TOOLS & BEST PRACTICES FOR BASTION HOSTS

Building
SECURE SERVERS

with

e —————"

N2

O’REILLY" MICHAEL D. BAUER

Building

SECURE SERVERS

with

LINUX

Michael D. Bauer

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

CHAPTER 10

System Log
Management and
Monitoring

Whatever else you do to secure a Linux system, it must have comprehensive, accu-
rate, and carefully watched logs. Logs serve several purposes. First, they help us trou-
bleshoot virtually all kinds of system and application problems. Second, they provide
valuable early-warning signs of system abuse. Third, after all else fails (whether that
means a system crash or a system compromise), logs can provide us with crucial
forensic data.

This chapter is about making sure your system processes and critical applications log
the events and states you're interested in and dealing with this data once it’s been
logged. The two logging tools we’ll cover are syslog and the more powerful Syslog-ng
(“syslog new generation”). In the monitoring arena, we’ll discuss Swatch (the Simple
Watcher), a powerful Perl script that monitors logs in real time and takes action on
specified events.

syslog

syslog is the tried-and-true workhorse of Unix logging utilities. It accepts log data
from the kernel (by way of klogd), from any and all local process, and even from pro-
cesses on remote systems. It’s flexible as well, allowing you to determine what gets
logged and where it gets logged to.

A preconfigured syslog installation is part of the base operating system in virtually all
variants of Unix and Linux. However, relatively few system administrators custom-
ize it to log the things that are important for their environment and disregard the
things that aren’t. Since, as few would dispute, information overload is one of the
major challenges of system administration, this is unfortunate. Therefore, we begin
this chapter with a comprehensive discussion of how to customize and use syslog.

Configuring syslog

Whenever syslogd, the syslog daemon, receives a log message, it acts based on the
message’s type (or “facility”) and its priority. syslog’s mapping of actions to facilities

323

What About klogd?

One daemon you probably won’t need to reconfigure but should still be aware of is
klogd, Linux’s kernel log daemon. This daemon is started automatically at boot time
by the same script that starts the general system logger (probably /etc/init.d/syslogd or
letc/init.d/sysklogd, depending on which Linux distribution you use).

By default, klogd directs log messages from the kernel to the system logger, which is
why most people don’t need to worry about klogd: you can control the handling of ker-
nel messages by editing the configuration file for syslogd.

This is also true if you use Syslog-ng instead of syslog, but since Syslog-ng accepts mes-
sages from a much wider variety of sources, including /proc/kmsg (which is where klogd
receives its messages), some Syslog-ng users prefer to disable klogd. Don’t do so your-
self unless you first configure Syslog-ng to use /proc/kmsg as a source.

klogd can be invoked as a standalone logger; that is, it can send kernel messages
directly to consoles or a log file. In addition, if it isn’t already running as a daemon,
klogd can be used to dump the contents of the kernel log buffers (i.e., the most recent
kernel messages) to a file or to the screen. These applications of klogd are especially
useful to kernel developers.

For most of us, it’s enough to know that for normal system operations, klogd can be
safely left alone (that is, left with default settings and startup options—not disabled).
Just remember that when you use syslog in Linux, all kernel messages are handled by

klogd first.

and priorities is specified in /etc/syslog.conf. Each line in this file specifies one or
more facility/priority selectors followed by an action; a selector consists of a facility
or facilities and a (single) priority.

In the following syslog.conf line in Example 10-1, mail.notice is the selector and /var/

log/mail is the action (i.e., “write messages to /var/log/mail”).

Example 10-1. Sample syslog.conf line

mail.notice /var/log/mail

Within the selector, mail is the facility (message category) and notice is the level of
priority.

Facilities

Facilities are simply categories. Supported facilities in Linux are auth, auth-priv, cron,
daemon, kern, lpr, mail, mark, news, syslog, user, uucp, and local0 through local7.
Some of these are self-explanatory, but the following are of special note:

324 | Chapter10: System Log Management and Monitoring

auth

Used for many security events.
auth-priv

Used for access-control-related messages.
daemon

Used by system processes and other daemons.

kern
Used for kernel messages.

mark
Messages generated by syslogd itself, which contain only a timestamp and the
string --MARK--; to specify how many minutes should transpire between marks,
invoke syslogd with the -m [minutes] flag.

user
The default facility when none is specified by an application or in a selector.

ocal7
Boot messages.

Wildcard signifying “any facility.”
none
Wildcard signifying “no facility.”

Priorities

Unlike facilities, which have no relationship to each other, priorities are hierarchical.
Possible priorities in Linux are (in increasing order of urgency): debug, info, notice,
warning, err, crit, alert, and emerg. Note that the “urgency” of a given message is
determined by the programmer who wrote it; facility and priority are set by the pro-
grams that generate messages, not by syslog.

As with facilities, the wildcards * and none may also be used. Only one priority or
wildcard may be specified per selector. A priority may be preceded by either or both
of the modifiers, = and /.

If you specify a single priority in a selector (without modifiers), you’re actually speci-
fying that priority plus all higher priorities. Thus the selector mail.notice translates
to “all mail-related messages having a priority of notice or higher,” i.e., having a pri-
ority of notice, warning, err, crit, alert, or emerg.

You can specify a single priority by prefixing a = to it. The selector mail.=notice
translates to “all mail-related messages having a priority of notice.” Priorities may
also be negated: mail.!notice is equivalent to “all mail messages except those with
priority of noticeor higher,” and mail.!=notice corresponds to “all mail messages
except those with the priority notice.”

syslog | 325

Actions

In practice, most log messages are written to files. If you list the full path to a file-
name as a line’s action in syslog.conf, messages that match that line will be appended
to that file. (If the file doesn’t exist, syslog will create it.) In Example 10-1, we
instructed syslog to send matched messages to the file /var/log/mail.

You can send messages other places too. An action can be a file, a named pipe, a
device file, a remote host, or a user’s screen. Pipes are usually used for debugging.
Device files that people use are usually TTYs. Some people also like to send security
information to /dev/[p0—i.e., to a local line printer. Logs that have been printed out
can’t be erased or altered by an intruder, but they also are subject to mechanical
problems (paper jams, ink depletion, etc.) and are harder to parse if you need to find
something in a hurry.

Remote logging is one of the most useful features of syslog. If you specify a host-
name or IP address preceded by an @ sign as a line’s action, messages that match
that line will be sent to UDP port 514 on that remote host. For example, the line:

*.emerg @mothership.mydomain.org

will send all messages with emerg priority to UDP port 514 on the host named
mothership.mydomain.org. Note that the remote host’s (in this example,
mothership’s) syslogd process will need to have been started with the -1 flag for it to
accept your log messages. By default, syslogd does not accept messages from remote
systems.

syslog has no access-control mechanism of its own: if you enable the
“Eﬂ@ reception of remote messages with the -r flag, your host will accept

messages on UDP port 514 from any and all remote computers. See
the end of this section for some advice on how to mitigate this.

If you run a central log server, which I highly recommend, you’ll want to consider
some sort of access controls on it for incoming messages. At the very least, you
should consider tcpwrappers’ “hosts access” (source-IP-based) controls or maybe
even local firewall rules (ipchains or iptables).

More sophisticated selectors

You can list multiple facilities separated by commas in a single syslog.conf selector.
To extend Example 10-1 to include both mail and uucp messages (still with priority
notice or higher), you could use this line (Example 10-2).

Example 10-2. Multiple facilities in a single selector

mail,uucp.notice /var/log/mail

The same is not true of priorities. Remember that only one priority or priority wild-
card may be specified in a single selector.

326 | Chapter10: System Log Management and Monitoring

Stealth Logging

Lance Spitzner of the Honeynet Project (http://www.honeynet.org) suggests a trick
that’s useful for honey (decoy) nets and maybe even for production DMZs: “stealth
logging.” This trick allows a host connected to a hub or other shared medium to send
its log files to a non-IP-addressed system that sees and captures the log messages but
can’t be directly accessed over the network, making it much harder for an intruder on
your network to tamper with log files.

The idea is simple: suppose you specify a bogus IP address in a syslog.conf action (i.e.,
an IP address that is legitimate for your host’s LAN but isn’t actually used by any host
running syslogd). Since syslog messages are sent using the “connectionless” (one-way)
UDP protocol, the sending host doesn’t expect any reply when it sends a log message.

Furthermore, assuming your DMZ hosts are connected to a shared medium such as a
hub, any syslog messages sent over the network will be broadcast on the local LAN.
Therefore, it isn’t necessary for a central log server on that LAN to have an IP address:
the log server can passively “sniff” the log messages via snort, ethereal, or some other
packet sniffer.

Obviously, since an IP-addressless stealth logger won’t be accessible via your usual IP-
based remote administration tools, you’ll need console access to that host to view your
logs. Alternatively, you can add a second network interface to the stealth logger, con-
necting it to a dedicated management network or directly to your management work-
station via crossover cable.

In addition to configuring each DMZ host’s syslog.conf file to log to the bogus IP, you’ll
also need a bogus ARP entry added to the network startup script on each sending host.
If you don’t, each system will try in vain to learn the Ethernet address of the host with
that IP, and it won’t send any log packets.

For example, if you want a given host to pretend to send packets to the bogus IP 192.

168.192.168, then in addition to specifying @192.168.192.168 as the action on one or

more lines in /etc/syslog.conf, you’ll need to enter this command from a shell prompt:
arp -s 192.168.192.168 03:03:03:31:33:77

This is not necessary if you send log packets to a “normal” log host (e.g., if 192.168.

192.168 is the IP address of a host running syslogd with the -1 flag.)

You may, however, specify multiple selectors separated by semicolons. When a line
contains multiple selectors, they’re evaluated from left to right: you should list gen-
eral selectors first, followed by more specific selectors. You can think of selectors as
filters: as a message is passed through the line from left to right, it passes first
through coarse filters and then through more granular ones.

Continuing our one-line example, suppose we still want important mail and uucp
messages to be logged to /var/log/mail, but we’d like to exclude uucp messages with
priority alert. Our line then looks like Example 10-3.

syslog | 327

Example 10-3. Multiple selectors in a single line

mail,uucp.notice;uucp.!=alert /var/log/mail

Actually, syslogd’s behavior isn’t as predictable as this may imply: list-

*‘B’@ ing selectors that contradict each other or that go from specific to gen-
eral rather than vice versa can yield unexpected results. Therefore, it’s
more accurate to say “for best results, list general selectors to the left
and their exceptions (and/or more-specific selectors) to the right.”

Wherever possible, keep things simple. You can use the logger com-
mand to test your syslog.conf rules (see “Testing System Logging with
logger” later in this chapter).

Note that in the second selector (uucp.!=alert), we used the prefix != before the pri-
ority to signify “not equal to.” If we wanted to exclude uucp messages with priority
alert and higher (i.e, alert and emerg), we could omit the = (see Example 10-4).

Example 10-4. Selector list with a less specific exception

mail,uucp.notice;uucp.!alert /var/log/mail

You might wonder what will happen to a uucp message of priority info: this matches
the second selector, so it should be logged to /var/log/mail, right? Not based on the
previous examples. Since the line’s first selector matches only mail and uucp mes-
sages of priority notice and higher, such a message wouldn’t be evaluated against the
second selector.

There’s nothing to stop you from having a different line for dealing with info-level
uucp messages, though. You can even have more than one line deal with these if you
like. Unlike a firewall rule base, each log message is tested against all lines in /etc/
syslog.conf and acted on as many times as it matches.

Suppose we want emergency messages broadcast to all logged-in users, as well as
written to their respective application logs. We could use something like
Example 10-5.

Example 10-5. A sample syslog.conf file

Sample syslog.conf file that sorts messages by mail, kernel, and "other,"
and broadcasts emergencies to all logged-in users

print most sys. events to tty10 and to the xconsole pipe, and emergencies to everyone
kern.warn;*.err;authpriv.none | /dev/xconsole
*.emerg *

send mail, news (most), & kernel/firewall msgs to their respective logfiles
mail.* -/var/log/mail
kern.* -/var/log/kernel n_firewall

save the rest in one file
.%;mail.none -/var/log/messages

328 | Chapter10: System Log Management and Monitoring

Did you notice the - (minus) sign in front of the write-to-file actions? This tells
syslogd not to synchronize the specified log file after writing a message that matches
that line. Skipping synchronization decreases disk utilization and thus improves per-
formance, but it also increases the chances of introducing inconsistencies, such as
missing or incomplete log messages, into those files. Use the minus sign, therefore,
only in lines that you expect to result in numerous or frequent file writes.

Besides performance optimization, Example 10-5 also contains some useful redun-
dancy. Kernel warnings plus all messages of error-and-higher priority, except
authpriv messages, are printed to the X-console window. All messages having prior-
ity of emergency and higher are too, in addition to being written to the screens of all
logged-in users.

Furthermore, all mail messages and kernel messages are written to their respective
log files. All messages of all priorities (except mail messages of any priority) are writ-
ten to /var/log/messages.

Example 10-5 was adapted from the default syslog.conf that SuSE 7.1 put on one of
my systems. But why shouldn’t such a default syslog.conf file be fine the way it is?
Why change it at all?

Maybe you needn’t, but you probably should. In most cases, default syslog.conf files
either:

* Assign to important messages at least one action that won’t effectively bring
those messages to your attention (e.g., by sending messages to a TTY console on
a system you only access via SSH)

* Handle at least one type of message with too much or too little redundancy to
meet your needs

We'll conclude our discussion of syslog.conf with Tables 10-1 through 10-4, which
summarize syslog.conf’s allowed facilities, priorities, and types of actions. Note that
numeric codes should not be used in syslog.conf on Linux systems. They are pro-
vided here strictly as a reference, should you need to configure a non-Linux syslog
daemon that uses numeric codes (e.g., Cisco 10S), or to send syslog messages to
your log server because they’re used internally (i.e., in raw syslog packets). You may
see them referred to elsewhere.

Table 10-1. syslog.conf’s allowed facilities

Facilities Facility codes
auth 4

auth-priv 10

cron 9

daemon 3

kern 0

syslog | 329

Table 10-1. syslog.conf’s allowed facilities (continued)

Facilities Facility codes
Ipr 6

mail 2

mark N/A

news 7

syslog 5

user 1

uucp 8

local{0-7} 16-23

* (“any facility”) N/A

Table 10-2. syslog.conf’s priorities

Priorities (in increasing order) Priority codes
none N/A

debug

info

notice

7
6
5
warning 4
err 3
crit 2
alert 1
emerg 0
*("any priority”) N/A

Table 10-3. Use of “!” and “=" as prefixes with priorities

Prefix Description

*notice (no prefix) any event with priority of ‘notice’ or higher
* Inotice no event with priority of ‘notice’ or higher
* =notice only events with priority ‘notice’

* I=notice no events with priority of ‘notice’

Table 10-4. Types of actions in syslog.conf

Action Description

/some/file Log to specified file

-/some/file Log to specified file but don't sync afterwards
/some/pipe Log to specified pipe
/dev/some/tty_or_console Log to specified console
@remote.hostname.or.IP Log to specified remote host

330 | Chapter10: System Log Management and Monitoring

Table 10-4. Types of actions in syslog.conf (continued)

Action Description

username], username2, etc. Log to these users’ screens

* Log to all users’ screens
Running syslogd

Just as the default syslog.conf may or may not meet your needs, the default startup
mode of syslogd may need tweaking as well. Table 10-5 and subsequent paragraphs
touch on some syslogd startup flags that are particularly relevant to security. For a
complete list, you should refer to the manpage sysklogd (8).

In addition, note that when you’re changing and testing syslog’s configuration and
startup options, it usually makes sense to start and stop syslogd and klogd in tandem
(see the “What About klogd?” sidebar at the beginning of this chapter if you don’t
know what klogd is). Since it also makes sense to start and stop these the same way
your system does, I recommend that you use your system’s syslog/klogd startup
script.

On most Linux systems, both facilities are controlled by the same startup script,
named either /etc/init.d/syslog or /etc/init.d/sysklog (“sysklog” is shorthand for “sys-
log and klogd”). See Table 10-5 for a list of some of syslogd’s flags.

Table 10-5. Some useful syslogd flags

Flag Description

-m minutes btwn_marks Minutes between “mark” messages (timestamp-only mes-
sages that, depending on your viewpoint, either clarify or
clutter logs. A value of 0 signifies “no marks”).

-a /additional/socket Used to specify additional sockets, besides /dev/log, on which
syslogd should listen for messages.

-t /path/to/syslog.conf Used to provide the path/name of syslog.conf, if different
than /etc/syslog.conf.

- Listens for syslog messages from remote hosts.

The first syslogd flag we’ll discuss is the only one used by default in Red Hat 7.x in its
Jetc/init.d/syslog script. This flag is -m 0, which disables mark messages. mark mes-
sages contain only a timestamp and the string --MARK--, which some people find use-
ful for navigating lengthy log files. Others find them distracting and redundant, given
that each message has its own timestamp anyhow.

To turn mark messages on, specify a positive nonzero value after -m that tells syslogd
how many minutes should pass before it sends itself a mark message. Remember that
mark has its own facility (called, predictably, “mark”) and that you must specify at
least one selector that matches mark messages (such as mark.*, which matches all
messages sent to the mark facility, or ** which matches all messages in all facilities).

syslog | 331

For example, to make syslogd generate mark messages every 30 minutes and record
them in /var/log/messages, you would first add a line to /etc/syslog.conf similar to
Example 10-6.

Example 10-6. syslog.conf selector for mark-messages

mark.* -/var/log/messages
You would then need to start syslogd, as shown in Example 10-7.

Example 10-7. Invoking syslogd with 30-minute marks
mylinuxbox:/etc/init.d# ./syslogd -m 30

Another useful syslogd flag is -a [socket]. This allows you to specify one or more
sockets (in addition to /dev/log for syslogd) from which to accept messages.

In Chapter 6, we used this flag to allow a chrooted named process to bounce its mes-
sages off of a dev/log socket (device-file) in the chroot jail to the nonchrooted syslogd
process. In that example, BIND was running in a “padded cell” (subset of the full
filesystem) and had its own log socket, /var/named/dev/log. We therefore changed a
line in /etc/init.d/syslog that read as shown in Example 10-8.

Example 10-8. init.d/syslog line invoking syslogd to read messages from a chroot jail

daemon syslogd -m 0 -a /var/named/dev/log

(Note that the “daemon” function at the beginning of this line is unique to Red Hat’s
init script functions; the important part here is syslogd -m 0 -a /var/named/dev/log.)

More than one -a flag may be specified (Example 10-9).

Example 10-9. Invoking syslogd with multiple “additional log device” directives
syslogd -a /var/named/dev/log -a /var/otherchroot/dev/log -a /additional/dev/log

Continuing down the list of flags in Table 10-5, suppose you need to test a new sys-
log configuration file named syslog.conf.test, but you prefer not to overwrite /etc/
syslog.conf, which is where syslogd looks for its configuration file by default. Use the
-f flag to tell syslogd to use your new configuration file (Example 10-10).

Example 10-10. Specifying the path to syslogd’s configuration file
mylinuxbox:/etc/init.d# ./syslogd -f ./syslog.conf.test

We've already covered use of the -r flag, which tells syslogd to accept log messages
from remote hosts, but we haven’t talked about the security ramifications of this. On
the one hand, security is clearly enhanced when you use a centralized log server or
do anything else that makes it easier for you to manage and monitor your logs.

332 | Chapter10: System Log Management and Monitoring

On the other hand, you must take different threat models into account. Are your logs
sensitive? If log messages traverse untrusted networks and if the inner workings of
the servers that send those messages are best kept secret, then the risks may out-
weigh the benefit (at least, the specific benefit of syslogd’s unauthenticated clear-text
remote logging mechanism).

If this is the case for you, skip to this chapter’s section on Syslog-ng. Syslog-ng can
send remote messages via the TCP protocol and can therefore be used in conjunc-
tion with stunnel, ssh, and other tools that greatly enhance its security. Since syslog
uses only the connectionless UDP protocol for remote logging and therefore can’t
“tunnel” its messages though stunnel or ssh, syslog is inherently less securable than
Syslog-ng.

If your log messages aren’t sensitive (at least the ones you send to a remote logger),
then there’s still the problem of Denial of Service and message forgery attacks. If you
invoke syslogd with the -r flag, it will accept all remote messages without performing
any checks whatsoever on the validity of the messages themselves or on their senders.
Again, this risk is most effectively mitigated by using Syslog-ng.

But one tool you can use with syslog to partially mitigate the risk of invalid remote
messages is TCPwrappers. Specifically, TCPwrappers’ “hosts access” authentication
mechanism provides a simple means of defining which hosts may connect and via
which protocols they may connect to your log server. Hosts-access authentication is
easily tricked by source-IP-spoofing (especially since syslog transactions are strictly
one way), but it’s better than nothing, and it’s probably sufficient to prevent mischie-
vous but lazy attackers from interfering with syslog.

If you're willing to bet that it is, obtain and install TCPwrappers and refer to its
hosts_access(5) manpage for details. Note that despite its name, TCPwrappers’ hosts
access can be used to control UDP-based applications.

Syslog-ng

As useful and ubiquitous as syslog is, it’s beginning to show its age. Modern Unix
and Unix-like systems are considerably more complex than they were when syslog
was invented, and they have outgrown both syslog’s limited facilities and its primi-
tive network-forwarding functionality.

Syslog-ng (“syslog new generation”) is an attempt to increase syslog’s flexibility by
adding better message filtering, better forwarding, and eventually (though not quite
yet), message integrity and encryption. In addition, Syslog-ng supports remote log-
ging over both the TCP and UDP protocols. Syslog-ng is the brainchild of and is pri-
marily developed and maintained by Balazs (“Bazsi”) Scheidler.

Syslog-ng | 333

Lest you think Syslog-ng is untested or untrusted, it’s already been incorporated into
Debian GNU/Linux 2.2 “Potato” as a binary package (in the “admin” section). Sys-
log-ng is in fact both stable and popular. Furthermore, even though its advanced
security features are still works in progress, Syslog-ng can be used in conjunction
with TCP “tunneling” tools such as stunnel and ssh to authenticate or encrypt log
messages sent to remote hosts.

Compiling and Installing Syslog-ng from Source Code

The non-Debian users among you may not wish to wait for your distribution of
choice to follow suit with its own binary package of Syslog-ng. Let’s start, then, with
a brief description of how to compile and install Syslog-ng from source.

First, you need to obtain the latest Syslog-ng source code. As of this writing, there are
two concurrent branches of Syslog-ng development. Syslog-ng Version 1.4 is the sta-
ble branch, so I recommend you use the latest release of Syslog-ng 1.4.

Version 1.5 is the experimental branch, and although it’s officially disclaimed as
unstable, some people use it on production systems due to its new “field expansion”
feature, which allows you to write messages in your own custom formats. If you
decide this functionality is worth the risk of running experimental code, be sure to
subscribe to the Syslog-ng mailing list (see http:/lists.balabit.hu/mailman/listinfo/
syslog-ng to subscribe).

Speaking of which, it probably behooves you to browse the archives of this mailing
list periodically even if you stick to the stable branch of Syslog-ng. Bazsi Scheidler
tends to prioritize bug fixes over documentation, so Syslog-ng documentation tends
to be incomplete and even out of date.

But Bazsi not only maintains the mailing list, he also very actively participates in it,
as do other very knowledgeable and helpful Syslog-ng users and contributors. Thus
the mailing list is an excellent source of Syslog-ng assistance. Before posting a ques-
tion, you may wish to see if anyone else has asked it first. See the Syslog-ng mailing
list archives at http://lists.balabit.hu/pipermail/syslog-ng/.

Syslog-ng can be downloaded either directly from Bazsi Scheidler’s web site at http://
www.balabit.hu or from its Freshmeat project site at http://freshmeat.net/projects/
syslog-ng/. In addition to Syslog-ng itself, you’ll need the source code for libol, Sys-
log-ng’s support library.

Unzip and untar both archives. Compile and install libol first, then Syslog-ng. For
both packages the procedure is the same:

1. Change the working directory to the source’s root:
cd packagename
2. Run the source’s configure script:

./configure

334 | Chapter10: System Log Management and Monitoring

3. Build the package:
. /make
4. Install the package:

./make install

This will install everything in the default locations, which for both libol and Sylog-ng
are subdirectories of /ust/local (e.g., fusr/localllib, fusr/local/sbin, etc.). If you wish to
install either package somewhere else—e.g., your home directory (which is not a bad
place to test new software)—then in Step 2, pass that directory to configure with the
--prefix= flag as in Example 10-11.

Example 10-11. Telling configure where to install the package

mylinuxbox:/usr/src/1ibol-0.2.23# ./configure --prefix=/your/dir/here

After both libol and Syslog-ng have been compiled and installed, you need to set up a
few things in Syslog-ng’s operating environment. First, create the directory /etc/
syslog-ng. Next, copy one or more of the example syslog-ng.conf files into this direc-
tory from the source-distribution’s contrib/ and doc/ directories (unless you intend to
create your syslog-ng.conf completely from scratch).

Finally, you need to create a startup script for syslog-ng in /etc/init.d and symbolic
links to it in the appropriate runlevel directories (for most Linux distributions, /etc/
rc2.d, letc/rc3.d, and /etc/rc5.d). Sample syslog-ng init scripts for several Linux distri-
butions are provided in the Syslog-ng source distribution’s contrib/ directory. If you
don’t find one there that works for you, it’s a simple matter to make a copy of your
old syslog or sysklogd init-script and hack it to start syslog-ng rather than syslogd.

Running syslog-ng

It’s premature to start syslog-ng before you’ve created a configuration file. However,
since syslog-ng has so few startup flags, I'll mention them in brief and spend the
remainder of this section on syslog-ng.conf use.

The only flags supported by the syslog-ng daemon are listed in Table 10-6.

Table 10-6. syslog-ng startup flags

Flag Description

-d Print debugging messages

-v Print even more debugging messages

-f filename Use filename as the configuration file (default=/etc/syslog-ng/syslog-ng.conf)
-V Print version number

-p pidfilename Name process-ID-file p1dfilename (default=/var/run/syslog-ng.pid)

Syslog-ng | 335

In normal use, set these flags in the startup script you installed or created when you
installed Syslog-ng, and use that script not only automatically at startup time, but
also manually if you need to restart or stop Syslog-ng afterwards.

Configuring Syslog-ng

There’s quite a bit more involved in configuring Syslog-ng than with syslog, but
that’s a symptom of its flexibility. Once you understand how syslog-ng.conf works,
writing your own configurations is simple, and adapting sample configurations for
your own purposes is even simpler. Its main drawback is its sketchy documentation;
hopefully, what follows here will mitigate that drawback for you.

By default, Syslog-ng’s configuration file is named syslog-ng.conf and resides in /etc/
syslog-ng/. Let’s dissect a simple example of one in Example 10-12.

Example 10-12. A simple syslog-ng.conf file
Simple syslog-ng.conf file.

options {
use_fqdn(no);
sync(0);

)

source s_sys { unix-stream("/dev/log"); internal(); };
source s_net { udp(); };

destination d_security { file("/var/log/security"); };
destination d messages { file("/var/log/messages"); };
destination d_console { usertty("root"); };

filter f authpriv { facility(auth, authpriv); };
filter f messages { level(info .. emerg)

and not facility(auth, authpriv); };
filter f_emergency { level(emerg); };

log { source(s_sys); filter(f authpriv); destination(d security); };
log { source(s_sys); filter(f messages); destination(d messages); };
log { source(s_sys); filter(f emergency); destination(d_console); };

As you can see, a syslog-ng.conf file consists of options{}, source{}, destination{},
filter{}, and log{} statements. Each of these statements may contain additional set-
tings, usually delimited by semicolons.

Syntactically, syslog-ng.conf is very similar to C and other structured programming
languages. Statements are terminated by semicolons; whitespace is ignored and may
therefore be used to enhance readability (e.g., by breaking up and indenting lengthy
statements across several lines).

336 | Chapter10: System Log Management and Monitoring

After defining global options, message sources, message destinations, and message
filters, combine them to create logging rules.

Global options

Global options are set in syslog-ng.conf’s options{} section. Some options may be
used in the options{} section and in one or more other sections. Predictably, options
set within sourcef}, destination{}, filter{}, and log{} sections overrule those set in
options{}. Table 10-7 lists some of the most useful of Syslog-ng’s options.

Table 10-7. Syslog-ng options

Option
schain_hostnames(yes | no)
sskeep_hostname(yes | no)

ssuse_fqgdn(yes | no)

ssuse_dns(yes | no)
ssuse_time _recvd(yes | no)
sstime_reopen(NUMBER)

sstime_reap(NUMBER)

sslog fifo size(NUMBER)a

sssync(NUMBER)a

ssowner(string)a
ssgroup(string)a
ssperm(NUMBER)a

sscreate dirs(yes | no)a

ssdir_owner(string)a
ssdir group(string)a
ssdir_perm(NUMBER)a

Description

After printing the hostname provided by tcp/udp message’s
sender, show names of all hosts by which a tcp or udp mes-
sage has been handled (default=yes).

Trust hostname provided by tcp/udp message’s sender
(default=no).

Record full name of tcp/udp message-sender (default=no).

Resolve IP address of tcp/udp message-sender
(default=yes).

Set message’s timestamp equal to time message was
received, not time contained in message (default=no).

Number of seconds after a tcp connection dies before recon-
necting (default=60).

Number of seconds to wait before closing an inactive file (i.e.,
an open log file to which no messages have been written for
the specified length of time) (default=60).

Number of messages to queue in memory before processing
if syslog-ng is busy; note that when queue is full, new mes-
sages will be dropped, but the larger the fifo size, the greater
syslog-ng’s RAM footprint (default=100).

Number of lines (messages) written to a log file before file is
synchronized (default=0).

Owner of log files syslog-ng creates (default=root).
Group for log files syslog-ng creates (default=root).

File-permissions for log files syslog-ng creates
(default=0600).

Whether to create directories specified in destination-file
paths if they don't exist (default=no).

Owner of directories syslog-ng creates (default=root).
Group for directories syslog-ng creates (default=root).

Directory permissions for directories syslog-ng creates
(default=0700).

a These options may also be used in file() declarations within destination{} statements.

Syslog-ng | 337

Options that deal with hostnames and their resolution (chain_hostnames(), keep_
hostname(), use_fqdn(), and use_dns) deal specifically with the hostnames of remote
log clients and not with hostnames/IPs referenced in the body of the message.

In other words, if syslog-ng.conf on a central log server contains this statement:
options { use_dns(yes); };
and the remote host joe-bob, whose IP address is 10.9.8.7, sends this message:

Sep 13 19:56:56 s_sys@10.9.8.7 sshd[13037]: Accepted publickey for ROOT from
10.9.8.254 port 1355 ssh2

then the log server will log:

Sep 13 19:56:56 s_sys@joebob sshd[13037]: Accepted publickey for ROOT from

10.9.8.254 port 1355 ssh2
As you can see, 10.9.8.7 was resolved to joebob, but 10.9.8.254 wasn’t looked up.
(For now you can disregard the s_sys@ in front of the hostname; I'll explain that
shortly.) The use_dns(yes) statement applies only to the hostname at the beginning of
the message indicating which host sent it; it doesn’t apply to other IP addresses that
may occur later in the message.

Note also that options related to files and directories may be specified both in the
global options{} statement and as modifiers to file() definitions within destination{}
statements. file() options, when different from their global counterparts, override
them. This allows you to create a “rule of thumb” with specific exceptions.

The chain_hostname() and keep_hostname() options are also worth mentioning. By
default, keep_hostname() is set to no, meaning that syslog-ng will not take the host-
name supplied by a remote log server at face value; syslog-ng will instead resolve the
source IPs of packets from that host to determine for itself what that host’s name is.
This is in contrast to syslog, which takes remote hosts’ names at face value.

chain_hostname() determines whether syslog-ng should list all hosts through which
each message has been relayed. By default, this option is set to yes.

Example 10-13 illustrates the effects of keep_hostname(no) and chain_hostname(yes)
(i.e., syslog-ng’s default behavior). It shows a log message (in this case, a syslog-ng
startup notification) being generated locally and then relayed twice. host1, who gives
its hostname as “linux,” generates the message and then sends it to host2. host2
records both “linux” and “hostl,” having double checked that hostname itself via
DNS. Finally, the message is relayed to host3.

Example 10-13. A log message relayed from one host to two others
Original log entry on hosti:
Sep 19 22:57:16 s_loc@linux syslog-ng[1656]: syslog-ng version 1.4.13 starting

Entry as sent to and recorded by host2:
Sep 19 22:57:16 s_loc@linux/host1 syslog-ng[1656]: syslog-ng version 1.4.13 starting

338 | Chapter10: System Log Management and Monitoring

Example 10-13. A log message relayed from one host to two others (continued)

Same log entry as relayed from host2 to host3:
Sep 19 22:57:16 s_loc@linux/host1/host2 syslog-ng[1656]: syslog-ng version 1.4.13 starting

There are several interesting things to note in this example. First, you can see that in
the second entry (the one logged by host2), Syslog-ng does not clearly indicate that
“linux” is actually host1—it simply adds the “real” hostname after the “fake” one in
the slash-delimited hostname chain.

Second, the timestamp is identical in all three log entries. It’s unlikely that three hosts
would be in sync to the millisecond and be able to relay log messages amongst them-
selves virtually instantaneously. In fact, the timestamp given to the message by the
originating host (host1l here) is preserved on each host to which the message is
relayed, unless a host has its own use_time_recd() option set to “yes” (which causes
syslog-ng to replace message-provided timestamps with the time at which the mes-
sage was received locally).

Finally, Example 10-13 also shows that when host1 created the message, it (actually
its local syslog-ng process) appended s_loc, to the message—this is the label of the
sourcef{} on host]l from which the local syslog-ng process received the message.
Example 10-14 lists host1’s syslog-ng.conf file, the one responsible for the first entry
shown in Example 10-13.

Example 10-14. host1’s syslog-ng.conf file

options { };

source s_loc { unix-stream("/dev/log"); internal(); };

destination d_host2 { udp("host2" port(514)); };

destination d local { file("/var/log/messages"); };

log { source(s_loc); source(s_net); destination(d host2); destination(d local); };

Which brings us to the next topic: Syslog-ng message sources.

Sources

The syslog-ng.conf file listed in Example 10-14 contains one source{] definition,
which itself contains two source “drivers” (message-inputs). syslog-ng.conf may con-
tain many source{] definitions, each of which may, in turn, contain multiple drivers.
In other words, the syntax of source definitions is as follows:

source sourcelabel { driveri([options]); driver2([options]); etc. };

where sourcelabel is an arbitrary string used to identify this group of inputs, and
where driver1(), driver2(), etc. are one or more source drivers that you wish to treat
as a single group.

Let’s take a closer look at the source definition in Example 10-14:

source s _loc { unix-stream("/dev/log"); internal(); };

This line creates a source called s_loc that refers to messages obtained from /dev/log
(i.e., the local system-log socket) and from the local syslog-ng process.

Syslog-ng | 339

Syslog-ng is quite flexible in the variety of source drivers from which it can accept
messages. In addition to Unix sockets (e.g., /dev/log), syslog-ng itself, and UDP
streams from remote hosts, Syslog-ng can accept messages from named pipes, TCP
connections from remote hosts, and special files (e.g., /proc files). Table 10-8 lists
Syslog-ng’s supported source drivers.

Table 10-8. Source drivers for Syslog-ng

Source Description

internal() Messages from the syslog-ng daemon itself.
file("filename" [options]) Messages read from a special file such as /proc/kmsg.
pipe("filename") Messages received from a named pipe.
unix_stream("filename" [options]) Messages received from Unix sockets that can be read from in the

connection-oriented stream mode—e.qg., /dev/log under kernels
prior to 2.4; the maximum allowed number of concurrent stream
connections may be specified (default=100).

unix_dgram("filename" [options]) Messages received from Unix sockets that can be read from in the
connectionless datagram mode—e.q. klogd messages from /dev/log
under kernel 2.4.x.

tep([ip(address)] [port(#)] Messages received from remote hosts via the tcp protocol on the

[max-connections(#)]) specified TCP port (default=514) on the specified local network
interface (default=all); the maximum number of concurrent TCP
connections may be specified (default=10).

udp([ip(address)] [port(#)]) Messages received from remote hosts via the udp protocol on the
specified UDP port (default=514) on the specified local network
interface (default=all).

As we just saw in Example 10-14, internal() is syslog-ng itself: syslog-ng sends itself
startup messages, errors, and other messages via this source. Therefore, you should
include internal() in at least one source{} definition. file() is used to specify special
files from which syslog-ng should retrieve messages. The special file you’d most likely
want syslog-ng to read messages from is /proc/kmsg.

Note, however, that file() is not intended for use on regular text files. If you wish
syslog-ng to “tail” dynamic log files written by other applications (e.g., httpd), you’ll
need to write a script that pipes the output from a tail -f [filename] command to
logger. (For instructions on using logger, see the section “Testing System Logging
with logger” later in this chapter.)

unix_stream() and unix_dgram() are important drivers: these read messages from
connection-oriented and connectionless Unix sockets, respectively. As noted at the
end of “Compiling and Installing Syslog-ng from Source Code,” Linux kernels Ver-
sions 2.4.1 and higher use Unix datagram sockets; if you specify /dev/log as a unix_
stream() source, kernel messages won’t be captured. Therefore, use unix_dgram()
when defining your local-system log source, e.g.:

source s _loc { unix-dgram("/dev/log"); internal(); };

340 | Chapter10: System Log Management and Monitoring

If your kernel is pre-2.4.0, you should instead use unix_stream() for /dev/log.

tep() and udp() read messages from remote hosts via the connection-oriented TCP
protocol and the connectionless UDP protocol, respectively. In both tcp() and udp(),
a listening address and a port number may be specified. By default, syslog-ng listens
on 0.0.0.0:514—that is, “all interfaces, port 514.” (Specifically, the default for tcp()
is 0.0.0.0: TCP514, and for udp(), that is 0.0.0.0:UDP514.)

Example 10-15 shows source statements for tcp() and udp(), with IP and port
options defined.

Example 10-15. tcp() and udp() sources

source s_tcpmessages { tcp(ip(192.168.190.190) port(10514)); };
source s_udpmessages { udp(); };

In Example 10-15, we’re defining the source s_tcpmessages as all messages received
on TCP port 10514, but only on the local network interface whose IP address is 192.
168.190.190. The source s_udpmessages, however, accepts all UDP messages
received on UDP port 514 on all local network interfaces.

Besides ip() and port(), there’s one more source option I'd like to cover. max_
connections(), which can only be used in tcp() and unix_stream() sources, restricts
the number of simultaneous connections from a given source that syslog-ng will
accept. This is a tradeoff between security and performance: if this number is high,
then few messages will be dropped when the server is under load, but at the expense
of resources. If this number is low, the chance that logging activity will bog down the
server is minimized, but whenever the number of maximum connections is reached,
messages will be dropped until a connection is freed up.

The correct syntax for max-connections() is simple: specify a positive integer between
the parentheses. For example, let’s adapt the tcp() source from Example 10-15 to
accept a maximum of 100 concurrent TCP connections from remote hosts:

source s_tcpmessages { tcp(ip(192.168.190.190) port(10514) max-connections(100));
b
By default, max-connections() is set to 100 for unix-stream() sources and 10 for tcp()
sources.

By the way, TCP port 514 is the default listening port not only for syslog-ng, but also
for rshd. This isn’t a big deal, for the simple reason that rshd has no business run-
ning on an ostensibly secure Internet-accessible system. If, for example, you wish to
use both syslog-ng and rshd on an intranet server (even then I recommend sshd
instead), then you should specify a different (unused) port for syslog-ng to accept
TCP connections on.

Destinations

syslog-ng can be configured to send messages to the same places syslog can: ASCII
files, named pipes, remote hosts via UDP, and TTYs. In addition, syslog-ng can send

Syslog-ng | 341

messages to Unix sockets, remote hosts via TCP, and to the standard inputs of pro-
grams. Table 10-9 lists the allowed destination types (called “drivers”) in Syslog-ng.

Table 10-9. Supported destination drivers in syslog-ng.conf

Driver Description

file("filename[$MACROS]") Write messages to standard ASClI-text log file. If file doesn't exist,
syslog-ng will create it. Macros may be used within or in lieu of a file-
name; these allow dynamic naming of files (see Table 10-10).

tep("address" [port(#);]) Transmit messages via TCP to the specified TCP port (default=514) on
the specified IP address or hostname. (You must specify an address or
name.)

udp("address" [port(#);]) Transmit messages via UDP to the specified UDP port (default=514)
on the specified IP address or hostname. (You must specify an address
orname.)

pipe("pipename") Send messages to a named pipe such as /dev/xconsole.

unix_stream("filename" [options]) Send messages in connection-oriented stream mode to a Unix socket
such as /dev/log.

unix_dgram("filename" [options]) Send messages in connectionless datagram mode to a Unix socket
such as /dev/log.

usertty(username) Send messages to specified user's console.

program("/path/to/program™) Send messages to standard input of specified program with specified
options.

As with ordinary syslog, the most important type of destination is file(). Unlike with
syslog, Syslog-ng supports filename-expansion macros and a number of options that
give one much more granular control over how log files are handled.

When you specify the name of a file for syslog-ng to write messages to, you may use
macros to create all or part of the filename. For example, to tell syslog-ng to write
messages to a file whose name includes the current day, you could define a destina-
tion like this:

destination d_dailylog { file("/var/log/messages.$WEEKDAY"); };

When Syslog-ng writes to this particular destination, it will use the filename /var/log/
messages.Tues, /var/log/messages.Wed, etc., depending on what day it is. See
Table 10-10 for a complete list of supported filename macros.

Table 10-10. Macros supported in file() destinations

Macro Expands to

PROGRAM The name of the program that sent the message
HOST The name of the host that originated the message
FACILITY The facility to which the message was logged

342 | Chapter10: System Log Management and Monitoring

Table 10-10. Macros supported in file() destinations (continued)

Macro Expands to

PRIORITY or LEVEL (synonyms) The designated priority level

YEAR The current yeara

MONTH The current montha

DAY The current day2

WEEKDAY The current day’s name (Monday, etc.)2
HOUR The current houra

MIN The current minutea

SEC The current second2

a |fthe global option use_time_recvd() is set to yes, then this macro’s value will be taken from the local system time when the message
was received; otherwise, for messages from remote hosts, the timestamp contained in the message will be used.

As with syslog, if a file specified in a file() destination doesn’t exist, syslog-ng will cre-
ate it. Unlike syslog, Syslog-ng has a number of options that can be implemented
both globally and on a per-log-file basis. (Global settings are overridden by per-log-
file settings, allowing you to create “general rules” with exceptions.)

For example, whether and how syslog-ng creates new directories for its log files is
controlled via the options create_dirs(), dir_owner(), dir_group(), and dir_perm().
Example 10-16 illustrates the use of these options within a destination{} statement.

Example 10-16. Controlling a file() destination’s directory-creating behavior

destination d mylog { file("/var/log/ngfiles/mylog" create dirs(yes) dir owner(root) \
dir group(root) dir_perm(0700)); };

Example 10-16 also happens to show the default values of the dir_owner, dir_group(),
and dir_perm() options. While this may seem unrealistic (why would anyone go to
the trouble of setting an option to its default?), it’s necessary if nondefaults are speci-
fied in a global options{} statement and you want the default values used for a spe-
cific file—remember, options set in a destination{} statement override those set in an
options{} statement.

Other global/file-specific options can be used to set characteristics of the log file
itself: owner(), group(), and perm(), which by default are set to root, root, and 0600,
respectively. In case you’re wondering, there is no create_file() option—syslog-ng has
the irrevocable ability to create files (unless that file’s path includes a nonexistent
directory and create_dirs() is set to no). Example 10-17 shows a destination defini-
tion that includes these options.

Example 10-17. Options that affect file properties
destination d _micklog { file("/var/log/micklog" owner(mick) group(wheel) perm(0640)); };

Syslog-ng | 343

The other file() option we’ll cover here is sync(), which can be used to limit the fre-
quency with which log files are synchronized. This is analogous to syslog’s “-” pre-
fix, but much more granular: whereas the “-” merely turns off synchronization, file()
accepts a numeric value that delays synchronization to as many or as few messages as
you like.

The higher the value, the more messages are cached prior to filesystem synchroniza-
tion and, therefore, the fewer “open for read” actions on the filesystem. The lower
the number, the lower the chances of data loss and the lower the delay between a
message being processed and written to disk.

By default, sync() is set to zero, meaning “synchronize after each message.” In gen-
eral, the default or a low sync() value is preferable for low-volume scenarios, but
numbers in the 100s or even 1,000s may be necessary in high-volume situations. A
good rule of thumb is to set this value to the approximate number of log-message
lines per second your system must handle at peak loads.

If you use a log monitor such as Swatch (described later in this chap-
%g@ ter) to be alerted of attacks in progress, don’t set sync() too high. If an

intruder deletes a log file, all of Syslog-ng’s cached messages will be
lost without having been parsed by the log monitor. (Log monitors
parse messages as they are written, not beforehand.)

Filters

And now we come to some of the serious magic in Syslog-ng: message filters. Filters,
while strictly optional, allow you to route messages based not only on priority/level
and facility (which syslog can do), but also on the name of the program that sent the
message, the name of the host that forwarded it over the network, a regular expres-
sion evaluated against the message itself, or even the name of another filter.

A filter{} statement consists of a label (the filter’s name) and one or more criteria con-
nected by operators (and, or, and not are supported). Table 10-11 lists the different
types of criteria that a filter{} statement may contain.

Table 10-11. filter{} functions

Function (criterion) Description

facility(facility-name) Facility to which the message was logged (see Table 10-1 for facility names).
pr@or@ty(priority-name) Priority assigned to the message (see Table 10-2 for priority-names); a list of
PI%OI%W(priority-namel, priorities separated by commas may be specified, or a range of priorities
priority-name2, etc.) expressed as two priorities (upper and lower limits) separated by two periods.

priority(priority-name1 ..
priority-name2)

level(priority-name) Same as priority().
program(program-name) Program that created the message.
host(hostname) Host from which message was received.

344 | Chapter10: System Log Management and Monitoring

Table 10-11. filter{} functions (continued)

Function (criterion) Description
match(regular-expression) Regular expression to evaluate against the message’s body.
filter(filter-name) Other filter to evaluate.

Example 10-18 shows several filter{} statements taken from the default syslog-ng.conf
file included in Debian 2.2’s syslog-ng package.

Example 10-18. Filters

filter f mail { facility(mail); };

filter f debug { not facility(auth, authpriv, news, mail); };

filter f messages { level(info .. warn) and not facility(auth, authpriv, cron, daemon,
mail, news); };

filter f cother { level(debug, info, notice, warn) or facility(daemon, mail); };

The first line in Example 10-17, filter f mail, matches all messages logged to the
mail facility. The second filter, f_debug, matches all messages not logged to the auth,
authpriv, news, and mail facilities.

The third filter, f_messages, matches messages of priority levels info through warn,
except those logged to the auth, authpriv, cron, daemon, mail, and news facilities.
The last filter, called f_cother, matches all messages of priority levels debug, info,
notice, and warn, and also all messages logged to the daemon and mail facilities.

When you create your own filters, be sure to test them using the logger command.
See the section entitled “Testing System Logging with logger” later in this chapter.

Log statements

Now we combine the elements we’ve just defined (sources, filters, and destinations)
into log{} statements. Arguably, these are the simplest statements in syslog-ng.conf:
each consists only of a semicolon-delimited list of source(), destination(), and,
optionally, filter() references. (Filters are optional because a log{} statement contain-
ing only source() and destination() references will send all messages from the speci-
fied sources to all specified destinations.)

Elements from several previous examples are combined in Example 10-19, which

culminates in several log{} statements.

Example 10-19. Another sample syslog-ng.conf file

source s_loc { unix-stream("/dev/log"); internal(); };
source s_tcpmessages { tcp(ip(192.168.190.190); port(10514);); };

destination d dailylog { file("/var/log/messages.$WEEKDAY"); };
destination d_micklog { file("/var/log/micklog" owner(mick) perm(0600)); };

filter f mail { facility(mail); };

Syslog-ng | 345

Example 10-19. Another sample syslog-ng.conf file (continued)

filter f _messages { level(info .. warn) and not facility(auth, authpriv, cron, daemon,
mail, news); };

log { source(s_tcpmessages); destination(d_micklog); };
log { source(s loc); filter(f mail); destination(d micklog); };
log { source(s_loc); filter(f messages); destination(d dailylog); };

As you can see in this example, all messages from the host 192.168.190.190 are writ-
ten to the log file /fvar/log/micklog, as are all local mail messages. Messages that
match the f messages() filter are written to the log file /var/log/messages.
SWEEKDAY, e.g., /var/log/Sun, /var/log/Mon, etc.

Example 10-19 isn’t very realistic, though: no nonmail messages with priority-level
higher than warn are dealt with. This begs the question, “Can I get syslog-ng to filter
on ‘none of the above?’” The answer is yes: to match all messages that haven’t yet
matched filters in previous log{} statements, you can use the built-in filter DEFAULT.
The following line, if added to the bottom of Example 10-18, will cause all messages

not processed by any of the prior three log{} statements to be written to the daily log
file:

log { source(s_loc); filter(DEFAULT); destination(d dailylog); };

Advanced Configurations

As you’re hopefully convinced of by this point, Syslog-ng is extremely flexible, so
much so that it isn’t feasible to illustrate all possible Syslog-ng configurations. 1
would be remiss, however, if I didn’t list at least one advanced syslog-ng.conf file.

Example 10-20 shows a setup that causes syslog-ng to watch out for login failures
and access denials by matching messages against a regular expression and then send-
ing the messages to a shell script (listed in Example 10-21).

Example 10-20. Using syslog-ng as its own log watcher

WARNING: while this syslog-ng.conf file is syntactically correct and complete, it is
intended for illustrative purposes only -- entire categories of message
are ignored!

source s _local { unix_stream("dev/log"); internal(); };

filter f denials { match("[Dd]enied|[Ff]ail"); };

destination d_mailtomick { program("/usr/local/sbin/mailtomick.sh"); };
log { source(s_local); filter(f denials); destination(d mailtomick); };

Example 10-21. Script for emailing log messages

#!/bin/bash

mailtomick.sh

Script which listens for standard input and emails each line to mick
#

346 | Chapter10: System Log Management and Monitoring

Example 10-21. Script for emailing log messages (continued)

while read line;

do

echo $line | mail -s "Weirdness on that Linux box" mick@pinheads-on-ice.net
done

The most important lines in Example 10-20 are the filter f_denials and the destina-
tion d_mailtomick. The filter uses a match() directive containing a regular expression
that matches the strings “denied,” “Denied,” “Fail,” and “fail.”” The destination d_
mailtomick sends messages via a program() declaration to the standard input of a
script [wrote called /ust/local/sbin/mailtomick.sh.

Before we go further in the analysis, here’s an important caveat:
‘i‘y@ program() opens the specified program once and leaves it open until

syslog-ng is stopped or restarted. Keep this in mind when deciding
whether to use pipe() or program() (i.e., pipe() doesn’t do this), and in
choosing what sort of applications you invoke with program().

In some cases, keeping a script open (actually a bash process) is a
waste of resources and even a security risk (if you run syslog-ng as
root). Furthermore, the particular use of email in Examples 10-19 and
10-20 introduces the possibility of Denial of Service attacks (e.g., fill-
ing up the system administrator’s mailbox). But under the right cir-
cumstances, such as on a non-Internet-accessible host that has a few
CPU cycles to spare, this is a legitimate use of Syslog-ng.

The script itself, /usr/local/sbin/mailtomick.sh, simply reads lines from the standard
input and emails each line to mick@pinheads-on-ice.net. Since syslog-ng needs to
keep this script open, the read command is contained in an endless loop. This script
will run until the syslog-ng process that invoked it is restarted or killed.

In the interest of focusing on the most typical uses of Syslog-ng, I've listed some syslog-
ng.conf options without giving examples of their usage and omitted a couple of other
options altogether. Suffice it to say that the global/file option log fifo_size() and the
global options time_reap(), time_reopen(), gc_idle_threshold(), and gc_busy_threshold()
are useful for tuning syslog-ng’s performance to fit your particular environment.

W8
S The official (maintained) documentation for Syslog-ng is the Syslog-ng
L) Reference Manual. PostScript, SGML, HTML, and ASCII text versions
L) o . . . :
* s, of this document are included in the /doc directory of Syslog-ng’s

source-code distribution.

For advanced or otherwise unaddressed issues, the best source of Sys-
log-ng information is the Syslog-ng mailing list and its archives. See
http://lists.balabit. hu/mailman/listinfo/syslog-ng for subscription infor-
mation and archives.

* If you’re completely new to regular expressions, I highly recommend Mastering Regular Expressions by Jef-
frey E. F. Friedl (O’Reilly).

Syslog-ng | 347

Testing System Logging with logger

Before we leave the topic of system-logger configuration and use, we should cover a
tool that can be used to test your new configurations, regardless of whether you use
syslog or Syslog-ng: logger. logger is a command-line application that sends mes-
sages to the system logger. In addition to being a good diagnostic tool, logger is espe-
cially useful for adding logging functionality to shell scripts.

The usage we're interested in here, of course, is diagnostics. It’s easiest to explain
how to use logger with an example.

Suppose you’ve just reconfigured syslog to send all daemon messages with priority
“warn” to /var/log/warnings. To test the new syslog.conf file, you’d first restart
syslogd and klogd and then you’d enter a command like the one in Example 10-22.

Example 10-22. Sending a test message with logger

mylinuxbox:~# logger -p daemon.warn "This is only a test."

As you can see, logger’s syntax is simple. The -p parameter allows you to specify a
facility.priority selector. Everything after this selector (and any other parameters or
flags) is taken to be the message.

Because I'm a fast typist, I often use while...do...done statements in interactive bash
sessions to run impromptu scripts (actually, just complex command lines).
Example 10-23’s sequence of commands works interactively or as a script.

Example 10-23. Generating test messages from a bash prompt

mylinuxbox:~# for i in {debug,info,notice,warning,err,crit,alert,emerg}
> do

> logger -p daemon.$i "Test daemon message, level $I"

> done

This sends tests messages to the daemon facility for each of all eight priorities.

Example 10-24, presented in the form of an actual script, generates messages for all
facilities at each priority level.

Example 10-24. Generating even more test messages with a bash script

#1/bin/bash
for i in {auth,auth-priv,cron,daemon,kern,lpr,mail,mark,news,syslog,user,uucp,localo,
local1,local2,local3,local4,locals,local6,local7} # (this is all one line!)

do

for k in {debug,info,notice,warning,err,crit,alert,emerg}

do

logger -p $i.$k "Test daemon message, facility $i priority $k"
done

done

348 | Chapter10: System Log Management and Monitoring

Logger works with both syslog and Syslog-ng.

Managing System-Log Files

Configuring and fine-tuning your system-logging facilities is extremely important for
system security and general diagnostics. But if your logs grow too large and fill up
their filesystem, all that work may come to naught.

As with syslog itself, most Linux distributions come with a preconfigured log-rota-
tion scheme. As with syslog, while this scheme tends to work adequately for many
users, it’s too important a mechanism to take for granted: it behooves you to under-
stand, periodically evaluate, and, if necessary, customize your log-management
setup.

Log Management in Red Hat 7 and Debian 2.2:
/shin/logrotate

Both Red Hat 7 and Debian 2.2 use a binary program called logrotate to handle sys-
tem-log growth. In fact, they use very similar implementations of logrotate: global
options and low-level (system) log files are addressed in /etc/logrotate.conf, and appli-
cation-specific configuration scripts are kept in /etc/logrotate.d;.

When logrotate is run, all scripts in /etc/logrotate.d are included into logrotate.conf
and parsed as one big script. This makes logrotate’s configuration very modular:
when you install an RPM or DEB package (of software that creates logs), your pack-
age manager automatically installs a script in /etc/logrotate.d, which will be removed
later if you uninstall the package.

Actually, the include directive in logrotate.conf may be used to specify
%@ additional or different directories and files to include. In no event, how-

ever, should you remove the statement that includes /etc/logrotate.d if
you use Red Hat or Debian, both of whose package managers depend
on this directory for package-specific log-rotation scripts.

Syntax of logrotate.conf and its included scripts

There are really only two types of elements in logrotate.conf and its included scripts:
directives (i.e., options) and log-file specifications. A directive is simply a parameter
or a variable declaration; a log-file specification is a group of directives that apply to
a specific log file or group of log files.

In Example 10-25, we see a simple /etc/logrotate.conf file.

Managing System-Log Files | 349

Example 10-25. Simple logrotate.conf file
Very simple logrotate.conf file

Global options: rotate logs monthly, saving four old copies and sending
error-messages to root. After "rotating out" a file, touch a new one

monthly
rotate 4
errors root
create

Keep an eye on /var/log/messages
/var/log/messages {
size 200k
create
postrotate
/bin/kill -HUP “cat /var/run/syslog-ng.pid 2> /dev/null” 2> /dev/null || true
endscript

}

In Example 10-25, the global options at the top may be thought of as the default log-
file specification. Any directive for a specific log file takes precedence over the global
options. Accordingly, we see in this example that although by default logs are rotated
once a month and that four archives will be kept, the file /var/log/imessages will be
rotated not on the basis of time, but on size.

However, the other global directives will still apply: four old copies will be kept;
immediately after a log is renamed (which is how they’re “rotated”), a newly empty
current log file will be created (“touched”); and error messages will be emailed to
root.

logrotate supports a large number of different directives, but in practice, you’ll prob-
ably spend more time tweaking the subscripts placed in logrotate.d than you will
writing scripts from scratch. With that in mind, Table 10-12 lists some commonly
encountered logrotate directives. A complete list is provided in the manpage
logrotate(8).

Table 10-12. Common logrotate directives

Directive Description

/path/to/logfile { Log file specification header/footer (i.e., “apply these direc-
directivel tives to the file /path/to/logfile”). Whitespace is ignored.
directive2 . N .
etc. Applicable global directives are also applied to the log file,

} but when a given directive is specified both globally and

locally (within a log file specification), the local setting over-
rules the global one.

rotate number Tells Iogrotate to retain number old versions of the spec-
ified log file. Setting this to zero amounts to telling
logrotate to overwrite the old log file.

350 | Chapter10: System Log Management and Monitoring

Table 10-12. Common logrotate directives (continued)

Directive

daily | weekly | monthly | size=number_bytes

mail [username|mail@address]
errors [usernamelemail@address]

compress

copytruncate

create [octalmode owner group]

ifempty | notifempty

include file or directory

missingok | nomissingok

olddir dir | noolddir

postrotate
line1
line2
etc.

endscript

prerotate
line1
line2
etc.

endscript

Description

The criterion for rotating the specified file: either because one
day or week or month has passed since the last rotation, or
because the file's size has reached or exceeded numbezr
bytes since the last time Iogrotate was run.

Note that if number_bytes isa number, bytes are
assumed; if expressed as a number followed by a lowercase
“k,” Kilobytes are assumed; if expressed as a number fol-
lowed by a capital “M,” Megabytes are assumed.

Email old files to the specified local user or email address
rather than deleting them.

Email Iogrotate error messages to the specified local user
or email address.

Use gzip to compress old versions of log files.

Instead of renaming the current log file and creating a new
(empty) one, move most of its data out into an archive file.
Accommodates programs that can't interrupt logging (i.e.,
that need to keep the log file open for writing continuously).

Recreate the (now empty) log file immediately after rotation.
If specified, set any or all of these properties: octalmode (file-
mode in octal notation—e.g., 0700), owner, and group
properties.

By default, logrotate will rotate a file even if it's empty.
notifempty cancels this behavior; ifempty restores it (e.g.,
overriding a global notifempty setting).

When parsing logrotate.conf, include the specified file or the
files in the specified directory.

By default, logrotate will return a message if a log file doesn’t
exist. nomissingok cancels this behavior (i.e., tells logrotate to
skip that log file quietly); missingok restores the default
behavior (e.g., overriding a global nomissingok setting).

Tells logrotate to keep old versions of a log file in dir, whereas
noolddir tells logrotate to keep old versions in the same direc-
tory as the current version (noolddir is the default behavior).

Execute specified lines after rotating the log file. Can't be
declared globally. Typically used to send a SIGHUP to the
application that uses the log file.

Execute specified /ines before rotating the log file. Can’t be
declared globally.

Managing System-Log Files | 351

Just What Do We Mean By “Rotate?”

All log-management mechanisms involve periodically moving/renaming a log file to an
archive copy and creating a new (empty) log file. Rotation is necessary when multiple
archive copies are maintained.

In the most common log-rotation scheme, a set of static filenames is maintained. For
example, messages, messages.1, messages.2, messages.3 is a typical three-archive file-
name set—messages being the “current” log file and messages.3 being the oldest
archive.

In this scheme, rotation is achieved by coping the second-to-oldest file over the oldest
file (e.g., mv messages.2 messages.3). The third-oldest file’s name is then changed to
that of the second-oldest file’s, and so forth, until the current file is renamed and a new
(empty) “current” log file is created (e.g., mv messages messages.1; touch messages).
This is how logrotate behaves when its rotate parameter is set to a nonzero value.

In the second common mechanism, archive filenames are unique (e.g., messages,
messages.20010807, messages.20010708, etc.). In this case, rotation is a simple matter of
changing the current file’s name and then creating a new (empty) “current” log file (e.g.,
mv messages messages.20010928; touch messages). The final step is to compare the age
of the oldest log archive file to a “maximum age” setting and to delete it if it’s reached
that age.

This second scheme is used by SuSE’s aaa_base_rotate_logs script (covered later in this
chapter).

Running logrotate

In both Red Hat 7 and Debian 2.2, logrotate is invoked by the script /etc/cron.daily/
logrotate, which consists of a single command:

/usr/sbin/logrotate /etc/logrotate.conf

This doesn’t necessarily mean that logs are rotated daily; it means that logrotate
checks each log file daily against its configuration script and rotates or doesn’t rotate
the log file accordingly.

If you want logrotate to be run less frequently, you can move this script to /etc/cron.
weekly or even /etc/cron.monthly (though the latter is emphatically not recom-
mended unless logrotate is, for some strange reason, configured to rotate each and
every file monthly).

Log Management in SuSE 7

Log rotation in SuSE, as with so much else, is configured at a gross level in /etc/rc.
config (the configuration file for suseconfig, which is the primary backend engine of
yast). This file contains a variable called MAX_DAYS_FOR_LOG_FILES, which you

352 | Chapter10: System Log Management and Monitoring

can use to set the maximum number of days system logs are kept (by default, 365).
In addition, the log-rotation tools themselves come preconfigured and preactivated.

Chances are, however, that you’ll need to tweak SuSE’s log-management setup more
granularly than MAX_DAYS_FOR_LOG_FILES, especially if you install Syslog-ng
and disable syslog. As it happens, SuSE’s log-rotation scheme is less powerful but
also much simpler than Red Hat’s and Debian’s logrotate.

SuSE wuses a script called /etc/cron.daily/aaa_base_rotate_logs for day-to-day log rota-
tion. This script shouldn’t be manually edited; its behavior is controlled by the file /etc/
logfiles, which is simply a list of the files you wish to rotate along with the maximum
sizes you want them to reach, the permissions and ownerships they should have, and
the startup script (if any) that should be restarted after rotation is done.

Example 10-26 is an excerpt from the default /etc/logfiles from SuSE 7.1.

Example 10-26. Excerpts from /etc/logfiles

/etc/logfiles - This file tells cron.daily, which log files have to be watched
#

File max size mode ownership service

(reload if changed)
/var/log/mgetty.* +1024k 644 root.root

/var/log/messages +4096k 640 root.root
/var/log/httpd/access_log +4096k 644 root.root apache
/var/squid/logs/access.log +4096k 640 squid.root

In the first noncomment line, all log files whose name begins /var/log/mgetty will be
rotated after exceeding 1,024 kilobytes, after which they’ll be rotated to new files
whose permissions are -rw-r--r-- and that are owned by user root and group root.

The third line states that the file /var/log/httpd/access_log should be rotated after
exceeding 4,096 kilobytes, should be recreated with permissions -rw-r--r--, owned
by user root and group root, and after rotation is done, the startup script /etc/init.d/
apache should be restarted.

Since the maximum age of all log files is set globally in /etc/rc.config, take care not to set
the maximum size of a frequently written-to file (such as /var/log/messages) too high. If
this happens and if the maximum age is high enough, your logs may fill their volume.

Speaking of which, T highly recommend the use of a dedicated /var partition on any
machine that acts as a server; a full /var partition is much less likely to cause disrup-
tive system behavior (e.g., crashing) than a full root partition.

Using Swatch for Automated Log Monitoring

Okay, you’ve painstakingly configured, tested, and fine-tuned your system logger to
sort system messages by type and importance and then log them both to their respec-
tive files and to a central log server. You've also configured a log-rotation scheme
that keeps as much old log data around as you think you’ll need.

Using Swatch for Automated Log Monitoring | 353

But who’s got the time to actually read all those log messages?

swatch (the “Simple WATCHer”) does. swatch, a free log-monitoring utility written
100% in Perl, monitors logs as they’re being written and takes action when it finds
something you’ve told it to look out for. Swatch does for logs what tripwire does for
system-file integrity.

Installing Swatch

There are two ways to install swatch. First, of course, is via whatever binary package
of swatch your Linux distribution of choice provides. (I use the term loosely here;
“executable package” is more precise.) The current version of Mandrake has an RPM
package of swatch, but none of the other most popular distributions (i.e., Red Hat,
SuSE, Slackware, or Debian) appear to.

This is just as well, though, since the second way to install swatch is quite interest-
ing. swatch’s source distribution, available from http://www.stanford.edu/~atkins/
swatch, includes a sophisticated script called Makefile.PL that automatically checks
for all necessary Perl modules (see “Should We Let Perl Download and Install Its
Own Modules?” later in this chapter) and uses Perl 5’s CPAN functionality to down-
load and install any modules you need; it then generates a Makefile that can be used
to build swatch.

After you’ve installed the required modules, either automatically from swatch’s
Makefile.PL script or manually (and then running perl Makefile.PL), Makefile.PL
should return the contents of Example 10-27.

Example 10-27. Successful Makefile.PL run

[root@barrelofun swatch-3.0.1]# perl Makefile.PL
Checking for Time::HiRes 1.12 ... ok
Checking for Date::Calc ... ok
Checking for Date::Format ... ok
Checking for File::Tail ... ok
Checking if your kit is complete...
Looks good
Writing Makefile for swatch
[root@barrelofun swatch-3.0.1]#

Once Makefile.PL has successfully created a Makefile for swatch, you can execute the
following commands to build and install it:

make

make test

make install

make realclean
The make test command is optional but useful: it ensures that swatch can properly
use the Perl modules we just went to the trouble of installing.

354 | Chapter10: System Log Management and Monitoring

Should We Let Perl Download and Install Its Own Modules?

The Comprehensive Perl Archive Network (CPAN) is a network of Perl software
archives from around the world. Perl Version 5.6.x includes modules (CPAN and
CPAN::FirstTime, among others) that allow it to fetch, verify the checksums of, and
even use gcc to compile Perl modules from CPAN sites on the Internet. In-depth
descriptions of CPAN and Perl’s CPAN functionality are beyond this chapter’s scope,
but I have one hint and one warning to offer.

First, the hint. To install the module Example::Module (not a real Perl module), you
enter the command:

perl -MCPAN -e "install Example::Module"

If it’s the first time you’ve used the -MCPAN flag, the module CPAN::FirstTime will
be triggered and you’ll be asked to choose from various options as to how Perl should
fetch and install modules from CPAN. These are well-phrased questions with reason-
able defaults. But do pay attention to the output while this command executes: the
module you’re installing may depend on other modules and may require you to go
back and execute, e.g.:
perl -MCPAN -e "install Example::PreRequisite”
before making a second attempt at installing the first module.

Now for the warning: using CPAN is neither more nor less secure than downloading
and installing other software from any other Internet source. On the one hand, before
being installed, each downloaded module is automatically checked against a checksum
that incorporates a cryptographically strong MD35 hash. On the other hand, this hash
is intended to prevent corrupt downloads from going unnoticed, not to provide secu-
rity per se.

Furthermore, even assuming that a given package’s checksum probably won’t be
replaced along with a tampered-with module (a big assumption), all this protects
against is the unauthorized alteration of software after it’s been uploaded to CPAN by
its author. There’s nothing to stop an evil registered CPAN developer (anybody may
register as one) from uploading hostile code along with a valid checksum. But of
course, there’s nothing to stop that evil developer from posting bad stuff to Source-
Forge or FreshMeat, either.

Thus, if you really want to be thorough, the most secure way to install a given Perl
module is to:

1. Identify/locate the module on http://search.cpan.org.
2. Follow the link to CPAN’s page for the module.

3. Download the module not from CPAN, but from its developer’s official web site
(listed under “Author Information” in the web page referred to earlier in Step 2).

4. If available, also download any checksum or hash provided by the developer for
the tarball you just downloaded.

—continued—

Using Swatch for Automated Log Monitoring |

355

5. Use gpg, md5, etc. to verify that the tarball matches the hash.

6. Unzip and expand the tarball, e.g., tar -xzvf groovyperlmod.tar.gz.

7. If you’re a Righteously Paranoid Kung-Fu Master or aspire to becoming one,
review the source code for sloppiness and shenanigans, report your findings to
the developer or the world at large, and bask in the open source community’s
awe and gratitude. (I'm being flippant, but open source code is truly open only
when people bother to examine it!)

Follow the module’s building and installing directions, usually contained in a file
called INSTALL and generally amounting to something like:

perl ./Makefile.PL

make

make test

make install
Note that if the modules you need are being brought to your attention by swatch’s
Makefile.PL script, then to use the paranoid installation method, you’ll want to write
down the needed module names and kill that script (via plain old CONTROL-c) before
installing the modules and rerunning swatch’s Makefile.PL.

Before I forget, there’s actually a third way to install missing Perl modules: from your
Linux distribution’s FTP site or CDROM. While none approach CPAN’s selection,
most Linux distributions have packaged versions of the most popular Perl modules.
Following are the modules you need for swatch and the packages that contain them in
Red Hat 7 and Debian 2.2:

* Perl ModuleRed Hat 7 RPMDebian “deb” package

* Date::Calcperl-Date-Calclibdate-calc-perl

* Time::HiResperl-Time-HiReslibtime-hires-perl

* Date::Formatperl-TimeDatelibtimedate-perl

* File::Tailperl-File-Taillibfile-tail-perl
None of this may seem terribly specific to swatch, and indeed it isn’t, but it is impor-
tant—more and more useful utilities are being released either as Perl modules or as Perl
scripts that depend on Perl modules, so the chances are that swatch will not be the last

Makefile.PL-based utility you install. Understanding some ramifications of all this
module madness is worth the liter of ink I just spent on it, trust me.

swatch Configuration in Brief

Since the whole point of swatch is to simplify our lives, configuring swatch itself is,
well, simple. swatch is controlled by a single file, SHOME/.swatchrc by default. This
file contains text patterns, in the form of regular expressions, that you want swatch
to watch for. Each regular expression is followed by the action(s) you wish to swatch
to take whenever it encounters that text.

For example, suppose you’ve got an Apache-based web server and you want to be
alerted any time someone attempts a buffer-overflow attack by requesting an extremely

356 | Chapter10: System Log Management and Monitoring

long filename (URL). By trying this yourself against the web server while tailing its /var/
apachelerror.log, you know that Apache will log an entry that includes the string “File
name too long.” Suppose further that you want to be emailed every time this happens.
Example 10-28 shows what you’d need to have in your .swatchrc file.

Example 10-28. Simple entry in .swatchrc

watchfor /File name too long/
mail addresses=mick\@visi.com,subject=BufferOverflow attempt

As you can see, the entry begins with a watchfor statement, followed by a regular
expression. If you aren’t yet proficient in the use of regular expressions, don’t worry:
this can be as simple as a snippet of the text you want swatch to look for, spelled out
verbatim between two slashes.

Swatch will perform your choice of a number of actions when it matches your regu-
lar expression. In this example, we’ve told swatch to send email to mick\@visi.com,
with a subject of BufferOverflow attempt. Note the backslash before the @ sign—
without it, Perl will interpret the @ sign as a special character. Note also that if you
want spaces in your subject-line, each space needs to be escaped with a backslash—
e.g., subject=Buffer\ Overflow\ attempt.

Actions besides sending email include the ones in Table 10-13.

Table 10-13. Some actions swatch can take

Action (keyword) Description

echo=normal, underscore, blue, Print matched line to console, with or without special text mode (default
inverse, etc. mode is “normal”).

bell N Echo the line to console, with “beep” sounded N times (default = 1).

exec command Execute the command or script command.

pipe command Pipe the line to the command command.

throttle HH:MM:SS Wait for HH: MM: SS (period of time) after a line triggers a match, before per-

forming actions on another match of the same expression. Helps prevent
Denial of Service attacks via swatch (e.g., deliberately triggering huge num-
bers of swatch events in a short period).

For more details on configuring these and the other actions that swatch supports, see
the swatch(1) manpage.

N
3 If you use Syslog-ng, you may be able to use some combination of
.‘s match() filters, program() destinations, and pipe() destinations to
i achieve most of what swatch does.

However, swatch’s throttle parameter is an important advantage:
whereas Syslog-ng acts on every message that matches a given filter,
throttle gives swatch the intelligence to ignore repeated occurrences of
a given event, potentially preventing minor events from becoming
major annoyances.

Using Swatch for Automated Log Monitoring | 357

Let’s take that example a step further. Suppose in addition to being emailed about
buffer-overflow attempts, you want to know whenever someone hits a certain web
page, but only if you’re logged on to a console at the time. In the same .swatchrec file,
you’d add something like Example 10-29.

Example 10-29. An event that beeps and prints to console

watchfor /wuzza.html/
echo=red
bell 2

You will only see these messages and hear these beeps if you are
‘V’@ logged on to the console in the same shell session from which you

launched swatch. If you log out to go get a sandwich, when you return
and log back in, you will no longer see messages generated by the
swatch processes launched in your old session, even though those pro-
cesses will still be running.

When in doubt, add either a “mail” action or some other non console-specific action
(e.g., an “exec” action that triggers a script that pages you, etc.), unless, that is, the
pattern in question isn’t critical.

Alert readers have no doubt noticed that the scenario in the previous example will
work only for Apache installations in which both errors and access messages are logged
to the same file. We haven’t associated different expressions with different watched
files, nor can we. But what if you want swatch to watch more than one log file?

This is no problem. Although each .swatchrc file may describe only one watched file,
there’s nothing to stop you from running multiple instances of swatch, each with its
own .swatchrc file. In other words, .swatchrc is the default, but not the required
name for swatch configurations.

To split our two examples into two files, you’d put the lines in Example 10-27 into a
file called, for example, .swatchrc.hterror and the lines in Example 10-28 into a file
called .swatchrc.htaccess.

Advanced swatch Configuration

So far we’ve only considered actions we want triggered every time a given pattern is
matched. There are several ways we can control swatch’s behavior with greater gran-
ularity, however.

The first and most obvious is that search patterns take the form of regular expres-
sions. Regular expressions, which really constitute a text-formatting language of their
own, are incredibly powerful and responsible for a good deal of the magic of Perl,
sed, vi, and many other Unix utilities.

358 | Chapter10: System Log Management and Monitoring

It behooves you to know at least a couple “regex” tricks. Trick number one is called
alternation, and it adds a “logical or” to your regular expression in the form of a “|”
sign. Consider this regular expression:

/reject|failed/

This expression will match any line containing either the word “reject” or the word
“failed.” Use alternation when you want swatch to take the same action for more
than one pattern.

Trick number two is the Perl-specific regular-expression modifier “case-insensitive,”
also known as “slash-i” since it always follows a regular expression’s trailing slash.
The regular expression:

/reject/i

matches any line containing the word “reject” whether it’s spelled “Reject,”
“REJECT,” “rEjEcT,” etc. Granted, this isn’t nearly as useful as alternation, and in
the interest of full disclosure, I'm compelled to mention that slash-i is one of the
more CPU-intensive Perl modifiers. However, if despite your best efforts at log tail-
ing, self attacking, etc., you aren’t 100% sure how a worrisome attack might look in
a log file, slash-i helps you make a reasonable guess.

Another way to control swatch more precisely is to specify what time of day a given
action may be performed. You can do this by sticking a when= option after any
action. For example, in Example 10-30, I have a .swatchrc entry for a medium-impor-
tance event, which I want to know about via console messages during weekdays, but
which I'll need email messages to know about during the weekend.

Example 10-30. Actions with when option specified

/file system full/
echo=red
mail addresses=mick\@visi.com,subject=Volume Full,when=7-1:1-24

The syntax of the when= option is when=range of days:range of hours. Thus, in
Example 10-30, we see that any time the message “file system full” is logged, swatch
will echo the log entry to the console in red ink. It will also send email, but only if it’s
Saturday (“7”) or Sunday (“17).

Running swatch

Swatch expects .swatchrc to live in the home directory of the user who invokes
swatch. Swatch also keeps its temporary files there by default. (Each time it’s
invoked, it creates and runs a script called a “watcher process,” whose name ends
with a dot followed by the PID of the swatch process that created it).

The -c path/to/configfile and --script-dir=/path/to/scripts flags let you specify
alternate locations for swatch’s configuration and script files, respectively. Never

Using Swatch for Automated Log Monitoring | 359

keep either in a world-writable directory, however. In fact, only these files’ owners
should be able to read them.

For example, to invoke swatch so that it reads my custom configuration file in /var/
log and also uses that directory for its watcher process script, I'd use the command
listed in Example 10-31.

Example 10-31. Specifying nondefault paths

mylinuxbox:~# swatch -c /var/log/.swatchrc.access --script-dir=/var/log &

I also need to tell swatch which file to tail, and for that I need the -t filename flag. If I
wanted to use the previous command to have swatch monitor /var/log/apache/access_
log, it would look like this:

mylinuxbox:~# swatch -c /var/log/.swatchrc.access --script-dir=/var/log
\ -t /var/log/apache/access_log &

W 8
A)
o swatch generally doesn’t clean up after itself very well; it tends to leave
ﬁ:\ watcher-process scripts behind. Keep an eye out and periodically
& -
o}, delete these in your home directory or in the script directories you

tend to specify with --script-dir.

Again, if you want swatch to monitor multiple files, you’ll need to run swatch multi-
ple times, with at least a different tailing target (-t value) specified each time and
probably a different configuration file for each as well.

Fine-Tuning swatch

Once swatch is configured and running, we must turn our attention to the Gold-
ilocks Goal: we want swatch to be running neither “too hot” (alerting us about rou-
tine or trivial events) nor “too cold” (never alerting us about anything). But what
constitutes “just right?” There are as many answers to this question as there are uses
for Unix.

Anyhow, you don’t need me to tell you what constitutes nuisance-level reporting: if
it happens, you’ll know it. You may even experience a scare or two in responding to
events that set off alarms appropriately but turn out to be harmless nonetheless.
Read the manual, tweak .swatchrc, and stay the course.

The other scenario, in which too little is watched for, is much harder to address, espe-
cially for the beginning system administrator. By definition, anomalous events don’t
happen very frequently, so how do you anticipate how they’ll manifest themselves in
the logs? My first bit of advice is to get in the habit of browsing your system logs often
enough to get a feel for what the routine operation of your systems looks like.

Better still, “tail” the logs in real time. If you enter the command tail -f /var/log/
messages, the last 50 lines of the system log will be printed, plus all subsequent lines,

360 | Chapter10: System Log Management and Monitoring

as they’re generated, until you kill tail with a Control-c. This works for any file, even a
log file that changes very rapidly.

Another good thing you can do is to “beat up on” (probe/attack) your system in one
virtual console or xterm while tailing various log files in another. nmap and Nessus,
which are covered in Chapter 3 (Hardening Linux), are perfect for this.

By now you may be saying, “Hey, I thought the whole reason I installed swatch was
so I wouldn’t have to watch log files manually!” Wrong. Swatch minimizes, but does
not eliminate, the need for us to parse log files.

Were you able to quit using your arithmetic skills after you got your first pocket cal-
culator? No. For that matter, can you use a calculator in the first place unless you
already know how to add, multiply, etc.? Definitely not. The same goes for log file
parsing: you can’t tell swatch to look for things you can’t identify yourself, no more
than you can ask for directions to a town whose name you’ve forgotten.

Why You Shouldn’t Configure swatch Once
and Forget About It

In the same vein, [urge you to not be complacent about swatch silence. If swatch’s
actions don'’t fire very often, it could be that your system isn’t getting probed or mis-
used very much, but it’s at least as likely that swatch isn’t casting its net wide
enough. Continue to periodically scan through your logs manually to see if you're
missing anything, and continue to tweak .swatchrc.

Don’t forget to periodically reconsider the auditing/logging configurations of the
daemons that generate log messages in the first place. Swatch won’t catch events that
aren’t logged at all. Refer to the syslogd(8) manpage for general instructions on man-
aging your syslogd daemon, and the manpages of the various things that log to sys-
log for specific instructions on changing the way they log events.

Resources

http://www.stanford.edu/~atkins/swatch. swatch home page. (Has links to the latest
version, online manpages, etc.)

http://www.stanford.edu/~atkins/swatch/lisa93.html. Hansen, Stephen and Todd
Atkins, creators of swatch. “Centralized System Monitoring with Swatch.” (Old,
but still useful.)

http://www.enteract.com/~Ispitz/swatch.html. Spitzner, Lance. “Watching Your Logs.”
(A brief introduction to swatch.)

Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol, CA: O’Reilly & Asso-
ciates, Inc. 1998.

Resources | 361

	syslog
	Configuring syslog

	Syslog-ng
	Compiling and Installing Syslog-ng from Source Code
	Running syslog-ng
	Configuring Syslog-ng
	Advanced Configurations

	Testing System Logging with logger
	Managing System-Log Files
	Log Management in Red Hat 7 and Debian 2.2: /sbin/logrotate
	Log Management in SuSE 7

	Using Swatch for Automated Log Monitoring
	Installing Swatch
	swatch Configuration in Brief
	Advanced swatch Configuration
	Running swatch
	Fine-Tuning swatch
	Why You Shouldn’t Configure swatch Once and Forget About It

	Resources

