

SABRE Security
 RE: We need better tools !

 Halvar Flake – DefCon 2006 – Las Vegas

SABRE Security
 Introduction

Welcome to my talk. This talk ...

● ... is different from pretty much all my other talks I've given
● ... does not contain any cool bugs (I am getting too old and

lame for that)
● ... does not present solutions to problems, really
● ... is to one part a 'wish-list' of things I'd like to have and

problems I would like to see solved
● ... is to a second part an 'idea-dump' – for all the problems

discussed here, there will be a few vague and probably
incorrect ideas for their solution

● ... is to an extent a set of 'challenges' for people that want to
advance the state of reverse engineering

SABRE Security
 Engineering

What really is a broad definition of „reverse engineering“ ?
Before we start understanding reverse engineering, let's first
understand engineering, or specifically software engineering:

● A problem is defined
● A system is designed, consisting of multiple components and

their interaction
● The components are constructed / acquired / stolen
● The components are integrated

Generally, the written source code is the last step of a
'concretisation' of an abstract design.

SABRE Security
 Engineering

The engineering process does not only produce the final product,
but also a high-level design (implicit or explicit), interfaces, trust
relationships between components, (some) documentation etc.
etc.

In practice, the engineering process is a lot messier than
described above.

This does not change the fact that the existing code defines
implicit design, implicit modularization, implicit trust
relationships between components.

SABRE Security
 Reverse Engineering

What really is a broad definition of „reverse engineering“ ?
Let's first understand what it is not:

● Disassembly is not the end goal of reverse engineering.
While a clean disassembly is the starting point for almost any
reverse engineering ventures, the clean disassembly is not the
end goal, but the first step of a journey.

A good disassembly recovers all the 'functions' and groups
them accordingly, and recovers all directly resolvable
subfunction calls

SABRE Security
 Reverse Engineering

What really is a broad definition of „reverse engineering“ ?
Let's first understand what it is not:

● Decompilation to source is not the end goal of reverse
engineering.

While a decompilation to source will allow people that are not
fluent in their reading of assembly to read the program, it does
not necessarily help program understanding much.

Having source code available is very different from
understanding the source code. Having all parts of a car and
their assembly instructions does not recover the reasoning
behind the design of each part.

SABRE Security
 Reverse Engineering

What really is a broad definition of „reverse engineering“ ?
Let's first understand what it is not:

● Recovery of high-level abstractions and program
understanding is the end goal of reverse engineering.

In addition to recovering the pure language constructs, we
want to recover higher-level abstractions: Modularization,
Interfaces etc.

(Yeah, bug-finding is the goal most of the time, but that's a
subset of the above)

Application

SABRE Security
 Software

So what does software really consist of ? Difficult question in the
„non-OOP-paradigm“. One possible abstraction:

Modules

Internal Functions

Public Data StructuresExposed Interfaces

Internal Data Structures

SABRE Security
 Software

So, in „non-OOP-paradigm“-software, can we recover these
abstractions ?

Let's review some design principles (from Dowd/McDonald):

● Loose Coupling (no, not that):
Modules should communicate through few, well-defined
„public“ functions which exchange limited amounts of data
that are sanitized.

● Strong Cohesion
A module should consist of functions performing strongly
related tasks.

SABRE Security
 Challenge #0

Reconstruction and enumeration of possible return values from
functions.

SABRE Security
 Challenge #1

Full-executable data structure reconstruction:

Given an executable, reconstruct all data structures that are used
in the executable.

Reconstruct all relations between the members of these data
structures:
 strucA.memberA points to strucB etc.

Construct a graph from these relations where every data structure
is a graph, and pointers between data structures are edges.

This graph can be used to identify recursive data structures such
as linked lists and trees.

SABRE Security
 Challenge #2

Full-executable object reconstruction:

Given an executable, reconstruct all class data structures used in
the executable.

Associate the classes with their methods and reconstruct the
inheritance hierarchy between the classes.

Create UML diagrams from the executable.

Merge the UML diagram of the classes with the typeinfo generated
in Challenge #1.

SABRE Security
 Challenge #3

Automated decomposition of executables into modules

Given an executable, group the functions into subsets that reflect
both loose coupling and strong cohesion.

● Approach 1: Calculate dominator trees on the callgraph,
decompose from there

● Approach 2: View this as an optimization problem to
decompose the callgraph into strongly connected components
by removing a minimal number of nodes

● Approach 3: Attempt to group functions not by call hierarchy
but by usage of the same data structures

Group the functions in the subset into public and nonpublic
functions, and the data structures into public and nonpublic data
structures. public and nonpublic functions.

SABRE Security
 Challenge #4

Recovery of template-generated code from the executable

SABRE Security
 Challenge #5

Automating input crafting for an executable path.

SABRE Security
 Challenge #6

Automating the analysis of translation-and-emulation based
obfuscators.

SABRE Security
 Challenge #8

Construct a mode of callgraph visualisation that not only shows
the calls-to-relationships but also the order of subfunction calls in a
given functions.

SABRE Security
 Challenge #9

Build an automated system consisting of

● Static analyzer to find bugs
● Input generator to trigger bugs
● Exploitation automation to automatically build exploits

