
Ex/Edit Command Summary (Version 2.0)

Ex and edit are text editors, used for creating and modi-

fying files of text on the UNIX computer system. Edit is a

variant of ex with features designed to make it less compli-

cated to learn and use. In terms of command syntax and

effect the editors are essentially identical, and this command

summary applies to both.

The summary is meant as a quick reference for users

already acquainted with edit or ex. Fuller explanations of

the editors are available in the documents Edit: A Tutorial (a

self-teaching introduction) and the Ex Reference Manual

(the comprehensive reference source for both edit and ex).

Both of these writeups are available in the Computing Ser-

vices Library.

In the examples included with the summary, commands

and text entered by the user are printed in boldface to dis-

tinguish them from responses printed by the computer.

The Editor Buffer

In order to perform its tasks the editor sets aside a tem-

porary work space, called a buffer, separate from the user’s

permanent file. Before starting to work on an existing file

the editor makes a copy of it in the buffer, leaving the origi-

nal untouched. All editing changes are made to the buffer

copy, which must then be written back to the permanent file

in order to update the old version. The buffer disappears at

the end of the editing session.

Editing: Command and Text Input Modes

During an editing session there are two usual modes of

operation: command mode and text input mode. (This disre-

gards, for the moment, open and visual modes, discussed

below.) In command mode, the editor issues a colon prompt

(:) to show that it is ready to accept and execute a command.

In text input mode, on the other hand, there is no prompt

and the editor merely accepts text to be added to the buffer.

Te xt input mode is initiated by the commands append,

insert, and change, and is terminated by typing a period as

the first and only character on a line.

Line Numbers and Command Syntax

The editor keeps track of lines of text in the buffer by

numbering them consecutively starting with 1 and renum-

bering as lines are added or deleted. At any giv en time the

editor is positioned at one of these lines; this position is

called the current line. Generally, commands that change

the contents of the buffer print the new current line at the

end of their execution.

Most commands can be preceded by one or two line-

number addresses which indicate the lines to be affected. If

one number is given the command operates on that line

only; if two, on an inclusive range of lines. Commands that

can take line-number prefixes also assume default prefixes if

none are given. The default assumed by each command is

designed to make it convenient to use in many instances

without any line-number prefix. For the most part, a com-

mand used without a prefix operates on the current line,

though exceptions to this rule should be noted. The print

command by itself, for instance, causes one line, the current

line, to be printed at the terminal.

The summary shows the number of line addresses that

can be prefixed to each command as well as the defaults

assumed if they are omitted. For example, (.,.) means that

up to 2 line-numbers may be given, and that if none is given

the command operates on the current line. (In the address

prefix notation, ‘‘.’’ stands for the current line and ‘‘$’’

stands for the last line of the buffer.) If no such notation

appears, no line-number prefix may be used.

Some commands take trailing information; only the

more important instances of this are mentioned in the sum-

mary.

Open and Visual Modes

Besides command and text input modes, ex and edit

provide on some CRT terminals other modes of editing,

open and visual. In these modes the cursor can be moved to

individual words or characters in a line. The commands

then given are very different from the standard editor com-

mands; most do not appear on the screen when typed. An

Introduction to Display Editing with Vi provides a full dis-

cussion.

Special Characters

Some characters take on special meanings when used in

context searches and in patterns given to the substitute com-

mand. For edit, these are ‘‘ˆ’’ and ‘‘$’’, meaning the begin-

ning and end of a line, respectively. Ex has the following

additional special characters:

. & * [] ˜

To use one of the special characters as its simple graphic

representation rather than with its special meaning, precede

it by a backslash (\). The backslash always has a special

meaning.

Computing Services, U.C. Berkeley April 3, 1979

Name Abbr Description Examples

(.)append a Begins text input mode, adding lines to the buffer after the

line specified. Appending continues until ‘‘.’’ is typed alone

at the beginning of a new line, followed by a carriage

return. 0a places lines at the beginning of the buffer.

:a

Three lines of text

are added to the buffer

after the current line.
.

:

(.,.)change c Deletes indicated line(s) and initiates text input mode to

replace them with new text which follows. New text is ter-

minated the same way as with append.

:5,6c

Lines 5 and 6 are

deleted and replaced by

these three lines.
.

:

(.,.)copy addr co Places a copy of the specified lines after the line indicated

by addr. The example places a copy of lines 8 through 12,

inclusive, after line 25.

:8,12co 25

Last line copied is printed
:

(.,.)delete d Removes lines from the buffer and prints the current line

after the deletion.

:13,15d

New current line is printed
:

edit file

edit! file

e

e!

Clears the editor buffer and then copies into it the named

file, which becomes the current file. This is a way of shift-

ing to a different file without leaving the editor. The editor

issues a warning message if this command is used before

saving changes made to the file already in the buffer; using

the form e! overrides this protective mechanism.

:e ch10

No write since last change

:e! ch10

"ch10" 3 lines, 62 characters
:

file name f If followed by a name, renames the current file to name. If

used without name, prints the name of the current file.

:f ch9

"ch9" [Modified] 3 lines ...

:f

"ch9" [Modified] 3 lines ...
:

(1,$)global g global/pattern/commands

(1,$)global! g! or v Searches the entire buffer (unless a smaller range is speci-

fied by line-number prefixes) and executes commands on

ev ery line with an expression matching pattern. The sec-

ond form, abbreviated either g! or v, executes commands on

lines that do not contain the expression pattern.

:g/nonsense/d
:

(.)insert i Inserts new lines of text immediately before the specified

line. Differs from append only in that text is placed before,

rather than after, the indicated line. In other words, 1i has

the same effect as 0a.

:1i

These lines of text will

be added prior to line 1.

.

:

(.,.+1)join j Join lines together, adjusting white space (spaces and tabs)

as necessary.

:2,5j

Resulting line is printed

:

Computing Services, U.C. Berkeley April 3, 1979

Name Abbr Description Examples

(.,.)list l Prints lines in a more unambiguous way than the print com-

mand does. The end of a line, for example, is marked with a

‘‘$’’, and tabs printed as ‘‘ˆI’’.

:9l

This is line 9$
:

(.,.)move addr m Moves the specified lines to a position after the line indi-

cated by addr.

:12,15m 25

New current line is printed
:

(.,.)number nu Prints each line preceded by its buffer line number. :nu

10 This is line 10
:

(.)open o Too inv olved to discuss here, but if you enter open mode

accidentally, press the ESC key followed by q to get back

into normal editor command mode. Edit is designed to pre-

vent accidental use of the open command.

preserve pre Saves a copy of the current buffer contents as though the

system had just crashed. This is for use in an emergency

when a write command has failed and you don’t know how

else to save your work.†

:preserve

File preserved.

:

(.,.)print p Prints the text of line(s). :+2,+3p

The second and third lines

after the current line

:

quit

quit!

q

q!

Ends the editing session. You will receive a warning if you

have changed the buffer since last writing its contents to the

file. In this event you must either type w to write, or type q!

to exit from the editor without saving your changes.

:q

No write since last change

:q!

%

(.)read file r Places a copy of file in the buffer after the specified line.

Address 0 is permissible and causes the copy of file to be

placed at the beginning of the buffer. The read command

does not erase any text already in the buffer. If no line

number is specified, file is placed after the current line.

:0r newfile

"newfile" 5 lines, 86 characters
:

recover file rec Retrieves a copy of the editor buffer after a system crash,

editor crash, phone line disconnection, or preserve com-

mand.

(.,.)substitute s substitute/pattern/replacement/

substitute/pattern/replacement/gc

Replaces the first occurrence of pattern on a line with

replacement. Including a g after the command changes all

occurrences of pattern on the line. The c option allows the

user to confirm each substitution before it is made; see the

manual for details.

:3p

Line 3 contains a misstake

:s/misstake/mistake/

Line 3 contains a mistake
:

† You should seek assistance from a system administrator as soon as possible after saving a file with the preserve command, because the pre-

served copy of the file is saved in a directory used to store temporary files, and thus, the preserved copy may only be available for a short period

of time.

Computing Services, U.C. Berkeley April 3, 1979

Name Abbr Description Examples

undo u Reverses the changes made in the buffer by the last buffer-

editing command. Note that this example contains a notifi-

cation about the number of lines affected.

:1,15d

15 lines deleted

new line number 1 is printed

:u

15 more lines in file ...

old line number 1 is printed
:

(1,$)write file w

(1,$)write! file w!

Copies data from the buffer onto a permanent file. If no file

is named, the current filename is used. The file is automati-

cally created if it does not yet exist. A response containing

the number of lines and characters in the file indicates that

the write has been completed successfully. The editor’s

built-in protections against overwriting existing files will in

some circumstances inhibit a write. The form w! forces the

write, confirming that an existing file is to be overwritten.

:w

"file7" 64 lines, 1122 characters

:w file8

"file8" File exists ...

:w! file8

"file8" 64 lines, 1122 characters
:

(.)z count z Prints a screen full of text starting with the line indicated;

or, if count is specified, prints that number of lines. Vari-

ants of the z command are described in the manual.

!command Executes the remainder of the line after ! as a UNIX com-

mand. The buffer is unchanged by this, and control is

returned to the editor when the execution of command is

complete.

:!date

Fri Jun 9 12:15:11 PDT 1978

!
:

control-d Prints the next scroll of text, normally half of a screen. See

the manual for details of the scroll option.

(.+1)<cr> An address alone followed by a carriage return causes the

line to be printed. A carriage return by itself prints the line

following the current line.

:<cr>

the line after the current line
:

/pattern/ Searches for the next line in which pattern occurs and

prints it.

:/This pattern/

This pattern next occurs here.
:

// Repeats the most recent search. ://

This pattern also occurs here.
:

?pattern? Searches in the reverse direction

for pattern.

?? Repeats the most recent search,

moving in the reverse direction

through the buffer.

Computing Services, U.C. Berkeley April 3, 1979

