
Service Cloaking and Anonymous Access;
Combining Tor with Single Packet

Authorization (SPA)

Michael Rash
CTO, Solirix Inc.

michael.rash@solirix.com
http://www.cipherdyne.org/

DEF CON
08/05/2006

mailto:michael.rash@solirix.com
http://www.cipherdyne.org/

Agenda

The Onion Router (Tor) and anonymous service
access

Default-drop packet filters and Single Packet
Authorization

SPA over Tor

Live demonstration

Future development

Tor

Network of virtual circuits

Packets take a random path through several
servers (onion routers)

No individual router knows the complete path
through the router cloud

Compatible with any application with SOCKS
support

Traffic is encrypted

Virtual Circuit

●

Single Packet Authorization

Use default-drop packet filters to minimize code
execution paths

Authentication and authorization data is
passively monitored via libpcap (or the ulogd
pcap writer)

No traditional “server” in the Berkeley sockets
sense

Default-Drop

A default-drop packet filter is the next best thing
to Marcus Ranum's perfect firewall:

Single Packet Authorization (cont'd)

Up to minimum MTU of data can be sent

Large data size makes it possible to use 2048-
bit GnuPG keys

Replay attacks easily thwarted by MD5
calculation and storage on the server side

Authorization packets can be spoofed (except
over Tor)

SPA vs. Port Knocking

Both use default-drop packet filters

Both can timeout ACCEPT rules but use
connection tracking to allow a TCP session to
remain open

SPA solves the replay problem

SPA is compatible with asymmetric ciphers

SPA cannot be broken by trivial sequence
busting attacks

SPA does not look like a port scan

Who can sniff what?

●

Security Through Obscurity?

No more than passwords or GnuPG private
keys

SPA is additive, i.e. other security mechanisms
already built into various protocols are still used

 http://bastille-linux.org/jay/obscurity-revisited.html

SPA over Tor

Why not just always run client SSH connections
(or other services) over Tor?
− Still need SPA and default-drop packet filter since

an attacker can also run connections over Tor

Sending the SPA packet over Tor adds another
layer; traffic analysis (which Tor is designed to
thwart) is made more difficult

socat SOCKS 4a proxy

SPA over Tor (cont'd)

Tor uses TCP for transport

Cannot influence TCP stacks used to build
virtual circuit (passive OS fingerprinting of these
stacks still works)

Port knocking is incompatible with Tor; must run
SPA
− Over socat proxy, Nmap -sS never sets up a virtual

circuit. Nmap -sT sets up a circuit, but many TCP
stacks get involved unless a real server is available

Tor and Bi-directional
Communication

Using TCP for transport implies bi-directional
communication is required

Technically, SPA model of single blind UDP
packet does not fit the Tor transport
requirement

Cannot simply include SPA data within a TCP
SYN packet

Must have a real TCP server that is accessible
on the server side

Tor and Bi-directional
Communication (cont'd)

In ENABLE_TCP_SERVER mode, fwknop
spawns a minimal TCP server
− Runs as “nobody” on port 62201 (configurable)

− Does bind(), listen()

− Loops over successive accept() and recv() calls with no other
code

− Session is FINished by server after first TCP data packet is sent
by the client

− Number of potential vulnerabilities in this server is less than the
potential vulnerabilities in a more complex server (SSH)

− Data is still acquired via pcap by fwknopd instead via the minimal
server, so SPA packets to other ports continue to work

Making a Connection

Tor is designed to make the exit router hard to
predict

Must send SSH connection over the open
Internet

SYN Scan (over socat)
 [tor-client]$ socat TCP4-LISTEN:62201,fork

SOCKS4A:localhost:70.x.x.x:62201,socksport=9050

 [tor-client]# nmap -sS -P0 -p 62201 127.0.0.1

 Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2006-07-09 19:21
EDT

 Interesting ports on localhost.localdomain (127.0.0.1):

 PORT STATE SERVICE

 62201/tcp open unknown

 Nmap finished: 1 IP address (1 host up) scanned in 0.043 seconds

 [ssh-server]# tcpdump -i eth0 -l -nn port 62201

 (NOTHING HERE, a virtual circuit is never established)

Connect() Scan (over socat)
 [tor-client]$ socat TCP4-LISTEN:62201,fork

SOCKS4A:localhost:70.x.x.x:62201,socksport=9050

 [tor-client]$ nmap -sT -P0 -p 62201 127.0.0.1

 Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2006-07-11 07:19
EDT

 Interesting ports on localhost.localdomain (127.0.0.1):

 PORT STATE SERVICE

 62201/tcp open unknown

 Nmap finished: 1 IP address (1 host up) scanned in 0.007 seconds

Connect() Scan (over socat) cont'd
 [ssh-server]# tcpdump -i eth0 -l -nn port 62201

 19:23:03.236140 IP 64.74.207.50.20087 > 70.x.x.x.62201: S
478646557:478646557(0) win 5840 <mss 1460,sackOK,timestamp
288052901 0,nop,wscale 7>

 19:23:09.316140 IP 82.224.104.98.4984 > 70.x.x.x.62201: S
1512871859:1512871859(0) win 64240 <mss 1460,nop,nop,sackOK>

 19:23:18.315758 IP 128.2.141.33.59959 > 70.x.x.x.62201: S
1531387242:1531387242(0) win 65535 <mss
1460,nop,nop,sackOK,nop,wscale 1,nop,nop,timestamp 79586290 0>

Operating Systems Running Tor
 # fwknopd --os --fw-log /var/log/messages

 [+] Entering OS fingerprinting mode.

 [+] Parsing iptables log: /var/log/messages

 [+] 80.190.242.130

 S4:64:1:60:M*,S,T,N,W2 Linux:2.5::Linux 2.5 (sometimes 2.4)

 [+] 24.9.31.51

 32768:64:1:60:M*,N,W0,N,N,T FreeBSD:5.0-5.1::FreeBSD 4.8-5.1 (or MacOS X)

 [+] 210.17.245.14

 32768:64:1:44:M* HP-UX:B.10.20::HP-UX B.10.20

Who can sniff what? (revisited)

●

Live Demonstration...

Questions?

michael.rash@solirix.com
http://www.cipherdyne.org/

mailto:michael.rash@solirix.com

	Service Cloaking and Anonymous Access; Combining Tor with Single Packet Authorization (SPA)
	Agenda
	Tor
	Virtual Circuit
	Single Packet Authorization
	Default-Drop
	Single Packet Authorization (cont'd)
	SPA vs. Port Knocking
	Who can sniff what?
	Security Through Obscurity?
	SPA over Tor
	SPA over Tor (cont'd)
	Tor and Bi-directional Communication
	Tor and Bi-directional Communication (cont'd)
	Making a Connection
	SYN Scan (over socat)
	Connect() Scan (over socat)
	Connect() Scan (over socat) cont'd
	Operating Systems Running Tor
	Who can sniff what? (revisited)
	Live Demonstration...
	Questions?

