Victor Donnay

Special surfaces discussed in my article "Chaotic Geodesic Motion: An extension of M.C. Escher's Circle Limit Designs"

One-minute movie: "Turning a Rectangle into a Torus"

Five-minute movie on the Costa surface

Schwarz P-Surface

A minimal surface discovered by H. A. Schwarz in 1890.

Sphere with Chaotic Geodesic Motion

Taking the Schwarz P-surface and attaching focusing caps to the ends of the Schwarz P-surface produces a sphere. The geodesic motion on this sphere is chaotic.

Four copies of the Schwarz surface joined together

Torus with Chaotic Geodesic Motion

Taking the surface formed by four copies of the Schwarz P-surface and attaching focusing caps to the ends produces a torus. The geodesic motion on this torus is chaotic.

Torus with 2 Holes

Two-holed torus formed by connecting the edges of an eight-sided fundamental region, decorated with Escher's fish pattern.

Sculpture and photograph by Douglas Dunham.

Torus Movie

A one minute sound movie showing how a torus (doughnut) can be made by connecting opposite edges of a rectangle.

Turning a Rectangle into a Torus

Click on the rectangle to view the movie

Costa Movie

A 5-minute sound movie showing the geometry and topology of the Costa Minimal Surface. The Costa surface is a strangely shaped doughnut. The video shows the connection between the Costa doughnut and the standard doughnut.

The Geometry and Topology of the Costa Surface

Click on the rectangle to view the movie