracted from this area.

ECHOAREA - Same as a normal area, except TopicX will skip
processing the high water marker (1.MSG) if it

TopicX v1.00 Documentation Page 12

exists.

<path> is the path to the message area, with or without a
trailing backslash. An example path would be "C:\Msg\Meadow",
or "C:\Msg\Private\".

[desc] is an optional description of the message area, which
will be included in the ASCII extracts. It MUST be enclosed
in quotes, and it may be up to 30 characters long.
Descriptions can be used with low and high water marks, as
long as you insert the description BETWEEN the area path and
water marks.

Low/High Water Marks

The low and high water marks are optional, and if
specified, determine how many messages must be in each area to
begin processing (low water mark), and the highest message
number which will be processed by TopicX (high water mark).
If you wish to process all messages in each area, then simply
omit one or both of these parameters. The term "Low Water
Mark" is a misnomer, since TopicX only uses that as a
conditional before beginning to scan the area. If the
required number of messages exists, TopicX will start scanning
from the first message in the area, regardless of the low
water mark. The low water mark must directly follow the
pathname, separated by a space. If you wish to use a high
water mark but not a low water mark, then set the low water
mark to zero. The high water mark directly follows the low
water mark, and may be omitted or set to zero to process all
messages in the area. Note that the High Water Mark has no
effect on the -T or -Y command-line parameters, and messages
under the high water mark may not be processed due to their
date, in spite of the High Water Mark.

But please be aware that the -F parameter DOES affect
the High Water Mark; The -F parameter will then allow TopicX
to run until it has processed and actually SEARCHED the number
of messages specified by the High Water Mark. This differs
from -T and -Y, since -T and -Y will only process up to the
high water mark, whether or not any of the messages below get
searched.

Examples:

The following command would process the EchoMail area in
F:\Msg\Dr_Debug, but only if there were at least 50
messages in the area, and would only process the first 100
messages:

EchoArea F:\Msg\Dr_Debug 50 100

The following would process the NetMail area in
C:\Netmail, but would stop processing when it reached the
50th message:

TopicX v1.00 Documentation Page 13

NetArea C:\Netmail 0 50

The following would process all of the messages in the
local message area D:\Msg\Local:

Area D:\Msg\Local

TOPICS

What follows the area declaration are "topics", one to
a line. There can be a maximum of 100 topics in each area,
and there must be NO blank lines between topics. If you have
more than 100 topics in one area, either contact the author
for an expanded version of TopicX, or split the topics into
groups and make two passes of the same area.

A topic is composed of a group of extraction flags,
keywords to search for, binding operators between the
keywords, and an ASCII output and optional archive path.

Specifically, a topic has the following format:
(Split into two lines so it could fit into this document)

<[<flag>...][[&||][attributes...]...]> [[[<keyword> <operator>]...]
<keyword>] [<output path> [archive path]]

Flag Groups

[<flag>...] specifies a "flag group", which must be
the first "word" on each topic line. Flag groups control the
extraction and searching operations of TopicX. A flag group
is composed of a group of individual characters, each
representing an individual flag. The flag group must be a
single "word" (with no spaces between flags), however most
flags can be specified in any combination, and in any order.
Each flag designates an option TopicX is to perform on each
message in the area. TopicX will accept any of the following
flags:

T Specifies that TopicX is to search the to/from fields
of each message. TopicX will prefix the words "To: "
and "From: " to each message header, so you can have
TopicX only pick up messages FROM a certain person by
including the word "From: " in your search text, or
search for messages TO a certain person by including
the word "To: " in your search text.

S Specifies that TopicX is to search the Subject field of
each message. TopicX will prefix the word "Subj: "
before the subject field, so it is also possible to
search only on a specific subject. Prefixing "To: ",
"From: ", or "Subj: " to each message header is
normally only useful if you're using a combination of
to/from, subject, and message extracting.

TopicX v1.00 Documentation Page 14

M Search the message body of each message. Please note
that TopicX will only search the parts of the message
you specify, so to search the entire message and
headers, you need to specify all three options.
(To/From, Subject, and Message)

F FloobyDust: All messages in this topic will be sent to
the extraction file, regardless of keywords it may
contain. If the FloobyDust flag is present, then no
keywords are allowed on the topic line, and the file to
extract to (and optionally the archive name) must be
placed right after the flag group.

L Log each message found under this topic. Using this
for all message types will take lots of time (and disk
space), but it's handy if you want to check for any
"bad" words, or messages containing special keywords in
your message base.

D Usually used in combination with the log option.
TopicX doubles as a message-deletion system, so the 'D'
flag causes TopicX to delete the message when it is
finished processing the message. This should only be
normally used with "bad" words, or for those dweebs
that insist on leaving obscene messages. Since TopicX
deletes the message only when it is finished
processing, you can use the 'D' flag on any topic line,
whether it falls first or last in the area.

A Archive the message text when finished extracting.
This option will cause TopicX to invoke the archiver
when all extraction has finished, and to insert the
extract into the archive specified after the output
path.

X Specifies that you want TopicX to skip to the next
message if it encounters a match on this topic.
Without this flag, TopicX will extract the current
message to each topic a match is found in. If you
don't wish this to happen, include the 'X' flag in the
flag group for each topic in the area.

N This flag tells TopicX not to extract the current
message. Any other options specified (logging,
deleting, etc) will be performed, but the message will
not be extracted. Make sure NOT to include an output
path for this topic. Also, this parameter cannot be
used with the archiving flag, for obvious reasons.

R Specifies that the keywords specified in this topic
make use of UNIX-style regular expressions. Without
this flag, keywords will be taken literally, and
interpreted as-is. Due to the depth of this topic, is
is covered in a separate section, "Regular
Expressions". Please note that just specifying the
regular expression flag can cause a decrease in search
speed, so use this option only when necessary. If
possible, specify the regular expression on another

TopicX v1.00 Documentation Page 15

topic line, using the same output file as the rest of
the topic. (See below in the Advanced Techniques
section)

Message Attribute Control

The message flags can optionally be followed by a set
of attribute flags, which limit extraction based on each
message's attributes. (Some examples of attributes would be
CrashMail, Kill/Sent, Local, Private, etc) There are two
distinct modes of attribute control -- The AND mode, and the
OR mode. Using the AND mode, all of the specified attribute
conditions must be met in order to search (and possibly
extract) a message. Using the OR mode, one or more of the
specified attribute conditions must be met in order to extract
a message. To use the AND mode, append an ampersand ("&") to
the flag group. To use the OR mode, instead append a pipe
symbol ("|") to the flag group. After the AND/OR specifier,
the flag characters take on different meanings. Also, a tilde
("Ü") preceding a message attribute reverses the meaning of
the attribute.

Example:
If &X extracts only messages with a certain attribute set,
then &ÜX extracts only messages WITHOUT that attribute
set.

The message attributes which TopicX understands are:

P Private
C Crash
R Read
S Sent
F File Attach
W ForWarded
O Orphan
K Kill/Sent
L Msg was entered locally
H Hold
Z File RequeZt
Q Receipt ReQuest
T ReceipT
A Audit Trail Requested
U Update Request

The two modes (AND/OR) may be combined at will, and
may be used in any order. When using the two operators in
conjunction, _all_ of the AND conditions must be met, and one
or more of the OR conditions must be met. For example,
"&CO|LS" will only process messages which have the Crashmail
bit set, which are orphans, and are either local messages or
have been sent.

TopicX v1.00 Documentation Page 16

Keywords and Operators

Following the flag group, comes the keywords,
operators, output and archive paths. The keywords designate
what TopicX is to search each message for -- They are also
case-insensitive, so there's no need to search for both "John
McDoe" and "John Mcdoe". There can be a maximum of 20
keywords per topic. If you need more than that number, either
split the topic into two separate topics, using the same
output path, or contact the author for an expanded version of
TopicX.

By placing an operator between each keyword, you can
create complex searches and extractions based on almost
anything imaginable. The keywords must be enclosed in double
quotes, and are each separated by an operator, which can be
either an "&" (an AND), or an "|" (an OR). The AND operator
will only extract messages in which all of the keywords can be
found, and the OR operator will only extract messages in which
one or more of the specified keywords can be found. To keep
things simple, those are the only two operators allowed.
(Future versions of TopicX may support more complex operators)

The AND operator has a higher precedence than the OR
operator, so keywords using the AND operator bind "tighter"
than the OR operator. For example, given the following
expression:

"PkZip" & "Phil" | "Katz" & "Cats" | "PkArc"

The above would look something like this if it could be
parenthesized:

("PkZip" & "Phil") | ("Katz" & "Cats") | "PkArc"

The keywords can also contain UNIX-style regular
expressions, provided that the R flag was specified in the
topic's flag group. (See the separate section on regular
expressions)

If you wish to search for the double-quote character,
a semi-colon (the configuration file comment character), or
the literal of a standard regular expression character, please
see the section regarding quoting.

Following the attributes (or following the flag group,
if the FloobyDust flag was specified) is the output path. The
output path is where the extracts of all qualifying messages
get placed. If you specified the 'A' flag in that topic,
following the output path should come the archive path, which
is where the final archive will be placed. If you wish to
have the extracts deleted after being inserted into the
archive, then use the "Archiver" verb to tell your archiver to
move extracts into the archives.

TopicX will only extract a message when it meets all
of the conditions specified in the topic line. This means the
message must have the correct date (if applicable), the

TopicX v1.00 Documentation Page 17

correct message attributes (if applicable), and the designated
keywords (if applicable) must be found inside the message. If
any of the above conditions is false, TopicX will move on to
the next topic line, and eventually to the next message.

Order of Topics

When using specific flag groups and options, the order
in which topics are listed becomes vital. TopicX scans the
message starting with the first topic, then progresses to scan
for the second topic, the third, etc. If you use the X (stop
processing) flag, TopicX will stop processing the remaining
topics, and skip on to the next message. This option is
desirable if you don't want TopicX to extract to more than one
output file, or if you want to screen out certain topics. For
example, if you wish to extract certain topics from an area to
only one output file, and to log other messages which weren't
found by any of the other searches to a general file, you
should arrange your topics in the following order:

XMS "Topic #1" Topic1.Out
XMS "Topic #2" Topic2.Out
XMS "Topic #3" Topic3.Out
XMS "Topic #4" Topic4.Out
F TopicAll.Out

Any of the above message flags can be changed, except
for the stop and FloobyDust flags. The above insures that
topics will only be extracted to one file, and only the topics
which couldn't fit into one of the other files will be
extracted to TopicAll.Out. If you don't want to extract
messages which contained none of the keywords, then omit the
FloobyDust topic.

TopicX v1.00 Documentation Page 18

REGULAR EXPRESSIONS

When the 'R' flag is specified in a flag group, TopicX
will enable processing of UNIX-style regular expressions in
keyword searches. Unless you specify the 'R' flag, each
keyword will be processed literally, whether or not it
contains regular expressions. And just as normal searches are
case-insensitive, so are regular expression searches. The
following characters can make up a regular expression:

* An expression followed by an asterisk wildcard matches zero
or more occurrences of that expression[1]. For example,
ba*h matches bh, bah, baah, baaah, but not bha.

+ An expression followed by a plus wildcard matches one or
more occurrences of that expression[1]. For example, b+h
matches bah and baah, but not bh.

^ Signifies the beginning of a line.

$ Signifies the end of a line. The '^' and '$' characters
usually behave exactly the same (since the beginning of one
line is usually the end of another), except at the
beginning and end of messages and subjects.

[] A sequence of characters enclosed in brackets matches any
character in that sequence. If the first character in the
sequence is a circumflex, it will match only characters NOT
found in the sequence. To specify a range of characters,
use two characters separated by a dash. For example, "[a-
gi-z<]" would match a left angle bracket, and any letter
except h. "[^a-m]" will match letters N through Z. All of
the normal regular expression characters are valid inside
brackets, except for '.', '+', and '*'. Please note that
there is NO difference between upper and lower case, even
inside square brackets.

. Signifies that any character can be matched.

All other characters besides the above are processed
literally, and must be found in the message text to constitute
a match. To search for the literal of a regular expression
character, prefix it with the backslash character.

[1] Currently, the '*' and '+' operators won't work in
situations like these: "[abc]*b" or "abc.+x". If the
character immediately following the '*' can be caught by the
previous expression (the '[abc]' for the first, the '.' for
the second), then TopicX will pretend the second part of the
expression doesn't exist, and extract the message if the first
part was matched. This should be fixed in an upcoming
version]

TopicX v1.00 Documentation Page 19

Examples:

"colou*r"

The above would match both "color", "colour", "colouur", etc.

"gr[ea]y"

This expression would match both "grey" and "gray".

"[^f]iss"

The above would match the "hiss" or "hisses", but not
"fissure".

"^well"

This would match "well", as long as it was at the at the
beginning (or end -- See notes on the '$' character) of a
line.

"[^blp]ack"

This would match "mack", but wouldn't match "back", "lack", or
"pack" .

"^qu.ck\.*!"

The above would match "quack...!", "quack!", and "quick.!" if
they were at the beginning of a line, but not "quicks!",
"quacking." or "quack".

TopicX v1.00 Documentation Page 20

ADVANCED TECHNIQUES

Output Paths:

If you decide to specify the same output path more
than once in each area, make sure that it is specified as
being in the same directory, on the same physical drive.
Since there it no rational way to determine if an output path
has been duplicated, TopicX resorts to comparing the names of
the output paths. TopicX will add drive specifiers and
directories to ambiguous output paths, but it cannot
compensate for referencing the same file twice, once as its
real name, and once more on a different drive, such as could
be obtained by using a SUBST command.

Regular Expressions:

Due to the loss of speed when processing regular
expressions, it is sometimes beneficial to split a topic up
so that only those keywords utilizing regular expressions use
the regular expression searches. To do this, split the topic
line into two separate lines (with identical paths), and
insert all of the regular expressions on the first line.
Then, remove the 'R' flag from the second line, add an 'X'
flag to the first line, and you're all set.

For example, instead of using the following topic line:

RMS|RS "Gr[ae]y" | "Mauve" | "Brown" | "Beige*"
D:\Path\File.Ext

You should use something like this for optimum speed:

XMS|RS "Mauve" | "Brown" D:\Path\File.Ext
RMS|RS "Gr[ae]y" | "Beige*" D:\Path\File.Ext

Word Delimiters:

Another really useful concept is to define a "word
delimiter" macro. This is useful if you want to search for
the name "Wes", but don't want to get "West" or
"Northwestern":

Macro WD [^a-z0-9]

RSM "@wd@Wes@wd@" MyFile.Txt

Low/High Water Marks:

Low water marks are useful in situations where you
don't want to use either of the date options (-T or -Y), but
want to extract a given message only once. If you configure
each topic in each area to delete messages after extraction
(by specifying the 'D' flag for each topic, and specifying a
'FND' flag at the end of each area to nab messages not

TopicX v1.00 Documentation Page 21

extracted), you can extract only a certain number of messages
each day and delete them as you go along, thereby alleviating
the need for a separate message deletion utility. Since the
message is deleted once extracted, there is no chance of it
being processed twice. The low water mark was provided for
situations when there is an irregularity in EchoMail flow: If
there is a small number of messages in each base, you probably
don't want to process and all of them. The low water mark CAN
be set higher than the high-water mark, so it is possible to
process up to the 50th message in an area, as long as more
than 100 messages exist. See the section on Low/High Water
Marks for more details.

TopicX v1.00 Documentation Page 22

EXAMPLES

Here are a few sample topic lines, to give you an idea
of what TopicX can do:

T "From: Vince Perriello" | "From: Wynn Wagner" |
"From: George Stanislav" OpusLCD.Txt

The above would search the To/From portions of each message,
and extract each message from either of the above three
individuals to the file OpusDev.Txt in the current directory.

AT|RS "From: John Doe" D:\Path\Johndoe.Txt D:\Arcs\Johndoe.Arc

The above topic would only process messages which had been
received or sent, and from John Doe, to the file
D:\Path\Johndoe.Txt. Once all message extraction is
completed, TopicX would then invoke the specified archiver to
either add or move Johndoe.Txt to D:\Arcs\Johndoe.Arc.

DLNM "Hello, world."

The above topic would create a log entry for each message
found that contained the words "Hello, world" in the message
body, and then delete that message.

AMS&RL "Subj: Fusion" | "Palmer" & "Stanley Pons" |
"Deuterium" Coldfus.Txt Coldfus.Arc

The above topic would only extract messages which were written
locally and received, and had the subject of "Fusion", or
contained the words "Deuterium", or both "Palmer" and "Stanley
Pons" in either the subject line or message body. The
extracts would be output to the file Coldfus.Txt, and would be
archived into Coldfus.Arc at the end of processing.

TD|RS&ÜZÜQÜTÜAÜO "To: Steven Bonisteel" File.Ext

The above would scan all messages which were either received
or sent, and NOT a file request, NOT a receipt request, NOT a
receipt, NOT an audit trail, and NOT an orphan. Of the
messages actually scanned, TopicX would only extract messages
TO Steven Bonisteel. The extracts would be contained in the
file "File.Ext".

Macro WD [^a-z0-9]

EchoArea F:\Msg\Dr_Debug
SM "Fat" | "Cluster Size" Clus%y%m.Txt
SM "Fractal" Frac%y%m.Txt

LRSM "@wd@GNU@wd@" Gnu%y%m.Txt
SM "Aspartame" | "Coke" | "Mountain Dew" | "Jolt" |

TopicX v1.00 Documentation Page 23

"Pepsi" | "Dr Pepper" Soft%y%m.Txt
RSM "Front *Door" Fdor%y%m.Txt
RSM "@wd@BNU@wd@" Bnu%y%j.Txt
RXSM "[^\.]Zip" Zip%y%m.Txt

SM "LHArc" Lhrc%y%m.Txt

The preceding area would:

1) Extract any messages containing the strings "Fat" or
"Cluster Size" in the subject or message body, to the file
Clus<year><month>.Txt, where <year> is the current year,
and <month> is the current month.

2) Extract any messages containing the string "Fractal" to the
file Frac<year><month>.Txt.

3) Extract any messages containing the WORD (ie. surrounded by
non-alphanumerics) "GNU", and insert the extracts in the
file Gnu<year><month>.Txt.

4) Extract any messages containing any of the following
strings to the file Soft<year><month>.Txt: "Aspartame",
"Coke", "Mountain Dew", "Jolt", "Pepsi", or "Dr Pepper".

5) Extract any messages containing the string "FrontDoor" or
"Front Door" to the file Fdor<year><month>.Txt.

6) Extract any messages containing the WORD "BNU" to the file
Bnu<year><juldate>.Txt, where <juldate> is the current
julian date.

7) Extract any messages containing the string "Zip" to the
file Zip<year><month>.Txt, as long as the string wasn't
prefixed with a period, such as would occur in a filename.

8) Extract any messages containing the word "LHarc" to the
file Lhrc<year><month>.Txt, as long as it hadn't been
extracted to Zip<year><month>.Txt. (This is caused by the
'X' flag on the ZIP topic line)

For more examples, please refer to the enclosed configuration
file, TOPICX.CFG.

TopicX v1.00 Documentation Page 24

TROUBLESHOOTING

If you encounter a problem when trying to use TopicX,
then you should follow the following steps before trying to
contact the author:

1) Make sure you've read the ENTIRE manual. Some of TopicX's
options are very complicated, and you're sure to
misunderstand if you haven't read over the manual very
carefully.

2) Read the error message produced (if any). They will
usually provide a clue to the solution. For example, if
the error message states, "Error parsing line XX of
configuration file", you should go over line XX (and the
surrounding lines) with a fine-toothed comb.

3) If the error is in the configuration file, check over the
problem lines carefully. If the error is in an area
definition, then check the entire area for mistakes. Also,
a list of error messages TopicX can produce follows at the
end of this section. Check to see if the error message you
received is listed there, and read the hints listed
following the error message.

If TopicX encounters an error, it will return one of
the following DOS errorlevels:

Errorlevel 0 - No Error.
Errorlevel 1 - An error occurred parsing the command-line.
Errorlevel 2 - An error occurred parsing the configuration

file.
Errorlevel 3 - Ran out of memory.
Errorlevel 4 - Error in opening/reading/writing a file. (The

disk could be full, or a needed file might not
exist)

Errorlevel 5 - A bizarre internal logic error occurred.

A common error occurs when using an improperly-
configured mail processor. If TopicX fails to extract
messages when using either the -T or -Y options, that probably
means the date field was corrupted by a mail-handling utility.
Users of ConfMail and other processors should MAKE SURE that
the datestamps in imported messages are being converted to the
"new" Opus format. This means using the "-N" switch for
ConfMail Import, and using the "Opus_Date" keyword for
QuickMail. OOMP users need not worry about this, since Opus'
internal tosser dates imported messages automatically. (Other
processors should have similar options.)

If the above fails to resolve anything, run TopicX over
the suspected area with the -D (date debug) command-line
parameter. This will display the three different datestamps
stored in each message scanned. The one TopicX is concerned
about is the "date arrived" stamp -- If this stamp has been
zeroed, you can be assured that TopicX won't work with either
the -T or the -Y options. Once you've deduced this, try to
narrow down the cause and determine which message-handling

TopicX v1.00 Documentation Page 25

utility on your system is causing this problem, and either fix
or remove that utility.

If TopicX encounters an error while parsing the
configuration file, it will display a message to the local
console. Since TopicX can't insert this message in the log
file (which must be specified in the configuration file), you
should trap the errorlevel returned from TopicX, and add a
message to the system log if an error occurred.

The current version of TopicX will display any of the
following error messages while parsing the configuration file
or scanning messages:

"Error! Invalid version of compiled config file
D:\Path\File.Ext!"

This means that you tried to use an old version of a compiled
configuration file format. This won't normally happen, unless
you're upgrading from a previous version of TopicX. If this
happens, the solution is to delete the .DAT file and start
again.

"Error in compiled config file `D:\Path\Config.Dat'!"

This means that the compiled configuration file is corrupted.
Again, the solution is to delete the .DAT file.

"Error! Either configuration file line XX isn't terminated
with a CR/LF pair, or the line was longer than 255
characters!"

This means either:

(a) You created the configuration file with a non-standard
editor. Lines must be terminated with a carriage return
and a linefeed, and must use the standard ASCII codes.

(b) The line was longer than 255 characters. If the line is a
topic line, then split it into two different lines using
the same output path.

"Error! Invalid <item> specified on line <line> of
configuration file"

This means that a particular part of a line could not be
processed correctly. <item> can be one of the following:

verb - You specified a non-existent verb, or inserted
a blank line in the middle of an area
definition. You may have misspelled a verb
(such as using "MultePass" instead of
"MultiPass"), or forgotten to use a comment

TopicX v1.00 Documentation Page 26

character in front of a comment.

operator - You specified an operator other than '&' or
'|'. Check the topic line to make sure
everything is where it is supposed to be, and
you haven't forgotten to use double quotes
around the keywords. Also make sure you
haven't specified an archive path when none was
required.

keyword - You may have forgotten to include a keyword on
a topic line (if you're not using the 'F'
flag), or you may have forgotten a double-quote
somewhere.

output path - You either forgot to specify an output path, or
forgot to use the 'N' flag.

archive path - You either forgot to specify an archive path,
or mistakenly used the 'A' flag.

"Error! Too many <items> specified on line <line> of
configuration file! (Max <max>)"

You specified too many of a particular type of item in the
configuration file. There is a limit on the number of macros,
areas, topics, and keywords:

64 macros per configuration file,
512 areas per configuration file,
100 topics per area,
20 keywords per topic.

"Not enough memory to compile area <area> with given MultiPass
value!"

This means that TopicX didn't have enough memory to compile
the specified area using the given MultiPass value. TopicX
must have enough memory to compile this area in memory. If
the MultiPass value is set too high, there won't be enough
room to compile even part of the area, so TopicX will abort.
The solution is to adjust the MultiPass value downwards until
there is enough memory to compile the area.

"Error! Message directory <path> does not exist!"

Each area you specify in the configuration file must exist.
The solution is to create the area.

"Error in regular expression on line XX of configuration file!
Unterminated [] character set!"

In one of the regular expressions on that line, you have a
'[', but no corresponding ']'. To correct the problem, insert

TopicX v1.00 Documentation Page 27

a ']' in the proper place. If you wish to use a literal '[',
then see the section on quoting. This situation may also
occur if you use the '[' character in a normal keyword, and
mistakenly use the 'R' flag.

"Error in regular expression on line XX of configuration file!
You cannot specify an empty [] character set!"

This means that you must have something inside a character
set. In other words, an expression such as "abc[]efg" is
invalid.

"Error in regular expression on line XX of configuration file!
There must be a valid character following the quote character
('\')!"

You tried to use the quote character as the last character in
a regular expression. Since the quote character signifies
that TopicX is to take the literal of the next character, it
cannot be the last character in a keyword.

"Error in regular expression on line XX of configuration file!
'*' or '+' cannot be the first character in the expression!"

This means that you tried to use either '*' or '+' as the
first character in a regular expression. Since these
characters represent a repeat of the preceding character, it
cannot be used as the first character.

"Error in regular expression on line XX of configuration file!
You cannot specify two repeat characters ('*' or '+') in a
row!"

This means you tried to use two repeat characters in a row.
Since a repeat character specifies a repeat of the preceding
character, two repeat characters in a row is illegal.

"Error! Too many arguments on line XX of configuration file!"

This means you used too many options/words on a particular
line in the configuration file. An example would be
specifying the F (FloobyDust) flag, and specifying an extra
keyword by mistake.

"Invalid flag `Y' in line XX of configuration file!"

This means that you either forgot to add a flag group to a
topic line, or used an invalid flag in the flag group. You
also may see this error message if you forget to insert a
blank line between each area.

TopicX v1.00 Documentation Page 28

"Invalid attribute type `Y' in line XX of configuration file!"

This means that you specified an invalid message attribute
after the flag group. Valid attributes are listed in the
"Message Attribute Control" section of this document.

"Ran out of memory while parsing configuration file!"

This means that there wasn't enough memory to fully compile
the configuration file. See notes on the MultiPass verb,
which allows you to parse configuration files larger than
memory allows.

"Error! No searching operation specified in flag group on
line XX of configuration file!"

This means that you didn't specify either of the T, M, S, or F
flags. You must either specify a searching operation, or the
FloobyDust flag (process all messages) for TopicX to work
correctly.

"Error! Scan types N and A cannot be mixed in line XX of
configuration file!"

This means you tried to specify both the N and A flags in the
same topic line. Since the N flag specifies that you want no
output file, the A flag (which specifies archiving of output
files) cannot be rationally used in the same topic.

"Error! <item> is too long in line XX of configuration file!"

This item occurs if a string is too long for TopicX to handle.
TopicX has a fixed length for several options (such as the
archiver name, message divider, and macro names), and will
abort if you specify a string too long to fit in the allocated
space.

"Ran out of memory while parsing configuration file!"

This means that there wasn't enough memory to read and use the
entire configuration file in memory. See the 'MultiPass' verb
for more information on how to get around this.

"Undefined macro `<macro>'"

This error occurs when you use an undefined macro in the
configuration file. You may have forgotten to double-up a
literal commercial at-sign (you should use "@@" instead of
"@"), or you may have tried to use a macro before it had been
defined.

TopicX v1.00 Documentation Page 29

"Error! Extraneous archive path specified on line XX of
configuration file!"

This means that you specified an archive path where none was
required. In other words, you used an archive path in a topic
which didn't contain the 'A' flag.

"Error opening output file `file'!"

This means that TopicX couldn't open a specific output file,
usually due to an invalid filename, or not enough directory
entries left in the root directory. If the problem is in the
path, then fix it and re-start TopicX.

"Bizarre error parsing compiled regular expression!"
"Bizarre scan-range!"

Either of these errors means that there was an internal logic
error in TopicX, which can't be fixed by ordinary means.

TopicX v1.00 Documentation Page 30

REVISION HISTORY

1.00 Original release, after several months of alpha, beta,
and gamma testing.

CREDITS

Many thanks go to Ken McVay and Steven Bonisteel, my
all-in-one beta test team, without whom this program would not
have been possible.

This document was written and produced by PC-Write
v3.01, a Shareware word processor. If you'd like to learn how
to use PC-Write to produce this kind of document, then by all
means drop me a note at the address listed below.

NO WARRANTY

All software in this package, and accompanying written
materials and documentation (including instructions for use)
are provided "as is", without warranty of any kind.
Furthermore, Scott Dudley does not warrant, guarantee, or make
any representations regarding the use, or the results of use,
of the software or written materials in terms of correctness,
accuracy, reliability, currentness, or otherwise. The entire
risk as to the results and performance of the software is
assumed by you. The above is the only warranty of any kind,
either express or implied, statutory or otherwise, including
but not limited to the implied warranties of merchantability
and fitness for a particular purpose that is made by the
author on this product. In the words of Wynn Wagner III, "If
you break it, you get to keep both parts."

###

