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Abstract

Many steganographic methods involve embedding hidden messages inside images.
These changed images are potentially detectable by statistical analysis and the mes-
sage is often easily removed by an adversary able to make small changes to the
image. We introduce Zebrafish, a method by which two parties can communicate
undetectably by sending chosen images to each other. The choice of images conveys
the hidden information. Unlike previous methods, Zebrafish uses existing images
unchanged, as opposed to embedding information in preselected images. We use lu-
minosity information to choose images which will transmit the desired message. Each
image’s average luminosity encodes a few message bits, and the sequence of images
encodes the sequence of message bits. Therefore the adversary cannot remove the
message without deleting, reordering, or blatantly altering images. Our proof of con-
cept implementation creates web-based image galleries for the transmission of covert
information.
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0.1 Introduction

0.1.1 What is Steganography?

Let us assume that Alice wants to send a message to Bob. Alice naturally wants to
keep the contents of the message secret (a problem which can be solved by traditional
cryptographic means). However, in this instance, Alice also wants to hide the exis-
tence of the message, or the fact that she and Bob are communicating secretly, from
prying eyes. Alice can no longer find a simple solution to her problem in the field of
cryptography, she must resort to information hiding.

Information hiding is a field which works to hide the presence of information
from the adversary, in addition to its nature. It has many applications, including
enhancing privacy, overcoming censorship, digital rights management, anonymous
communication and espionage. Due to increasing interest from content holders in
means to protect their intellectual property and concerns about privacy in situations
when cryptography is prohibited or limited, the field of information hiding has grown
much in recent years. Andreas Pfitzmann demonstrated a steganographic system to
the German government, which succeeded in convincing them that limiting crypto-
graphic exports was a futile proposition!. Information hiding encompasses many sub-
fields besides steganography including anonymous communications, covert channels,
detection of hidden information, digital elections, subliminal channels, and water-
marking. Figure 0.1.1 shows a hierarchical classification of the field of information
hiding [PAK99].

Steganography is a subfield of information hiding. The word “steganography”
comes from Greek words meaning covered writing. Steganography traditionally em-
ploys a covertezt, an innocuous communications medium in which the secret message
(stegotext) is sent. In an undetectable system a covertext containing stegotext is indis-
tinguishable from a covertert containing no secrets. In addition, the covertext itself

must not arouse suspicion. In the traditional approach, the sender modifies the cover-
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Figure 0-1: A classification of information hiding. This classification defines ‘technical
steganography’ as steganography in which the messages are physically hid. Most
digital steganography falls into the category of ‘linguistic steganography.’

text subtly in order to embed a secret message. In general, the message is encrypted
before embedding because otherwise the natural language structure of the message
would make it detectable.

Other systems hide information in images as a means of solving the watermarking
problem. Watermarking is traditionally used in order to prevent counterfeiting or
protect intellectual property. This problem is subtly different from the steganography
problem. The difference is one of priorities. In watermarking, the covertext is the
valuable piece of data and the stegotext exists merely to protect it. In steganography,
the message is the important part and the covertext is simply the packaging. The
watermarking problem is generally believed to be very difficult. A great number
of systems which claim to be robust watermarking systems have been presented,
[KP99], however, techniques for analyzing this robustness are varied and often suspect.
The StirMark program [PAK98, A.P00] was designed to act as a benchmark for the

robustness of steganographic and watermarking systems.



0.1.2 General Properties of Steganography

A secure steganographic system should provide the following properties:

e Confidentiality - The adversary should not be able to gain any information
about the covert data being sent in the system.

e Undetectability - The adversary should not be able to distinguish cover media
created by the system from similar cover media created by legitimate users
which does not hide information.

e Robustness - The adversary should not be able to prevent messages from getting

to their destination.

Zollner [J.Z98] and Cachin [Cac98] have presented work on an information theoret-
ical framework for steganography. However, using their models requires a probability
model of the cover media. This can be difficult to obtain in the case of the complex
media often used in steganography [KP02]. Other theoretical ideas are discussed in
“On the Limits of Steganography.” [AP98] This paper surveys work in steganography
and discusses the interaction between stegography compression and entropy.

Steganography is most useful when the message would otherwise be censored.
and when it is important that the adversary not know or suspect that the two parties
are communicating in a way that they cannot detect. Both of the above situations
exist in this world in the form of powerful, oppressive governments who wish to limit
the dissenting elements of their populace by suppressing their views and ability to
communicate. Such governments, and other similarly powerful entities, are exactly
the adversary that systems like Zebrafish are intended to thwart. Such an adversary
controls all the ISPs in the country and passes all data through its own proxy, allowing

it to both gather and modify all data that passes through it.

0.1.3 Attacks Against Steganographic Systems

Steganographic adversaries are often described in terms of the prisoners’ problem,

first formulated by Simmons[Sim84]. In this situation, Alice and Bob are attempting
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to plan an escape, but an adversarial Warden is watching their communication and
will foil escape attempts she notices. Many systems discuss their security in terms of
a passive Warden, who is able to watch messages but not alter them.

There have been several potential classes of attacks which have been described
which an adversary can employ against a steganographic system. The following hu-
man and statistical attacks were described in the third Information Hiding Workshop

by Westfeld and Pfitzman[WP99].

e Human attacks are attacks in which the presence of hidden information is de-
tectable by the human senses somehow. This includes images that look wrong
(for instance, if there is variation in what ought to be a monochrome field) or
audio files with noticeable artifacts. These changes might be able to be sensed
by using sophisticated visual/audio aids like a microscope. An example of a
visual attack which works on all of the Isb type images is to strip all but the
least significant bits from the image and look at it. The characteristics of the
overall image should still be recognized in the Isbs. If not, chances are they

have been altered as the Isbs of an image are not random.

e Statistical attacks are the kind most likely to be used by the kind of adversary
we are concerned about. The adversary may not be able to carefully scrutinize
every piece of data which it collects. However, she will have a large amount of
innocent covertext to gather statistics about and to utilize to discover anomalies.
These tests will be able to be performed automatically by a computer. One such
test is the Chi-squared test which will catch simple schemes. Other tests might

use expected compression artifacts to determine if changes have been made.

e Non-steganalytical Attacks are the main type of other attack which stegano-
graphic programs are subject to is a denial of service attack. In this type of
attack, the image is changed such that the secret information is destroyed. In
order to use this kind of attack without being able to use steganalysis, this
would have to be done in a manner that would not destroy or appreciably de-

grade the covertext. This sort of attack is closely related to research done on the
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persistence of watermarks. Typical attacks involve using various compression
techniques on the data. Stirmark[PAK98, A.P00] is a program which has been
used to destroy the marks in many watermarking schemes which made claims

of robustness.

One approach to understanding the security of steganographic systems is to use
game theory. Information hiding can be seen as a two player contest between a
data-hider and a data-attacker. A game described by Ettinger [Ett98] analyzes the
robustness (or resistance to the third of the listed attacks) of a steganographic system.
It is likely that detection could also be modelled this way. Usually detection is
modelled by comparing the output of the system to unmodified cover media. In
unsophisticated systems, they often only consider human attacks and consider media
which appear similar to the naked eye (or ear, etc) to be sufficiently secure for their
purposes. Other systems claim that the statistical distributions of the outputs of

their system are indistinguishable from unmodified cover media.

0.1.4 History of Steganography

Historically, steganography has been a form of security through obscurity. The
method in which the message is hidden is known only to sender and receiver and
this is where the security of the system lies. This is in violation of Kirchoff’s princi-
ple, which states that the security of a system should lie in its key alone. Nonetheless,
for many centuries steganographic systems have been designed and use which depend
on the secrecy of the algorithm.

Several historical examples of this sort of system are presented in David Kahn’s
“Codebreakers,” [Kah67] a work which chronicles codes, ciphers, and other informa-
tion hiding techniques throughout history. One of the classic examples of early
steganography was the use of invisible inks. These consist of organic fluids such as
milk, vinegar and urine and chemical inks. Many of the organic types can be exposed
by simple heating. Invisible inks have fallen out of favor since the development of

universal developers which expose the inks. A popular use of steganography in World
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War II was the microdot, a small photograph reduced to the size of a period on a page
and overlaid over such punctuation marks. One of the most famous instances of the
early usage of steganography comes from the histories of Herodotus. A revolt against
Persia was set in motion by Histiaeus, who wished to urge his son-in-law, Aristagoras
at Miletus, to revolt. He shaved the skull of a slave and tattooed his message thereon.
He waited for the hair to regrow then sent the slave to Aristagoras with instructions
to shave the slave’s head. In addition to these examples, hiding information on one’s
person (by swallowing it, perhaps) or in secret compartments within objects are also
forms of steganography.

Recently the field of steganography has focused on its use in digital media. Mes-
sages have been hidden in images, audio files, video conferencing sessions, and even
text. Many of the initial system were based upon hiding information in the least signif-
icant bits of images, however, recent research [WP99, FGDO01a| has shown that these
systems are insecure. Security in steganographic systems has traditionally meant
undetectability. An adversary should be unable to know, or even have grounds to
suspect, that a secret message is embedded in a cover medium. This property has
been very hard to evaluate in steganographic systems, for reasons which will be elabo-
rated upon in Section 0.4. Most existing steganographic systems are fragile, meaning
that the secret embedded message is easy to remove. In World War II, the censors
would make small changes to telegrams and letters in order to prevent coded mes-
sages. In one instance, a message stating “Father is dead” was altered to say “Father
is deceased.” The suspicious reply was “Is Father dead or deceased?” This example
illustrates the important relationship between robustness and undetectability. If a
message does not get through because it is removed by a censor, the information it
contains will still need to be conveyed somehow. The way in which this occurs, if the
sender and recipient are not very careful, may alert the adversary to the presence of

secret content.

13



0.1.5 Recent Image-Based Systems

There have been many steganographic systems designed and built. Almost all involve
modifying an image to embed data in it. Many systems such as steganos [Stea,
Jsteg [Jst], steghide [Steb] and many others encode information in the low order
bits of images. This method create images that the human eye cannot distinguish
from the originals. However, this technique is known to be detectable by statistical
tests, [WP99, FGDO0la] These systems rely on the adversary to not perform these
statistical tests and as such rely on security through obscurity.

A few systems deserve some more attention. These systems take active measures
to prevent statistical steganalysis. For instance, Outguess [Pro01] uses various trans-
forms to correct for changes in entropy created by the introduction of the hidden data.
Currently, there are no statistical tests known which can detect Outguess. Another
system which chooses bits in such a way that it avoids the statistical pitfalls that the
simpler systems fall victim to is F5 [Wes01].

0.1.6 Attacks on Recent Systems

There is a danger, with existing systems, that there might always be a more sophisti-
cated test which could be applied to reveal that they are hiding information. Indeed,
many systems have been shown ineffective by various statistical tests which have been
developed in recent years [WP99, FGDO0la, PHO02]. It is extremely difficult to deter-
mine if these systems are vulnerable to such failures as such statistical properties are
subtle and varied and embedding methods are often complex.

There has been quite a lot of work done on detecting systems which hide in-
formation inside images (by modifying these images). In 1998, Andreas Pfitzmann
and Andreas Westfeld presented techniques for breaking the systems currently out
there [WP99]. Recently, Niels Provos, acting on media speculation that terrorists
were hiding information on images in eBay [Sie01], has built a framework for de-
tecting steganographic images on the web on a large scale. [PH02] He has not had

much success in finding “wild” steganographic images. Recently Jessica Fridrich
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[FGDO1b, FGDO01a| has built a system for detecting changes to JPEG images. This
is particularly promising because it is not specific to any particular hiding system.
Technology for detecting modifications to images is moving forward.

Existing systems also have the weakness that if the original image is directly
compared with the modification, the differences will be obvious. Such systems are
usually not designed to resist an active adversary who wishes to deny service to the
system. To make their changes to the image subtle, the stegotext bits must be placed
in areas which will not alter the appearance or statistical properties of the cover
image. However, just as the embedder has subtly modified the original image bits
to encode his image, so too can an adversary subtly modify the embedding image to

destroy the embedded message.

0.1.7 Zebrafish Overview

In response to the issues discussed in 0.1.6, we introduce Zebrafish. Our goals in

designing Zebrafish were to

e Hide information undetectably using images.
e Be robust against the adversary who modifies images in order to prevent use of

the system.

There has been much work done in designing and building systems which attempt
to meet the first goal. The primary contribution of Zebrafish is the emphasis placed
on the second goal, in the belief that without robustness, undetectability has little
meaning.

The first goal, undetectability, is central to the idea of steganography. Whereas
previous systems pick an image as covertext and then modify it to embed information
[Pro01, Wes01], we compile a database of suitable images and select those which
correspond to the message we wish to send. Each image in the database encodes
¢ bits of information. These bits are obtained from the average luminosity of the
image. As a result, the encoded bits are strongly linked to the appearance of the

image. We encrypt the message and then choose %, where n is the length of the
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message, images whose sequenced encodings correspond to our ciphertext. We then
group these images together in html image galleries. The receiver can visit the sender’s
website and download the images in order. He uses a public function to retrieve the
bits of information stored in each image and then decrypts those bits with the secret
key he shares with the sender. Since we never modify an image, our system does not
change any statistical properties of the images we use. We do have to be careful that
the image galleries we create are indistinguishable from those which can be found “in
the wild” on the web.

As discussed in Section 0.1.6, most embedding techniques are fragile and an active
adversary could easily remove them without degrading the images noticeably. In order
to subtly modify arbitrary images, these steganographic systems modify bits in the
areas where they are most easily removed. An active adversary, one who can modify
all data passing through it in order to censor, can easily defeat these systems without
going through the effort of discovering their subtle statistical weaknesses. We would
like our system to be robust against this censoring adversary’s attempts to destroy
our covert data by modifying the image.

Scott Craver presented theoretical work on superliminal channels [Cra98] which
could resist an active adversary. A supraliminal channel is a communications channel
that has the property that it is impossible to modify the secret message embedded
within it without significant changes to the cover object. This work presented inspi-
ration for Zebrafish by suggesting that information which was necessarily linked to
the cover medium could be used to construct a channel which could resist the active
adversary.

In the case of Zebrafish, this necessary information is the overall appearance of
the image rather than inconsequential details of their representation. Assuming the
websites generated by Zebrafish users are indistinguishable from those of usual www
users, if an adversary wishes to prevent Zebrafish users from communicating, he will
have to either deny all other Internet users in his power the ability to use images or
alter the way the images used by these other users look in a noticeable way. This

is because the information is encoded in overall properties of the images, so small
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modifications will not destroy it. Most conceivable adversaries lack the power and/or
the desire to implement this level of control and censorship. A secondary benefit of
this use of high level information which also sets it apart from other steganographic
systems is its extreme generality. Zebrafish will work on virtually all image formats.
Images can be resized, compressed, or have their low order bits randomized and still
retain their message. The sender may wish to do this for practical reasons such
creating an esthetically pleasing and plausible webpage which does not use too much
bandwidth or the adversary may do this in the hopes of destroying the message. You
could use a variety of other steganographic systems on top of it and still have the
images retain their message.

Zebrafish keeps the capacity of each image low, relying on large groups of images
to convey meaning rather than any single image. In many systems, capacity is de-
termined by the maximum number of bits that can be packed into an image without
triggering whatever specific statistical attacks the author of the system is trying to
avoid. In the case of Zebrafish, images need to be found to match the bits which are
going to be sent in the Stegotext. The more bits each image must match, the more
difficult the search for appropriate cover images will be. Another capacity constraint
relates to robustness. The more bits we maintain per image, the less they can repre-
sent the core appearance of the image. If we use too many bits, the adversary will be
able to make nonnoticeable changes which alter these bits. Lastly, by not attempting
to get large capacities out of our images, our system remains simple and we have
some hope of analyzing its security.

Zebrafish distinguishes itself by being a system that aims for robustness against an
active adversary, rather than the passive adversary most systems assume. In addition,
it avoids detection in a way that can be analyzed because it does not modify the images
it sends. In the rest of this paper we will describe our adversary model (Section 0.2),
describe the requirements of the system (Section 0.3), describe how the system works
(Section 0.3), present analysis of the security of the system (Section 0.4) and then

present conclusions and future directions (Section 0.6).
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Sender M o Recipient

Figure 0-2: The Adversarial Proxy
0.2 Adversary and Threat Model

In terms of the prisoners’ problem described in Section 0.1.3, Zebrafish’s Warden is
active: able to modify messages as they pass through. The Warden is global, able to
watch all traffic at all times.

There are some important limitations on our adversary. First of all, we assume
that the adversary does not have access to the storage on Alice and Bob’s system.
Secondly, we assume Alice and Bob have some shared secret with which to commu-
nicate. However, Zebrafish could be modified to allow key exchange using techniques
described in previous work[AP98]. Lastly, because the adversary must make these
changes without knowledge of whether the sender of the data is using steganography,
we assume the adversary will only make changes which do not alter the perceived
value of the data sent. In the case of image traffic, we interpret this to mean that
the data will not be changed sufficiently to affect human perception of the images.

In figure 0-2, M must be of equivalent perceivable quality to M’.
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0.3 Description of the System

Zebrafish consists of a server that sends images to the recipient machine (or machines).
The images are chosen in order to convey a secret message m,. The recipient wants

to obtain the images and reconstruct m.

0.3.1 The Encoding Function

At the heart of the system is a function F' which maps an image to ¢ bits.

F(image) — ¢ (1)

F maps images from the domain of images found on the world wide web to the
codomain of integers in the range from 0 to 2¢. This function must have the following

properties:

1. Changes to the image which do not change the perceived value (in many cases
this will be any change to the appearance of the image) of the image should
not change F'(image). This will help achieve the goal of robustness against the

active adversary.

2. In order to achieve undetectability, outputs of F' must have the same statistical
properties regardless of whether the sequence of input images is the output of
Zebrafish or an innocent image gallery. As a result, if the input to F' is drawn
from the distribution of images from the web (Dygg), the output of F' must
be indistinguishable from the encryption of a message sent by Zebrafish. We
assume the output of our encryption function is random, all possible sequences
of ¢ bits are equally likely. As a result, on web image inputs, all outputs of F

must be equally likely.

In order to achieve the first property, we used the average luminosity (or bright-
ness, measured in 8 bits) of the image as a basis for the encoding function. To

determine this, we obtain the 8 bit rgb values of each pixel, add them up and divide
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Range 0-46 46-62 62-73 73-83 83-92 92-100 | 100-108 | 108-115
Value 0 1 2 3 4 5 6 7
Range | 115-123 | 124-132 | 132-142 | 142-154 | 154-169 | 169-188 | 188-214 | 214-255
Value 8 9 10 11 12 13 14 15

Table 1: The Encoding Function F": 16 intervals from 0 to 255 and the 4-bit number
each maps to

by the total number of pixels multiplied by three. This gives us a real number be-
tween 0 and 256 bits. We now need to map these numbers into integers in the range
{0,2¢}. We divide the range of the real numbers {0,256} into 2¢ intervals in that
range.

In order to achieve the second property all outputs of F' must be equally likely. We
determine the distribution of images on the web, and divide it up into our 2¢ intervals
such that equal numbers of images fall into each interval. An image drawn at random
from images on the web will map to one of the 2¢ values. Without knowledge of which

image was chosen, this output should be indistinguishable from a random number.

F(Dwgg(8)) = Dranp(4) (2)

Since the ciphertexts created by the encryption system are randomly distributed,
each ¢ bit string of the ciphertext will be equally likely to be any of the possible
values. Therefore, the encoding of a set of images found on the web should be
indistinguishable from a ciphertext generated under the encryption system.

In using the luminosity of the whole image, we limit our capacity ¢. We cannot
use too many bits or small changes in the image might change the output of F' and we
would lose robustness. We chose ¢ = 4. The mapping of average luminosity interval
to 4 bit number is shown in Table 1.

In order to map luminosity information to 4 bits and determine the intervals used,
we needed to understand the distribution of images on the web. To do this, we col-
lected images by doing successive altavista image searches of words in /usr/dict/words.

For each image, we determined the average luminosity. After a while we achieved a

distribution which did not change significantly when more images were added to it.
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Figure 0-3: Distribution of average luminosity of images on the web

Most images appeared in the middle of the spectrum, with a bias toward bright val-
ues. We believe this is due to the preponderance of white backgrounded images on
the web. The graph in figure 0-3 shows the distribution as measured using 24,211
images. The x axis is average luminosity values up to 256. The y axis represents the
number of images with the floor of average luminosity equal to x.

Zebrafish can use images in any format, as long as luminosity information can
be extracted. In our implementation, we convert images into ppm format to easily
extract the luminosity information. Images can be culled from almost any source,
including easily recognizable images on the web since the images are not modified.

We considered extending the capacity of Zebrafish by considering the average
luminosity of regions of the image. However, in real world images there simply was
not enough variance in the different regions of a single image. As a result these images
would be hard to find. If users managed to find such varied objects they would cause

the system to be detectable by their very strangeness.
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0.3.2 Choosing Image Galleries

The encoding function will ensure that our web pages are indistinguishable from
normal web pages with respect to the average luminosities of the images they contain.
However, we require that all statistical properties of Zebrafish web pages conform to
the distribution of normal web pages.

Images are created in general by cameras, editing programs and compression algo-
rithms. Their statistical properties are extremely complex and we feel that it would
be difficult to modify images undetectably. Groups of images, in contrast are created
by simpler algorithms (such as those run by search engines) and human beings (such
as those on personal web pages). Knowing this, we can design our system such that
the web pages produced in our system will produce ciphertext strings which are in-
distiguishable from web pages found “in the wild” of the world wide web. However,
we leave the secondary characteristics unspecified, so that they can be decided by
humans in the ways that normal web pages are determined, by human selection and
human designed algorithms.

As a result, a user of the system will have to put effort (relative to his level of
paranoia) into creating a web page which could plausibly be a “normal” webpage
with no hidden content.

In order to do this effectively the user will want to have lots of images, any
grouping of which is a plausible part of their webpage. Practically speaking, they
will probably want to create their own images which they can then use to create a
plausible pretext for having a web page. An example of this is a large set of “vacation
photos” among which some subset are chosen to exist on the website. Another is
“My Favorite Animal Pics of the Week” which can select among any animal pictures
we can find, or “New and Adorable Clip Art.” One of our favorite examples might
be a series of webcams looking at various things in our living space and then have a
place on our webpage which “randomly” selects between the different cams each of
which takes pictures in a place with different luminosities. While manufacturing these

pretexts might be hard for many end users, the basic idea of “create a set of images
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which would make sense together” should be fairly simple. If these images are chosen
in the same manner that a user might choose them for a “normal” website (just out
of a larger subset) then we ought to avoid both statistical and human attacks. On the
surface, this might look a bit like security through obscurity. However, apart from
the luminosity values (which we have encoded to be indistinguishable from normal
web images) we are designing our web pages just as any other webdesigner might: by
hand. If we design the web page (in general terms) before we choose the message,
we ought to end up with a webpage which is indistinguishable from any other of the
myriad innocuous web pages which clutter up the world wide web.

This notion of plausibility is inextricably linked to steganography. If Alice and
Bob could just send random bits around then they do not need steganography; they
can simply use cryptography. However, in many situations, this is not the case. The
distribution which Alice and Bob are covertly sending around must be the same as

the one the adversary expects to see from normal users.

0.3.3 Server

In order to send images the sender must have either a shared key with the recipients
or the public key of intended recipients. In addition, the server needs access to large
amounts of images. Lastly, the server will need a mechanism to get these images to
the recipient in a way that will not provoke suspicion. One way of doing so is to serve
the images on a webpage. This is the mechanism we will be assuming is in use for
most of this paper.

The server will need access to a large number of images in order to construct
messages. In order to send an arbitrary n bit message without reusing images, the
server needs 267" images from which to choose, where ¢ is the number of bits stored in
each image (in our implementation ¢ = 4). This is because each of the % images sent
could require any of the 2¢ encodings so we need this many images to ensure we can
send any n bit message. This may seem like a large number of images but disk space
is cheap these days and we can store the images in an easily searchable manner. The

server can create a database of images as follows:
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e Gather lots of images which are plausible?
e Apply the encoding function to the images to obtain a c-bit representation of
the image (¢ = 4 in this case)

e Store the images in an easily searchable manner.

Once our server has a source of messages, it can now send messages. The steps

involved in this process are as follows:

e The server decides to send an n bit message M. M includes redundance in the
form of error correcting codes.

e The server encrypts M. This can be done under the symmetric key shared with
the recipient or under the recipient’s public key.

e The server groups bits of the ciphertext E (M) into ¢-bit blocks, each of which
can be represented by a single image.

e The server finds images in the database which correspond to each block of bits
in the previous step. The server should avoid reusing images in order to avoid
detectability. If all images in the database could be combined in order to make
a plausible group of images, the server can choose any corresponding image. If
not, other user-determined constraints may apply.

e These images must be made accessible to the recipient in the order of the

message. One way to do this is to serve them on a webpage.

0.3.4 Recipient

Our recipient basically needs two things: access to the images and a key with which
to decrypt the message. The first requirement might be satisfied with a web browser,
knowledge of the server’s location, and access to the server’s webpage (the webpage
is not blocked by the adversary’s proxy). The second by a shared key with the server
or a public key known to the server.

In order to receive messages, the recipient’s machine:

Zthe concept of plausibility in the context of this system is described in section 0.3.2
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Visits the Server’s webpage, downloading the images (or obtains them through
some other manner) as well as the html page which indicates the order of the
images.

Uses the encoding function to retrieve ¢ bits from each image.

Concatenates the c-bit blocks into a ciphertext string.

Decrypts the ciphertext string.
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0.4 Evaluation

Evaluation is one of the most difficult tasks in steganographic system design. A
steganographic system should be evaluated based on how well it provides certain

desired properties in the face of a threat model. These properties are:

e Confidentiality - The adversary should not be able to gain any information
about the covert data being sent in the system.

e Undetectability - The adversary should not be able to distinguish cover media
created by the system from similar cover media created by legitimate users
which does not hide information.

e Robustness - The adversary should not be able to prevent messages from getting

to their destination.

The threat model for this system is described in section 0.2.

0.4.1 Confidentiality

In general the confidentiality property is a fail-safe one. If the adversary is somehow
able to suspect that a certain message has hidden data, he should not be able to
determine what that hidden message is.

Zebrafish achieves confidentiality by encrypting the message M before dividing it
into ¢ bit blocks and choosing images to send. The security depends on the strength
of the encryption system and the key. To avoid detectable repeat messages, the

encryption system should be randomized.

0.4.2 Undetectability

The undetectability constraint is much more difficult. In general there are two types
of attacks on such systems: attacks which are done automatically by machines and
attacks which are performed by humans looking for strange content. Generally, the
attacks which are performed by machines are based on statistical analysis of the

cover media. Images which are used in steganographic systems tend to have higher
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entropy than those which do not. [Pro01] Often, modifications to the images can alter
the expected output of a compression algorithm such as the JPEG format and give
the game away.[FGDO1b]. Our images should be absolutely resistant to this kind of
scrutiny since we have not modified them at all.

However, we do have to worry that the grouping of images might be statistically
unusual. We want the web pages we create using Zebrafish to be indistinguishable
from image galleries found on the Internet.

The method we used in choosing our encoding function (described in Section
0.3.1) ensures that these web pages will be indistinguishable with regard to average
luminosity. Thus, the encoding of the images is indistinguishable from the encoding
of the message. In order to show that Zebrafish web pages are indistinguishable
from “wild” web pages, we would need to thoroughly characterize the distribution of
groupings of images on the internet.

The problem that we face is that any time we attempt to hide information within
complex, nonrandom covermedia, we are going to change the distribution of that me-
dia to suit our purposes. This is because we are making a choice which is determined
by none other than our hidden plaintext message. Such choices are not generally
made by the designers of the content in which we hide our messages. In creating
web pages which send our message, we may unknowingly create web pages which
differ from the distribution of “wild” web pages in some other respect. We use the
techniques described in Section 0.3.2 to create web pages which do not differ from

normal web pages in these secondary respects.

0.4.3 Robustness

The zebrafish system encoding function is very simple and general. As long as the
average brightness of the image can be determined, a user can obtain the required
bits from it. These bits remain constant even when the image is recompressed or
converted to a different format. This gives the user a great deal of flexibility in using
the system.

However, what if our adversary is modifying images as they pass through a proxy?
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Is our system robust against such an attack? Clearly if the adversary is willing to
block image content altogether or to modify images beyond all recognition he will be
able to block the system. However, we assume our adversary is unwilling to lower the
perceived value of the images by modifying their appearance.

This is a very similar to the problem of robustness of watermarking schemes.?
A popular benchmark for robustness is the StirMark program[PAK98, A.P00]. The
StirMark program simulates printing out an image on a high quality printer and
then rescanning it. Our system performs quite well against StirMark (although not
perfectly). The encoding was changed on only 9 of 194 images tested. This will be
insufficient to break our system since we add redundancy into our plaintext in the
form of error correcting codes.

There is a worry that the adversary might attempt to destroy the message by
actually changing the luminosity of the images outright. The reason this is not a
viable attack is that it distorts the image as perceived by the user. In order to
determine that this was the case we took a sample set of images and flipped a coin to
determine whether they would be brightened or dimmed. Then the luminosity of the
image was modified the minimum amount necessary to change the encoding function.
When the modified images were placed next to the unmodified images an observer
could tell which image had been modified (on a dirty, low quality laptop led screen)
with about 80% probability. While in some cases detection was difficult, in many
instances it was very easy as shown in figure 0-4.

Some images will have luminosities that are very close to the borderline between
intervals. Since an adversary knows are algorithm, he could modify these images
safely. As a result, it is a good idea to put some redundance in the underlying
plaintext message and use a cipher which is able to handle this (eg counter mode)
[McGO1]. It is important to realize that we must use these borderline images or their

absence will make our system detectable.

3It is useful to note that Zebrafish is unsuitable as a system for watermarking images. This is
primarily because it does not modify or mark images in any way. It could potentially mark groups of
images, but the content holders would not be able to decide which groups. This would not be useful
as protecting a specific covertext is the priority of watermarking as mentioned in Section 0.1.1.
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Figure 0-4: Changing the luminosity threshold often alters the appearance of the
image significantly

In almost all instances, differences between the two images were easily perceptible
to the naked eye. As a result, it is unlikely that an adversary would thus distort all
images going through their proxy. If for some reason the adversary was willing to
distort images to this degree the bandwidth could always be reduced to the level such
that modification of the image would cause massive distortion.

Another possibility is that an adversary might reorder the images. If the images
are not of uniform size, doing this to the webpage might seriously adversely affect
the “look and feel” of the site. As a result, this attack is also unlikely. One way to

subvert this attack is to embed order information in the images.
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0.5 Implementation

The current implementation of Zebrafish is intended as a proof of concept. It consists
of a variety of perl scripts. Principle among these are putmakedb.pl, which creates
a database of images, chooseim.pl, which chooses images to send corresponding to
a plaintext message, and parsewget.pl which downloads a webpage and extracts a

hidden message.

0.5.1 Creating the Database

In order to create a database, the user first assembles a directory of jpeg images.
These images can come from the web or a digital camera or any other source of
digital images. The user points putmakedb.pl at the directory of jpeg images and
it outputs a sorted file with the four bit number corresponding to each pathfilename.
The script converts each file to ppm format? and runs it through the encoding function
to assign a 4 bit number. Currently the code only works for jpeg images, though it

would not be difficult to extend it to include other formats.

0.5.2 Sending Messages

The perl script which is used to send messages (chooseim.pl) takes as arguments a
directory d of jpeg images and a plaintext message m. The message m is encrypted
using Blowfish in CBC mode. CBC mode is not optimal for Zebrafish as an adver-
sary can attack the system by making changes to only borderline images. In a real
implementation the underlying cryptosystem ought to deal with redundancy in the
plaintext to foil this attack. After encryption, the script takes four bit chunks of the
ciphertext and searches through the database file for matching images. It outputs

this set of images as both a list of filenames and also as rudimentary html.

4A very simple but inefficient image format
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0.5.3 Receiving Messages

In order to receive messages, the script parsewget.pl takes in a url and an output
filename. The script calls the wget program to download the images on the site.
It then uses the output file to apply the encoding function to each image in order,
extracting 4 bits. These encodings are then concatenated together and the message

is decrypted.

0.5.4 Example

In order to demonstrate the system, we created a database of images grabbed from

)

an Altavista image search for “cats.” As you will see, many of the images had ap-

”

parently little to do with “cats.” An excerpt of the datafile can be seen in Figure
0-5. We then decided to see what would happen if we decided to send the mes-
sage “meeting at noon” with Zebrafish. The encryption of “meeting at noon” was
52616e646 f6d49565¢b6 f fHedc6151eabd7chH6 fadedbdTdad39bdf 48 f6d4d4ce. This will
require 64 images. In general, the number of images required to send a given message

is twice the number of characters, plus whatever extra is required to get the correct

block cipher size. The images chosen are shown in Figure 0-6.
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Figure 0-5: An excerpt from the database for the cats pictures (output of
putmakedb.pl: these are some of the brighter images scoring 13 and 14.

ﬂ - ﬂ =R, bl .ﬁuu- N7

Figure 0-6: A subset of the images in the image gallery, and the numbers they decode
to
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0.6 Conclusion and Future Directions

Zebrafish is a system which provides unobservable communication at a low data rate.
The system is robust against an active adversary. A proof of concept implementation
of the system exists in the form of a handful of perl scripts which make databases of
images, encrypt plaintext and choose images.

In general, steganographic systems which embed data in complex cover media are
vulnerable to detection. One way to deal with this limitation is to attempt to have
most of the statistical characteristics of your distribution determined as they would
be in a normal system and take heed to make the things that have to be determined
by the system correlate to the statistics of the cover distribution.

Some future directions might be:

Further analyse the probability distribution of images on the Internet in order

to conform to them more absolutely

Find a means to get more bandwidth out of each image, possibly by using high

level information not related to average luminosity.

Work on public key and broadcast publishing in steganography

Streamline the user interface for the implementation.
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