
The Elm Filter System Guide

What the filter program is, what it does,
and how to use it

Dave Taylor

Hewlett-Packard Laboratories
1501 Page Mill Road

Palo Alto CA
94304

email: taylor@hplabs.HP.COM or hplabs!taylor

>>> Elm is now in the public trust. Bug reports, comments, etc. to: <<<

Syd Weinstein
Datacomp Systems, Inc.

3837 Byron Road
Huntingdon Valley, PA 19006-2320

email: elm@DSI.COM or dsinc!elm

 Copyright 1986, 1987 by Dave Taylor
 Copyright 1988, 1989, 1990 by The USENET Community Trust

The Elm Filter System Guide

(Version 2.3)

Dave Taylor

Hewlett-Packard Laboratories
1501 Page Mill Road

Palo Alto CA
94304

email: taylor@hplabs.HP.COM or hplabs!taylor

>>> Elm is now in the public trust. Bug reports, comments, etc. to: <<<

Syd Weinstein
Datacomp Systems, Inc.

3837 Byron Road
Huntingdon Valley, PA 19006-2320

email: elm@DSI.COM or dsinc!elm

May 1, 1990

One of the greatest problems with the burgeoning electronic mail explosion is that I tend to get lots of mail
that I don’t care about. Amusingly, perhaps, I have the equivalent of electronic junk mail. Not amusing, however,
is the fact that this can rapidly accumulate and end up taking over my mailbox.

At the same time I often get mail that, while it is interesting and important, can easily be filed to be read later,
without ever actually having to cluttering up my incoming mailbox.

This, then, is what filter does! The filter program allows you to define a set of rules by which all incoming mail
should be screened, and a subsequent set of actions to perform based on whether the conditions were met or not.
Filter also has the ability to mail a summary of what actions it performed on the incoming mail as often as you’d
like.

Writing the Rules

The language for writing filter rules is pretty simple, actually. The fundamental structure is;
if (condition) then action

Elm Filter Guide Version 2.3

Elm Filter Guide Version 2.3

Where condition is constructed by an arbitrary number of individual conditions of the form ‘‘field relation value’’.
(an optional further type of rule is of the form ‘‘always action’’ but should only be used as the last rule in the ru-
leset, for obvious reasons). The field value can be;

subject
from
to
lines
contains

where, if ‘‘lines’’ is chosen, the relation can be any of the standard relationships (‘>’, ‘<’, ‘>=’, ‘<=’, ‘!=’ and ‘=’).
If another action is chosen, ‘‘contains’’ can be used as the relation, ‘‘=’’, or, if you’d like, you can skip the relation-
ship entirely (e.g. ‘subject "joe"’). The value is any quoted string that is to be matched against or number if ‘‘lines’’
is the field being considered.

Individual conditions are joined together by using the word ‘‘and’’, and the logic of a condition can be flipped by
using ‘‘not’’ as the first word (e.g. ‘not subject "joe"’). We’ll see more examples of this later.

Note that the ‘‘or’’ logical conjunction isn’t a valid part of the filter conditional statement.

Finally, <action> can be any of;
delete
save foldername
savecopy foldername
forward address
execute command
leave

where they result in the actions; delete deletes the message; save saves a copy of the message in the specified fol-
dername; savecopy does the same as save, but also puts a copy in your mailbox; forward sends the message to the
specified address; execute feeds the message to the specified command (or complex sequence of commands) as
standard input; and leave leaves the message in your mailbox.

Foldernames can contain any of a number of macros, too, as we’ll see in the example ruleset below. The macros
available for the string fields are;

Macro Meaning
%d day of the month
%D day of the week (0-6)
%h hour of the day (0-23)
%m month of the year (0-11)
%r return address of message
%s subject of original message
%S ‘‘Re: subject of original message’’
%t current hour and minute in HH:MM format
%y year (last two digits)

The rules file can also contain comments (any line starting with a ‘#’) and blank lines.

The file itself needs to reside in your .elm directory off your home directory and be called .elm/filter-rules. Here’s
an example:
$HOME/.elm/filter-rules
#
Filter rules for the Elm Filter program. Don’t change without some
serious thought. (remember - order counts)
#
(for Dave Taylor)

May 1, 1990 Page 2

Elm Filter Guide Version 2.3

rule 1
if (from contains "!uucp") then delete
rule 2
to "postmaster" ? save "/tmp/postmaster-mail.%d"
rule 3
if (to "culture" and lines > 20) ? save "/users/taylor/Mail/culture"
rule 4
subject = "filter test" ? forward "hpldat!test"
rule 5
if [subject = "elm"] savecopy "/users/taylor/Mail/elm-incoming"
rule 6
subject = "display-to-console" ? execute "cat - > /dev/console"

(notice the loose syntax — there are lots of valid ways to specify a rule in the filter program!!)

To translate these into English;

1. All messages from uucp should be summarily deleted.

2. All mail to postmaster should be saved in a folder (file) called /tmp/postmaster-mail.numeric-day-of-the-
week

3. All mail addressed to ‘culture’ with at least 20 lines should be automatically appended to the folder
/users/taylor/Mail/culture.

4. All messages that contain the subject ‘filter test’ should be forwarded to me, but via the address
‘hpldat!test’ (to force a non-user forward)

5. All messages with a subject that contains the word ‘elm’ should be saved in the folder
‘‘/users/taylor/Mail/elm-incoming’’ and also dropped into my mailbox.

6. Any message with the subject ‘‘display-to-console’’ will be immediately written to the console.

Notice that the order of the rules is very important. If we, for example, were to get a message from ‘uucp’ that had
the subject ‘filter test’, the filter program would match rule 1 and delete the message. It would never be forwarded
to ‘hpldat!test’. It is for this reason that great care should be taken with the ordering of the rules.

Checking the rules out

The filter program has a convenient way of check out the rules you have written. Simply invoke it with the -r
(rules) flag;

% filter -r
Rule 1: if (from = "!uucp") then

Delete
Rule 2: if (to = "postmaster") then

Save /tmp/postmaster-mail.<day-of-week>
Rule 3: if (to = "culture" and lines > 20) then

Save /users/taylor/Mail/culture
Rule 4: if (subject = "filter test") then

Forward hpldat!test
Rule 5: if (subject="elm") then

Copy and Save /users/taylor/Mail/elm-incoming
Rule 6: if (subject="display-to-console") then

Execute "cat - > /dev/console"

May 1, 1990 Page 3

Elm Filter Guide Version 2.3

There are a few things to notice — first off, these are the parsed and rebuilt rules, so we can see that they are all in a
consistent format. Also, notice on the filename for rule 2 that the program has correctly expanded the ‘‘%d’’ macro
to be the day of the week.

It is highly recommended that you always check your ruleset before actually letting the program use it!

Actually Using the Program

Now the bad news. If you aren’t running sendmail you cannot use this program as currently written. Why? Be-
cause the filter program expects to be put in your .forward file and that is something that only sendmail looks at!

The format for the entry in the .forward file (located in your home directory) is simply;
"| /usr/local/bin/filter"

Allright, it isn’t quite that simple! Since filter will be invoked by processes that don’t know where you are logged
in, you need to have some way to trap the error messages. For ease of use, it was decided to have all the messages
written to the file specified by ‘-o’ (or stderr) which means that you have two main choices for the actual entry. Ei-
ther;

"| /usr/local/bin/filter -o /dev/console"
which will log all errors on the system console (each error is prefixed with ‘‘filter (username)’’ to distinguish it), or;

"| /usr/local/bin/filter -o /tmp/joe.filter_errors"
If you want to have a copy saved to a file. Note that the quotes are a required part of the line. A possible strategy
would be to have the errors written to a file and to then have a few lines in your .login script like:

if (-f /tmp/joe.filter_errors) then
echo " "
echo "Filter program errors;"
cat /tmp/joe.filter_errors
echo " "

endif
You can also use the -v flag in combination with the above to have a more verbose log file saved by having your
.forward file;
"| /usr/local/bin/filter -vo /tmp/joe.filter_errors"
Suffice to say, you can get pretty tricky with all this!!

Summarizing the Actions Taken

The Filter program keeps a log of all actions performed, including what rules it matched against, in your .elm direc-
tory in a file called .elm/filterlog. You can either directly operate on this file, or, much more recommended, you can
one of the two summarize flags to the program and let it do the work for you!

The difference between the two is best demonstrated by example:
% filter -s

Summary of Filter Activity
hhhhhhhhhhhhhhhhhhhhhhhhhh

A total of 418 messages were filtered:
The default rule of putting mail into your mailbox

applied 364 times (87%)
Rule #1: (delete message)

applied 1 time (0%)
Rule #2: (save in "/users/taylor/Filtered-Mail/netnews.12")

applied 8 times (2%)
Rule #3: (save in "/users/taylor/Filtered-Mail/postmaster.12")

applied 14 times (3%)
Rule #5: (save in "/users/taylor/Filtered-Mail/risks.12")

May 1, 1990 Page 4

Elm Filter Guide Version 2.3

applied 3 times (1%)
Rule #6: (save in "/users/taylor/Filtered-Mail/rays.12")

applied 28 times (7%)
versus:

% filter -S
the output as listed above, followed by:
Explicit log of each action;
Mail from taylor about Filter Summary

PUT in mailbox: the default action
Mail from news@hplabsz.hpl.hp.com about Newsgroup comp.editors created

PUT in mailbox: the default action
Mail from root about Log file: cleanuplog

PUT in mailbox: the default action
[etc etc]

To actually use either of the summarizing options, there are two ways that are recommended;

The preferred way is to have a line in either your crontab (ask your administrator for help with this) that invokes the
filter program as often as you desire with the -s flag. For example, I have a summary mailed to me every morning at
8:00 am:

0 8 * * * "/usr/local/bin/filter -s | elm -s ’Filter Summary’ taylor"

An alternative is to have your .login execute the command each time.

Note that if you want to have your log files cleared out each time the summary is generated you’ll need to use the ’-
c’ flag too. Also, if you want to keep a long list of actions performed you can do this by saving it as you display it.
A way to do this would be, if you were to have the invocation in your .login script, to use:

echo "Filter Log;"
filter -c -s | tee -a PERM.filter.log

which would append a copy of all the output to the file ‘PERM.filter.log’ and would avoid you having to read larger
and larger summaries of what the program had done.

Further Testing of the Ruleset

With the readmsg command available, it is quite easy to test the rules you’ve written to see if they’ll do what you
desire.

For example, we can use the -n flag to filter, which means ‘don’t actually do this, just tell me what rule you
matched, if any, and what action you would have performed’ (you can see why a single letter flag is easier to type
in!!), and feed it each message in our mailbox by using a command like;

% set message=1
% set total_messages=‘messages‘
% while (1)
> if ($message > $total_messages) exit
> echo processing message $message
> readmsg -h $message | filter -n
> echo " "
> @ messages++
> end

which will then hand each of the messages in your mailbox to the filter program and display what action would have
been taken with that message and why.

For example, if we do this for a few interesting messages in my mailbox, we’d end up with output like:

May 1, 1990 Page 5

Elm Filter Guide Version 2.3

Mail from taylor about filter test
FORWARDED to hpldat!taylor by rule;
subject="filter test" ? forward "hpldat!test"

Mail from bradley%hplkab@hplabsc about Re: AI-ED mailing address for HP
PUT in mailbox: the default action

Mail from taylor about display-to-console
EXECUTED "cat - > /dev/console"

(sharp users will notice that this is exactly the same format as the longer summary listing)

What Forwarded Messages Look Like

When a message is forwarded to another user by the action being specified as ‘‘forward address’’, then the program
can generate one of two styles of message. If the message is to you, then it’ll simply add it to your mailbox in such
a way as to ensure that the return address is that of the person who sent the message and so on.

If not, then the message is enclosed in a message of the form:
From taylor Thu Oct 2 15:07:04 1986
Date: Thu, 2 Oct 86 15:06:58 pdt
Subject: "filter test"
From: The filter of taylor@hpldat <taylor>
To: hpldat!taylor
X-Filtered-By: filter, version 1.4
-- Begin filtered message --

From taylor Thu Oct 2 15:06:41 1986
Date: Thu, 2 Oct 86 15:06:33 pdt
From: Dave Taylor <taylor>
Subject: filter test
Just a simple test.

-- End of filtered message --
The subject of the actual message is the same as the subject of the message being forwarded, but in quotes. The
‘From:’ field indicates how the message was sent, and the ‘X-Filtered-By:’ identifies what version of filter is being
used.

Areas to Improve

While the filter program as presented herein is obviously a nice addition to the set of tools available for dealing with
electronic mail, there are some key features that are missing and will be added in the future based on demand.

As I see it, the main things missing are;

1. The ability to use regular expressions in the patterns. This would be a very nice feature!

2. Perhaps more actions available (but what?)

3. Certainly the ability to filter based on any field or combination of fields.

Warnings and Things to Look Out For

Since this is a pretty simple program, there are a few pitfalls, some of which have already been mentioned;

Order counts in the rules. Beware!

May 1, 1990 Page 6

Elm Filter Guide Version 2.3

Matching is pretty simple — make sure your patterns are sufficiently exclusive before having any destructive rules.

Finally, as with the rest of the Elm mail system, I welcome feedback and suggestion on how to improve this pro-
gram!!

May 1, 1990 Page 7

