
fiasco

Nils Bandener

fiasco ii

Copyright © CopyrightÂ©1995-1998 Nils Bandener

fiasco iii

COLLABORATORS

TITLE :

fiasco

ACTION NAME DATE SIGNATURE

WRITTEN BY Nils Bandener June 25, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

fiasco iv

Contents

1 fiasco 1

1.1 Fiasco.guide . 1

1.2 Introduction . 4

1.3 About this Document . 5

1.4 Features . 6

1.5 News . 7

1.6 Getting Started . 13

1.7 Requirements . 13

1.8 Installation . 14

1.9 Starting Fiasco . 14

1.10 Quick Start . 15

1.11 Basic elements of a Database . 16

1.12 Records . 17

1.13 Indices . 17

1.14 Fields . 18

1.15 Mask . 18

1.16 List . 18

1.17 Editing Modes in Fiasco . 19

1.18 Record Mode . 19

1.19 Mask Mode . 19

1.20 Simple Usage of Fiasco Databases . 20

1.21 Working in the Mask . 20

1.22 Working with Records . 22

1.23 Advanced Usage of Fiasco Databases . 22

1.24 Converting Fields . 23

1.25 Groups . 23

1.26 Using Indices . 24

1.27 The Index History . 26

1.28 Using Marks . 26

1.29 Relations . 27

fiasco v

1.30 Relation Types . 27

1.31 Creating Relations . 28

1.32 Virtual Fields . 29

1.33 Searching in a Database . 30

1.34 Searching by Fields . 31

1.35 Patterns . 31

1.36 Wildcards . 32

1.37 Wildcards for numbers . 33

1.38 Blurred Search . 33

1.39 Searching by Formulas . 34

1.40 Search Information . 34

1.41 Searching with ARexx . 35

1.42 Count . 36

1.43 Replace . 36

1.44 Filter . 36

1.45 Printing a Database . 37

1.46 Internal Print Function . 38

1.47 The Print Mask . 38

1.48 Print Mask Files . 39

1.49 Printing with TeX . 39

1.50 Printing with ARexx . 41

1.51 GraphPrint.rexx . 41

1.52 Import and Export . 42

1.53 Structure of Import/Export files . 42

1.54 How to Specify Special Characters . 43

1.55 Importing of Data . 44

1.56 Exporting of Data . 45

1.57 Updating databases with Im/Export . 46

1.58 Fieldtypes . 46

1.59 Standard Attributes . 47

1.60 String Fieldtype . 49

1.61 Integer Fieldtype . 50

1.62 Float Fieldtype . 51

1.63 Boolean Fieldtype . 52

1.64 Cycle Fieldtype . 53

1.65 Slider Fieldtype . 54

1.66 Date Fieldtype . 55

1.67 Time Fieldtype . 56

1.68 Extern Fieldtype . 57

fiasco vi

1.69 Datatypes Fieldtype . 58

1.70 Var String Fieldtype . 60

1.71 Text Fieldtype . 62

1.72 Button Fieldtype . 63

1.73 Bar Fieldtype . 63

1.74 Listview Fieldtype . 64

1.75 Fiasco’s Graphic User Interface . 66

1.76 The Mask Window . 66

1.77 Mask Stretching . 67

1.78 The List Window . 68

1.79 The Service Window . 69

1.80 Add . 70

1.81 Delete . 70

1.82 First . 70

1.83 Previous . 71

1.84 Next . 71

1.85 Last . 71

1.86 Active project . 71

1.87 Status . 71

1.88 Fieldtype . 72

1.89 Menus . 72

1.90 Project/New . 76

1.91 Project/Erase . 77

1.92 Project/Open... 77

1.93 Project/Open new... 77

1.94 Project/Save . 77

1.95 Project/Save As... 78

1.96 Project/Import... 78

1.97 Project/Export... 78

1.98 Project/Print... 78

1.99 Project/Hide . 79

1.100Project/Reveal... 79

1.101Project/About... 79

1.102Project/Quit . 80

1.103Database/Options... 80

1.104Database/Statistic... 80

1.105Database/Indices... 81

1.106Database/Previous active Index . 81

1.107Database/Next active Index . 81

fiasco vii

1.108Database/Reorganize... 81

1.109Database/Reload Relations . 82

1.110Database/Functions... 82

1.111Database/Constants... 82

1.112Record/Add Record . 83

1.113Record/Duplicate Record . 83

1.114Record/Delete Record . 83

1.115Record/Delete all Records . 84

1.116Record/Cut Record . 84

1.117Record/Copy Record . 85

1.118Record/Paste Record . 85

1.119Record/Previous . 86

1.120Record/Next . 86

1.121Record/First Record . 87

1.122Record/Last Record . 87

1.123Record/Goto... 88

1.124Record/Mark Record . 88

1.125Record/Unmark Record . 89

1.126Record/Mark all Records . 89

1.127Record/Unmark all Records . 90

1.128Record/Toggle all Marks . 90

1.129Field/Fieldtype . 90

1.130Field/Add Field... 91

1.131Field/Edit active Field... 92

1.132Field/Edit named Field... 93

1.133Field/Duplicate Field . 93

1.134Field/Remove Field . 93

1.135Field/Edit Relation... 94

1.136Field/Remove Relation . 94

1.137Field/Create Group . 95

1.138Field/Resolve Group . 95

1.139Field/Convert Field... 95

1.140List/Hide column . 96

1.141List/Show column... 96

1.142List/Show all columns . 96

1.143List/Recalc List . 97

1.144Compare/Find... 97

1.145Compare/Find next . 97

1.146Compare/Find previous . 98

fiasco viii

1.147Compare/Filter... 98

1.148Compare/Replace... 99

1.149Compare/Count... 99

1.150Compare/Sort... 99

1.151Compare/Mark... 100

1.152Control/Record Mode . 100

1.153Control/Mask Mode . 100

1.154Control/Service Window . 101

1.155Control/List Window . 101

1.156Control/ARexx-Debug . 101

1.157Settings/Databases... 102

1.158Settings/User Interface... 102

1.159Settings/User Menu... 102

1.160Settings/Display... 102

1.161Settings/External Programs and Paths... 103

1.162Settings/Save Settings . 103

1.163Settings/Save Settings as... 103

1.164Settings/Load Settings... 103

1.165The Print Window . 103

1.166Project/Erase . 105

1.167Project/Open... 105

1.168Project/Get from Mask . 105

1.169Project/Get from List . 105

1.170Project/Save . 105

1.171Project/Save as... 106

1.172Project/Print . 106

1.173Project/Options... 106

1.174Project/Exit . 106

1.175Element/Element Type . 107

1.176Element/Add... 107

1.177Element/Edit... 107

1.178Element/Duplicate . 108

1.179Element/Remove . 108

1.180Control/Edit Head . 108

1.181Control/Edit Body . 109

1.182Control/Edit Foot . 109

1.183All Requesters . 109

1.184Import Requester . 111

1.185Export Requester . 112

fiasco ix

1.186Reveal Project Requester . 113

1.187Project Options Requester . 113

1.188Statistic Requester . 115

1.189Indices Requester . 116

1.190New/Edit Index Requester . 117

1.191Functions Requester . 118

1.192Constants Requester . 119

1.193Goto Requester . 119

1.194Field Requester . 120

1.195Popup Gadget Requester . 121

1.196Convert Field Requester . 121

1.197Relation Requester . 122

1.198Formula Requester . 123

1.199Show Column Requester . 123

1.200Search Requester . 124

1.201Filter Requester . 125

1.202Replace Requester . 126

1.203Count Requester . 127

1.204Mark Requester . 128

1.205Sort Requester . 128

1.206Database Settings Requester . 129

1.207User Interface Settings Requester . 130

1.208User Menu Requester . 131

1.209Display Settings Requester . 132

1.210External Programs and Paths Requester . 132

1.211Print Options Requester . 133

1.212Print Element Requester . 134

1.213Formulas . 135

1.214Constant Values . 136

1.215Fields . 136

1.216Constants . 137

1.217Operators . 137

1.218Functions . 140

1.219Function Reference . 140

1.220abs() . 142

1.221activerecord() . 142

1.222asin() . 143

1.223acos() . 143

1.224atan() . 143

fiasco x

1.225ceil() . 144

1.226cos() . 144

1.227currentdate() . 144

1.228currenttime() . 145

1.229datediff() . 145

1.230day() . 145

1.231floor() . 146

1.232formatdate() . 146

1.233formattime() . 147

1.234hour() . 147

1.235left() . 147

1.236lg() . 148

1.237ln() . 148

1.238minute() . 148

1.239month() . 149

1.240numrecords() . 149

1.241printf() . 149

1.242rand() . 150

1.243right() . 151

1.244round() . 151

1.245second() . 151

1.246sign() . 152

1.247sin() . 152

1.248sqrt() . 152

1.249strcat() . 153

1.250strcmp() . 153

1.251stricmp() . 153

1.252strlen() . 154

1.253strmid() . 154

1.254strrev() . 154

1.255strstr() . 155

1.256tan() . 155

1.257tolower() . 156

1.258toupper() . 156

1.259version() . 156

1.260year() . 157

1.261The ARexx Port . 157

1.262Style Conventions . 158

1.263Accessing the Port . 158

fiasco xi

1.264Arguments of Commands . 160

1.265Results of Commands . 160

1.266Debugging ARexx Scripts . 161

1.267ARexx commands by alphabet . 162

1.268ARexx commands by function . 164

1.269ActivateDBWindow . 167

1.270ActivateField . 167

1.271ActiveIndex . 168

1.272ActiveRecord . 168

1.273AddLVFieldEntry . 169

1.274AddRecord . 169

1.275CalculateFormula . 170

1.276Clear . 170

1.277CloneRecord . 171

1.278Close . 171

1.279CloseListWindow . 172

1.280CloseServiceWindow . 172

1.281ConvertField . 173

1.282CopyRecord . 173

1.283CountRecords . 173

1.284CreateField . 174

1.285CutRecord . 174

1.286DeleteAllRecords . 175

1.287DeleteConstant . 175

1.288DeleteLVFieldEntry . 176

1.289DeleteRecord . 176

1.290Export . 176

1.291Fault . 177

1.292Filter . 177

1.293Find . 178

1.294FlushRecords . 179

1.295GetAttr . 180

1.296GetConstant . 181

1.297GetField . 182

1.298GetRecordMark . 183

1.299HideProject . 183

1.300Import . 184

1.301LoadDTFieldObject . 184

1.302LockGUI . 185

fiasco xii

1.303MarkMatch . 185

1.304MarkRecord . 186

1.305MenuControl . 186

1.306MoveRecord . 186

1.307New . 187

1.308NewSearchInfo . 187

1.309Open . 188

1.310OpenListWindow . 189

1.311OpenServiceWindow . 189

1.312PasteRecord . 189

1.313Progress . 190

1.314Quit . 190

1.315ReadSettings . 191

1.316RecompileFormulas . 191

1.317RequestChoice . 191

1.318RequestField . 192

1.319RequestFile . 192

1.320RequestNumber . 193

1.321RequestString . 193

1.322ResetStatus . 194

1.323RevealProject . 194

1.324Save . 195

1.325SaveAs . 195

1.326SaveSettings . 195

1.327SetAttr . 196

1.328SetConstant . 197

1.329SetField . 197

1.330SetMode . 199

1.331SetSearchField . 199

1.332SetStatus . 199

1.333Sort . 200

1.334UnlockGUI . 200

1.335Example Projects . 201

1.336Organizer . 201

1.337FamilyTree . 202

1.338PD Disks . 202

1.339Videos . 202

1.340Picture Database . 203

1.341Multimedia Database . 203

fiasco xiii

1.342Mailing List Archive . 204

1.343Legal Things . 205

1.344Shareware . 207

1.345File List . 208

1.346Error Codes . 212

1.347Relation Checklist . 214

1.348Technical Information . 215

1.349Implementation of the Clipboard support . 215

1.350Bugs . 216

1.351To do . 216

1.352Credits . 218

1.353Support for Fiasco . 218

1.354Index . 219

fiasco 1 / 252

Chapter 1

fiasco

1.1 Fiasco.guide

Fiasco Release 2.2
AmigaGuide documentation
Copyright © 1995-1998 Nils Bandener

Introduction

About this Document

Features

News

Getting Started

Requirements

Installation

Starting Fiasco

Quick-Start

Basic Elements of a Database

Records
~

Indices

Fields

Mask

List

Editing Modes

Record Mode

fiasco 2 / 252

Mask Mode

Simple Usage of Fiasco Databases

Working in the Mask

Working with Records

Advanced Usage of Fiasco Databases

Converting Fields

Groups

Using Indices

Using Marks

Relations

Virtual Fields

Searching in a Database

Searching by Fields

Patterns

Wildcards

Wildcards for Numbers

Blurred Search

Searching by Formulas

Search Informations

Searching with ARexx

Count function

Replace function

Filter function

Printing a Database

Internal Print Function

The Print Mask

Print Mask Files

Printing with TeX

fiasco 3 / 252

Printing with ARexx

Import and Export

Structure of Import/Export files

How to Specify Special Characters

Importing Data

Exporting Data

Updating Databases with Im/Export

Fieldtypes

Standard Attributes

Fiasco’s Graphic User Interface

The Mask Window

The List Window

The Service Window

Pull Down Menus

The Print Window

All Requesters

Formulas

Constant Values

Fields

Constants

Operators

Functions

Function Reference

The ARexx Port

Style Conventions

Accessing the Port

Arguments of Commands

Results of Commands

Debugging ARexx Scripts

fiasco 4 / 252

ARexx Command Reference

Example Projects
Appendix

Legal Things

Shareware

Files

Error Codes

Bugs

To Do

Credits

Support

Index

1.2 Introduction

Introduction

Fiasco is a Database for the Amiga. I originally wanted to write a simple
Program that could test one’s English or Latin vocabulary. I later
implemented the ability to define more than two fields (answer and
question). The program continued to developed and finally became very
similar to a database program. I only needed to make minor changes and
there it was! Fiasco is now powerful, many featured program.

Basically there is little difference between Fiasco and other
database programs. Although Fiasco does not support hierarchical
structures (i. e. a kind of a database in a database), it does support
relations. Starting with release 2.0, Fiasco supports list view fields,
which may contain several entries for a specified set of fields.

Fiasco also has an ARexx interface that can be used to control Fiasco
from other Programs or for assigning ARexx scripts to fields within a
Fiasco database.

Indices are used for organizing the record order. The implementation
of the sort and filter functions makes also use of them.

Fiasco does not have to load the entire database on startup. Record
data is only read from disk when required. This makes the use of
databases possible, which have a greater size than the available RAM. To
reduce access time, Fiasco caches loaded records in RAM. The RAM usage of
Fiasco databases may be controlled by the user.

fiasco 5 / 252

Fiasco’s "mask" is not defined by a graphic file -- it is created
using internal images and any non-proportional font. Fiasco provides a
number of field types. My personal favorite is the datatypes fieldtype
which can be used to display graphics, animations, texts etc. directly in
the

mask
window.

The
list window
is a second way to display data. The list window is

much like the mask fully configurable. However, you cannot use a list
window to modify data.

In order not to lose the overview over your data, you can use
Fiasco’s

search system
. Its features include search by several fields,

wildcards, "blurred" search and search by formula.

Furthermore, Fiasco has sort, filter and count functions. Because all
functions are related to the search system, all of these functions are
easy to use when you know the search system.

1.3 About this Document

About this Document

You do not have to read the whole manual to work with Fiasco. Many
functions of Fiasco have been designed to be as easy and intuitive to use
as possible. To avoid any misunderstanding, you should read the section

Quick Start
, though. Furthermore, Fiasco supports online-help. Pressing

the help key in a requester or over a menu item will display the
appropriate AmigaGuide section of this document.

This manual contains descriptions and tutorials for all Fiasco
functions and systems.

Several of the advanced functions of Fiasco require some additional
knowledge. In these cases, reading the corresponding sections in this
manual is highly recommended.

The chapter
Basic Elements of a Database
describes the principles of

databases and how Fiasco uses them. The following chapter

Simple Usage of Fiasco
explains the creation of a simple database and how

to work with it.
Advanced Usage of Fiasco

fiasco 6 / 252

documents the features of
Fiasco which are useful but not neccessary.

While the chapters listed above contain information about functions,
which directly control the database, the next chapters explain additional
functions that are not directly connected to the database structure. To
understand these chapters, you do not need any knowledge from the
Advanced Usage of Fiasco or from any other chapters in this section.

Searching in a Database
describes Fiasco’s search function and all

related functions.
Printing a Database
describes Fiasco’s print function

and explains, how to create print-outs without using the built-in print
function. The chapter

Import and Export
explains --- what else --- the

Import and Export function of Fiasco which is useful for sharing data
with other programs.

The chapters
Fieldtypes
,
Fiasco’s Graphic User Interface
and

Fiasco’s ARexx Port
are mainly for reference.

1.4 Features

Features

Fiasco has the following capabilities:

· Dynamic record loading. Fiasco reads the record data only when
required. Thus, the use of databases bigger than the available RAM is
possible.

· Support of several indices for a database. These indices can be
automatically sorted or filtered.

· Several projects may be in RAM at the same time. The number of these
projects is only limited by the available RAM.

· Masks can be used like any other GUI.

· Masks and lists automatically adapt to non-proportional fonts.

· Requesters are created with gtlayout.library, which provides full font
independence.

· Many fieldtypes: String, Integer, Float, Cycle, Boolean, Slider, Date,
Time, Extern, Datatypes and Var String.

fiasco 7 / 252

· Support of listview fields for String, Integer, Float, Date and Time
field types.

· Datatypes fields can be used to display graphics etc. directly in the
mask.

· Flexible search function supporting wildcards, burred search and
formulas.

· ARexx interface for external control and scripts for fields.

· Freely configurable "user menu", which can be used to invoke CLI and
ARexx Programs.

· Very flexible list, which supports hiding and resizing of entries

· Easy relation handling

· Import and export of databases

· Flexible print function

1.5 News

News

Features added in Fiasco 2.2:

· Enhanced replace function: Now supports several fields to be replaced
and formulas for calculating the replacement.

· Implemented "CD ROM mode" for databases.

· Field requester now checks, whether a field ID is suitable for use in
formulas and warns if not.

· Fiasco can be configured to open a file requester on startup. when
Fiasco is started without arguments.

· New program argument: Iconified starts Fiasco without opening the GUI.

· The user may define startup and shutdown ARexx scripts for individual
databases and the whole program.

· New ARexx commands:
ActivateDBWindow
for activating a database’s

window,
MenuControl
for switching menus off and

ReadSettings

fiasco 8 / 252

and

SaveSettings
for reading or saving, resp., of Fiasco’s settings.

· New argument for
SetField
and

GetField
: ExtFormat handles extended,

for example localized, formats.

· New argument for
SetField Stem
: CreateListEntries makes it now

possible to completely replace old listview entries.

· New formula operator: numentries(listview) returns the number of
entries in a listview field.

· New formula functions: numrecords() returns the number of records in
the database and activerecord() returns the number of the active
record in the database.

· Now deals more robust with trashed data in database files.

Bugs fixed in Fiasco 2.2:

· Fixed infamous "Error 500" bug.

· While using relations and both relation databases were open, an
"adding existing record" error could occur.

· Relation requester would crash if remote database contained user
defined formula functions or constants.

· If an ARexx script started by Fiasco was halted with Ctrl-C, datatypes
fields would not work any more.

· GetAttr Fields also returned already deleted fields.

· Project/Save As could sometimes have problems with indices.

· Button field shortcuts did not work when no record was active.

· Arguments attribute for button fields did not work with CLI programs.

· ARexx scripts without arguments were started with an empty pair of
quotes.

· Under certain circumstances, the import function could hang.

· Because of an uninitialized variable, the sort function could refuse
to work under certain circumstances.

fiasco 9 / 252

· The sort function did not mark a database changed.

· Automatic sorting indices would sort in a record which should be
sorted to the end of an index one position before.

· SetField Stem did not work correctly with automatic sorting indices.

· The formula requester did not display constants.

· ActiveIndex Var and Find Var did not work.

Features added in Fiasco 2.11:

· Print elements may now center the data or justify them right.

· New formula operator current() which returns the number of a listview
entry, whose value is just beeing calculated by this formula.

· New ARexx commands
SetConstant
,
GetConstant
,
DeleteConstant
,

RecompileAllFormulas and
FlushRecords
.

· Export function now only filters whole control strings.

· A field with popup gadget now uses Shift + shortcut for opening the
popup requester.

Bugs fixed in Fiasco 2.11:

· In databases with virtual fields, internal errors could be shown after
usage of the search function (or related functions).

· After deleting many records, record access could sometimes work not
correctly.

· After Record/Remove All Records and Save Fiasco could get confused.

· An index created with Compare/Sort could be not overwritten by
Compare/Sort again.

· Compare/Filter could cause problems when the database was
automatically saved.

fiasco 10 / 252

· While adding records to a database without records but with activated
relations, Enforcer hits were produced.

· After overwriting indices with Compare/Sort or Compare/Filter,
internal errors could occur while closing the database.

· After a failed Save, Fiasco could crash.

· Deleting of indices could cause a second Standard.fidx to be created.

· The convert field requester allowed to convert fields into slider
listviews (!) instead of date listviews.

· Using var string fields could cause Fiasco to run out of signals.

· The ARexx commands SetField and GetField used locale settings.

· Old ARexx find commands only opened the search requester.

· ARexx command ActiveRecord used with relative record movements (Next,
Prev) did not work.

· ARexx command Export had wrong argument template.

· Quitting Fiasco from the ARexx port was likely to result in a crash.

· Checkbox gadgets in import/export requesters were not updated
correctly.

· User Interface Settings/Automatically activate first field would also
activate a field even if it was disabled.

Features added in Fiasco 2.1:

· Support of formulas for calculated field contents and for complex
searches.

· New search function that supports searching by several fields and by
formulas.

· Improved patterns for searching.

· Completely revised ARexx port that is now Style Guide compliant. Old
scripts will continue to work though.

· Fields may be now assigned predefined values that can be selected
using a picker button at the right side of the field. This button may
be also used to start ARexx scripts.

· Var String fields can be now displayed in the list window. Var String
fields from Fiasco 2.0x files are marked as hidden and can be shown
using the field requester or List/Show column.

· Delete Field now checks for uses of the field to be deleted.

fiasco 11 / 252

· Index history keeps track of the order in which the indices were
actived. With Database/Previous active index one can go back through
the history.

· Special relation mode Read only, that only reads the relation data
when a key is changed, but stores the data in the local file and does
not keep the data up-to-date.

· Float, date and time fields use formatting settings from
locale.library if available.

· ARexx scripts assigned to buttons may now have arguments and open a
console window.

· New attribute for listview fields: Select Only allows selection of,
but not editing of, entries.

· Float values are now stored in a 64 bit format and are thus more
precise.

· The default path of databases and the location of the Fiasco main
program may be specified now.

· New file format for preferences. Old format can be still loaded.

Bugs fixed in Fiasco 2.1:

· Importing into an index that does sorting would not cause the index to
be sorted again.

· When no records were loaded (e.g. when a database was loaded in mask
mode) and then the database was saved, the active index would be saved
empty.

· Deleting records in a database that had never been saved before would
cause saving corrupt .frec files.

· Import function could recognize a control character even if it was not
there.

· Opening two databases with .fdat files and relations could cause
alerts.

· After Reveal Project the service window was not updated correctly.

Features added in Fiasco 2.02:

· The window gadgets of Fiasco’s mask window may be now controlled using
the options requester.

fiasco 12 / 252

Bugs fixed in Fiasco 2.02:

· Deleting an record that was added since the last saving could confuse
Fiasco.

· Automatic sorting could change the record data of a newly sorted
record.

· Saving a database after request in the index requester could make
Fiasco to use wrong index files.

· Save Settings could crash when Service Window/Fixed Position was
activated.

· Var String fields did not recognize changes when only the length of
the content was changed.

· Several minor bug fixes.

Features added in Fiasco 2.01:

· Editor setting supports %s to specify a place where the file name
should be substituted. This is particularly useful for GoldED users,
which should add the STICKY argument to avoid nasty problems. Example:
c:ged "%s" sticky.

· F_SetFieldCont has been made much faster.

Bugs fixed in Fiasco 2.01:

· Automatic sorting could sort incorrectly and cause enforcer hits.

· Automatic sorting did not work well with Descending.

· If a record was added to a database which did not contain any records
and previoulsly a field had been deleted, enforcer hits would be
caused.

· Closing a database which is remote database of a relation in a
database that is also open could cause enforcer hits or crashes.

· Adding relations with the relation requester did not work on Amigas
without memory after $0100 0000.

· If a in the list not displayable field was converted into a
displayable field or vice versa, the list window was not correctly

fiasco 13 / 252

re-layouted.

· Print function cut contents of var string fields after an empty line
and could eat single characters.

· Sometimes Reorganize would not delete all unused records.

· Deleting of records, which have been added after the last saving of a
database, would cause garbage records to be created in the database
file.

· Record argument of F_AddListEntry did not work correctly.

· F_MarkMatch did not work reliable.

· Several minor bug fixes.

1.6 Getting Started

Getting Started

Requirements

Installation

Starting Fiasco

Quick Start

1.7 Requirements

Requirements

The minimum requirements are an Amiga with OS 2.04 (37.175) and 1 MB RAM.
Recommended configuration: Amiga with OS 3.x (39.x or higher), 68020
Processor, 2 MB RAM and a hard disk.

Fiasco uses the gtlayout.library by Olaf Barthel for its GUI. Var
string fields are implemented using the textfield.gadget by Mark Thomas.
The files are included in the archive of Fiasco.

Fiasco requires the ACTION_SET_FILE_SIZE packet, which was introduced
with Amiga OS 2.0. Both the 2.0 ROM filesystem and the 2.0 RAM handler
support this packet, however, some handlers may not support it. Thus, you
cannot save Fiasco projects to these handlers. Reading should be always
possible.

Possibly also due to this, Fiasco does not work with Diskexpander and
XFH. You are able to read databases, but saving does not work. If you use

fiasco 14 / 252

Diskexpander, errors will be produced. Take care if you use XFH: Saving a
database to a XFH handler may crash the system.

The memory pool functions of Amiga OS 3.0 and Amiga OS 3.1 do not
free unused puddles until the pool is deleted. Use SetPatch 40.16
(already included in WB 40.42) to fix this. If you use Amiga OS 2.0 or
Amiga OS 2.1 you do not have to worry about that.

Features and required OS-Versions:

Localization: Amiga OS 2.1 (38.x)
Screenmode-Requester: Amiga OS 2.1 (38.x)
Online-Help: Amiga OS 3.0 (39.x) or amigaguide.library v34
Datatypes-Fields: Amiga OS 3.0 (39.x)

1.8 Installation

Installation

If you have the Installer program simply double-click on the install icon
of your preferred language in the install drawer. You then will be given
step-by-step instructions.

If you don’t own the Installer, you may simply drag the Fiasco drawer
somewhere you want. You may copy the catalogs to locale:catalogs, but
they will work at this place, too. You may delete the unused languages in
"Documentation" and drag the remaining files in the parent drawers. The
files in "Development" and "Install" are not required for normal
operation of Fiasco and may be deleted, too. With this configuration,
Fiasco will run. If you have a 68020 processor or better, you should
delete the file gtlayout.library in the main directory of Fiasco. Then,
you should copy the gtlayout.library from the directory libs/68020 into
the main directory. If you want to make the gtlayout.library accessible
for all programs, you should copy it into the libs: directory.

1.9 Starting Fiasco

Starting Fiasco

You can start Fiasco from Workbench or Shell. The simplest way to start
Fiasco from Workbench is to double click on the Fiasco icon. From shell,
you have to change the directory to Fiasco’s directory and then type
Fiasco. These startup arguments are supported by Fiasco:

From: The databases to be loaded on startup. You may specify several
databases. Only supported from shell. If started from Workbench, there
is a different scheme: If Fiasco was started using a project icon of a
Fiasco database, Fiasco will load the database of the icon on startup.

fiasco 15 / 252

You may also select multiple project icons and start Fiasco with the
program icon. In that case, Fiasco will load all selected projects.

Config: After this keyword you may specify a Fiasco configuration file to
be used by Fiasco. Default: env:fiasco.prefs. Example:
CONFIG=env:fiasco_24bit.prefs. Supported both as shell argument and as
Workbench tool type.

Iconfied: If you specify ICONIFIED, Fiasco will not open its GUI but
start in iconified state. If the Workbench is running, an Fiasco
AppIcon will be displayed on it, with which you may open Fiasco’s GUI.
You may also start Fiasco again or use the

ARexx port
to open the GUI.

Supported both as shell argument and as Workbench tool type. New in
Fiasco 2.2.

Before you start Fiasco, you have to ensure, that Fiasco has enough
stack. For now, 8192 Bytes is a good value. When you start Fiasco from
Workbench, you can set the stack size in the information requester for
Fiasco’s program icon or the project icons. In a shell, you have to use
the Stack command to increase the stack.

If you try to start Fiasco, while it is already running, Fiasco will
recognize itself and not start again. If you have specified databases to
be opened by Fiasco when you have started it the second time, these will
be opened by the already running Fiasco process. If you have not
specified any databases, Fiasco will open a new window.

1.10 Quick Start

Quick Start

These are the most important things, which you have to know while working
with Fiasco:

· The program may be started over the program or project icon

· There are two working-modes: In the record mode you may edit records,
search for them etc. The mask mode allows you to add or modify fields.
You may control the modes using the menuitems

Control/Record Mode
and

Control/Mask Mode
· The
service window
makes certain operations easier, especially if you

are not familiar with menu shortcuts. You may open it over

Control/Service Window
. Attention: The functions of the gadgets differ

in the different modes.

fiasco 16 / 252

· A
list
, which can be opened with
Control/List Window
, may be changed

by clicking in the titles of the list. Clicking one time on a column
title activates the respective column. Using the menu List you can now
do several things with this column. If you click at the right border
of a title, you can change the size of the column. The other space can
be used to drag the column to any other place in the list.

· Certain project options may be changed with the menuitem

Database/Options
· The sort and filter functions use indices. When you sort or ←↩

filter a
database, a new index is created and activated. To activate the old
index again, use the menu item

Database/Previous active index
. You

have complete control over the indices with the menu item

Database/Indices
.

· Record/Delete Record only removes the record from the index. To get
finally rid of it, you have to call

Datenbank/Reorganize
.

· If you have any problems, you may press the help key while browsing
through the menu.

1.11 Basic elements of a Database

Basic elements of a Database

Basically, most databases are analogous to a card file. A Fiasco database
project consists of two components: First, there is the data which is
divided into records. Second, there is the mask which defines the
structure of the data.

The following pages describe the basics of databases in general and
the basic Fiasco-specific principles.

Records

Indices

Fields

fiasco 17 / 252

Mask

List

1.12 Records

Records

Records are the file cards of a database. That means a record is a
collection of several data items for one main item (e.g. for a person
name, address, etc.). In Fiasco the

mask
is only able to display one

record at a time. The
list
displays several records as lines.

Indices
give you more control over records. One database may have several

indices. Each index determines, which record is actually displayed, and
how the records are ordered. Thus, a database may contain records, which
are not visible, because they are not in the active index.

1.13 Indices

Indices

Indices are new for Fiasco 2.0. Indices are used to control the order of
the records and whether a record is actually displayed or not. There may
be several indices per database.

If you imagine the records as file cards, indices are additional
lists which say "File card 16 is at position 1, file card 5 at position
2", etc. The so-called record numbers used by Fiasco are actually the
positions of the index entries. Thus, with each additional index, the
record number of a particular record may change.

The new
sort
and

filter
functions also use indices. These functions

simply create a new index which is sorted or filtered as wanted.
Furthermore, Fiasco allows you to automatically keep an index sorted or
filtered.

Normally, records are only added to the active index. If you want,
that another index also gets the new record, you will have to activate
the option Automatically add new Records in the

Edit Index requester
.

fiasco 18 / 252

More information on indices can be found in the section
Using Indices
.

1.14 Fields

Fields

Fields define what data may be stored. In Fiasco the fields are defined
in the mask. Fields are the basic elements of the mask and the list.
Fiasco supports several types of fields. More information on the field
types and their features are located in the

field types
chapter.

1.15 Mask

Mask

The mask is the way to display data, which Fiasco uses most of the time.
A mask, in contrast to a

list
, can display only one record. The advantage

of the mask is the clarity of the display. In the card file example, the
mask defines the structure of the file cards. The mask consists of
fields of which there are several types and images.

If you use normal Amiga programs, you would call these fields
"gadgets".

Internally, Fiasco uses gadgets as fields, which optically conform to
the GadTools standard.

Fiasco masks adjust automatically to any non-proportional font. Topaz
and courier are examples of non-proportional fonts.

To create a mask in Fiasco you have to be in the mask mode. You may
change the position of existing fields using the mouse or make other
changes with the Field menu. More on this topic

here
.

See the
mask window section
for more information about the user

interface features of the mask window.

1.16 List

fiasco 19 / 252

List

Opposed to the mask, a list can display several records at once. In a
list, the records are represented by lines, while the fields of a record
are represented by columns. Thus, there is much less space for one record
in a list and the layout of a list is much more restricted than the
layout of a mask. On the other hand, the list can be used to get a quick
overview of all records in the database or the active index,
respectively. See the section

list window
for a detailed explanation

of the specific features of Fiasco’s list window.

1.17 Editing Modes in Fiasco

Editing Modes in Fiasco

Fiasco divides it’s operation into modes. If you want to make changes in
the mask, you have to be in the mask mode. If you want to make changes in
the records, you have to be in the record mode.

Record Mode

Mask Mode
The section

Mask Window
contains descriptions of the features of

the mask window in both modes.

1.18 Record Mode

Record Mode

You may add, delete or edit records in this mode. It may be activated
with

Control/Record Mode
. When the record mode is active, "tape deck"

gadgets are shown in the service windowthe status gadget displays
normally the number of the active record and the number of all records
(for instance: 78 / 92).

1.19 Mask Mode

Mask Mode

This mode give you the ability to edit the mask, that is, you may create

fiasco 20 / 252

new fields, delete some or change their position or attributes. Relations
may also created and changed here. This mode may be activated with

Control/Mask Mode
. When the mask mode is active a field type cycle gadget

in shown in the service window and the status gadget displays normally
the coordinates of the cursor in the mask (for instance: X: 10, Y: 5).

1.20 Simple Usage of Fiasco Databases

Simple Usage of Fiasco Databases

And now to actual use: If you want to create a database in Fiasco you
will have to create the mask at first and then the records. Fiasco allows
you in most aspects to create a database in an intuitive way.

Working in the Mask

Working with Records

1.21 Working in the Mask

Working in the Mask

You have to activate the mask mode before you can create a mask (

Control/Mask Mode
), whereupon a cursor will appear in the mask. You can

use the mouse or the cursor keys to choose the location of the next
operation in the mask. Before creating a new field you have to choose the
type of the new field. You can use either the Field/Type

menu
or the

cycle gadget in the service window to choose the field type.

You then may use
Field/Add Field
to create a new field. This will

open the
field requester
. The gadgets in the requester depend on the

supported attributes of the active field type. They are described in the

type documentation
for each field. It is not sufficient to click on Ok

without any other action; you must specify certain attributes, such as
the ID. Fiasco won’t close the requester if it contains any invalid
settings. The field will appear in the mask after you close the
requester.

You may change all attributes later except the fieldtype (Fiasco

fiasco 21 / 252

provides another function for that). A field’s position may be changed by
dragging it with the mouse. You may cancel dragging while you are
dragging still it by pressing the right mouse button. You may also select
several fields by pressing Shift while selecting the fields. The fields
will be deselected when you select a field without Shift.

The field requester may be opened by double clicking on the field or
by choosing

Field/Edit active Field
after you have activated the field to

edit. The menuitem
Field/Edit named Field
displays a list of all fields.

When you have selected one field, Edit named Field will open the field
requester for the selected field. This is useful for editing hidden
fields. You should take care if you want to change the field ID. Other
Fiasco projects or ARexx scripts which try to access this field won‘t
find it after the change. If you change the value max chars of string,
extern or datatypes fields, you will be informed that you could loose
data.

Field/Delete Field
allows you to delete Fields. Attention: If

Security-Requester in the user interface settings is not active, all data
in this field will be freed immediately. Any existing data on disk will
be also erased when the project is saved. If the field is used by any
other Fiasco system, such as indices or formulas, you will be warned
before deleting that field regardless of the Security-Requester setting.

You may specify further parameters for the current project, such as

mask stretching
, name of the author, etc. in the
options requester
.

You may also
group
certain fields. If a grouped field is activated,

all other fields in the group will be also activated. Furthermore,
certain field types, such as the bar and the listview types, may share
their visual display when they are grouped.

Field/Edit Relations
works similarly to

Edit Field
. With this

menuitem you are able to control
relations
of this field.

When you have completed the mask you may return to record mode. You
are now ready to create records.

fiasco 22 / 252

1.22 Working with Records

Working with Records

You may create records for data storage in any mask containing fields.
The simplest way to create a record is to select

Record/Add Record
or its

equivalent Add in the service window. This creates, as the name implies,
a record and activates it. The fields in the record will contain the
values that have been assigned in the mask mode. You may now activate a
field using the mouse and edit its contents. Record/Duplicate Record
provides another way of creating records. This function creates a record,
which is an exact clone of the record, which was previously active. All
init cont-attributes will be ignored.

You may also cut or copy a record and paste it at another position.
Please note that cutting and pasting is just like deleting and creating a
new record, not just moving. Thus, if other

indices
use the record, which

you have cut, the contents of the record will remain constant, even if
you paste the record somewhere else and edit it.

If you no longer need a record you may delete it using

Record/Delete Record
or Delete in the service window. If you have

selected Security-Requesters in the user interface settings, you will be
asked for confirmation before the record is deleted.

Please note that only the entry in the active index is deleted. The
data of the records will remain in the database. To get rid of it
permanently, you will have to use Database/Reorganize.

You may use the menu, the service window, the cursor keys or a list
window to view the records you have created. I believe that the use of
GUI is intuitive, therefore, I will only explain the cursor keys. The
up-key activates the previous record. The down-key activates the next
record. The order corresponds to the concept of a list window. The cursor
keys combined with the Ctrl key activate the first or the last record
respectively.

1.23 Advanced Usage of Fiasco Databases

Advanced Usage of Fiasco Databases

The information described in this chapter is not necessary to work with
Fiasco. However, it often may be helpful.

Converting Fields

fiasco 23 / 252

Groups

Using Indices

Using Marks

Relations

Virtual Fields

1.24 Converting Fields

Converting Fields

As your project develops you may decide that you want to change one or
more of the field types. For instance, the contents of a field may have
developed in a direction other than the one you originally intended. In
that case, the convert function will be useful. This function is also
helpful if you have imported a file. After a file is imported all fields
are string fields. You must be in mask mode to open the convert
requester. Activate the field you want to convert and select
Field/Convert Field. The convert requester displays the ID of the field,
the current field type and the field types to which this field may be
converted. If you select Alternative format, the convert function may
convert the data to another, often more abstract format. Not all field
types support this option. If you select the the new type and proceed
with Ok, the field will be converted. Note that Fiasco will not warn
about the possible loss of data. If the new field type requires
additional attributes (e.g., the extern fieldtype needs a program), the
field requester will open. Other attributes will use default values. If
you convert a field and then convert it back to its original type it
won’t retain the original attributes.

If a field is used by relations, formulas or indices (for sorting or
filtering), these uses will be removed. You will be warned before that is
done.

Information about the results of a field type conversion can be found
in the

field documentation
. Text, button and bar fields cannot be

converted. In other cases, converting from one field type to another does
not make much sense (e.g., boolean to datatypes).

If you convert a listview field to a non-listview field or
vice-versa, the character ‘|’ will be used to separate the entries of the
listview.

1.25 Groups

fiasco 24 / 252

Groups

Generally, a Fiasco group is a group of fields, which have been selected
by the user. This only sounds less than useful. The advantages of groups
are the additional characteristics grouped fields have. First: In mask
mode grouped fields stick together. That means, if you select one grouped
field, the whole group will be selected. Thus, if you want to drag a
grouped field, the whole group will be dragged. All other functions which
affect all selected fields will also affect the whole group. The second
advantage of groups is the joined display (and function) of grouped
fields. Some fieldtypes share their images with other fields next to them
in the group. This is supported by these fieldtypes:

·
Bar fields
·
Listview fields
How these fields share their images is described in the

field type documentation
.

To create a group, select all fields to be in the group and call

Field/Create Group
. To resolve a group, select it and call

Field/Resolve Group
.

If you try to group an already existent group with other fields or
other groups, you will get a new big group of all selected fields.
Resolving that group will resolve all groups, which have been grouped in
the group. Thus, all fields in the group will get free.

1.26 Using Indices

Using Indices

The concept and simple use of indices is described in the sections
Indices
and

Filters
. However, the index system is much more powerful. It

allows you to automatically sort, filter and update indices. The GUI of
the index system is the

index requester
, which can be opened using

Project/Indices
. You can activate an index here by selecting it and

clicking on Ok. You can also create new indices and edit or delete

fiasco 25 / 252

existing ones.

There may be no indices before the database has been saved or if the
database is in Fiasco 1.x format. A standard index will be created when
the database is saved the first time.

Creating a new Index

When you create a new index using the New button the
new index requester
will open.

The topmost gadget takes a name for the index.

The checkbox Automatically add new Records controls whether you want
Fiasco to automatically add new records to the index. If the checkbox is
not active, records that have been added to the database while another
index was active will not be added to this index. If the checkbox is
active, Fiasco will automatically add the records to the index, which
have been added to the database, while another index was active. If the
sort option (see below) is active, the new record will be automatically
sorted in the index. If the filter option (also see below) is active, it
will be tested using the filter and only added if it matches the filter.

Click on the appropriate buttons to edit a filter for the index or
the sorting. The sorting and filtering functions will be activated only
if you have selected the checkboxes beneath the buttons. Sorting will be
always automatically done when you change or add a record. The filter
will be used only during the initial creation of the index and when a
record has been added in another index and Automatically add new Records
is active. The filter will not be used when a record is added while the
index is active or when a record is changed.

The listview gadget allows you to select an existing index as the
model for the new index. Only records that are in the selected index will
be examined for the new index. If you do not use sorting, the order of
the records will be carried over. If you use neither sorting nor
filtering, a copy of the selected index will be created. By selecting an
index, which already uses a filter, you can create a filter, which uses
several conditions logically combined with "and". The special entry «No
Index» corresponds to all records in the database, even those not used in
any index.

The new index will be created after you have exited both the new
index requester and the index requester with the Ok gadgets.

Editing an Index

When you Edit an index, the
edit index requester
will appear. This is the

new index requester without the index name and listview gadgets. You may
change filtering, sorting or the Automatically add new Records option.
The changes will be executed after you have exited both requesters with
Ok.

fiasco 26 / 252

Deleting an Index

The Delete gadget removes the selected index. However, you cannot remove
the last index; Fiasco requires at least one index.

1.27 The Index History

The Index History

The index history is a system that remembers the order in which indices
are activated by the user. For example, if you create a new index with
the filter function, this new index will be activated. However, Fiasco
keeps track of the index that was active before this one. Thus, you can
simply switch off the filter by going a step back in the index history.
This can be done with the menuitem Database/Previous active index. To
activate the filter again, you may use Database/Next active index to go
that step forward again.

1.28 Using Marks

Using Marks

Marks can be useful in advanced database use. A mark is simply a record’s
flag that may be toggled on or off, that is, a record is either marked or
unmarked. Marks could be simulated using boolean or other fields, but the
marking feature of Fiasco provides some additional advantages over that
approach. First of all, a marked record can be easily discovered in the
list because it is displayed in a highlighted state. If a marked record
is active an "M" will be displayed to the right of the service window’s
status gadget, therefore, marked records can only recognized in a mask if
the service window is open. Marks can be set using

Record/Mark Record
and

cleared using
Record/Unmark Record
. Use
Record/Unmark all Records
to

clear all marks in a project. To set all marks, use

Record/Mark all Records
. Use
Record/Toggle all Marks
to unmark all marked

records and to mark all unmarked records.

Compare/Mark
opens a search requester that can be used to mark all

fiasco 27 / 252

records that match a given pattern.

Marks are saved with the record data and thus, they are independent
from indices.

1.29 Relations

Relations

Relations are fields that store their contents in another database rather
than in the database of the relations. An additional field is required
that contains a key used to identify the record from which the data
should be taken.

This mechanism prevents the situation, that in many different
projects the same data are stored; it therefore saves disk space.
Furthermore, you only have to change the contents of one field in one of
the databases -- all other corresponding fields will also recognize that
change.

Using Fiasco, you have define relations in the database, which will
actually read the data from another database. The database, in which you
have defined the relations will be referenced with the word "local" in
this document. The database from which the data are read, will be called
"remote".

Relation Types

Creating Relations

Relation checklist

1.30 Relation Types

Relation Types

Fiasco supports these relation types:

1:N

This is the simplest relation type. A 1:N relation reads the data of
any fieldtype in the remote database using a key, which has to be of a
simple type, i.e. it must not be a listview type. In the remote database,
the key has to be unique. The read data are directly copied into the
appropriate field in the local database.

N:Sum

fiasco 28 / 252

This is not really a relation, because the data cannot be written back. A
N:Sum relation reads the data of simple fieldtypes and tries to calculate
the sum of all fields in the records with matching keys. Thus, the key
needs not to be unique in the remote database.

N:L

A N:L relation reads the the data of simple fieldtypes in the remote
database. For each record in the remote database, in which a matching key
is found, Fiasco will add an entry in the local listview field, and copy
the data into it. Thus, the key needs not to be unique in the remote
database.

1:L

A 1:L relation is the only relation type, which requires the local key in
a listview field. The remote key has to be in field of simple type,
though. This type is very similar to the 1:N type, however, you may
specify several local keys using the capabilities of the

listview field type
. Fiasco will search the real data in the remote

database for each key in the listview and create entries in the local
real data listview with the found data. Because there is no thing like a
listview in a listview, the remote real data has to be simple.

Only Read

Only Read is a modifier, that can be applied to the relation types 1:N
and 1:L. If Only Read is active, the relation system is only used to
enhance editing possibilities. Thus, you can copy data from a remote
database using an unique key. However, the data are stored in the file of
the local database and are not kept any longer up-to-date according to
the remote database.

1.31 Creating Relations

Creating Relations

This section describes creating of relations in Fiasco databases. It was
originally written to describe the creation of relations of the type 1:N.
However, you can also create the other relation types according to these
instructions when you also keep the conditions for the relation types
described in the previous section in mind. To use relations in Fiasco you
have to create a project, which will be the data source for another
project. You have to create at least two fields in the remote project,
one for the data and one for the key. The field for the key should be an
integer field. This is the fastest method. However, it is possible to use
any other field type as a keys.

fiasco 29 / 252

You may use the special field attribute Unique Key, if you want to
automatically get an unique key whenever you create a new record. Note
that the key is only created when you create a new record. If you
activate this attribute later the already existing entries will keep
their old value. If you change the contents of such a field the change
will occur without any checking.

It is up to you to choose the type of the second field. If you create
fields, which store strings of a designated length (string, extern and
datatypes), you should remember the Max Chars value because you also have
to use this same value in the second project.

If you want to see any consequences of activating the relation, you
should create a few records with some content at first.

Now it is time to save the project and create a new one.

The second project also must contain two fields that have to match in
typeMax CharsThe key field
should not use unique key, because you should freely decide which key you
want to use.

Before you activate the relation the project should be saved in the
directory in which the other project has been saved in order to be able
to use relative rather than absolute paths.

Now you can open the
relation requester
for the field that is not

supposed to contain the key, but the real data (
Field/Edit Relations
).

Set the relation type in the topmost cycle gadget. To start, you should
select the local key in the listview in the upper left edge of the
window. After that you should select the other project with the file
requester gadget at the bottom of the requester. Now you can select the
remote key and real fields. Proceed with Ok. If everything works
correctly the requester will be closed and the relations will be loaded.
Otherwise, a requester will inform you of any failure.

A
relation checklist
, which contains the information in a compressed

form, is also available.

1.32 Virtual Fields

Virtual Fields

The data of virtual fields are not saved on disk; their data are
calculated while loading the project. If you want to make a field virtual
you should activate the Virtual option in the field requester. Fiasco
uses the formula of a field for calculating these data. Whenever a record
is read, the contents of the virtual fields in it are calculated using

fiasco 30 / 252

the formula. More about formulas can be found
here
.

It is also possible to use ARexx scripts for virtual fields. However,
for speed and for technical reasons, the use of ARexx scripts for this
purpose is discouraged. Therefore, this use is no longer documented. If
you want to know more about ARexx and virtual fields, refer to the
release 2.0x versions of this document.

1.33 Searching in a Database

Searching in a Database

Fiasco’s search function allows you to search for specific data in a
database. There are two ways to search for data: You may specify search
patterns for one or more fields which must all match the field contents.
Or you may specify a formula that can do complex investigations on the
contents of a record.

The Search Requester

The main interface to the Fiasco search function is the search requester.
It may be opened with the menu item

Compare/Find
. Furthermore, the

filter, count, replace and mark functions or menu items also use this
requester.

To select, whether you want to search with specifications of field
contents or with formulas, use the Mode cycle gadget in the upper part of
the requester.

If you use the field mode, the requester displays two listview
gadgets: Fields displays all the fields in the active database. Clicking
on one of the fields causes it to be displayed in the listview with the
title Search for. Below it you can enter the search pattern for that
field. To remove the field from that list, use the Delete gadget.

If you search by Formula, the window displays only one string gadget
for the formula. The picker gadget of the right side can be used to open
the

formula requester
.

The gadgets at the bottom of the requester start the search. The
record will be displayed if a matching record is found. You can use the
menu items

Compare/Find next
and

Compare/Find previous
to continue your

search.

fiasco 31 / 252

More about the search requester can be found
here
.

Searching by Fields

Patterns

Wildcards

Wildcards for Numbers

Blurred Search

Searching by Formulas

Search Informations

Searching with ARexx

Count function

Replace function

Filter function

1.34 Searching by Fields

Searching by Fields

If you use the search mode By Fields, you must specify one or more fields
to be examined. For each specified field, you have to specify a

search pattern
. Fiasco considers a record to be a match only if the field

contents of all specified fields match the specified patterns.

1.35 Patterns

Patterns

Search patterns are the data that are compared to the field contents. For
the individual field types there are different rules for pattern
specification:

String, Var String, Extern, Datatypes: You have to specify the string
itself. Furthermore, you may use

wildcards

fiasco 32 / 252

and
blurred search
.

Integer, Slider, Float: You have to specify the number itself.
Furthermore, you may use

wildcards for numbers
.

Boolean: true or 1 specify a checked field, false or 0 specify an
unchecked field.

Cycle: You have to specify the label name to search for, or the number of
the label (counting from zero).

Date, Time: You have to specify the date or the time.

The search requester has an additional feature that makes the
specification of patterns for fields easier. With the picker gadget at
the right side of the pattern string gadget, you may open a requester
that displays a list of possible patterns for the field. If you chose one
and click on Ok it will be copied to the pattern gadget. The list of the
possible values again depends on the field type:

String, Integer, Float, Extern, Datat., Date, Time, Var String: The
predefined values.

Slider: The maximum and minimum values for the slider.

Boolean: true and false.

Cycle: All labels of the cycle field.

Please also note that you cannot use the built-in search function to
search for the contents of files that are specified in datatypes or
extern fields. You can search for the file name only.

The patterns supported by one fieldtype are also documented in the

fieldtypes documentation
.

Wildcards

Wildcards for Numbers

Blurred Search

1.36 Wildcards

fiasco 33 / 252

Wildcards

In addition to plain patterns you may use wildcards. String, Var String,
Extern and Datatypes fields support the use of wildcards as used by
AmigaDOS. These wildcards are supported:

? A single unknown character.
Matches the following expression zero or more times.
(ab|cd) Matches any one of the items seperated by | .
~ Negates the following expression.
[abc] Character class: matches any of the characters in the class.
[~bc] Matches any of the characters not in the class.
[a-z] Character range.
% Matches zero characters.

* Synonym for #?. Must be turned on in the
database settings
.

If you want to use the wildcard characters as normal characters in
the string, you have to type a single quoute (’) before the character to
escape it.

If you use
blurred search
, only the patterns ? and #? are available.

Examples:

?iasco would match Aiasco, Biasco, Ciasco, 1iasco, etc. ???? would match
entries, which are 4 characters long. #? stands for an unknown number of
unknown characters. A#?, for example, would match Amiga, Africa, A or
ABCD. ?#? searches for all non-empty entries.

1.37 Wildcards for numbers

Wildcards for numbers

Integer, slider and float fields support the following wildcards: >, <,
>=, <=, !=. The argument has to be given after the wildcard. > only
search for numbers greater than x, >= only for numbers greater or equal
x, < only for numbers less than x, <= only for numbers less or equal x.
!= searches only for numbers not equal x. There is not a pattern like ==
(equal), because this is represented by the number itself.

1.38 Blurred Search

fiasco 34 / 252

Blurred Search

"Blurred" search allows you to search for entries that are similar to a
pattern. This enables you to search for entries even if you don’t know
the exact spelling. The tolerance of the function may be set by "factor".
0 matches only entries that are exactly equal. 100 matches nearly all
entries. This feature can only be used with the field types that contain
strings, i.e. string, var string, extern and datatypes fields.

If you use blurred search, only the patterns ? and #? are available.

The
count function
is very suitable for experiments with "blurred"

search.

1.39 Searching by Formulas

Searching by Formulas

Even though the GUI for the search mode By Formula looks simpler than the
GUI of the other mode, this search mode is far more powerful. The formula
specified in the string gadget will be used to examine each record. A
record is considered matching whenever the formula results in a true
value. In Fiasco formulas this is any non-zero value. More on Fiasco
formulas can be found in

this section
.

Examples:

size > 5
searches for all records in which the field size has a value greater
than 5.

size >= 5 && size <= 10
searches for all records in which size has a value ranging from 5 to 10
inclusive.

important && stricmp(name, "Meier") == 0
searches for all records in which the boolean field important is checked
and the field name contains the string Meier.

datediff(currentdate(), date) <= 10 && datediff(currentdate(), date) >= 0
searches for all records in which the field date contains a date that is
within the next ten days.

1.40 Search Information

fiasco 35 / 252

Search Information

Search info can be used to temporarily save search criteria. In the
search requester, the Name gadget can be used to specify a name for the
search info. The search criteria will be stored when you hit any of the
positive response buttons at the bottom of the search requester. To get
the stored search criteria back, you have to click on the picker button
of the Name gadget and select the desired search info. The criteria will
be copied to the search requester. When you enter a name into search
info, any pre-existing name will be overwritten. Search info data will
remain valid until the database is closed.

1.41 Searching with ARexx

Searching with ARexx

You can also use
Fiasco’s ARexx port
to search a database. The ARexx

commands for searching make use of
search info
to keep track of search

criteria.

Thus, you must have a search info before you can start searching.
This search info may be created with

NewSearchInfo Name/K,Fields/S,Formula/K,Var/K
. If you do not specify a

Name, Fiasco will chose a name that does not exist yet and will return it
in Result. This name has to be specified in the arguments of all
following search commands that refer to this search info.

If you want to search by formula, you must specify the formula for
the search in the arguments for NewSearchInfo.

If you want to search by fields you have to use the command

SetSearchField SearchInfo/K/A,FieldID/K/A,Blur/K/N,Pattern/K/A/F
to

specify a field to be searched for. You may call that command several
times to specify several fields.

Now you can use the command

Find SearchInfo/K/A,Record/K/N,Reverse/S,All=Stem/K,Var/K
to search for

matching records. You may use the Record argument to search with each
call for the next matching record. This argument specifies the record
after which the search will start. For example, if you specify Record 0,
the search will start at the first record. If a matching record is found,
its number will be returned in Result. To continue the search you can
call Find with the record number of the found record. In contrast to the
GUI search function, found records are not activated.

fiasco 36 / 252

The other method involves the All argument. Fiasco will search all
records and store the numbers of the found records in the stem variable
specified after the All argument. The number of found records will be
stored in stem.count. Please do not use this method if a very large
number of matches is possible; it would be too time and memory intensive.

1.42 Count

Count

Compare/Count
opens a requester similar to the search requester. As in

the search requester you have to specify pattern, field and tolerance. If
you select Ok the matches will be counted. This way you can get
experience with the blurred search feature.

1.43 Replace

Replace

Compare/Replace
is the function that allows you to replace certain values

with others. You have to specify as normal the criteria for the search
here. Additionally, you have to define at least one field in which a new
value will be inserted whenever a record matching the search criteria is
found. This replacement may be either a fixed value (select Replace by
value) or the result of a Fiasco formula (Replace by formula result.

By using the second mode, you are able to apply updates or
corrections to your data. An example for this is a change of a phone area
code or some general change of an area code system (which happened
recently in Italy). When the area code 0123 is changed to 0456, you have
to set the search criteria for the phone number to 0123#?. Then set the
replace formula for phone number to strcat("0456", strmid(test, 5, -1)).
This formula truncates the first four characters of the phone number and
replaces them by 0456. As only phone numbers starting with 0123 are
affected by this operation, the codes will be simply exchanged.

If you select the Confirm gadget you will be asked if you really want
to replace the value for each record. The record will be displayed while
you are asked.

Attention: You can quickly destroy important data with a bad pattern
(for example: #?)!!!

1.44 Filter

fiasco 37 / 252

Filter

Fiasco’s filter allows you to display only those records that match a
pattern. With Compare/Filter you may open the

filter requester
which has

the same structure as the search requester. If you select Ok only those
records that match the specified pattern will be displayed.

You may browse through the records with
Record/Next
and

Record/Previous
. The list also displays only matching records.

A filter is simply an index. Therefore, you may specify the name of
the index in the filter requester.

To switch the filter off, you may use the index history. The menu
item Database/Previous active index will activate the index that was
active before the filter was active.

If you create a new filter while another filter is still active (i.
e. you did not select the old index in the index requester), only the
records in the old filter will be examined. Thus, you can create filters
with two conditions logically combined using "and".

If you create new records while a filter is active the records will
be displayed whether or not they match the filter pattern. If you change
the contents of an existing record it also will be displayed. If you want
to update the filter, you have to select the old index and then call the
filter requester and select Ok.

For more advanced use of the filter see the section
Using Indices
.

1.45 Printing a Database

Printing a Database

You can create a print-out of a Fiasco database in several ways. The
internal print function is the easiest to use. To increase the quality of
the print-outs, you may combine TeX with the print function. If you want
to create a print-out that can’t be created with the print function, you
may use an ARexx script.

Internal Print Function

Printing with TeX

Printing with ARexx

fiasco 38 / 252

1.46 Internal Print Function

Internal Print Function

The menuitem Project/Print opens the print window of Fiasco. This window
is similar to a Fiasco project window in mask mode. It contains elements
which can be arranged with the mouse. In the final print-out all records
will be laid out that way. When you open the print window Fiasco tries to
open a file containing the standard print mask for the project. The file
name for such files is Project Name.fpr. Project Name is the file name of
the project without .fdb. If the file is not found, Fiasco lays-out the
print mask according to the real mask.

To print the database as a list, you should select the menuitem
Project/Get from list. This will layout the print mask according to the
real list. You may use Project/Get from mask to get the mask layout.

You simply have to select Project/Print to print the project with
this layout.

Print Mask files

1.47 The Print Mask

The Print Mask

The print mask has three parts: The head, the body and the foot. The head
will be printed before any other data. The body will be printed for each
record. It may contain references to project fields. These references
will be substituted by the field contents of the records while printing.
The foot will be printed last. The print window displays only one of
these parts at a time. To change the displayed part, use the Control
menu.

The print window can be handled much like the project window in mask
mode. To create an element (comparable to fields in the project mask),
select a type with Element/Type and select Element/Add or press Return.
Depending on the type, a requester will appear which gives you some
options for the fields. Fiasco supports three element types:

· Field

· Text

· Formfeed

Field elements are usable only in the print body. They can be used
to display the field contents in the print-out. The requester for field

fiasco 39 / 252

elements contains gadgets to select the field, to set the width, to set
print styles like bold, italic or underlined and to activate clipping.
Clipping can be used to control whether or not an entry may get wider
than the specified width. If clipping is active, every entry which is
longer than the width will be clipped to fit in that width. If clipping
is not active, the following entries will be shifted.

Text elements are similar to text fields in the mask. They serve to
put static text in the print mask. They support print styles like bold,
italic and underlined. Text elements are the most important elements in
the head and foot parts.

Formfeed elements terminate the page. That means that the data after
a formfeed will be printed on a new page. Formfeed elements have no
editable options and thus no requester opens after adding such an
element. Edit element also is not usable for these elements. Because of
the special meaning, the width of formfeed elements is "infinite".
Formfeed elements appear as a horizontal line in the mask.

1.48 Print Mask Files

Print Mask Files

Project/Save and Project/Save as in the print window create files which
contain the print mask structure. These files can be reopened to restore
a particular structure. If you have deleted a field in the database or if
you have changed its ID, the print mask file may contain references to
"nothing". When you open it Fiasco will try to get these references back.
Fiasco uses a requester for that purpose which shows the field ID that
was not found and a list of all fields in the current project. If you
select one and click on Ok the reference will be changed to the selected
field. If you Cancel the requester the element will be deleted. You can
easily adopt print masks to other projects this way. Simply load the
database, open the print window and load the print mask. Now you can
change all elements to the matching fields in the new database.

Besides the layout print mask, files contain the settings made in the

print options requester
.

1.49 Printing with TeX

Printing with TeX

You can use TeX to create high-quality print-outs of Fiasco projects. TeX
is a kind of programming language, originally developed by Donald E.
Knuth, which can be used to create printed documents. PasTeX is a freely
distributable TeX implementation for the Amiga that can be found for
example on the Meeting Pearls III CD-ROM. The print function of Fiasco
supports TeX using

ARexx

fiasco 40 / 252

.

If you select Print with ARexx in the
print options requester
, the

function of the Print menuitem of the print window is changed: After
creating the print-out, the ARexx script ARexx/ARexxPrint.rexx is called
with the name of the created file as its argument. This script should
call TeX to compile and print the file. Because of that you must not
write the file to PRT:. You should set Print to in the print options
requester to a temporary file, for example T:FiascoPrintOut.tex. The
script should look like this:

/* ARexxPrint.rexx

* For use with PasTeX

*/

/* Parse arguments

*/
Parse Arg File

Address Command

File = strip(File,,’"’)

/* Call virtex

*/
’virtex’ ’"’ || File || ’"’

/* Create name of dvi file

*/
dotpos = lastpos(".", File)

if dotpos ~= 0 then
DVIFile = substr(File, 1, dotpos-1) || ".dvi"

else
DVIFile = File || ".dvi"

/* Call dviprint

*/
’dviprint’ ’"’ || DVIFile || ’"’

/* Delete temporary files

*/
call delete(file)
call delete(dvifile)

If you want to print with TeX you have to create the print mask in a TeX
compatible manner. For instance, you have to include a text element with
the text \documentstyle{article} or something similar in the header if
you work with LaTeX. Furthermore, the file must not contain any control
charaters. Thus, Style attributes and formfeed elements cannot be used.
The Fiasco distribution contains several examples for this.

fiasco 41 / 252

1.50 Printing with ARexx

Printing with ARexx

"Printing with ARexx" is a very comprehensive topic. This section should
give you a rough idea of what can be done and how.

One way of printing with
ARexx
has already been explained in the

section Printing with TeX. You may "misuse" ARexxPrint.rexx for purposes
other than calling TeX. For example, you may use a script which parses
the data for your own purposes or loads it into your word processing
program.

If you want to create more complex print-outs, which cannot be
created with Fiasco’s internal print function, you have to create the
print-out with ARexx alone. Such an ARexx script has to go through the
whole database and get the data it needs with

GetField
. After that it may

do with the data what it wants.

GraphPrint.rexx

1.51 GraphPrint.rexx

GraphPrint.rexx

The Fiasco distribution contains a complex example for a script, as it
was described in the previous section. The script GraphPrint.rexx is
located in the ARexx directory and can be used with the GraphDemo
project. However, it can be used with any other project that contains the
required data. The script reads data from the project and creates an x/y
diagram of the data. It automatically adapts to different value ranges.
The script uses LaTeX and the eepic extension for the print-out. That
means that you have to run a special host program in the background while
printing. Because the script performs many mathematical operations it
uses the rexxmathlib.library, which is not included in the distribution.
To start GraphPrint.rexx, click on the Graphic button in the
GraphDemo/Fragments project. To use the script with another project,
simply activate the project in Fiasco and start the script from the
Workbench or Shell. Several requesters will appear. You have to specify
what fields you want to use. You may select whether you want to view or
print the TeX file directly or to write it to a specified location. After
that the advanced options menu appears. To modify nothing, simply click
on Continue. Edit Scale Base allows you to specify a value which will be
used by the script as a base value for the scale of one of the axises.
For example, if you use 5 (which is the default) you will get a scale of
5, 10, 15, etc. If you use 2 you will get 2, 4, 6, etc. Edit Origin
allows you to choose whether the diagram will begin at point (0;0) or at
a point which is the best for the project.

fiasco 42 / 252

1.52 Import and Export

Import and Export

The Import and Export functions of Fiasco provide the ability to load
data from other database programs into Fiasco and to write data with
Fiasco that may be read by other programs. Such Import/Export-files
contain ASCII data. The fields or records are marked with special
characters that may be freely defined in the Import/Export function of
Fiasco.

Beginners, please note: Some basic knowledge is required to be able
to effectively use Fiasco’s Import/Export function. If you are familiar
with databases you can skip the following information. The section

Special characters
describes the special escape sequences used by Fiasco.

Although other databases may use a similar scheme you should read this
section carefully. The whole Import/Export function of Fiasco relies on
these escape sequences.

How to specify special characters

Importing of Data

Exporting of Data

1.53 Structure of Import/Export files

Structure of Import/Export files

The names used here refer to the gadget labels in the Import/Export
requesters. Note that some marking characters may be empty. To use the
file with Fiasco you have to define, at minimum, either Field Start/Field
End or Field Separator and either Record Start/Record End or Record
Separator. However, the import functions of other programs may get
upset, although this structure is correct. When you export data, Fiasco
will filter the characters used as control characters from the exported
data. I.e., if one fields contains 1,2 and the , is used as control
character, Fiasco will export 12.

Record Start
Field Start
Field Data Contents of the field in ASCII format.
Field End
Field Separator Separates two fields, not used after the last field of a record ←↩

.
...
Field Start
Field Data
Field End

fiasco 43 / 252

Record End
Record Separator Separates two records, notused after the last record of a file ←↩

.
...
Record Start
... (see above)
Record End
End of File

If you activate First Record contains IDs, the field IDs will be
stored in the first record as if they were fields.

When you export listview fields, Fiasco will separate the entries
with the characters specified in Listview/Separator.

An Example of an Import/Export file

Record start and record end are empty. Record separator is a newline
character. Field start and field end are double quotes. Field separator
is a comma. The first record contains the IDs of the fields. Note the
empty field in the last record.
"Name","FirstName","Rank","Ship"
"Picard","Jean-Luc","Captain","U.S.S. Enterprise"
"Riker","William Thomas","Commander","U.S.S. Enterprise"
"Data","","Lieutenant Cmdr.","U.S.S. Enterprise"

1.54 How to Specify Special Characters

How to Specify Special Characters

You often cannot simply type the characters for marking fields and
records as plain text. For example, if you want to use the newline
character as a record separator, you cannot simply hit the Return key.
Instead, you have to type it in as an escape sequence. Fiasco supports
escape sequences similar to the escape sequences of the "C" programming
language. The escape sequences are introduced by a \. These are
supported:

\n Newline-character, ASCII 10
\f Formfeed-character, ASCII 12
\r Return-character, ASCII 13
\t Horizontal tabulator, ASCII 9
\v Vertical tabulator, ASCII 11
\Number Character with specified ASCII code
\Char Character directly copied

fiasco 44 / 252

The last option (\ + Character) makes it possible to use a
character, which is reserved for escape-sequences.

In Import, you may also specify character-classes. Character-classes
are introduced in Fiasco with an #. These are supported:

#p Printable character.
#a Printable ASCII-character. Without international chars
#c Control-character. Not printable

Export supports to insert some additional information in the
export-file. These commands are introduced with an %. These are
supported:

%f ID of field
%r Number of record

1.55 Importing of Data

Importing of Data

The import requester is the GUI interface for Fiasco’s import function.
You can open it using Project/Import. The file you want to import must be
specified in File. After having done this you have to specify the
structure of the file in the requester.If you are importing a file into
Fiasco immediately after export it from another database and still know
the structure parameters you can simply copy them into Fiasco’s import
requester. Otherwise you can display the contents of the file using the
View button at the right side of the filename. Fiasco will start either
"More" or "MultiView" to display the file. If the file has a standard
structure it should not be too difficult to recognize the parameters.
Usually, Record Start and Record End are empty and Record Separator is
\n. Field Start and Field End are often empty or double quotes ("). Usual
values for Field Separator are a comma (,) or a tabulator (\t).

Skip Lines defines the characters that introduce a comment at the
beginning of a line. If present, specify the comment introducer here.
This may also be used to skip any formatting information present in the
file. Fiasco’s import function does not use such information. You can use
Start Skip to skip any initial comment or similar items in the file. Max.
Fields can be used to specify a record end mark if neither Record
Separator nor Record End can be used.

Activate First Record contains IDs if the first record of the input
file consists of Field IDs rather than real data. If you activate this
the IDs will be used by Fiasco either to create fields with these IDs or

fiasco 45 / 252

to use already existent fields.

The options Append new fields and Overwrite old project control,
whether you want to update a project or you want to create a new one. If
you want to create a new project, you should activate both options.

If you want to continue using your current settings you may save them
with the Save button. Settings may be reloaded with Load. Fiasco already
comes with several settings to import data from various sources.

To start the import process, you just have to click on Ok.
Attention: If the input file is too big, or even if the structure
parameters are defective, the system may run out of memory! Fiasco has no
big problems, if it runs out of memory, but other programs may have
problems. For this reason, you should be careful with unsaved data!

If everything went well, the import requester will close and the new
project will be activated. You will first want to improve the formatting
of the project using the mask mode. If you did not activate First Record
contains IDs, you should change the field IDs according to the contents
of the fields. In addition, you should create text fields to label the
existing fields. At this point you have a nicely formatted project.
However, all fields are string fields. You should determine whether some
fields may be integer, cycle or other field types. You may change the
type of these fields with the Fiasco’s

convert
function. In the example

used in
Structure of Import/Export files
, the rank field may be

converted to a cycle field.

If you have followed these steps the project should be saved under a
appropriate name.

1.56 Exporting of Data

Exporting of Data

From Fiasco’s viewpoint, exporting data is much less complicated than
importing. Normally, you can use Fiasco’s default parameters (No Record
Start and Record End, a newline character for Record Separator, double
quotes for Field Start and Field End and a comma for Field Separator). If
you use these parameters, you must take care, that you data do not
contain any double quotation marks. In addition, you have to be certain
that the program you want to import the data supports these parameters.
If you select First Record contains IDs, Fiasco will create an additional
record at the top of the file which contains the field IDs. The file will
contain no other formatting information.

If you select Marked Records only, only the marked records will be
written.

fiasco 46 / 252

Click on Ok to start exporting.

1.57 Updating databases with Im/Export

Updating databases with Im/Export

Fiasco’s import and export function can be also used to automatically
insert data created in other databases in an already existing database.
To do that, you have to have a database in any export format that Fiasco
is able to read. Its first record has to contain field IDs for the data
following it. These IDs must match the IDs of the already existing Fiasco
database, into which you want to import the data. I.e. if you have a
field with the ID Name in the existing Fiasco database, the field ID for
the respective field specified in the exported file must be also Name. If
it is not, you can easyly change the ID with a text editor. The already
existing database may contain fields that are not in the file to be
imported. If the file contains fields that are not in the Fiasco
database, Fiasco’s import function will create a new field for these
data. To initiate importing, you have to make the apopriate settings for
the structure of the file to be imported. Furthermore, you must activate
First Record contains IDs (as Fiasco could otherwise not associate the
data to the correct fields). Append new fields and Overwrite old project
must be switched off.

This method works both with data exported by Fiasco and with data
exported or created by any other program, as long it is in a format that
can be read by Fiasco.

1.58 Fieldtypes

Fieldtypes

Data are stored in fields. There are only two basic types: "string" and
"number". All other types are modifications, more or less, of these types
which make working with the database easier. Some fieldtypes may be used
in

listview fields
. These are fields, which may contain several entries.

Entries can be added or deleted. Each entry can be used like any other
normal field of that type.

Fiasco supports the following types:

String

Integer

Float

Boolean

fiasco 47 / 252

Cycle

Slider

Date

Time

Extern

Datatypes

Var String

Text

Button

Bar

Listview
The descriptions for the field types are based on the

Standard Attributes
. Each field type may add new attributes, change an

attribute or it also might not support a particular attribute.

1.59 Standard Attributes

Standard Attributes

These attributes are normally supported by a field type:

Structure/ID: This string identifies a field. It is displayed in mask
mode in the fields, in the list header, in the search and related
requesters and in the relation requester. This string must be unique
in the current project. To access the field by its ID from formulas or
ARexx scripts, further limitations on the format of the ID apply: It
may not contain spaces and it may not begin with a number.

Structure/Virtual: The value of the field is not saved on disk, but is
recalculated every time when the record is required. This is done
using the init cont attributes and the formula or the ARexx script
attribute. Please note that these fields occupy the same amount of RAM
as other fields.

Structure/Listview: The field will be a
listview
field. This modifier can

only be changed when the field is created. To change the listview
modifier later, you will have to use the

convert function
. Listview

fields cannot be displayed in the list window, thus the List Window

fiasco 48 / 252

attributes are not available, when this modifier is active.

Mask Window/Width: defines the width of the field in the mask in
characters.

Mask Window/Height: defines the height of the field in the mask in
characters.

Mask Window/Keyboard Shortcut: You may enter a single character here.
When you press this character on the keyboard in record mode the field
will be activated or somehow changed. The shortcut paired with Shift
may change the field in the other direction.

Mask Window/Justification: Controls whether the contents in the field
will be displayed left or right justified or centered.

Mask Window/Read Only: The field content will be displayed in a recessed
box which cannot be activated or edited.

Mask Window/Hidden: If this option is active the field will be not
visible in the mask. To open the fieldrequester for it you will have
to use the menuitem

Field/Edit named Field
.

List Window/Width: Specifies the width of the field in the list window.
It is measured in characters. You may also change this value directly
in the

list window
.

List Window/Justification: Controls whether the contents of the field is
displayed in the list window left or right justified or centered.

List Window/Hidden: The field column will be not displayed in the list
when this option is active. You may also change this option directly
in the

list window
.

Initial Content/Use own value: you may specify a value here which will be
used while creating a new record.

Initial Content/Use old value: If you create a new record the value which
has been used in the old record will be used in the new record.

Predefined Values: This feature allows you to add a picker button at the
right side of a field which can be used to open a list of values the
field can be set to. Clicking on the Predefined Values button in the
field requester will open a new requester that can be used to edit the
settings for this attribute. You may either specify a list of possible
values for the field or you may specify an ARexx script that will be
executed when the picker button is selected. This ARexx script may for
instance open a file requester and use SetField to set the desired
field to the selected file. The list of predefined values may be also
used from the search requester with the picker button at the right
side of the pattern gadget.

fiasco 49 / 252

Programming/Formula: You may specify a formula here that will be used to
calculate the content of the field. The formula may reference other
fields to make the calculation. Whenever one of the other fields is
changed or a completely new record is added, the formula will be
calculated again. This attribute can be combined nicely with the
Virtual attribute. More about formulas

here
.

Programming/ARexx Script: You may specify an ARexx script here which
will be called when a new record is created, or the content of a field
is changed. It is possible that the initial content attributes will
not have the effect specified in the requester, if the script changes
the contents of the field. If the operation is also possible with
formulas, it is recommended to use formulas instead.

By using
mask stretching
it is possible that the attributes, which

specify the dimensions of the field, will be slightly influenced.

1.60 String Fieldtype

String Fieldtype

A string field takes strings with a designated length.

Standard Attributes
New Attributes:

Structure/Max Chars: determines, how many chars may be typed in this
field. This attribute has direct effect on the size of the project
file.

Changed Attributes:

Mask Window/Height: This attribute is only active when the

listview modifier
is active.

Search equivalent:

correspondents to the content.

fiasco 50 / 252

Supported search patterns:

? - One unknown character.
#? - No or more unknown characters.

Conversion into a string field:

Any field can be converted without loss of data into a string field.
Alternative formats, if supported are specified in parentheses.
Additional notes:

Boolean - "Checked" is TRUE (1), otherwise FALSE (0)
Cycle - Label (label number) converted
Slider - Level converted
Date - Date in current locale format converted
Time - Time in current locale format converted

1.61 Integer Fieldtype

Integer Fieldtype

You may enter integer numbers in the range from -2,147,483,348 to
2,147,483,347 in an integer field.

Standard Attributes
New Attributes:

Structure/Max Chars: determines the maximum length of a number in chars.

Initial Content/Use unique Key: puts a number unique to this database in
this field whenever a new record is created. This Attribute is
mutually exclusive to use own value and use old value.

Changed Attributes:

Mask Window/Height: This attribute is only active when the

listview modifier
is active.

Search equivalent:

fiasco 51 / 252

is equal with the field content.

Supported search patterns:

> - greater than
< - less than
>= - greater or equal
<= - less or equal
!= - not equal

Conversion into an integer field:

Integer fields only accept the numeric part of the source data. If the
source data begin with a non-numeric character the field will contain 0.
Additional notes:

Float - Integer part converted
Boolean - "Checked" gets 1, "Unchecked" gets 0
Cycle - Label number converted
Slider - Level converted

1.62 Float Fieldtype

Float Fieldtype

You may enter a real number in a float field.

Standard Attributes
New Attributes:

Mask Window/Precision: Number of digits after the decimal point.

Changed Attributes:

Mask Window/Height: This attribute is only active when the

listview modifier
is active.

fiasco 52 / 252

Search equivalent:

is equal to the field content

Conversion into a float field:

Float fields only accept the numeric part of the source data. If the
source data begin with a non-numeric character, the field will contain 0.
Additional notes:

Boolean - "Checked" gets 1.0, "Unchecked" gets 0.0
Cycle - Label number converted

Notes:

Since Fiasco 2.1, float fields are used in 64 bit representation
internally. This feature now allows a reasonable high precision for float
fields. Databases in a pre 2.1 format are automatically converted during
the next saving.

1.63 Boolean Fieldtype

Boolean Fieldtype

A Boolean field can contain only one of two values: "True" or "False". It
appears in the mask as a "checkbox gadget".

Standard Attributes
Changed Attributes:

Structure/Listview: not applicable.

Mask Window/Justification: not applicable.

Mask Window/Width: always 3.

Mask Window/Height: always 1.

Predefined Values: not applicable.

Search equivalent:

TRUE or 1 - checked field
FALSE or 0 - unchecked field

fiasco 53 / 252

Conversion into a boolean field:

Boolean fields convert all non-0 numbers and TRUE into the checked state.
All other values will be converted to the unchecked state.

Notes:

Under Amiga OS 2.x this field can look a bit strange because the images
are not scalable. Starting with OS 3.0, the size of the field is adjusted
to the font size.

1.64 Cycle Fieldtype

Cycle Fieldtype

Cycle fields have several choices from a freely definable list, this
helps to save memory. There is a maximum of 65536 choices. (I hope that’s
enough ;-) A cycle field appears in the mask as a "Cycle gadget" (as the
name implies).

Standard Attributes
New Attributes:

Labels: A list of all choices. There must be at least one entry, two
entries make it a cycle field.

Changed Attributes:

Structure/Listview: not applicable.

Mask Window/Justification: always centered.

Mask Window/Height: always 1.

Predefined Values: not applicable.

Search equivalent:

the number of the label, counting from zero or the entry itself (enter
correctly!)

Conversion into a cycle field:

The values will be converted into labels. If there are equal values they
will get the same label. Data are not lost.

fiasco 54 / 252

Additional notes:

Boolean - "Checked" becomes TRUE (1), otherwise FALSE (0)

1.65 Slider Fieldtype

Slider Fieldtype

A slider is related to a integer field. It can be used to display integer
numbers graphically. The numbers may range from -32,768 to 32,767 and may
be influenced by several attributes.

Standard Attributes
New Attributes:

Structure/Min. Value: defines the smallest value. It corresponds to the
position of the "knob" at the left or at the upper end of the field.

Structure/Max. Value: defines the highest value. It corresponds to the
position of the "knob" at the right or at the lower end of the field.

Mask Window/Format: is a format string in style of the "C" programming
language. The result will be displayed at the right hand of the
slider. The syntax: %[-][0][Field][.Maximum][l]Format

· -: The number is left aligned, the default is right aligned

· 0: The field is padded with zeroes. e.g.: 1 -> 001

· Field: The minimal field width

· Maximum: only for strings, no meaning here.

· l: Says that the number is 32 bit wide. This is here always the case.

· Format:
c - Char, the ASCII character for the number is displayed.
d - The number is displayed.
u - The unsigned number is displayed.
x - The number is displayed in hexadecimal format.
There are also the b and s control characters. These take addresses as
arguments and produce only garbage in this case.

The formatting is done with the exec-function RawDoFmt().

Mask Window/Format Length :the maximum length of the format. This

fiasco 55 / 252

region is in the width region. That means that a higher Format Length
makes the field itself smaller.

Changed Attributes:

Structure/Listview: not applicable.

Mask Window/Justification: not applicable.

Mask Window/Height: always 1.

Predefined Values: not applicable.

Search equivalent:

The number itself.

Supported search patterns:

> - greater than
< - less than
>= - greater or equal
<= - less or equal
!= - not equal

Conversion into a slider field:

Slider fields only accept the numeric part of the source data. If the
source data begin with a non-numeric character the field will contain 0.
You should check the range attributes after converting -- they could
influence the data.

1.66 Date Fieldtype

Date Fieldtype

You may enter a date in a date field. The date will be formatted
according to the specifications in the active locale settings. If
locale.library is not available, the format DD.MM.YYYY will be used.

Standard Attributes
New Attributes:

fiasco 56 / 252

Initial Content/use current Date: When a new record is created the
current date is copied in this field.

Changed Attributes:

Mask Window/Height: This attribute is only active when the

listview modifier
is active.

Search equivalent:

is equal to the content.

Conversion into a date field:

Date fields require the data in the current locale format. The single
parts must be numbers. If values are non numeric, the part will get "??".

Note:

Even though it is with most formats possible to enter a two-digit year,
it is recommended to use a four-digit year to avoid any of the problems
the DOS world currently has.

1.67 Time Fieldtype

Time Fieldtype

You may enter a time in a time field. The time will be formatted
according to the specifications in the active locale settings. If
locale.library is not available, the format HH:MM:SS will be used.

Standard Attributes
New Attributes:

Structure/Duration Format: Normally, the locale.library format will be
used to format the time. However, in some countries (most notably the
USA) this is not suitable to display time durations. If this attribute
is active, always the format HH:MM:SS will be used. Furthermore, the
range checking for the hour will be turned off. Thus, you will be able
to enter a duration longer than 24 hours.

fiasco 57 / 252

Initial Content/use current Time: the current time will be copied in this
field when you create a new record.

Changed Attributes:

Mask Window/Height: This attribute is only active when the

listview modifier
is active.

Search equivalent:

is equal to the content.

Conversion into a time field:

Time fields require the data in the format HH:MM:SS. Every element must
be a number. If an element is non numeric, it will be 0.

1.68 Extern Fieldtype

Extern Fieldtype

A extern field takes a string (most often a filename) that will be used
on request as argument for a user defined program. This makes it possible
to define additional data for a record.

Standard Attributes
New Attributes:

Structure/Max Chars: defines the maximum length of a filename in chars.
This attribute has direct effect on the size of the project file.

Command/Command: is the name of a program, which is capable of using
these data. The characters %s are replaced with the content of the
field. If you don‘t use %s, no arguments will be submitted. (For
example type: C:ED %s)

Command/Stack: defines the stack size for a command.

Mask Window/FileReq Gadget: select this attribute to have an gadget at
the left side of the field that opens a file requester to edit the
content. Of course, this only makes sense if the contents are
filenames.

fiasco 58 / 252

Changed Attributes:

Structure/Listview: not applicable.

Mask Window/Justification: not applicable.

Mask Window/Height: always 1.

Predefined Values: not applicable.

Search equivalent:

is equal to the content.

Conversion into a extern field:

All fields can be converted without loss of data into an extern field.
However, you have to specify a program that can use these data.
Additional notes:

Boolean - "Checked" becomesTRUE (1), otherwise FALSE (0)
Cycle - Label (Label number) converted

Notes:

The programs will be called using the AmigaDOS function System(). A
console window will be opened for I/O operations.

1.69 Datatypes Fieldtype

Datatypes Fieldtype

A datatypes field is similar to an extern field. The difference is the
use of the datatypes.library. This is the reason you can use these fields
only with Amiga OS 3.0 or greater. The major advantage is that the data
will be displayed directly in the mask. A datatypes field is universally
usable and freely extensible. A "popup"-gadget at the lower right side of
the field makes it possible to edit the contents using a file requester.
If something goes wrong, the error will be displayed in the field.

Standard Attributes
New Attributes:

fiasco 59 / 252

Structure/Max Chars: defines the maximal length of the filename. This
attribute has a direct effect on the size of the project file.

Mask Window/Options/Display filename: When this option is active the
filename is displayed at the bottom of the field in a string gadget.
If you deactivate this option you cannot edit the value of the field.
Using the ARexx script requestdt.frx with a button, editing the value
is indirectly possible.

Mask Window/Options/Scrollbars: Determines if scrollbars will be created
at the bottom and at the right border of the field. Without a
scrollbar you can only view the upper left of a file. (That is not
completely true. Some datatypes scroll their display if you click in
their area and drag the mouse in the direction of the hidden part. The
picture datatype is one example.)

Mask Window/Options/Save gadget: If you activate this option you will get
a second button under the datatypes field. The button will be marked
with an S. If you select the button a file requester will appear which
lets you choose a file to which the data, which are currently
displayed in the field, will be saved. The data will be written in IFF
format.

Mask Window/Options/Border: If this option is active Fiasco will render a
border around the field. Do not deactivate this option too often
because there are no other visual elements which mark the beginning
and the end of the field.

Mask Window/Options/Defer loading: If you activate this option, the file
of the field will not be immediately loaded when the record is
activated. Instead, the message "Deferred" will be displayed in the
field. The data will be loaded and displayed only if you activate the
string gadget and hit return.

Mask Window/Options/Pictures/Scaling: Allows you to control the scaling
of pictures in the field. If the content of the field is not a
picture, this attribute has no effect. This options determines whether
there will be no scaling at all, only if the picture is bigger than
the field or if there will always be scaling.

Mask Window/Options/Pictures/Scale size: Allows the selection of the
scaling mode. Full Size will make the picture exactly fit into the
field and may thus change the proportions of the picture. Proportional
Small uses a size that fills the field in one direction and which
completely fits into the field. Furthermore, it keeps the proportions
of the picture. Proportional Big uses the minimal size, which entirely
fills the field. The proportions will be kept here, too.

Mask Window/Options/Texts/Word Wrap: Select this option to activate word
wrapping for texts.

Mask Window/Options/Miscellaneous/Play immediately: Select this option to
start playing the data immediately after activating the record. If you
activate this option, Defer loading must not be active. Of course,
this option is only effective if the datatype supports playing. The
animation and the sound datatypes are such datatypes.

fiasco 60 / 252

Mask Window/Options/Miscellaneous/Center: Centers the datatypes object
within the field.

Changed Attributes:

Structure/Listview: not applicable.

Mask Window/Justification: not applicable.

Predefined Values: not applicable.

Searchequivalent:

Is equal to the filename; You cannot search the content.

Conversion into a datatypes field:

All fields can be converted without loss of data into a datatypes field.
However, the datatypes system requires valid filenames.
Additional notes:

Boolean - "Checked" becomesTRUE (1), otherwise FALSE (0)
Cycle - Label (Label number) converted

Notes:

The AmigaGuide and the animation datatype seem to have some problems with
relatively small fields.

AmigaGuide datatype sometimes leaves graphical trash after scrolling
the contents.

HAM and EHB pictures cannot be displayed in datatypes fields.

The changing of records gets slower because the data have to be
loaded each time. To avoid that use Defer loading.

1.70 Var String Fieldtype

Var String Fieldtype

Var string fields take strings with variable length opposed to string
fields, which use a designated maximum length. Var string fields may

fiasco 61 / 252

contain several lines.
Standard Attributes
New Attributes:

Mask Window/Scrollbars: Adds a scrollbar at the right side of the field.
You can use it to scroll the contents of the field.

Changed Attributes:

Structure/Listview: not applicable.

Mask Window/Justification: not supported.

Predefined Values: not applicable.

Search equivalent:

corresponds to the content.

Supported search patterns:

? = One unknown character.
#? = No or more unknown characters.

Conversion into a var string field:

Any field can be converted without loss of data into a var string field.
Alternative formats, if supported, are specified in parentheses.
Additional notes:

Boolean - "Checked" is TRUE (1), otherwise FALSE (0)
Cycle - Label (label number) converted
Slider - Level converted

Notes:

Var string fields are implemented using the textfield.gadget by Mark
Thomas. There is cut and paste support in var string fields: you may mark
text parts using the mouse. This text is cut with A X and copied with A
C. Text from the clipboard can be pasted at the current cursor position
with A V. These shortcuts are only active if the field is active, i.e.
the cursor is visible or some text is marked (this also works with
read-only fields). Otherwise, these shortcuts will invoke other Fiasco
functions.

fiasco 62 / 252

Relatively big var string fields may slow down record changing.

Starting with Fiasco 2.1, the contents of var string fields may be
displayed as a single line in the list window. Lines breaks in the field
are converted to spaces for the list window. Note, however, that var
string fields with a relatively long content may slow down rendering the
list substantially. You should hide those fields in the list.

Since the introduction of var string fields in Fiasco 2.00 till
Fiasco 2.02 (including) var string fields could not be displayed in the
list window. If you load databases created with these versions with
Fiasco 2.1 or higher, the var string fields are marked as hidden in the
list. To display them, simply deselect the appropriate attribute.

1.71 Text Fieldtype

Text Fieldtype

Text fields are not real fields; these fields only serve to put text in
the mask.

This fieldtype supports no standard attributes.

Supported Attributes:

Text: Will be written in the mask. An underscore ("_") placed before any
character will cause the character to be printed underlined. Thus, you
may mark the keyboard shortcut of a field.

Pen: The color used to write the text. The Normal default is black and
the Highlight default is white. The colors can be manipulated with the
palette prefs editor.

Bold: Makes the text bold.

Italics: Makes the text italic.

Underlined: Underlines the text.

Search equivalent:

You cannot search for a text field

Conversion into a text field:

You cannot convert any other fieldtype into a text field.

fiasco 63 / 252

1.72 Button Fieldtype

Button Fieldtype

Button fields only serve to put a button in the mask for a user-definable
action and are not real fields. This fieldtype only supports the width
and the shortcut

standard attribute
.

Supported Attributes:

Text: will be displayed in the button.

Type: Use Type to choose whether the button will execute a CLI or an
ARexx program. CLI programs may be normal programs, commands or
scripts (with the "s" attribute). ARexx programs must be ARexx
scripts.

Command: Use Command to select the program that will be executed when the
button is activated.

Stack: You may specify the stack size for the program here. The default
is 4096. The program to be activated will crash if the stack size you
specify is too small.

Console Window: lets you specify the I/O stream for the program. It may
be a console-window (CON:), the printer (PRT:), a simple file, or, if
you don‘t want any output NIL:. Since Fiasco 2.1, this is also
implemented for ARexx scripts.

Search equivalent:

You cannot search for a button field

Conversion into a button field:

You cannot convert another fieldtype into a button field.

1.73 Bar Fieldtype

Bar Fieldtype

Bar fields only serve to put a visible separation in the mask and are not
real fields. The bar fieldtype supports no standard attributes.

Supported Attributes:

fiasco 64 / 252

Width/Height: The width or the height of the bar, depending on Freedom.

Freedom: determines whether the bar is drawn in the mask horizontally or
vertically.

Search equivalent:

You cannot search for a bar field

Conversion into a bar field:

You cannot convert another fieldtype into a bar field.

Special behaviour in groups:

Bar fields are sociable fields, thus several bars in a
group
, which touch

each other (only for technical reasons), will optically join. This
feature allows you to create boxes with four bars in a square.

1.74 Listview Fieldtype

Listview Fieldtype

The listview fieldtype is not a real fieldtype, but a fieldtype modifier.
It is currently supported by five fieldtypes:

· String

· Integer

· Float

· Date

· Time

To make a field a listview field, you have to activate the Listview
option in the new field requester. The edit field requester, which may
have been opened using Field/Edit Field does not allow changing of this
option, because changing this modifier requires a conversion of the
field. The Convert Field function does that job.

Listview fields may take any number of entries. These entries
correspond to simple fields. An entry may be activated by clicking on it
in the list part of the field. The active entry may be edited in the
gadget below the list part. To add an entry, you have to click on the ‘+’

fiasco 65 / 252

gadget of the field. The ‘--’ gadget removes the active entry.

Changed Attributes:

Mask Window/Height: The height attribute becomes available when you
activate the listview modifier.

List Window: An active listview modifier makes all list window attributes
unavailable, because listviews cannot be displayed in the list window.

Initial Content: This is the value, which will be inserted into the new
added entries. Listviews in new records are always empty.

Predefined Values: Not applicable.

Search Equivalent:

You cannot search for a listview field

Conversion into a listview field:

When you convert a listview field into a listview field of another type,
each entry of the listview will be converted as described in the
documentation for the new fieldtype.

If you convert a non-listview field into a listview field or
vice-versa, the ‘|’ character will be used to separate the entries from
each other. Because this character is not available in numeric fields,
such conversions do not make much sense (the first number is converted
though).

Special behaviour in groups:

Listviews, which have been
grouped
, will always activate the entries with

the same number. Thus, if you activate the second entry in one grouped
listview, all other listviews in the group will also activate the second
entry. Furthermore, the add and delete functions of listviews are applied
to all listviews in a group.

If you place grouped listviews directly beneath each other in the
mask and if the listviews have the same height and the same status of the
Read Only attribute, these listviews will share their visual appearance.

Notes:

If you make a listview field too narrow, Fiasco will remove the +/--
gadgets to get more space. To get the functionality of these gadgets, you
may either group the field with another listview field or use the ARexx

fiasco 66 / 252

commands AddLVFieldEntry and DeleteLVFieldEntry.

1.75 Fiasco’s Graphic User Interface

Fiasco’s Graphic User Interface

Fiasco initially opens with an empty window. You can use the pull down
menus to work in it. The people who don’t like pull down menus may open
an additional window using

Control/Service Window
. This window makes the

most important operations accessible via a mouse click. Keyboard
shortcuts are the third way to execute operations.

The Mask Window

The List Window

The Service Window

Menus and shortcuts

Requesters
Fiasco supports menu help. If you press the help key while you ←↩

browse
through the menus, a short description will be displayed in an AmigaGuide
window (This feature requires amigaguide.library, which is part of the OS
since release 3.0. If you use 2.0 or 2.1, you may get it from the PD).

The requesters used by Fiasco have a standard structure. The gadgets
at the bottom are for responding. Normally, the left one is a positive
response, while the right one is negative. The close gadget of the window
is equivalent to a negative response. Nearly all gadgets in the
requesters may be accessed using the keyboard. Use the Return key for a
positive response and the Esc key for a negative response.

1.76 The Mask Window

The Mask Window

The operation in the mask window differs in Fiasco’s two editing modes.

Mask Mode

The main control in the mask mode is the cursor. The cursor may be moved
with the cursor keys. Without any qualifier, pressing a cursor key moves
the cursor one unit in the direction of the cursor key. If you press a
cursor key paired with Shift, the cursor will be moved to the appropriate
end of the window, i.e. if you press Shift and Cursor right, the cursor
will move to the right border of the window. If you pair a cursor key
with Ctrl, the cursor will be moved to the extreme position of the mask.

fiasco 67 / 252

The cursor right and down keys will move the cursor to the position of
the last field in that direction, the cursor left and up keys will move
the cursor to the X position 0 or Y position 0, respectively.

If you reach a field with the cursor, it will be activated.

If you click any place in the mask with the mouse, the cursor will be
set to that position. If you click on a field, it will be activated. You
may select several fields by holding Shift pressed while selecting the
fields.

The selected fields may be dragged using the mouse. Hold the left
mouse button pressed while moving the mouse. When you release the left
mouse button the fields will be placed at the point where you have
dragged them. If you press the right mouse button while dragging the
fields, the dragging operation will be cancelled, all fields will return
to their original positions.

If you double click on a field the
field requester
for that field

will be opened.

Record Mode

In the record mode, all fields in the mask behave much like normal
gadgets in normal applications. Fields may have a keyboard shortcut. See
the

field documentation
for more information.

Furthermore, pressing the tab key in a String, Integer, Float, Date,
Time, Extern, Datatypes or Var String field will cause the next field to
be activated. Shift and Tab will activate the previous field. If you
press Tab when no field is active the first field in the mask will be
activated.

If you prefer using the Enter key to cycle through fields as in
Fiasco 1.x, you will have to edit the

user interface settings
.

Mask Stretching

1.77 Mask Stretching

Mask Stretching

Normally, the Fields in a Fiasco mask are placed very close together.
This is not very nice and all other "normal" GUIs leave a few pixels
between the gadgets. It is possible to place one empty line between the
fields, but this wastes quickly a lot of place. For this reason Fiasco
makes it possible to leave a few pixels between the gadgets. These values

fiasco 68 / 252

may be specified in the
options requester
under Sretch X and Stretch Y.

The owl stretching (ehhhmm -- mask stretching %-) makes fields bigger
than specified in the field requesters. This is evident in the lines,
because most Fiasco fields only expand to this direction. String fields
may be bigger than the number of chars they can hold. The biggest problem
are text fields, because their width is normally the minimum required.
Stretching makes them wider and the text has to be centered. You should
specify zero as X value to avoid these problems and use one column as a
separator. In Y direction, 4 is the best value.

1.78 The List Window

The List Window

The list window may be opened using
Control/List Window
. The upper part

of the list window is the head of the list. It displays the IDs of the
fields, which are represented by the columns. The lines of the list
represent the records; the active record is marked with a strong
backfill. Marked records are displayed with a thin backfill. Fiasco’s
list window displays only those records, which are in the active index.
The successor of a record is displayed under the record. If you click on
one record-line, the record will be activated. However, you must use the
mask to edit a record.

The scroll bars of the window can be used to scroll through the
contents of it. The vertical scroll bar scrolls through all records, the
horizontal scrolls trough the fields in the list.

The layout of a list, which means position and width of the columns,
is done automatically. However, you can also control it directly in the
list window and in the field-requesters in the mask mode.

To change the position of a column, you have to click in the middle
of the column’s head. Do not release the mouse button. Two lines will
appear at the current position of the column. Now you may drag it over
some other column. If you release the mouse button, Fiasco sets the
column as near as possible at the new place. Columns, which are
overlapped by the column, are shifted to the right. The old place of the
column will be filled by shifting columns right of it to the left.

The width of a column may be also changed with the mouse. When you
click at the right corner of the head of a column and do not release the
mouse button, a line will appear. You may now drag the line with the
mouse. The place, where you release the mouse button, will become the new
right border of the column. The fields right of it will be shifted
accordingly. You may also use the

field requester
of the field to change

the width of its column. The attribute
List Window/Width
serves for this

fiasco 69 / 252

purpose.

You may also control, whether a field appears as column in the list,
or not. Normally, when a field is created, it is automatically added to
the list. To hide a column, activate the header of a column by clicking
on it and select the menuitem

List/Hide column
. You may also hide it by

activating the
List Window/Hidden
attribute in the field requester. To

reveal it, use the menuitem
List/Show column
or deactivate the List

Window/Hidden attribute.

The menuitem
List/Show all columns
makes all hidden columns visible.

List/Recalc list
calculates the positions and dimensions of all

columns again. You can compare it with Clean up of the Workbench.
Columns, which have been hidden, are kept hidden.

1.79 The Service Window

The Service Window

The service window may be opened or closed with
Control/ServiceWindow
. If

you want Fiasco to open the service window on every program startup,
select the option Service Window/Open on Startup in the

user interface settings
. If Service Window/Fixed Position in the same

requester is inactive, Fiasco will search for a free place on the screen
when Fiasco opens the window. Otherwise, the position of the service
window at the time of saving the settings is used.

The service window contains these gadgets:

Add

Del

|<

<

>

fiasco 70 / 252

>|

<Filename>

<Status>

<Fieldtype>

1.80 Add

Add

If the current project is in record mode a new record will be created. If
mask mode is active a new field will be created. Equivalent to:

Record/Add
in record mode

resp.

Field/Add field
in mask mode.

1.81 Delete

Delete

If the current project is in record mode, the current record will be
removed. If mask mode is active, the current field will be removed.
Attention: This will normally happen without any security request!

Equivalent to:

Record/Remove
in record move

resp.

Fields/Remove Field
in mask mode.

1.82 First

First

If the current project is in record mode, the first record will be
activated.

Equivalent to:

Record/First

fiasco 71 / 252

1.83 Previous

Previous

If the current project is in record mode the previous record will be
activated.

Equivalent to:

Records/Previous

1.84 Next

Next

If the current project is in record mode the next record will be
activated.

Equivalent to:

Records/Next

1.85 Last

Last

If the current project is in record mode the last record will be
activated.

Equivalent to:

Records/Last

1.86 Active project

Active project

The name of the current project is displayed here. If two projects only
differ in the path and not in the name, the same name will be displayed.

You may activate another project by activating the window of a
project.

1.87 Status

fiasco 72 / 252

Status

Status information is displayed here. In the record mode:
number of active record/number of records
A

Filter
may change these numbers.

In the mask mode:
X: X position of cursor, Y: Y position of cursor

1.88 Fieldtype

Fieldtype

If you are in record mode you can select the fieldtype which will be used
for subsequent calls of Add Field. Equivalent to:
Fields/Field Type.

1.89 Menus

Menus

Fiasco has these pull down menus:
(from left to the right; menus, which are marked with a ’/’, may be
activated or deactivated)

Name Keyboardshortcut

Project

New
A N

Erase
A Z

Open...
A O

Open new...
A L

Save
A S

Save as...
A A

Import... A I

fiasco 73 / 252

Export...
A E

Print...
A P

Hide
A H

Reveal...
A ^

About...
A ?

Quit
A Q

Database

Options...
A $

Statistic...

Indices...
A *

Prev. active index

Next active index

Reorganize...

Reload Relations

Functions...

Constants...
Record

Add Record
A +

Duplicate Record
A 2

Delete Record
A -

Delete all Records
A @

Cut Record
A X

fiasco 74 / 252

Copy Record
A C

Paste Record
A V

Previous
Cursor Up

Next
Cursor Down

First Record
Ctrl Cursor Up

Last Record
Ctrl Cursor Down

Goto...
A G

Mark Record
A .

Unmark Record
A :

Mark all Records
A ,

Unmark all Records
A ;

Toggle all Marks
Field

Field Type »
String Ctrl S

Integer Ctrl I
Float Ctrl F
Boolean Ctrl B
Cycle Ctrl C
Slider Ctrl S
Date Ctrl A
Time Ctrl M
Extern Ctrl E
Datatypes Ctrl D
Var String Ctrl V
Text Ctrl T
Button Ctrl U
Bar Ctrl R

Add Field...
Enter

Edit active Field..
Enter

fiasco 75 / 252

Edit named Field...
Shift Enter

Duplicate Field

Remove Field
Del

Edit Relation...
A \&

Remove Relation
A 0

Create Group
A J

Resolve Group
A /

Convert Field...
A "

List

Hide column
A [

Show column...
A]

Show all colums

Recalc List
A %

Compare

Find...
A F

Find next
A >

Find previous
A <

Filter... A ~

Replace...
A R

Count...
A #

Sort...
A =

fiasco 76 / 252

Mark...
A K

Control

/ Record Mode
Ctrl F1

/ Mask Mode
Ctrl F2

/ ServiceWindow
Ctrl F3

/ ListWindow
Ctrl F4

/ ARexx-Debug
Settings

Databases...

User Interface...

User Menu...

Display...

Ext. Programs and Paths

Save Settings

Save Settings as...

Load Settings...
User

User menu items

1.90 Project/New

Project/New

Shortcut: A N

Creates a new database project with a mask window. It contains neither
records, nor fields. You may create a new database or

Open
a saved

database.

See also:

fiasco 77 / 252

Open
,
Open new

1.91 Project/Erase

Project/Erase

Shortcut: A Z

Erases all data in the current project. The project will be in a status
like immediately after calling

Project/New
. If data have been changed

since last saving, you will be asked before the data is erased.

1.92 Project/Open...

Project/Open...

Shortcut: A O

Opens a file requester and loads the selected Fiasco project into the
current project window. If there are any unsaved data you will be asked
whether you want to save them first.

1.93 Project/Open new...

Project/Open new...

Shortcut: A L

Opens a file requester and loads the selected Fiasco project into an
automatically created project window.

1.94 Project/Save

Project/Save

Shortcut: A S

Save writes the data of the current project under the same name to disk.
If you want to save the project under a different name you have to use

Save as
.

fiasco 78 / 252

1.95 Project/Save As...

Project/Save As...

Shortcut: A A

You may save the current project under a new name here. The name will be
requested using a file requester and will be kept after saving.

1.96 Project/Import...

Project/Import...

Shortcut: A I

Opens the
import requester
, the GUI interface for the import function of

Fiasco. You can use import to load data from foreign databases into
Fiasco.

1.97 Project/Export...

Project/Export...

Shortcut: A E

Opens the
export requester
, the GUI interface for the export function of

Fiasco. You can use export to save data in a format which can be read by
other databases.

1.98 Project/Print...

Project/Print...

Shortcut: A P

Opens the print window, the main interface to Fiasco’s
print function
.

You may create a layout for printing here and print it.

fiasco 79 / 252

1.99 Project/Hide

Project/Hide

Shortcut: A H

Closes all windows of the active project. However, the project data will
not be freed. If the project window was the last open project window,
Fiasco will close its custom screen or unlock its public screen. An icon
will be set up on the Workbench.

To reopen a project use
Project/Reveal
if another project window is

still open or double click on the Fiasco icon on the Workbench. Both
actions will open the

reveal project requester
which allows you to choose

one of the hidden projects to open.

Another way to get access to Fiasco is to start Fiasco again. This is
useful, for instance, when Workbench is not running. Fiasco will open an
empty project window from which you have access to the

Project/Reveal
menuitem.

1.100 Project/Reveal...

Project/Reveal...

Shortcut: A

Opens the
reveal project requester
which allows you to choose a project

hidden with
Project/Hide
to be opened again. If you have closed all

Fiasco windows, you have no access to this menuitem. Therefore, Fiasco
creates an icon on the Workbench. Doubleclicking on it will result in the
same function.

See also:
Project/Hide

1.101 Project/About...

Project/About...

Shortcut: A ?

fiasco 80 / 252

This item shows a requester that displays informations about version,
copyright and some system internal data.

1.102 Project/Quit

Project/Quit

Shortcut: A Q

This item closes the current project. If it has been changed and has not
been saved yet, you will be asked if you want to do this. If this is the
last open Fiasco project, Fiasco will exit.

1.103 Database/Options...

Database/Options...

Shortcut: A
This menuitem opens the

options requester
, which can be used for editing

project specific options. That are:

·
Mask stretching
· Name of author and annotations

· project windows

· disk access time for reading records

· RAM usage of records

Before Fiasco 2.1, this menu item was in the Project menu.

1.104 Database/Statistic...

Database/Statistic...

no Shortcut

Shows some information about memory usage, etc. for the current project
in the

statistic requester
.

Before Fiasco 2.1, this menu item was in the Project menu.

fiasco 81 / 252

1.105 Database/Indices...

Database/Indices...

Shortcut: A *

Opens the
indices requester
, which can be used to select, create or

delete an
index
.

Before Fiasco 2.1, this menu item was in the Project menu.

1.106 Database/Previous active Index

Database/Previous active Index

No Shortcut

Goes one step back in the
index history
. That means, that this item

activates the index that was active before the currently active index was
activated. To activate this index again, you have to go the step forward
again with the menu item

Next active Index
.

1.107 Database/Next active Index

Database/Next active Index

No Shortcut

Goes one step in the
index history
forward after is has been gone with

Previous active Index
backwards.

1.108 Database/Reorganize...

Database/Reorganize...

No Shortcut

fiasco 82 / 252

This menuitem is similar to
Project/Save
. The difference is, that

Reorganize rewrites the whole database file and deletes all records
definitely, which are not used in any index of the database. Records,
which are deleted using the delete functions of Fiasco, are only removed
from the index, the data will remain until the next reorganization.
Before Fiasco starts the reorganization, you will be warned with a
requester, which displays the number of records to be deleted.

If there are relations which search for a key defined in these
records, they will not find it after a reorganization.

Before Fiasco 2.1, this menu item was in the Project menu.

1.109 Database/Reload Relations

Database/Reload Relations

No Shortcut

This item reloads all relations in the current project, just as they were
loaded while opening the project. This is particularly useful if you have
deactivated Update Relations in the database settings, changed some keys
and want to see the result. Before Fiasco 2.1, this menu item was in the
Project menu.

1.110 Database/Functions...

Database/Functions...

No Shortcut

Opens the
functions requester
that can be used to edit the

user-defined functions
of the active database.

1.111 Database/Constants...

Database/Constants...

No Shortcut

Opens the
constants requester
that can be used to edit the

fiasco 83 / 252

user-defined constants
of the active database.

1.112 Record/Add Record

Record/Add Record

Shortcut: +

Adds a new record to the record list of the current project. Each Field
contains then its initial content, which is normally nothing. If the list
is open a new line will be inserted.

If a
Filter
is active the new record automatically will be declared

valid. If you want that new records are filtered correctly you will have
to rebuild the index.

This menuitem may only be selected in
record mode
.

See also:
Record/Remove Record

1.113 Record/Duplicate Record

Record/Duplicate Record

Shortcut: A 2

Creates an exact copy of the current record. All initial content
attributes will be ignored. Even a field with the Unique Key attribute
will contain the old value. That means that two records with the same
"unique" key will exist.

1.114 Record/Delete Record

Record/Delete Record

Shortcut: -

Removes the active record from the active index. The data of it will
remain in the database file. To finally delete the record data, no other
indices may use it. If this is the case,

Project/Reorganize
will remove

fiasco 84 / 252

the unused record data.

To recover the record, you have to create a new index, which uses the
special entry «No Index» as index source. This index will contain all
records of the database file. This will not work, if you have used

Project/Reorganize
, though.

This menuitem may be selected only in
record mode
.

If you have selected Security requesters in the user interface
settings, you will be queried before proceeding.

See also:
Record/Add Record
,
Record/Delete all Records
,
Project/Reorganize

1.115 Record/Delete all Records

Record/Delete all Records

Shortcut: A @

Removes all records in the current project. The mask will not be deleted
by this function.

Record/Delete all Records may be only called in record mode.

Note: Unlike the functions Delete Record and Remove Field, this
menuitem does not put up a security requester, if Security-Requesters is
activated. However, if the project has been changed, Fiasco will put up a
standard Ok-Save-Cancel-Requester.

See also:
Record/Delete Record

1.116 Record/Cut Record

Record/Cut Record

Shortcut: A X

Copies the current record to the clipboard and removes it from the active
index. After that, you may use

Record/Paste Record

fiasco 85 / 252

to insert it in the
project, again.

This function may be called only in record mode.

See also: Record/Delete Record,
Record/Copy Record
,
Record/Paste Record
,

Section Clipboard support of Fiasco

1.117 Record/Copy Record

Record/Copy Record

Shortcut: A C

Copies the current record to the clipboard. You may use

Record/Paste Record
to insert it in the project again.

This function may be called only in record mode.

See also:
Record/Cut Record
,
Record/Paste Record
, Section Clipboard

support of Fiasco

1.118 Record/Paste Record

Record/Paste Record

Shortcut: A P

Creates a new record and pastes the contents of the clipboard into that
record. Normally, you should call

Record/Cut Record
or

Record/Copy Record
before calling this function.

This function may only be called in record mode.

See also:
Record/Cut Record
,
Record/Copy Record
, Section Clipboard

fiasco 86 / 252

support of Fiasco

1.119 Record/Previous

Record/Previous

Shortcut: Cursor up

Activates the record predeceding the current record. If the current
record is the first one, the display will be "beeped".

The order of records is determined by the active
index
.

The keyboard shortcut correspondents to the structure of the list
which displays the previous record over the current record.

This menuitem may be only selected if
record mode
is active.

See also:
Next
,
First
,
Last
,
Goto
,
Find previous

1.120 Record/Next

Record/Next

Shortcut: Cursor down

Activates the record after the current record. If the current record is
the last in the list, the display will be "beeped".

The order of records is determined by the active
index
.

The keyboard shortcut correspondents to the structure of the list,
which displays the next record under the current record.

This menuitem may be only selected if
record mode

fiasco 87 / 252

is active.

See also:
Previous
,
First
,
Last
,
Goto
,
Find next

1.121 Record/First Record

Record/First Record

Shortcut: Ctrl Cursor up

Activates the first record of the current project.

The order of records is determined by the active
index
.

This item may be only selected in
record mode
.

See also:
Next
,
Previous
,
Last
,
Goto

1.122 Record/Last Record

Record/Last Record

Shortcut: Ctrl Cursor down

Activates the last record of the current project.

The order of records is determined by the active
index
.

This item may be only selected in

fiasco 88 / 252

record mode
.

See also:
Next
,
Previous
,
First
,
Goto

1.123 Record/Goto...

Record/Goto...

Shortcut: A G

Opens the
goto requester
which can be used to activate a record using its

number. Please note that the record number may be changed by adding or
deleting records or by using several

indices
.

This item can only be selected in
record mode
.

See also:
Next
,
Previous
,
First
,
Last

1.124 Record/Mark Record

Record/Mark Record

Shortcut: A .

Marks the current record. If a record is marked, it will displayed
highlighted in the list and the character "M" will be displayed in the
service window.

This item can only be selected in
record mode

fiasco 89 / 252

.

See also:
Unmark Record
,
Mark all Records
,
Unmark all Records

1.125 Record/Unmark Record

Record/Unmark Record

Shortcut: A :

Deletes the mark of the current record. It won‘t be displayed highlighted
anymore.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Mark all Records
,
Unmark all Records

1.126 Record/Mark all Records

Record/Mark all Records

Shortcut: A ,

Marks all records in the current project. Note that the previous marking
of all records will be overwritten.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Unmark Record
,
Unmark all Records
,
Toggle all Marks

fiasco 90 / 252

1.127 Record/Unmark all Records

Record/Unmark all Records

Shortcut: A ;

Clears the marks of all records in the current project. Note that the
previous marking of all records will be overwritten.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Unmark Record
,
Mark all Records
,
Toggle all Marks

1.128 Record/Toggle all Marks

Record/Toggle all Marks

No Shortcut

Toggles the marks of all records in the current project. A marked record
will be unmarked and an unmarked will be marked. You can restore the
previous marking of the records by calling this menuitem once again.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Unmark Record
,
Mark all Records
,
Unmark all Records

1.129 Field/Fieldtype

Field/Fieldtype

Select the current fieldtype in this submenu. It will be used if you
create fields. The cycle gadget in the

fiasco 91 / 252

service window
has the same

function. These fieldtypes are available:

String
Ctrl S

Integer
Ctrl I

Float
Ctrl F

Boolean
Ctrl B

Cycle
Ctrl C

Slider
Ctrl S

Date
Ctrl A

Time
Ctrl M

Extern
Ctrl E

Datatypes
Ctrl D

Var String
Ctrl V

Text
Ctrl T

Button Ctrl U

Bar
Ctrl R

1.130 Field/Add Field...

Field/Add Field...

Shortcut: Enter

Opens the

fiasco 92 / 252

field requester
for the current field type and inserts the

created field at the current cursor position.

This item can only be selected in
mask mode
.

If there is already a field at the current cursor position nothing
will be done.

Please note that Enter is also shortcut for
Edit active Field
. Enter

creates a new field, if no field is currently active, otherwise, it opens
the requester for editing the active field.

See also:
Edit active Field
,
Edit named Field
,
Edit Relations
,

Remove Field

1.131 Field/Edit active Field...

Field/Edit active Field...

Shortcut: Enter

Opens the
field requester
for the selected field. The field requester can

be used to change several attributes of the field. If certain changes
would cause the lose of data (e.g. changing max chars of a string field
to a lower number), you will be informed about the problem and given the
opportunity to cancel the change. Field types may not be changed this
way. You have to use

Convert Field
.

Because this function edits the selected field, you cannot edit
hidden fields.

Edit named Field
serves for that purpose.

Please note that Enter is also a shortcut for
Add Field
. Enter calls

Add Field if no field is active and otherwise calls Edit active Field.

This item can only be selected in

fiasco 93 / 252

mask mode
.

See also:
Edit named Field
,
Add Field
,
Edit Relation

1.132 Field/Edit named Field...

Field/Edit named Field...

Shortcut: Shift Enter

Opens a requester with a list of all fields. When you have picked one,
the

field requester
for the selected field will be opened. The field

requester can be used to change several attributes of the field. If
certain changes would cause the lose of data (e.g. changing max chars of
a string field to a lower number), you will be informed about the problem
and given the opportunity to cancel the change. Field types may not be
changed this way. You have to use

Convert Field
.

This item can only be selected in
mask mode
.

See also:
Edit active Field
,
Add Field
,
Edit Relation

1.133 Field/Duplicate Field

Field/Duplicate Field

No shortcut
Makes an exact copy of the active fields. The fields will be
placed as near as possible to the original fields. The ID will be copy_of_
FieldID.

1.134 Field/Remove Field

fiasco 94 / 252

Field/Remove Field

Shortcut: Del

Removes the selected fields. All data in these fields will be lost.
Relations or ARexx scripts which refer to these fields will be not
functional. Attention: The relations or ARexx scripts will not complain
immediately after removing the fields, but at the first activation.

This item can only be selected in the
mask mode
.

See also:
Edit Field
,
Edit Relations
,
Add Field

1.135 Field/Edit Relation...

Field/Edit Relation...

Shortcut: A &

This item opens the
relation requester
, which adds a
relation
to the

current field.

This item can only be selected in
mask mode
.

See also:
Field/Remove Relation

1.136 Field/Remove Relation

Field/Remove Relation

Shortcut: A 0

This item deletes all relation information for the active field. The data
in this field will be written into the normal file.

This item can only be selected in
mask mode

fiasco 95 / 252

.

1.137 Field/Create Group

Field/Create Group

Shortcut: A J

Creates a
group
of the active fields. If you have selected a group and

other fields or groups, these will be joined in one big group.

Use
Field/Resolve Group
to make the fields independent again.

See also:
Resolve Group
, Groups Section

1.138 Field/Resolve Group

Field/Resolve Group

Shortcut: A /

Resolves the active
group
. All fields of the group will get independent.

Groups that have been grouped in this group will also be resolved.

See also:
Create Group
, Groups Section

1.139 Field/Convert Field...

Field/Convert Field...

Shortcut: A "

Opens the
convert requester
for the selected field. Using convert you may

change the type of a field.

This item can only be selected in

fiasco 96 / 252

mask mode
.

See also:
Add Field
,
Edit Field

1.140 List/Hide column

List/Hide column

Shortcut: A [

Hides an activated column of the
list
. You activate a column by clicking

in the topmost line of the list which contains the field IDs. After
hiding a column, the columns at the right side of it will be shifted to
the left. The column may be made visible again by using

Show column
.

This item may only be selected if the list window is open.

1.141 List/Show column...

List/Show column...

Shortcut: A]

This item opens a requester which may be used to reveal the columns
hidden with

Hide column
. Fiasco tries to place the columns as near as

possible at their old positions.

This item may only be selected if the list window is open.

1.142 List/Show all columns

List/Show all columns

no shortcut

Makes all columns visible, which have been hidden using
Hide column
.

fiasco 97 / 252

This item may only be selected if the list window is open.

1.143 List/Recalc List

List/Recalc List

Shortcut: A %

This menuitem calculates all positions and dimensions of the columns in
the

list
. Hidden columns are not revealed.

This item can be compared with Clean up of the Workbench.

This item may only be selected if the list window is open.

1.144 Compare/Find...

Compare/Find...

Shortcut: A F

Opens the
search requester
which can be used to define search criterions.

This item is only selectable, if the
record mode
is active and if the

current project contains at least one record.

See also:
search requester
,
Find next
,
Find previous

1.145 Compare/Find next

Compare/Find next

Shortcut: A >

Activates the next record, which matches with the search criterions,
specified using the

search requester

fiasco 98 / 252

. You will be informed if no matching
record is found.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

See also:
Search requester
,
Find
,
Find previous

1.146 Compare/Find previous

Compare/Find previous

Shortcut: A <

Activates the previous record, which matches with the search criteria
specified with the

search requester
. You will be informed if no matching

record is found.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

See also:
Search requester
,
Find...
,
Find next

1.147 Compare/Filter...

Compare/Filter...

Shortcut: A ~

Opens the
filter requester
, which can be used to create
filter indices
.

This item is only selectable if

fiasco 99 / 252

record mode
is active and if the

current project contains at least one record.

1.148 Compare/Replace...

Compare/Replace...

Shortcut: A R

Opens the
replace requester
,which can be used for replacing data.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.149 Compare/Count...

Compare/Count...

Shortcut: A #

Opens the
count requester
, which can be used to determine the number of

the records matching with the specified pattern.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

See also:
Find

1.150 Compare/Sort...

Compare/Sort...

Shortcut: A =

Opens the
sort requester
which may be used to create a sorted index of

the active database.

fiasco 100 / 252

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.151 Compare/Mark...

Compare/Mark...

Shortcut: A K

Opens the
mark requester
which can be used to mark specific records that

match a pattern.

Existing marks will be overwritten; marked records will be unmarked,
if they do not match.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.152 Control/Record Mode

Control/Record Mode

Shortcut: Ctrl F1

This item switches the current project to
record mode
in which records

and the contents of records can be changed. If this mode is active , a
checkmark will be set to the left side of the item.

See also:
record mode
,
mask mode

1.153 Control/Mask Mode

Control/Mask Mode

Shortcut: Ctrl F2

This item switches the current project to
mask mode

fiasco 101 / 252

in which the
mask
can

be changed. If this mode is active , a checkmark will be set to the left
side of the item.

See also:
Mask mode
,
Record mode

1.154 Control/Service Window

Control/Service Window

Shortcut: Ctrl F3

This item controls the
service window
. If it is checked the service

window is open. The service window makes the most important record- and
mask-operations easier and displays some status information.

The service window serves globally for all projects.

1.155 Control/List Window

Control/List Window

Shortcut: Ctrl F4

This item controls the
list window
, if it is checked, the list is open.

Each project may have its own list window.

1.156 Control/ARexx-Debug

Control/ARexx-Debug

No Shortcut

This activates a special debug mode of Fiasco for the
ARexx interface
. If

Fiasco commands fail, Fiasco will create a requester that contains more
detailed information about the error.

fiasco 102 / 252

1.157 Settings/Databases...

Settings/Databases...

No shortcut

Opens the
database settings requester
. You may use this requester to edit

certain Fiasco database options.

1.158 Settings/User Interface...

Settings/User Interface...

No shortcut

Opens the
user interface settings requester
, which controls certain

elements of Fiasco’s user interface, such as service window, field
activation, etc.

1.159 Settings/User Menu...

Settings/User Menu...

No shortcut

Opens the
user menu requester
which can be used to define user menus.

1.160 Settings/Display...

Settings/Display...

no shortcut

Opens the
display requester
which can be used to specify display options

for Fiasco. You can select whether Fiasco will open its windows on a
public screen or on its own custom screen. Furthermore, you may select
fonts for the screen and the mask.

fiasco 103 / 252

1.161 Settings/External Programs and Paths...

Settings/External Programs and Paths...

no shortcut

Opens the
external programs and paths requester
that lets you specify

programs that may be called by Fiasco and paths for various uses.

1.162 Settings/Save Settings

Settings/Save Settings

Saves the current program settings in the files "env:fiasco.prefs" and
"envarc:fiasco.prefs". The settings "survive" rebooting.

1.163 Settings/Save Settings as...

Settings/Save Settings as...

Saves the settings in a file, which has been specified with a file
requester. If you save the file in "env:", the settings won’t survive a
reboot. If you save them only in "envarc:", they will only become active
after rebooting because Fiasco searches for its current settings in
"env:" and nowhere else.

1.164 Settings/Load Settings...

Settings/Load Settings...

Loads and uses a specified settings file. To use them also after reboots
you should select

Save Settings
to write them to "env:" and "envarc:".

1.165 The Print Window

The Print Window

The print window can be opened with Project/Print. You can control
Fiasco’s print function from there. More on the print function in the

print section
. The print window contains these menus:

fiasco 104 / 252

Menu Shortcut
Project

Erase
A Z

Open...
A O

Get from Mask
A M

Get from List
A L

Save
A S

Save as...
A A

Print
A P

Options...
A T

Exit
A Q

Element

Element Type »
Field Ctrl F

Text Ctrl T
Formfeed Ctrl O

Add...
Return

Edit...
Return

Duplicate
Remove Del

Control

Edit Head
A H

Edit Body
A B

Edit Foot
A F

fiasco 105 / 252

1.166 Project/Erase

Project/Erase

Shortcut: A Z

Removes all elements from the print window. After using this menuitem the
print window will be empty.

1.167 Project/Open...

Project/Open...

Shortcut: A O

Opens an file requester and reads the print layout from the selected
file. The old data will be overwritten.

1.168 Project/Get from Mask

Project/Get from Mask

Shortcut: A M

This menuitem tries to fake the project mask’s layout in the print
window. The old print mask will be overwritten.

1.169 Project/Get from List

Project/Get from List

Shortcut: A L

This menuitem tries to fake the list’s layout in the print window. The
old print mask will be overwritten.

1.170 Project/Save

Project/Save

Shortcut: A S

fiasco 106 / 252

Select Save if you want to write the current print mask to a file on
disk. This is the file Project_Name.fpr, if you haven’t selected another
using Open or Save as. The file name is displayed in the window title bar
of the print window.

1.171 Project/Save as...

Project/Save as...

Shortcut: A A

Select this menuitem if you want to save the print mask in another file
as the currently selected. The file name is displayed in the window title
bar of the print window.

1.172 Project/Print

Project/Print

Shortcut: A P

This menuitem creates the print-out of the project using the active print
mask. The exact function of this menuitem is dependent on the settings
made in the

print options requester
.

1.173 Project/Options...

Project/Options...

Shortcut: A T

This menuitem opens the
print options requester
. Some print mask-specific

options may be edited here.

1.174 Project/Exit

Project/Exit

Shortcut: A Q

This menuitem closes the print window. The active print mask will be
deleted from memory.

fiasco 107 / 252

You may also use the window’s close gadget for this purpose.

1.175 Element/Element Type

Element/Element Type

Use this submenu to select the active element type. This type will be
used by the subsequent

Element/Add
calls.

These element types may be selected:

· Field (Ctrl F)

· Text (Ctrl T)

· Formfeed (Ctrl O)

More information can be found in the
print chapter
.

1.176 Element/Add...

Element/Add...

Shortcut: Return

Creates a new element at the cursor position. The element will be of the
type set in the

Element/Element Type
submenu. If the element type

supports a requester, the
element requester
will appear.

More information can be found in the
print chapter
.

Note that this menuitem has the same shortcut as
Element/Edit
. This

shortcut will Add if no element is active and Edit if an element is
active.

1.177 Element/Edit...

fiasco 108 / 252

Element/Edit...

Shortcut: Return

Opens the
element requester
for the active element. Elements can be made

active using the mouse or the cursor keys.

Note that this menuitem has the same shortcut as
Element/Add
. This

shortcut will Add if no element is active and Edit if an element is
active.

1.178 Element/Duplicate

Element/Duplicate

No shortcut

Duplicates the active element.

1.179 Element/Remove

Element/Remove

Shortcut: Del

Deletes the active element. You may only recover this element using a
saved version of the print mask.

1.180 Control/Edit Head

Control/Edit Head

Shortcut: A H

Selects the head part of the print mask for editing. The head part will
be printed before any other data. It may not contain field elements. This
menuitem, Edit Body and Edit Foot are mutually exclusive.

See the
print chapter
for more information.

fiasco 109 / 252

1.181 Control/Edit Body

Control/Edit Body

Shortcut: A B

Selects the body part of the print mask for editing. The body part will
be printed for each record. It may contain references to fields in the
form of field elements. These references will be substituted while
printing by the field contents. This menuitem, Edit Head and Edit Foot
are mutually exclusive.

See the
print chapter
for more information.

1.182 Control/Edit Foot

Control/Edit Foot

Shortcut: A F

Selects the foot part of the print mask for editing. The foot part will
be printed after any other data. It may not contain field elements. This
menuitem, Edit Body and Edit Head are mutually exclusive.

See the
print chapter
for more information.

1.183 All Requesters

All Requesters

Requesters are used by Fiasco to get information required for certain
operations. Normally, the requesters are created after selecting Fiasco
menuitem. So called EasyRequesters, which are used by Fiasco to request a
simple choice are not explained here, because they are generally easy to
understand and are described in function specific sections. Most
requesters can be controlled by using the keyboard. The shortcuts, which
are marked with an underscore, are usually single characters without a
qualifier.

The gadgets at the lower bottom of a requester are usually for
proceeding. Normally, the left-most is a positive response (Ok), while
the right-most is a negative response (Cancel). Enter is the shortcut for
the positive response. The gadget is additionally emphasized. Esc is the
shortcut for the negative response.

fiasco 110 / 252

Import Requester

Export Requester

Reveal Project Requester

Project Options Requester

Statistic Requester

Indices Requester

New/Edit Index Requester

Functions Requester

Constants Requester

Goto Requester

Field Requester

Popup Gadget Requester

Convert Field Requester

Relation Requester

Formula Requester

Show Column Requester

Search Requester

Filter Requester

Replace Requester

Count Requester

Mark Requester

Sort Requester

Database Settings Requester

User Interface Settings Requester

User Menu Requester

Display Settings Requester

External Programs and Paths Settings Requester

Print Options Requester

Print Element Requester

fiasco 111 / 252

1.184 Import Requester

Import Requester

The import requester is the GUI interface to the
import function
of

Fiasco. Import allows Fiasco to read data from other database programs.
Usually this cannot be done directly, but the foreign database has to
"export" the data. You may specify various parameters for importing, so
you should be able to read nearly all export formats into Fiasco. The
Fiasco distribution contains several predefined import formats, which can
be loaded using the Load button at the bottom of the import requester.

The values that may be typed in the gadgets of the import requester
are described in the Import/Export section of this document.

File: Specify here the file that contains the data to import. You may
use the picker button at the right side to select it using a file
requester.

View: Click here, if you want to view the contents of the file. Fiasco
will start asynchronously More or MultiView, if available.

Records/Start: Enter the start characters for records here. Default:
Empty.

Records/End: Enter the characters at the end of a record here. Default:
Empty.

Records/Separator: Enter the characters between two records here.
Default: \n.

Fields/Start: Enter the characters here that fields start with. Default:
".

Fields/End: Enter the characters here that fields end with. Default: ".

Fields/Separator: Enter the characters between two fields here. Default:
\t.

Misc/Skip Lines: Enter introducing characters for remarks here. Default:
Empty.

Misc/Start skip: Enter the number of lines here that will be skipped at
the start. Default: 0.

Misc/Max fields: Enter the maximum number of fields in a record here. Can
also be used if record separators are missing. Default: 100.

Options/First record contains IDs: Activate this gadget if the first
record of the file contains the IDs of the fields in the project. They

fiasco 112 / 252

will be used by Fiasco then instead of generic IDs.

Options/Append new fields: Activate this, if you want Fiasco to create
new fields for your data and not to use existing fields. If you have
an entirely empty project you should activate this option. If this
option is not active, Fiasco will first try to associate the fields by
their IDs. If there are not enough free fields, Fiasco will create new
fields nethertheless.

Options/Overwrite old project: Removes the old data in the current
project window. If you do not select this, you data will be appended
in some manner to the existing project.

Ok: Starts the import process. Note that Fiasco may run out of memory due
to bad structure parameters and overly large files. Programs that have
problems with low memory should not run during this process.

Save: Saves the current settings in a specified file.

Load: Reads the settings from a specified file and sets them up in the
requester.

Cancel: Closes the requester without any further action.

1.185 Export Requester

Export Requester

The export function provides the ability to share data from Fiasco with
other databases that cannot read the normal format of Fiasco databases.
See the

Import/Export section
of this document for more information about

this mechanism.

File: Specify the name of the file here that the data shall be written
to. If a file already exists with this name it will be overwritten.

Records/Start: Enter the start characters for records here. Default:
Empty.

Records/End: Enter the characters at the end of a record here. Default:
Empty.

Records/Separator: Enter the characters between two records here.
Default: \n.

Fields/Start: Enter the characters here that fields start with. Default:
".

Fields/End: Enter the characters here that fields end with. Default: ".

Fields/Separator: Enter the characters between two fields here. Default:

fiasco 113 / 252

\t.

Options/First record contains IDs: Activate this gadget if you want
Fiasco to write the field IDs in the first record.

Options/Marked records only: Activate this gadget if you want Fiasco to
write only marked records.

Listviews/Entry Separator: Enter the characters between two entries of a
listview field here. Default: |.

Ok: Click here to start the export process.

Save: Saves the structure parameters to a selected file.

Load: Loads the structure parameters from a selected file.

Cancel: Closes the requester without any further action.

1.186 Reveal Project Requester

Reveal Project Requester

This requester is used to reveal a Fiasco project which has been hidden
using

Project/Hide
. The reveal project requester can be opened using

Project/Reveal
or by doubleclicking on the Fiasco Workbench icon.

Project: This is a list of all hidden Fiasco projects. To reveal a
project, select it and click on Ok or doubleclick on it.

Ok: Closes the requester and opens the selected project.

Cancel: Closes the requester without any further action.

1.187 Project Options Requester

Project Options Requester

The option requester contains project-related settings. It may be opened
using the menuitem

Database/Options
.

fiasco 114 / 252

Author: You can use this field to enter your own name! It will be
stored at the beginning of the project file.

Annotations: Yet another gadget for undefined use. You may store any
notes here, for example a version string (with $VER: at the
beginning). It will be written to the project file just before the
author’s name.

Mask Stretching X / Y: These values are added to the width or height of
the cursor. The effect of this operation is a stretching of the mask
in the X- or Y-direction. More on stretching

here
.

Windows/Open list on startup: Activate this gadget to instruct Fiasco to
open the list window when this project is loaded.

Windows/List position fixed: If this gadget is active, Fiasco remembers
the position of the list window when saving the project. The list
window will open at this position thereafter.

Windows/Mask position fixed: If this gadget is active, Fiasco remembers
the position of the mask window when saving the project. The mask
window will open at this position thereafter.

Windows/Close Gadget: If this gadget is active, the mask window of this
database will have a close gadget, that can be used for closing the
database.

Windows/Depth Gadget: If this gadget is active, the mask window of this
database will have a depth gadget, that can be used for
depth-arranging the window.

Windows/Drag Bar: If this gadget is active, the mask window of this
database will be draggable on the screen.

Windows/Size Gadget: If this gadget is active, the mask window of this
database will have a size gadget for sizing the window and
proportional gadgets for scrolling the contents. Otherwise, the window
borders will be thin.

Records/Max. time for reading: Use this gadget to set the maximum time
for disk access when records have to be read from disk. The time is
measured in microseconds. 65000 is a good value here. It reads a
relatively high number of records and is not disturbing during record
changes. Higher values will lead to longer pauses during record
changes and more read records. Lower values will make records changes
quicker and fewer records will be read. However, Fiasco will always
read at least one record (when available).

Records/Max. memory: Set here the maximum amount of RAM, measured in
kilobytes, to be used by this Fiasco database for records. This is
only a standard value because Fiasco will not always check the value.
Lower values will lead to more disk accesses, because more records
will have to be re-read. The default for this is 200. You may control
the actual RAM usage in the

statistic requester

fiasco 115 / 252

.

ARexx Scripts/Database Startup: An ARexx script specified here will be
executed immediately after this database has been opened. Thus, it may
serve for initialization purposes, etc. Note: The

User Interface Settings
contain a control to disable this setting.

ARexx Scripts/Database Shutdown: An ARexx script specified here will be
executed before this database will be closed. Thus, it may clean up
things, etc. Note: The

User Interface Settings
contain a control to

disable this setting.

CD ROM mode: If active, this Fiasco database will be in CD ROM mode.
This mode is for better use of Fiasco databases on CD ROMs (or other
read only media). It has two effects: All mask fields will be read
only and all indices created by the filter and sort functions will be
written to T:. The operation of Save and Save As will remain
unchanged, in order allow to save a database with CD ROM mode for
preparing CD ROM distributions.

1.188 Statistic Requester

Statistic Requester

Apart from getting information, you cannot do much in the statistic
requester. It only serves to display information about certain
statistical values of the active Fiasco database.

Database: The name of the database is displayed here.

Index: The name of the active index of the database is displayed here. If
no index is active, -- will be displayed here. This is the case in a
newly created database or a database that is still in Fiasco 1.x
format.

Records on disk: This is the number of records in the database file.

Records in index: This is the number of records in the active index.

Added records in RAM: This is the number of records that have been added
to the database since it was last saved.

Disk-loaded records in RAM: This is the number of records that Fiasco has
read from disk and which are now held in RAM. This value depends on
the Max. memory setting in the

project options requester
and how many

records Fiasco has been able to read so far.

fiasco 116 / 252

All records in RAM: This is the number of all records in RAM.

Changed records in RAM: This is the number of records in RAM, which have
been changed since the databases was last saved. This includes both
disk-loaded records which have been changed and added records (which
are always ‘changed’).

Deleted records in RAM: Even though it sounds paradoxical, this is the
number of disk-loaded records which have been deleted since the last
saving of the database. Fiasco holds disk-loaded records which have
been deleted in RAM in order to be able to modify the index properly
during the next saving. Added records, which are deleted later, are
not held in RAM by Fiasco.

Free RAM: This is the total available RAM in bytes.

RAM size of one record: This is the amount of RAM that is required by one
record. This is only an estimated value, because Fiasco uses pools for
memory organization.

RAM size of all records: This is simply the RAM size of one record
multiplied with All records in RAM.

Flush Records: Tries to remove as many records as possible from RAM.
Records which are counted under Added records, Changed records or
Deleted records cannot be flushed. You will have to save the database
before you can flush these.

Ok: Closes the requester.

1.189 Indices Requester

Indices Requester

The indices requester can be used to select, create new, edit or delete

indices
. It can be opened with the menuitem Database/Indices.

Index Files: Select the index here that will be used by the next
operation. Initially, the active index will be selected here. This
list will be empty if the database has never been saved yet or is
still in Fiasco 1.x format. Doubleclicking on one entry will call the
Edit function.

New: Opens the
new/edit index requester
, which will create a new index

when confirmed with Ok.

Edit: Opens the
new/edit index requester

fiasco 117 / 252

for the selected index.

Delete: Deletes the selected index. If the selected index is the last one
you will not be able to delete it.

Ok: Closes the requester and executes mall changes specified in this
requester, i.e. new indices will be built, edited indices will be
changed and indices, which have been removed from the list will be
deleted. The selected index will be made active.

Cancel: Closes the requester and ignores all changes specified in this
requester. The indices will be the same as they were before opening
this requester.

1.190 New/Edit Index Requester

New/Edit Index Requester

This requester is used to specify certain options for
indices
. It can be

opened in two ways: First, by calling New in the
indices requester
. When

you have opened the index requester this way, it will have additional
controls for index creation. The second way is to Edit an index in the
indices requester.

Name: This gadget is only present in the new index requester. It takes
the name of the index to be created.

Index Source: This gadget is only present in the new index requester.
Select an index here to be used as the model for the new index. The
new index will contain only the records that the selected index
contains. If you don’t use Index Sorting, the order of the records
will be copied. Thus, if you use neither Index Sorting nor Index
Filter a copy of the selected index will be made. The special entry
«No Index» stands for a virtual index which contains all records in a
database.

Index Filter: Clicking on the button will open the
filter requester
which

can be used to specify the criteria which Fiasco will use to decide
whether a record should be present in the index or not. This is used
when a new index is built and when a new record is added to the
database while another index is active and Automatically add new
Records is active. In other cases, the filter information is not used,
i. e. a record will be always added to the index when it is added
while this index is active.

Index Sorting: Clicking on the button will open the

fiasco 118 / 252

sort requester
. You

may specify by which fields the records of the index will be sorted.
Activate the checkbox if you want Fiasco to keep the index sorted.
Thus, Fiasco will always take care that after adding or editing
records the index is properly sorted.

Automatically add new Records: Activate this checkbox if you want Fiasco
to add all records which are added to the database to this index after
applying the Index Filter and Index Sorting. Normally, only records
are added to an index if the index was active when the record was
added.

Ok: Accepts the settings made in this requester. However, the settings
will first really become active after confirming the

indices requester
with Ok.

Cancel: closes the requester and ignores the settings.

1.191 Functions Requester

Functions Requester

In the functions requester, you may specify

user-defined functions for formulas
. The requester may be opened with the

menu item Database/Functions.

Important Note: Recursive programming is not possible with these
user-defined functions.

Functions: This list shows all functions defined for the active
project so far. If you select one, you may edit it with the other
gadgets.

Name: You have to specify the header for a function here. The header is
built of the function name and the function arguments enclosed in
parenteses. If the function takes no arguments, you have to specify an
empty pair of parenteses. Examples: min(a, b) or recordsum().

Definition: Takes the definition of the function. This is a normal
formula. The arguments specified in the function header may be
accessed like normal fields from this formula. Example for function
header min(a, b): a < b ? a : b.

New: Creates a new function and activates it for editing.

Delete: Deletes the currently selected function.

Ok: Checks all function headers and definitions for errors. If no errors

fiasco 119 / 252

were encountered, the new user-defined functions will become active.
If there are already formulas defined for the database, you will be
asked, whether you want to recompile these formulas.

Cancel: Closes the requester without any further action.

1.192 Constants Requester

Constants Requester

In this requester you may specify
user-defined constants for formulas
. It

may be opened with the menu item Database/Constants.

Constants: This list shows all constants defined for the active
project so far. If you select one, you may edit it with the other
gadgets.

Name: You have to specify the name of a constant here. For constants
names the same restrictions as for field IDs in formulas apply.

Definition: Specify here the value for the constant. It may be a numeric
value or a string enclosed in qoutes.

New: Creates a new constant and activates it for editing.

Delete: Deletes the currently selected constant.

Ok: Checks all constant names and definitions for errors. If no errors
were encountered, the new user-defined constants will become active.
If there are already formulas defined for the database, you will be
asked, whether you want to recompile these formulas.

Cancel: Closes the requester without any further action.

1.193 Goto Requester

Goto Requester

The goto requester is one of the simplest of all the Fiasco requesters.
It may be opened with

Record/Goto
and makes it possible to activate a

record using its number. Please note that record numbers may vary with
different

indices

fiasco 120 / 252

or after adding or deleting records.

Record Number: Takes the number of the record.

Ok: Activates the record with the number.

Cancel: Oh sorry, I just forgot... %-)

1.194 Field Requester

Field Requester

The field requester can be used to change the attributes of a field. Each
fieldtype has a different field requester because the gadgets of the
field requester represent the supported attributes of each fieldtype. The
supported attributes are listed with the

documentation of each field
. The

field requester will be opened if you call
Add Field
,
Edit active Field
or
Edit named Field
or double-click on a field.

If you proceed with Ok, all values will be checked for validity. If
one value cannot be used by Fiasco, a requester will explain the problem.

A small summary of the conditions: (presuming that these attributes exist)

· There must be an ID.

· Max Chars must be > 0.

· Width or height must be > 2.

If dimension values cannot be used, because other fields are too
near the field, another requester appears with Shift, Squeeze and Cancel
gadgets. Cancel does nothing other than return to the field requester.
Squeeze makes the field fit the selected space. Shift moves the field to
the left to make it fit. It is not always possible to Shift.

If you change an already existing field that stores its contents in
strings and supports MaxChars (currently

String
,
Extern
and

Datatypes
),

fiasco 121 / 252

an additional control is implemented. If you change Max Chars to a value
which does not allow to keep all strings in their original length (that
means, some strings are longer), you will be asked if you want to
truncate these strings or keep the old value.

1.195 Popup Gadget Requester

Popup Gadget Requester

This requester sets the options for the popup gagdet field attribute. It
may be only opened from the field requester with the button Predefined
Values.

Popup Gadget: Here you can activate a popup gadget for the field and
select its working mode.

Predefined Values/Value: This list is only active if you have selected
Select predefined value at Popup Gadget. Then you may specify values
here that can be later selected with the popup button. These values
will be also used in the field requester.

Predefined Values/New: Creates a new entry in the list above.

Predefined Values/Delete: Deletes the active entry in the list above.

ARexx Script: This gadget is only active if you have selected Execute
ARexx Script. Then you may specify an ARexx script that will be
executed when the popup gadget is selected.

Ok: Accepts the settings.

Cancel: Closes the requester without any further actions.

1.196 Convert Field Requester

Convert Field Requester

The convert field requester can be used to change the type of one field
without the need of an ARexx script.

Field ID: This text gadget displays the ID of the field that will be
converted. Please check here to see if you have called Convert Field
for the correct field.

Old Type: Displays the current type of the field.

New Type: Select the new type of the field here. Please note that
conversions between certain field types may cause a lose of data.
Consult the

fiasco 122 / 252

field documentation
for more information on this topic.

alternative format: Select this checkbox to active an output-format which
differs from the normal format. Please see the

field docs
whether this

gadget has any effect and if so, what.

Ok: Starts the conversion and then closes the requester. If the field
should be in use by other Fiasco systems, a requester will show you
the respective systems and give you the choice to continue and to
remove these uses or the cancel the operation.

Cancel: Simply closes the requester.

1.197 Relation Requester

Relation Requester

This is the main interface for
relation handling
in Fiasco. It may be

opened using
Field/Edit Relations
.

Type: Set here the type for the relation. See the
relation types
section

for descriptions of the types. The available types depend on the
type of the selected field. The selected type also influences the
availability of the other fields as key and real data fields.

Local Key: Select the key in the current project.

Local Real: Displays the ID of the field, whose relations are just now
edited.

Remote Key: Use this listview to select the key-field in the project that
has been specified under Related File. This listview displays only
fields that can contain the key (with same type).

Remote Real: Use this listview to select the field of the project that
has been specified under Related File and which is supposed to be the
counterpart of Real here. This field is used to read the Data, which
will be displayed in Real here. This listview only displays also
fields that look as if they could contain the data (type and max chars
must be equal).

Related File: Select the project file here relative to the directory of
the current project which contains the informations.

fiasco 123 / 252

Ok: Loads the relations. If any errors occur while loading, the requester
will be activated again, otherwise it will return to the main window.

Cancel: closes the requester without any further action.

1.198 Formula Requester

Formula Requester

This requester serves as a tool for creating formulas for Fiasco. It may
be opened from the field requester and from the search requester. After
you have opened it, you may create a formula. When you exit it with Ok,
the formula will be copied into the calling requester.

Operators: This listview displays all operators supported by Fiasco.
Clicking on one will insert it at the current cursor position in the
formula string gadget below.

Functions: This listview displays all built-in and user-defined
functions. As with all listviews in this window, clicking on one
function will insert it at the current cursor position in the formula
string gadget.

Fields: Displays all fields of the respective database. Clicking on one
field will insert it into the formula.

Constants: Displays all constants of the database. Clicking on one
constant will insert it at the current cursort position in the formula
string gadget.

Formula string gadget: Displays the formula to be edited. You may edit it
manually or with the listviews above. Clicking on one entry in any of
the listviews will insert it at the current cursor position.

Ok: Checks the formula for errors. If no errors are found, the formula
will be copied into the calling requester and the requester is closed.

Cancel: Closes the requester without any further action

1.199 Show Column Requester

Show Column Requester

This requester, which may be reached with
List/Show column
, displays the

currently hidden columns in the
list

fiasco 124 / 252

. If you select a column and click on
Ok, that column will be inserted in the list at its old position.

Field: All hidden columns are displayed here. Select the column here that
you want to be revealed.

Ok: Inserts the column and re-displays the list.

Cancel: Closes the requester.

1.200 Search Requester

Search Requester

The search requester is the main interface to Fiasco’s
search function
.

It may be opened with the menu item Compare/Search. However, there are
many other functions that use the same or a slightly differnt requester.

Mode: Select here the mode you want to use for searching. Each mode has
its own GUI displayed below in the requester. By Fields is the classic
mode in which you may specify for fields patterns. By Formula allows
you to use a

formula
to do a search.

Name: You may specify here a name under which the current search criteria
will be stored. With the select button at the right side of the gadget
you can later select these criteria again.

Mode By Fields:

Fields: This list displays all fields of the active database. Clicking on
a field will cause it to be put in the Search for listview below.
There you may specify a pattern for the field.

Search for: Here all the fields are listed which will be searched. When
you activate a field here, you may specify a search pattern and other
paramters for that field in the gadget group below. To insert a field
in this list, simply click on it in the Fields listview. To remove it
again, activate it and click on the Delete buttom.

Pattern: This string gadget takes the
search pattern
for the currently

selected field in the Search for listview. Clicking on the picker
button at the right side of the gadget will open a list with some
values that can be used as a pattern. That may be the predefined
values, the labels of a cycle field, etc.

Delete: Removes the currently selected field in the Search for listview.

fiasco 125 / 252

Blurred Search: This gadget allows you to activate the
blurred search
and

to control the tolerance. 0 searches only for exactly matching
entries, 100 searches for almost all entries.

Mode By Formula:

Formula: This gadget takes the formula for searching. A record will be
considered matching the formula when the formula returns a true value,
i.e. a value not equal 0. The picker button at the right side of the
gadget opens the

edit formula requester
that helps with creating a

formula.

Response gadgets:

Next: Initiates the search for the next matching entry and activates it.

First: Searches for the first matching entry.

Previous: Searches backwards for the next matching entry.

Cancel: Closes the requester without any further action.

1.201 Filter Requester

Filter Requester

Filters
offer the possibility of creating an overview of a group of

records. A filter creates the impression of a database that consists only
of the matching records. Fiasco uses

indices
to create a filter. Like the

sort requester
, the filter requester is used in two contexts. If you open

the filter requester using Compare/Filter, the filter function will build
and activate a filtered index according to the criteria set in the filter
requester. To turn the filter off, select the menu item

Database/Previous active index
. Another way would be to select the old

index in the
indices requester
. The created index will be based on the

active index, thus it will only contain records that the active index
contained and that match the filter criteria.

The second way to open the filter requester is by calling Index

fiasco 126 / 252

Filter in the
new/edit index requester
. The filter criteria set here will

be used only for building the filter index and when Automatically add new
Records is active, a record is added and another index is active.

Because filters use indices which are created once, records added to
the database while a filter is active will be displayed regardless of
their contents. The same rules apply to record changes.

As the filter requester is almost identical to the
search requester
,

only the different or new gadgets are explained here.

Index: This gadget is only present if you have opened the requester
using Compare/Filter. Enter the name of the index to be created here.
If the index already exists the index will be overwritten after you
have acknowledged Fiasco’s warning.

Response gadgets:

Ok: accepts the settings. If the filter requester has been opened with
Compare/Filter the index will be built immediately.

Cancel: closes the requester without any further action.

1.202 Replace Requester

Replace Requester

Most parts of the replace requester are the same as in the

search requester
. Only the changed or new gadgets are explained in this

section.

The replace requester may be opened with the menu item
Compare/Replace
.

Replace/Fields: Clicking on one field in this listview will insert it
in the Replace listview. This is very similar to the Fields and Search
for listviews above.

Replace/Replace: This listview contains all fields in which a new content
will be copied when a matching record is found. To insert a field in
this list, click on it in the Fields listview. To remove it again,
select it in the Replace listview and click on Delete. While a field
is active in this listview, you may edit the replacement settings
below.

fiasco 127 / 252

Replace/Mode: Use this cycle gadget to either select Replace by value to
insert a fixed value in the selected field above of matching records
or Replace by formula result to insert a result of a formula.

Replace/Replacement: You must either enter here a fixed value as
replacement or a formula that calculates the replacement. This depends
on the setting of the Mode cycle gadget above.

Replace/Delete: Removes a selected field from the Replace listview.

Replace/Confirm: If you want to be asked for every replacing operation,
you should select this gadget.

Response gadgets:

All: Starts the search and scans all records in the active index. If you
have selected Replace/Confirm, you are able to select for each
matching individually, whether you want to replace the value or not.
You may even break the whole search.

Next: Only replaces the value in the next matching record and activates
it.

Cancel: Closes the requester without any further action.

1.203 Count Requester

Count Requester

This requester lets you count records, which match with a patterns. More
on counting

here
. You can open this requester using
Compare/Count
.

As the count requester is almost identical to the
search requester
,

only the different gadgets are explained here.

Response gadgets:

Ok: proceeds and counts the matching records. The number will be
displayed at the end.

Cancel: closes the requester without any further action.

fiasco 128 / 252

1.204 Mark Requester

Mark Requester

Fiasco’s mark function makes it possible to distinguish specific records.
The purpose of the mark requester is to mark all records that match a
specific pattern. The mark requester may be opened with

Compare/Mark
.

As the filter requester is almost identical to the
search requester
,

only the different or new gadgets are explained here.

Response gadgets:

Ok: marks the matching records. The old record marks will be lost!

Cancel: closes the requester without any further action.

1.205 Sort Requester

Sort Requester

The sort requester is used for specifying options for sorting a database
based on fields.

Indices
are used by Fiasco to control the order of

records. The sort requester can be opened in two ways. First, you may
call

Compare/Sort
which allows you to quickly sort a Fiasco database.

This function builds a new index and activates it. The name of the index
may be specified in the Index gadget. This index will be based on the
active index, that means it will contain only those records which the
active index contains.

The other context in which the sort requester is used is the

index requester
. The sort requester will be opened when you click on the

Index Sorting gadget in the index requester. You may edit the sort
options for automatic sorting of a particular index here.

Index: This gadget only exists if the requester has been opened with
Compare/Sort. This will be the name for the newly created index. If
this name already exists the old index will be overwritten. However,
Fiasco will warn you in that case before overwriting the index.

fiasco 129 / 252

Fields: A list of all fields of the active project is displayed here.
Clicking on a field will put it in the Sort by list.

Sort by: This list displays the fields by which the project will be
sorted. The topmost field has the highest priority while sorting, i.e.
most data will be sorted according to this field. If there are entries
which contain equal data the following fields will be used. Use Delete
to remove a field from this list. The arrows can be used to move the
field in the list.

Descending: Select this gadget to sort the data from high values to low
values (i.e. Z, Y, X, ..., C, B, A)

Use Locale Settings: If you select this gadget, Fiasco will use the
current locale settings to sort alphabetical data. This will guarantee
the correct sorting of national characters like the German umlauts ä,
ö, ü, etc. However, please note, that these sorting rules differ from
country to country. Thus, a database sorted with one locale country,
may be sorted incorrectly if you change the country.

Ok: accepts the settings. If the sort requester has been opened with
Compare/Sort, the index will be immediately built.

Cancel: Closes the requester without any further action.

1.206 Database Settings Requester

Database Settings Requester

You may control certain database related functions of Fiasco here. This
requester may be opened by using

Settings/Databases
. It replaces some of

the Settings menuitems of Fiasco 1.2.

Relations/Write Relations: If this option is active, Fiasco will also
write

relations
back in their "there" projects. Otherwise, changes

made in these fields will be lost. This option should be only active
if Update Relations is also active, or when you always call

Project/Reload Rels
before saving. Otherwise you risk overwriting data

in the "there" project by invalid data in some fields of the "here"
project.

Relations/Update Relations: This checkbox determines whether
relations

are updated immediately after the input of a new key. This ←↩
requires

disk accesses which may become annoying if Fiasco has to read the data
from a floppy disk. If you deactivate this checkbox you should also

fiasco 130 / 252

deactivate Write relations, because there may be invalid data in the
project which would be written into the "there" file. If you want to
see the changes, you can update the relations using

Project/Reload Rels
.

Miscellaneous/Use ‘*’ as Synonym for ‘\#?’: Select this option to
activate the support of the asterisk as a valid search pattern. The *
then has the same meaning as #?.

Ok: Closes the requester and accepts the changes made in it.

Cancel: Closes the requester and ignores any changes.

1.207 User Interface Settings Requester

User Interface Settings Requester

This requester allows you to control certain parts of Fiasco’s user
interface. It may be opened using

Settings/User Interface
. It replaces

some of the Settings menuitems of Fiasco 1.x.

Service Window/Open on Startup: If this checkbox is checked the

service window
will be opened automatically when Fiasco is started.

Service Window/Fixed Position: Activate this option to make Fiasco open
the service window in a given position. Otherwise, Fiasco will search
for a free place on the screen to open the service window.

ARexx Scripts/Program Startup: An ARexx script specified here, will be
automatically executed after Fiasco has been started.

ARexx Scripts/Program Shutdown: An ARexx script specified here, will be
automatically executed before Fiasco will be shut down.

ARexx Scripts/Database specific startup/shutdown scripts: You may
control here, wether startup and shutdown scripts specified in the

project options
should be executed or not. Such scripts may be

specified locally for each database. Execute automatically always
executes these scripts, Ask before executing opens a requester before
executing, which leaves you the choice, whether you want to execute
the script. Execute never does not execute these scripts.

Miscellaneous/Create Icons: If this option is active, Fiasco will create
icons while saving projects.

Miscellaneous/Speech: Activate this option if you want Fiasco to use the

fiasco 131 / 252

narrator.device to "speak" certain messages.

Miscellaneous/Ask for database when started empty: If active, Fiasco
will open a file requester whenever it is started and no databases
were given to be loaded (either by project icons or by specification
on the command line).

Miscellaneous/Security Requesters: If this checkbox is active, Fiasco
will warn you before deleting any fields or records. This can prevent
the erroneous deletion and loss of data.

Miscellaneous/Cycle trough fields with Enter: Activate this option to
instruct Fiasco to activate the next field when one field has been
left by pressing Enter. This conforms to the Fiasco 1.x usage.
Starting with Fiasco 2.0, you may use the Tab key to cycle through the
fields.

Miscellaneous/Automatically activate first field: If this option is
active, Fiasco will automatically activate the first field when a new
record is selected.

Ok: Closes the requester and accepts the changes made in it.

Cancel: Closes the requester and ignores the changes.

1.208 User Menu Requester

User Menu Requester

Fiasco has the ability to create own menuitems and to put CLI programs or
ARexx scripts behind them. The defined items also may be selected with
the F-Keys as well as with the mouse. F1 to F10 correspond to the first
ten items, Shift and F1 to F10 correspond to the items 11 to 20. If you
want to define more than 20 items, you will have to select the additional
items with the mouse. Furthermore, Intuition limits the number of
definable items to 63.

The items defined in this requester may be saved using

Settings/Save Settings
.

Items: This is the list of all existing menu items. You can Add one
item and Delete one. < and > serve to change the position of the item
in the menu.

Type: allows you to indicate whether the item will call a program or an
ARexx script.

Command: Specify the program or the ARexx script here that will be
executed.

fiasco 132 / 252

1.209 Display Settings Requester

Display Settings Requester

This requester controls the display elements of Fiasco. You can open your
own screen for Fiasco and choose the fonts for the custom screen and for
the mask.

Screen/Screentype: Select here, whether you want to use a public screen
or an own custom screen.

Screen/PubScreen Name: Specify here the name of the public screen, you
want Fiasco to open its windows on. This has only effect, if you
select PublicScreen for Screentype. If you leave this gadget empty,
Fiasco will use the default public screen.

Screen/Screen Mode: You may select the display mode here for the custom
screen. Clicking on the popup gadget will open an ASL screenmode
requester. This requires asl.library version 38 or higher.

Screen/Screen Font: This gadget controls whether you want to use a custom
font for the custom screen or the Workbench screen font which is
controlled by the Font Preferences.

Screen/Custom Font: If you want to use a custom font for the custom
screen, you may select it here.

Mask Font/Mask Font: This gadget controls whether you want to use a
custom font for the mask or the system default font which is
controlled by the Font Preferences.

Mask Font/Custom Font: You may select a custom font for the mask here. It
must be fixed width.

Images/New look proportional gadgets: Activate this option to get
proportional gadets in the mask in "new look". Proportional gadgets
are used for slider fields and for the scrollbars of datatypes, var
string and listview fields. Instead of the black bars, new look
proportional gadget will be white bars with a black border at the
right and at the bottom, which makes them to appear raised.

Ok: Proceeds with resetting the display of Fiasco. If required, a new
screen is opened and so on.

Cancel: Closes the requester without any further action.

1.210 External Programs and Paths Requester

fiasco 133 / 252

External Programs and Paths Requester

This requester can be used to edit the settings related to external
programs, that Fiasco may call and the settings related to extenal paths.

Programs/Editor Program: Specify your favourite editor program here. You
may specify a %s here, which will be replaced with the file name to be
edited. The program should start synchronously. With programs like
GED, that normally start asynchronously, you should specify the
respective arguments in order to stop the program to start that way.
For GED this would be the argument sticky.

Programs/Editor Program/Stack: Specify the stack for the editor program
here. It should be normally greater than or equal 4000 bytes.

Programs/Text Viewer Program: Takes your text viewer program. This may be
More, Most or Multiview.

Programs/Text Viewer Program/Stack: Specify the stack for the text viewer
program here. It should be normally greater than or equal 4000 bytes.

Paths/Fiasco Path for Icons: The path specified here will be saved as
default tool in Fiasco database icons. Thus, clicking on a Fiasco
database icon will start the program specified here. Example:
Work:Fiasco/Fiasco

Paths/Default Database Directory: Specify here the default path for
databases. The file requesters will search for databases relative to
this directory.

Ok: Closes the requester and accepts the changes made in it.

Cancel: Closes the requester and ignores the changes.

1.211 Print Options Requester

Print Options Requester

The print options requester can be opened using Project/Options in the
print window. You may control some options for printing here. See the
Print section for more information on printing. The settings which have
been made here may be saved using the menuitems Project/Save and
Project/Save as of the print window.

Print to: Fiasco’s print function writes its data to this file. If
you want to use conventional printing, you should specify PRT: for the
printer here.

Print with ARexx: Activate this gadget if you want Fiasco to call the
ARexx script with the name ProgDir:ARexx/ARexxPrint.rexx after writing
the file. Fiasco will call the script with the file name specified in

fiasco 134 / 252

Print to as its argument. In a standard Fiasco installation, this
script calls TeX to compile the file into a DVI file and prints this.
However, you may change the script to something completely different.
If you use Print with ARexx, you must not specify PRT: in Print to. A
temporary file, e.g. T:FiascoPrint, would be the best.

Only marked records: If you activate this gadget the print function will
print only records with a mark.

1.212 Print Element Requester

Print Element Requester

You can control several options of a print element in the print window
with this requester. It appears when you add with Element/Add or edit
with Element/Edit an element. The layout of a requester depends on the in
Element/Type selected element type. See the

print
section on more

information about elements.

Field Elements:

Field: Select here the field, whose data will be inserted at the position
of the print element.

Width: The width of the print element in the print mask.

Height: The height of the print element in the print mask. Only available
for var string fields or listview fields.

Clip: If this checkbox is active, the data of the field will be clipped
if they would be larger than the size of the print element. If it is
not active, the size of the print element will be extended to show all
data. If neccessary, other elements will be shifted to the right or --
if the element needs more vertical space -- down.

Style/Bold: If selected, the field data will be printed in bold face.

Style/Italics: If selected, the field data will be printed in italics.

Style/Underlined: If selected, the field data will be printed underlined.
Note: The Bold, Italics and Underlined effect is generated by escape
sequences. It is not compatible with printing by TeX.

Style/Justification: You may select here, whether the contents of the
element will be justified to the left or right border or will be
centered in the element. Default: Left. If Clip is not active, Fiasco
may fall back to left justification when the field contents exceed the
element borders.

fiasco 135 / 252

Text Elements:

Text: The text for the element. The width of the element is adjusted
to the length of the text.

Style/Bold: If selected, the text will be printed in bold face.

Style/Italics: If selected, the text will be printed in italics.

Style/Underlined: If selected, the text will be printed underlined. Note:
The Bold, Italics and Underlined effect is generated by escape
sequences. It is not compatible with printing by TeX.

Response Gadgets:

Ok: Acceppts the settings. If certain settings are not possible or
need to be adjusted, you will be notified about that.

Cancel: Ignores all changes.

There is no requester for formfeed elements.

1.213 Formulas

Formulas

Starting with release 2.1, Fiasco supports formulas. Formulas can be used
to calculate the content of fields automatically or to do complex
searches. Formulas for fields may be specified in the

field requester
,

formulas for searches in the
search requester
. From both requesters you

have access to the
edit formula requester
. This requester can be used as

tool for creating formulas. A formula may look like this:

floor(price * vat / 100) + price

The parts a formula is built of are described in the following
sections.

fiasco 136 / 252

Constant Values

Fields

Constants

Operators

Functions

Function Reference

1.214 Constant Values

Constant Values

Constant values are defined directly in the formula. In the formula above
the 100 is a definition of a constant numeric value. You can also define
strings as constant values by specifying the string in double quotes. For
example: "Test String".

In Fiasco formulas, strings and numbers are exchangable. Whenever a
number is required and a string is available, the string will be
converted to a number. The reverse is also true when a string is required
and only a number is available.

Rules for constant values also apply to the following elements of
formulas that "return" some values. Figuratively speaking, an element of
a formula that has returned a value during calculation, is replaced by
the returned value.

The final result of a formula is, from that point of view, the value
that has finally been returned.

Boolean Values

The boolean values "true" and "false" as used in logical operations are
represented in Fiasco formulas by numbers. Numbers not equal zero
represent a true value, zero represents "false".

1.215 Fields

Fields

Fields in this context are references to fields in the database and are
replaced during the calculation by the content of the field in the
current record. If the content of a field in the formula of another field
is changed, the formula will be recalculated automatically. Fields appear
in formulas like variables in normal, mathematical formulas. A field in
the example above is price. The contents of fields of the types

fiasco 137 / 252

· String

· Date

· Time

· Extern

· Datatypes

· Var String

are returned as strings, the contents of the remaining field types
are returned as numbers. Cycle fields return the number of the selected
label and boolean fields return a 1 for a checked field and a 0 for an
unchecked field. Fields have to be specified using their IDs in the
formulas. To be recognized as fields, the field IDs may not begin with
numbers and may not contain spaces.

The elements of listview fields can be addressed with square brackets
after the field ID containing the number of the element to be used. The
number of the entry has the base 0, thus the first entry has the index
number 0, the second 1, etc. namelist[5] for example, represents the
sixth entry in the listview field with the ID namelist.

1.216 Constants

Constants

Constants have the same appearance as fields in Fiasco formulas. The
difference is that they are globally defined values that are equal for
the whole database. The

constants requester
can be used to define new

constants. vat could be a constant in the example.

1.217 Operators

Operators

Operators are the symbols that define the most important mathematical or
logical operations. An operator normally requires two operands that have
to be placed at both sides of the operator. Some operators require only
one or three operands. Operators in the example above are *, / and +.
Furthermore, operators in Fiasco formulas have evaluation priorities.
Operations with operators of higher priority are calculated before
operations with operators of lower priority. The order rule stating that
multiplications or divisions be performed before additions is an example
of operator priority.

See the table for the operators currently supported by Fiasco.

fiasco 138 / 252

+-----+----------+--------------------------+----------------------+---------------------+ ←↩

| Pri | Op. | Description | Syntax | Result ←↩
|

+-----+----------+--------------------------+----------------------+---------------------+ ←↩

| 10 | ! | Logical not | ! boolvalue | boolean value ←↩
|

| 9 | ^ | Power | number ^ exponent | number ←↩
|

| 8 | * | Multiplication | 4 * 4 | number ←↩
|

| | / | Division | 10 / 2 | number ←↩
|

| 7 | + | Addition | 2 + 3 | number ←↩
|

| | - | Subtraction | 5 - 1 | number ←↩
|

| 6 | < | Less than | value1 < value2 | boolean value ←↩
|

| | > | Greater than | value1 > value2 | boolean value ←↩
|

| | <= | Less than or equal | value1 <= value2 | boolean value ←↩
|

| | >= | Greater than or equal | value1 >= value2 | boolean value ←↩
|

| 5 | == | Equal | value1 == value2 | boolean value ←↩
|

| | != | Not equal | value1 != value2 | boolean value ←↩
|

| 4 | && | Logical and | bool && bool | boolean value ←↩
|

| | || | Logical or | bool || bool | boolean value ←↩
|

| 3 | ? : | cond. (see below) | bool ? expr. : expr. | result of one ←↩
expr. |

| 2 | numentries() number of entries in lv| numentries(fieldid) | integer ←↩
number |

| | active() | active entry of listv. | active(fieldid) | integer ←↩
number |

| | sum() | sum of listv. (see below)| sum(fieldid[,s][,e]) | number ←↩
|

| | current()| current entry (see below)| current() | integer ←↩
number |

+-----+----------+--------------------------+----------------------+---------------------+ ←↩

Conditional Operator

The conditional operator is a short version of the if-else construct
in normal programming languages. If you are familiar with the programming

fiasco 139 / 252

language ‘C’ you should already know that operator.

The operand before the question mark should result in a boolean
value. If the value is true (i. e. non-zero) the operator will be
replaced by the result of the expression after the ? and before the :. If
the boolean value is false (i. e. equal to zero) the expression after the
: will be used.

A formula that returns the larger one of two numbers would look like
that:

a > b ? a : b

Of course, you can use several conditional operators in a formula. A
formula that determines the sign of a number would look like this:

n > 0 ? "Positive" : n < 0 ? "Negative" : "Zero"

If n is greater than 0, the string Positive will be returned by the
formula. If this is not true, n will be tested, whether it is less than
0. If this is true, the string Negative will be returned. If this is not
true the number must be Zero.

Listview Sum Operator

The operator sum() can be used to calculate the sum of entries in a
listview field. Regardless of the type of the field, Fiasco will try to
sum up the data as numbers. The simple syntax of sum() requires only the
field ID of the field to be summed, for example sum(prices). You may,
however, also specify the entry at which summing should be started in a
second argument and the entry at which the calculation should be ended in
a third argument. The numbers of the entries must be specified -- like
accessing single entries of listviews with square brackets -- on base
zero, thus the first entry is entry 0, and so on. For example,
sum(prices, 2, 4) adds the third, fourth and fith entries of the listview
field with the ID prices.

Current Entry Operator

The operator current() can be only used within formulas, which are used
to calculate the values of a listview field. It returns the number of the
entry, which is currently calculated by this formula. This number is on
base zero. Thus, if the first entry of a listview is currently
calculated, current() will return 0.

This way, you are able to calculate a value across grouped listview
fields. An example is an invoice in which the single item price and the
number of items is specified in grouped listview fields and the price of
the ordered number of items is to be calculated:

singleprice[current()] * itemnumber[current()]

fiasco 140 / 252

1.218 Functions

Functions

Functions are defined by the function name and the arguments of the
function enclosed in parenteses. If a function has no arguments an empty
pair of parenteses has to be specified, nethertheless. A function may
take some arguments, do some calculations on them and return a new value.
This value will be used for the further calculations. In the example
above, floor() is a function. It takes only one argument. The argument is
the result of the calculation price * vat / 100. For a list of all
built-in functions of Fiasco, see the

function reference
. Beneath the

built-in functions of Fiasco, the user may also define own functions,
based on other formulas. Thus, you may define a function with the name

min(a, b)

that does the following:

a < b ? a : b

This function determines what number is the smallest and returns it.
If you have defined this function in the

function requester
you can use

it in all formulas of the particular database.

As calls to user-defined functions are internally resolved before
calls to built-in functions, you may replace a built-in function by a
user-defined function with the same name.

Essentially, you can change the name of a built-in function by simply
redirecting the call with a user-defined function. If you defined a
function with the name

length(a)

to do

strlen(a)

you can use a function named length() that does the same as the
function strlen().

Note:
recursive programming. Better not try it!

1.219 Function Reference

Function Reference

Fiasco currently has these built-in functions:

fiasco 141 / 252

abs()

activerecord()

asin()

acos()

atan()

ceil()

cos()

currentdate()

currenttime()

datediff()

day()

floor()

formatdate()

formattime()

hour()

left()

lg()

ln()

minute()

month()

numrecords()

printf()

rand()

right()

round()

second()

sign()

sin()

fiasco 142 / 252

sqrt()

strcat()

strcmp()

stricmp()

strlen()

strmid()

strrev()

strstr()

tan()

tolower()

toupper()

version()

year()

1.220 abs()

abs()

Name: abs() - Absolute value

Synopsis: abs(value)

Function: Removes the sign of the argument.

Arguments: value - number

Result: a positive number

1.221 activerecord()

activerecord()

Name: activerecord() - Get the number of the active record (8)

Synopsis: activerecord()

fiasco 143 / 252

Function: Returns the number of the active record. Note that the active
record is not necessarily the record of the field whose value is just
calculated by this formula.

Arguments: none

Result: a positive number

1.222 asin()

asin()

Name: asin() - Arcsine function

Synopsis: asin(value)

Function: Calculates the arcsine of a value and returns an angle in
radians. (2 pi represents a circle)

Arguments: value - must be between -1 and 1

Result: An angle between -pi/2 and pi/2

1.223 acos()

acos()

Name: acos() - Arccosine function

Synopsis: acos(value)

Function: Calculates the arccosine of a value and returns an angle in
radians. (2 pi represents a cirle)

Arguments: value - must be between -1 and 1

Result: An angle between -pi/2 and pi/2

1.224 atan()

atan()

Name: atan() - Arctangent function

fiasco 144 / 252

Synopsis: atan(value)

Function: Calculates the arctangent of a value and returns an angle in
radians. (2 pi represents a cirle)

Arguments: value

Result: An angle between -pi and pi

1.225 ceil()

ceil()

Name: ceil() - rounding

Synopsis: ceil(value)

Function: Returns the smallest whole number not less than the specified
number.

Arguments: value - real number

Result: a whole number

1.226 cos()

cos()

Name: cos() - cosine function

Synopsis: cos(angle)

Function: Calculates the cosine of an angle in radians. (2 pi represents
a cirle)

Arguments: angle - Angle in radians.

Result: The cosine of the angle. Between -1 and 1

1.227 currentdate()

currentdate()

fiasco 145 / 252

Name: currentdate() - get the current date

Synopsis: currendate()

Function: Returns the current date as a string in the format of the
locale prefs.

Arguments: None

Result: A date string

1.228 currenttime()

currenttime()

Name: currenttime() - get the current time

Synopsis: currentime()

Function: Returns the current time as a string in the format of the
locale prefs.

Arguments: None

Result: A time string

1.229 datediff()

datediff()

Name: datediff() - Get the time between two dates

Synopsis: datediff(date1, date2)

Function: Calculates the time span in days between the two given dates.
If one date has an unspecified element (shown as ??) the element of
the other date will be used. Always the time span from date1 to date2
will be calculated. If date2 is before date1, a negative result will
be returned.

Arguments: date1, date2 - two date strings

Result: Number of days between the two dates.

1.230 day()

fiasco 146 / 252

day()

Name: day() - Get the day of a date

Synopsis: day(datestring)

Function: Parses a date string in the format of the locale prefs and
returns the day of the date.

Arguments: datestring - A date string

Result: The day of the date string.

1.231 floor()

floor()

Name: floor() - rounding

Synopsis: floor(value)

Function: Returns the largest whole number not greater than the specified
number.

Arguments: value - real number

Result: a whole number

1.232 formatdate()

formatdate()

Name: formatdate() - create a date string

Synopsis: formatdate(year, month, day)

Function: Formats the specified date to a date string that uses the
format specified in the locale prefs. All other date functions of
Fiasco use this format.

Arguments: year, month, day - the elements of the date

Result: a formatted date string.

fiasco 147 / 252

1.233 formattime()

formattime()

Name: formattime() - create a time string

Synopsis: formattime(hour, minute, second)

Function: Formats the specified time to a time string that uses the
format specified in the locale prefs. All other time functions of
Fiasco use this format.

Arguments: hour, minute, second - the elements of the time

Result: a formatted time string.

1.234 hour()

hour()

Name: hour() - Get the hour of a given time

Synopsis: hour(timestring)

Function: Parses a time string in the format of the locale prefs and
returns the hour of it.

Arguments: timestring - a time string

Results: The hour in 24 hour format

1.235 left()

left()

Name: left() - Get the left part of a string

Synopsis: left(string, length)

Function: Returns the left part of a string with the specified length. If
length is greater than the string itself, the whole string will be
returned.

Arguments: string - string to be scanned
length - length of the part to be returned

Result: A substring of string

fiasco 148 / 252

1.236 lg()

lg()

Name: lg() - base 10 logarithm

Synopsis: lg(value)

Function: Returns the logarithm on the base 10.

Arguments: value - a posititive real number

Result: a real number

1.237 ln()

ln()

Name: ln() - natural logarithm

Synopsis: ln(value)

Function: Returns the logarithm on the base e.

Arguments: value - a posititive real number

Result: a real number

1.238 minute()

minute()

Name: minute() - Get the minute of a time

Synopsis: minute(timestring)

Function: Parses a time string in the format of the locale prefs and
returns the minute of it.

Arguments: timestring - a time string

Results: a whole number

fiasco 149 / 252

1.239 month()

month()

Name: month() - Get the month of a date

Synopsis: month(datestring)

Function: Parses a date string in the format of the locale prefs and
returns the month of the date.

Arguments: datestring - A date string

Result: The month of the date string.

1.240 numrecords()

numrecords()

Name: numrecords() - Get the number of records (8)

Synopsis: numrecords()

Function: Returns the number of records in the active index in the
database.

Arguments: None.

Result: The number of records. >= 0

1.241 printf()

printf()

Name: printf() - Create a formatted string

Synopsis: printf(formatstring, ...)

Function: Formats the data specified as arguments according to the
formatting rules specified in formatstring. Formatstring is a string,
that may contain control sequences that will be replaced by formatted
data that have been specified as arguments. All control sequences are
introduced by a percent sign. A control sequence has the format
(fields in brackets are optional):
%[flags][width][.precision]type
The arguments are associated with the
control sequences using the order.

fiasco 150 / 252

Flags: can be one of the following:
- the result will be left-justified within the width
+ If specified, a plus sign will be added before a positive number
0 The with of the field will be padded with zeros if it is a
number

Width: The width is the minimum number of characters that this formatting
item should use.

Precision: A whole number. The precision of the output, depending of the
type of the control sequence:
d,u,o,x,X - minimum number of digits
e,f - number of digits after of decimal point
g - maximum number of significant digits
s - maximum length of the string to be copied

Type: can be one of the following:
c - One character of the specified ASCII value will be generated.
d - A signed integer value will be generated.
u - An unsigned integer value will be generated.
o - An octal number will be generated.
x - A hexadecimal number will be generated. The characters a-f will be ←↩

lowercase.
X - A hexadecimal number will be generated. The characters
a-f will be uppercase.
e - A fractional number with the format d.dde-ddd will be generated.
f - A fractional number with the format dd.dd will be generated.
g - A fractional number will be generated. The format will
be chosen according to the magnitude of the number.
s - A string will be inserted.

Arguments: The formatstring and the further arguments for the
formatstring.

Result: A formatted string

1.242 rand()

rand()

Name: rand() - random number generator

Synopsis: rand()

Functions: Returns a random number.

Arguments: none

Result: A fractional random number. 0.0 <= r < 1.0.

fiasco 151 / 252

1.243 right()

right()

Name: right() - Get the right part of a string

Synopsis: right(string, length)

Function: Returns the right part of a string with the specified length.
If length is greater than the real length of the string, the whole
string will be returned.

Arguments: string - string to be scanned
length - length of the part to be returned

Result: A substring of string

1.244 round()

round()

Name: round() - rounding

Synopsis: round(value)

Function: Returns a mathematically rounded number of value.

Arguments: value - real number

Result: a whole number

1.245 second()

second()

Name: second() - Get the second of a time

Synopsis: second(timestring)

Function: Parses a time string in the format of the locale prefs and
returns the second of it.

Arguments: timestring - a time string

Results: a whole number

fiasco 152 / 252

1.246 sign()

sign()

Name: sign() - sign of a number

Synopsis: sign(value)

Function: Checks the sign of a number

Arguments: value - a number

Result: -1 if value is negative, 1 if positive, 0 if zero

1.247 sin()

sin()

Name: sin() - sine function

Synopsis: sin(angle)

Function: Calculates the sine of an angle in radians. (2 pi represents a
cirle)

Arguments: angle - Angle in radians.

Result: The sine of the angle. Between -1 and 1

1.248 sqrt()

sqrt()

Name: sqrt() - Square root

Synopsis: sqrt(value)

Function: Returns the square root of the specified number.

Arguments: value - Must be >= 0.

Result: a positive number

fiasco 153 / 252

1.249 strcat()

strcat()

Name: strcat() - Concatenate strings

Synopsis: strcat(string1, string2, ...)

Function: Concatenates two or more strings to one string, that is
returned.

Arguments: string1 ... stringn - The strings to be concatenated. At least
two, no maximum.

Result: The concatenated string.

1.250 strcmp()

strcmp()

Name: strcmp() - Compare two strings

Synopsis: strcmp(string1, string2)

Function: Checks whether the specified strings are equal. The comparision
is done case sensitive, i.e. also the case of the strings has to be
equal when the two strings should be considered equal. A case
insensitive comparision can be done with

stricmp
.

Arguments: string1, string2{} - strings to be compared

Result: 0 if both strings are equal, -1 if string1 < string2 and +1 if
string1 > string2

1.251 stricmp()

stricmp()

Name: stricmp() - Compare two strings

Synopsis: stricmp(string1, string2)

Function: Checks, whether the specified strings are equal or not. The
comparision is done case insensitive, i.e. the case of the strings

fiasco 154 / 252

does not matter during comparision. A case sensitive comparision can
be done with

strcmp
.

Arguments: string1, string2{} - strings to be compared

Result: 0 if both strings are equal, -1 if string1 < string2 and +1 if
string1 > string2

1.252 strlen()

strlen()

Name: strlen() - Length of a string.

Synopsis: streln(string)

Function: Returns the length in characters of the specified string.

Arguments: string - String to be measured

Result: Length of the string in characters

1.253 strmid()

strmid()

Name: strmid() - Copy a part of a string

Synopsis: strmid(string, start, length)

Function: Returns the specified section of the specified string.

Arguments: string - String to be scanned
start - Start of the substring, counting from zero.
length - Length of the string to be returned.

Result: Substring of the specified string

1.254 strrev()

fiasco 155 / 252

strrev()

Name: strrev() - Create a reverse string

Synopsis: strrev(string)

Function: Returns a string those characters have the reverse order of the
argument. Calling strrev(strrev(string)) has effectively no effect.

Arguments: string - string to be reversed

Result: reversed string

1.255 strstr()

strstr()

Name: strstr() - Search for a string in a string

Synopsis: strstr(string, substring)

Function: Searches for substring in string and returns the position at
which it was found.

Arguments: string - String to be searched
substring - String for which will be searched

Result: Position at which substring was found. Counting from zero, thus 0
indicates the first character. Returns -1 if the string was not found.

1.256 tan()

tan()

Name: tan() - Tangent function

Synopsis: tan(angle)

Function: Calculates the tangent of an angle in radians. (2 pi represents
a cirle)

Arguments: angle - Angle in radians.

Result: The tangent of the angle.

fiasco 156 / 252

1.257 tolower()

tolower()

Name: tolower() - Convert a string to lowercase

Synopsis: tolower(string)

Function: Converts all characters in the string to lowercase.

Arguments: string to be converted

Result: string with only lowercase characters

1.258 toupper()

toupper()

Name: toupper() - Convert a string to uppercase

Synopsis: toupper(string)

Function: Converts all characters in the string to uppercase.

Arguments: string to be converted

Result: string with only uppercase characters

1.259 version()

version()

Name: version() -Get the Fiasco version

Synopsis: version()

Function: Returns the internal version of Fiasco. For Fiasco 2.2, this is
8.

Arguments: none

Result: Fiasco’s internal version as whole number

fiasco 157 / 252

1.260 year()

year()

Name: year() - Get the year of a date

Synopsis: year(datestring)

Function: Parses a date string in the format of the locale prefs and
returns the year of the date.

Arguments: datestring - A date string

Result: The year of the date string.

1.261 The ARexx Port

The ARexx Port

ARexx is a macro programming language capable of connecting different
programs. ARexx has been developed by William S. Hawes and has been part
of the system software since OS 2.0.

The ARexx port of Fiasco may be accessed externally from a script or
ARexx scripts can be called by Fiasco. For example: you can specify an
ARexx script in the command attribute of a button and then click on the
button -- this script is then executed and may do certain operations.

For Fiasco 2.1, Fiasco’s ARexx port has been completely revised to be
more powerful and style guide compliant. ARexx scripts written for Fiasco
1.x or 2.0x, will continue to work, though. "Old" scripts may be
recognized with the command Address FIASCO at the beginning of the script
and the commands with the prefix F_ before the Fiasco commands. The old
commands are no longer documented. See the 2.0x versions of this document
for documentation of these commands. Please also note, that you cannot
mix old and new scripts. Fiasco ARexx scripts must use either completly
the new commands or completely the old commands.

Scripts that conform to the new standard do not address the port with
the name FIASCO. The new ARexx port assigns for each database an own
ARexx port. The names of the ports are FIASCO.n, where n is a number. If
the script is directly started by Fiasco (e.g. by clicking on a button)
the script will be addressed automatically to the ARexx port of the
corresponding database. Thus, no additional Address command is required.
More about accessing Fiasco’s ARexx port in the section

Accessing the Port
.

Nearly all operations that can be used with Fiasco’s GUI can be used
with the ARexx commands. Additionally, Fiasco’s functions may be extended
with ARexx. There are many ARexx commands which perform exactly the same

fiasco 158 / 252

as their GUI "brothers". In other words, certain commands may open a
requester under certain conditions. There are also commands which always
open a requester.

Style Conventions

Accessing the Port

Arguments of Commands

Results of Commands

Debugging ARexx Scripts
ARexx Command Reference

by alphabet

by function

1.262 Style Conventions

Style Conventions

This section documents some stylistic conventions for Fiasco ARexx
scripts. Many are not required, even though they are recommended.

ARexx allows to chose an own suffix for application specific scripts.
For Fiasco 2.1 ARexx scripts, the suffix .frx should be used instead of
.rexx.

Fiasco ARexx scripts should always lock Fiasco’s GUI with the command

LockGUI
to avoid any influences by the user. Thus, the ARexx script

should have extensive error checking to avoid the case that the script
was stopped because of an error and the user is locked out of Fiasco’s
GUI. The script dummy.frx of the Fiasco distribution contains already all
neccessary checking and can be used as basis for new ARexx scripts.

1.263 Accessing the Port

Accessing the Port

As of Fiasco 2.1, ARexx scripts started by Fiasco are already addressed
to the ARexx port of the Fiasco database from that the script has been
started. Thus, you do not need to worry about the name of the ARexx port
you have to access. If you want to address an ARexx script to the ARexx
port of another program, and later return to Fiasco’s ARexx port, two
techniques are available:

fiasco 159 / 252

If you address the script to another ARexx port, you may later use
the command Address without any arguments to return to the previously
active ARexx port, which was, if the script was started by Fiasco, the
port of a Fiasco database. For example:

/* A script that was started by Fiasco */

Address MULTIVIEW.1

/* Do something with MultiView */

Address

/* You are now addressed to Fiasco again */

Another way is to save the name of the active ARexx port in a variable
and to later use Address with that variable to return to the original
port. You have to use Address Value Variable to make ARexx recognize that
you have specified a variable name and not a literal port name. The
advantage is that you may address several ports before going back to the
original port. The other method forgets about the Fiasco port after the
second Address Port command. For example:

/* A script that was started by Fiasco */

fiasco_port = address()

Address MULTIVIEW.1

/* Do something with MultiView */

Address Value fiasco_port

/* You are now addressing Fiasco again */

The script dummy.frx of the Fiasco distribution already initializes a
variable with the name fiasco_port to the correct ARexx port.

Getting the Port of the active Project

If you want to start a Fiasco 2.1 ARexx script from outside Fiasco, e.g.,
by double clicking on a project icon with rx as default tool, the script
has to search for the port of the active Fiasco database.

This can be done this way:

/* Get a list of all available ports */

ports = show("Ports")

/* Search for a port of Fiasco */

do i = 1 to words(ports)

fiasco 160 / 252

if abbrev(word(ports, i), "FIASCO.") then
do

/* A port of Fiasco has been found.

* Now query Fiasco to return the port

* name of the active database.

*/

Address Value word(ports, i)

GetAttr Project Name Active ARexx

Address Value Result

break
end

end

This procedure is already part of the script dummy.frx.

1.264 Arguments of Commands

Arguments of Commands

Fiasco interprets the data after the command as arguments or parameters.
Fiasco uses ReadArgs() of the dos.library to parse the parameters. Thus,
the same argument conventions used by CLI commands apply to Fiasco.
Arguments are separated by white spaces. If single arguments are supposed
to contain spaces, simply enclosing them in quotation marks does not
work. This is because ARexx swallows all quotation marks. To avoid this
you should enclose quotation marks within additional, single quotation,
e.g. Open ’ "Test File" ’. You have to use the single quotation marks in
the outer position because Fiasco (ReadArgs()) can only handle double
quotation marks. Be sure not to use variables inside of any quotations.
To use them you have to close the outer quotation, write the variable and
open the quotation again, if required. These issues do not apply for
arguments which have the /F modifier.

Results of Commands

1.265 Results of Commands

Results of Commands

If a command returns a value, this is normally stored in the variable
Result. To use Result, you have to put the line Options Results at the
beginning of a script. The script dummy.frx already does that. A value
returned in Result may be also redirected to another variable. To do
that, you have to specify the argument Var followed by the name of the
variable with the arguments of the command. Note: If you call commands
with the same Var argument in sequence and you do not specify the

fiasco 161 / 252

argument in quotes, ARexx will replace at the second command the variable
name by the result of the first command. Commands that return more
complex results return them as stem variables. If you use such commands,
you have to specify a name for the variable to be set. If the command
returns a list of a variable number of items, the values of the items
will be returned in stem.1 . . . stem.n. stem.count will contain the
number of items returned.

Fiasco only returns a result in the case of success. Success is
indicated by the variable rc, which is always set after the execution of
a command. 0 means success, 5 is -- by definition -- a warning, 10 an
error and 20 a fatal failure.

Starting with Fiasco 2.0, Fiasco supports a special ARexx variable
named FIASCO.LASTERROR, which will be set on failure of a Fiasco ARexx
command.

The error codes that may be returned by Fiasco are documented in
the appendix

Error Codes
.

The ARexx command
Fault
can be used to convert an error code into

human-readable text.

Debugging ARexx Scripts

1.266 Debugging ARexx Scripts

Debugging ARexx Scripts

Fiasco has additional features to make debugging of ARexx scripts as easy
as possible. Whenever a Fiasco command fails to work, Fiasco will return
in the variable rc a number not equal zero. Furthermore, the special
variable Fiasco.LastError will be set to a Fiasco error code. If you use
error signals, the ARexx script may catch the error and display a
comfortable requester with the error using Fiasco’s ARexx port. An
example for this is the script dummy.frx in the Fiasco distribution.

One step further goes the ARexx-Debug function of Fiasco. You can
activate that function by selecting the menu item

Control/ARexx Debug
.

Whenever now a Fiasco ARexx command fails, Fiasco will suspend the
execution of the ARexx script and display a requester that explains the
error, shows the correct command template and gives you the possibility
to open the AmigaGuide help for the ARexx command. This is done if you
click on Help. The other buttons Continue and Ignore Error continue the
script, while Continue sets rc to the error code and Ignore Error sets rc
to zero, making the script assume, that the command has worked
successfully.

fiasco 162 / 252

1.267 ARexx commands by alphabet

ARexx commands by alphabet

Command index by function

ActivateDBWindow

ActivateField

ActiveIndex

ActiveRecord

AddLVFieldEntry

AddRecord

CalculateFormula

Clear

CloneRecord

Close

CloseListWindow

CloseServiceWindow

ConvertField

CopyRecord

CountRecords

CreateField

CutRecord

DeleteAllRecords

DeleteConstant

DeleteLVFieldEntry

DeleteRecord

Export

Fault

fiasco 163 / 252

Filter

Find

FlushRecords

GetAttr

GetConstant

GetField

GetRecordMark

HideProject

Import

LoadDTFieldObject

LockGUI

MarkMatch

MarkRecord

MenuControl

MoveRecord

New

NewSearchInfo

Open

OpenListWindow

OpenServiceWindow

PasteRecord

Progress

Quit

ReadSettings

RecompileFormulas

RequestChoice

RequestField

RequestFile

RequestNumber

fiasco 164 / 252

RequestString

ResetStatus

RevealProject

Save

SaveAs

SaveSettings

SetAttr

SetConstant

SetField

SetMode

SetSearchField

SetStatus

Sort

UnlockGUI

1.268 ARexx commands by function

ARexx commands by function

Command index by alphabet
Records

ActiveRecord

AddRecord

CloneRecord

CopyRecord

CountRecords

CutRecord

DeleteAllRecords

DeleteRecord

fiasco 165 / 252

PasteRecord
Record data

AddLVFieldEntry

DeleteLVFieldEntry

SetField

GetField

GetRecordMark

MarkRecord

MoveRecord
Index

ActiveIndex
Mask

ConvertField

CreateField

GetAttr

SetAttr
Searching / Sorting

Filter

Find

MarkMatch

NewSearchInfo

SetSearchField

Sort
Databases / Projects

Clear

Close

GetAttr

New

Open

fiasco 166 / 252

Quit

Save

SaveAs

SetAttr

SetMode
GUI

ActivateDBWindow

ActivateField

LockGUI

UnlockGUI

OpenListWindow

OpenServiceWindow

CloseListWindow

CloseServiceWindow

HideProject

LoadDTFieldObject

MenuControl

Progress

RequestChoice

RequestField

RequestFile

RequestNumber

RequestString

ResetStatus

RevealProject

SetStatus
Data Exchange

Export

fiasco 167 / 252

Import
Formula Support

CalculateFormula

RecompileFormulas

SetConstant

GetConstant

DeleteConstant
Settings

ReadSettings

SaveSettings
Miscellaneous

Fault

FlushRecords

1.269 ActivateDBWindow

ActivateDBWindow

Name: ActivateDBWindow -- Activate a database’s window (8)

Synopsis: ActivateDBWindow Project/K
RC = Success

Function: Activates the mask window of the specified database. The
user’s input focus will change to this window. This has no effect on
the working of the calling ARexx script. If the database is hidden,
this command does nothing.

Arguments: Project - Name of database to be activated.

Results: RC - Success

1.270 ActivateField

ActivateField

fiasco 168 / 252

Name: ActivateField - Activate a field in the mask.

Synopsis: ActivateField FieldID/A
RC = Success

Function: Activates the field with the specified ID in the mask. Only
fields, which appear as a string or longint gadget may be activated.
If project or window is not active, the field cannot be activated.
This command may be only called in record mode.

Arguments: FieldID - ID of the field to be activated.

Results: RC - Zero if the field has been activated.

1.271 ActiveIndex

ActiveIndex

Name: ActiveIndex -- Control the active index

Synopsis: ActiveIndex Index/K,Next/S,Prev/S,NoHistory/S,Force/S,Var/K
RC = Success
Result = Active Index

Function: This command controls the active index. You may specify an
index by name or activate the next or previous index in the

index history
. The name of the newly activated index will be returned.

If you do not specify any of Index, Next or Prev, only the name of the
active index will be returned.

Arguments: Index - Activate specified index.
Next - Activate next index in history.
Prev - Activate previous index in history.
NoHistory - Do not track this change in the index history.
Force - Suppress all warnings.

Results: RC - Success. Result - Name of the now active index.

1.272 ActiveRecord

ActiveRecord

Name: ActiveRecord -- Control the active record

Synopsis: ActiveRecord Record/K/N,First/S,Last/S,Next/S,Prev/S,Var/K

fiasco 169 / 252

RC = Success
Result = New active record

Function: With ActiveRecord you may control the active record in the
addressed database. You may activate a record specified by record
number, the first, the last or the next or the previous record
relative to the currently active record. The number of the new active
record will be returned. If you do not specify any of the five first
arguments, only the number of the active record will be returned and
the position won’t be changed. This command may be only called in
record mode.

Arguments: Record - Activate specified record.
First - Activate first record.
Last - Activate last record.
Next - Activate the record after the currently active one.
Prev - Activate the record before the currently active one.

Results: RC - Success
Result - Number of now active record.

1.273 AddLVFieldEntry

AddLVFieldEntry

Name: AddLVFieldEntry - Add an entry to a listview field

Synopsis: AddLVFieldEntry FieldID/A,Record/K/N,ListEntry/K/N
RC = Success

Function: Adds a new entry after the specified entries of the specified
listview field. If no entry is specified, the entry will be added as
the last entry. It will contain the Initial Content set in the field
requester. To change the content, use

SetField
. This command may be

only called in record mode.

Arguments: FieldID - ID of listview field
Record - Number of record to be changed
ListEntry - Number of entry after which the entry will be added.
Counting from 1. 0 for adding an entry at the top of the list.

Results: RC - Success

1.274 AddRecord

fiasco 170 / 252

AddRecord

Name: AddRecord - Add a new record to a database

Synopsis: AddRecord Record/K/N,Inactive/S,Var/K
RC = Success
Result = Record Position

Function: Creates a new record and adds it to the addressed database. The
record will contain the initial values. This command may be only
called in record mode.

Arguments: Record - Record after which the new record will be inserted
into the database. Please note that Fiasco may choose another position
for the record. This may be for instance with automatic sorting the
case. If not specified, the record will be inserted after the active
one.
Inactive - Record will not be activated.

Results: RC - Success
Result - The real position of the new record.

1.275 CalculateFormula

CalculateFormula

Name: CalculateFormula - Calculates a formula.

Synopsis: CalculateFormula Formula/A,Record/K/N,Var/K
RC = Success
Result = Result of calculation

Function: Calculates a formula and returns the result. If fields are
referenced in the formula, the field values of the current or the
specified record in the addressed database will be used. This command
may be only called in record mode.

Arguments: Formula - Formula to be calculated.
Record - Record to be used as current one for calculation.

Results: RC - Success.
Result - Result of calculation.

1.276 Clear

Clear

fiasco 171 / 252

Name: Clear -- Clear a project

Synopsis: Clear Force/S
RC = Success

Function: Deletes all data in the addressed project. It will be in a
state much like after a New. If you do not specify Force, this
command does exactly the same as

Project/Erase
. That means, it is

possible, that a requester opens, which asks you whether you want to
save the current project before proceeding or cancel. To prevent
this, specify the Force parameter. This will suppress all warnings.

Arguments: Force - Suppress all warnings.

Results: RC - Not equal zero, if user cancelled warning requester.

1.277 CloneRecord

CloneRecord

Name: CloneRecord -- copy a record

Synopsis: CloneRecord Record/K/N,To/K/N
RC = Success

Function: Creates an exact copy of the active or specified record and
inserts it at the specified position in the active index. May also
affect other indices. This command may be only called in record mode.

Arguments: Record - Number of record to be cloned.
To - Number of record after which the new record will be
inserted.

Results: RC - Success

1.278 Close

Close

Name: Close -- Close a database project

Synopsis: Close Force/S
RC = Success

fiasco 172 / 252

Function: Closes the addressed project. If you do not specify Force, this
command does exactly the same as

Project/Quit
. That means, it is

possible, that a requester opens, which asks you whether you want to
save the current project before proceeding or cancel. To prevent
this, specify the Force parameter. This will suppress all warnings.

Arguments: Force - Suppress all warnings.

Results: RC - Not equal zero, if user cancelled the warning requester.

1.279 CloseListWindow

CloseListWindow

Name: CloseListWindow -- Close the list window

Synopsis: CloseListWindow

Function: Closes the list window of the currently addressed project. If
it is already closed, nothing will be done.

Arguments: None.

Results: None.

1.280 CloseServiceWindow

CloseServiceWindow

Name: CloseServiceWindow - Close the service window

Synopsis: CloseServiceWindow

Function: Closes the
service window
, if it is not already closed.

Arguments: None.

Results: None.

fiasco 173 / 252

1.281 ConvertField

ConvertField

Name: CovertField - Change the type of a field

Synopsis: ConvertField ID/A,NewType/A,Listview/S,AltFormat/S
RC = Success

Function: Changes the type of the specified field. You cannot convert
text, button or bar fields. The command may be only called in mask
mode.

Arguments: ID - ID of the field.
NewType - New type of the field (e.g. String).
Listview - Determines, wether the field becomes a listview or not.
AltFormat - Specify if you want to get an alternative format.

Results:

1.282 CopyRecord

CopyRecord

Name: CopyRecord -- Copy a record to the clipboard

Synopsis: CopyRecord Record/K/N,Unit/K/N
RC = Success

Function: Copies the active or specified record to the clipboard. This
command may be only called in record mode.

Arguments: Record - Number of record to be copied. If not specified, the
active record will be copied.
Unit - Number of clipboard unit. Default: 0

Results: RC - Success

1.283 CountRecords

CountRecords

Name: CountRecords - Get the number of records.

Synopsis: CountRecords Var/K
RC = Success

fiasco 174 / 252

Result = Number of records

Function: Returns the number of records in the active index of the
addressed database. This command may be only called in record mode.

Arguments:

Results: RC - Success
Result - Number of records in the active index.

1.284 CreateField

CreateField

Name: CreateField - Create a field

Synopsis: CreateField Type/A,Listview/S,ID/A
RC = Success

Function: Creates a new field in the addressed database. The attributes
will contain default values. It will be both in list and mask hidden.
To change the attributes for your own needs and to make it visible,
you may use the command

SetAttr
. This command may be only called in

mask mode.

Arguments: Type - Type of field.
Listview - Specifiy, if field will get a listview field.
ID - ID of new field. The command will fail if the ID already exists.

Results: RC - Success.

1.285 CutRecord

CutRecord

Name: CutRecord -- Cut a record to the clipboard

Synopsis: CutRecord Record/K/N,Unit/K/N,Force/S
RC = Success

Function: Copies the active or specified record to the clipboard and
removes it from the active index. This command may be only called in
record mode.

fiasco 175 / 252

Arguments: Record - Number of record to be cut. Default: active record.
Unit - Number of clipboard unit. Default: 0
Force - Suppress all warnings.

Results: RC - Success

1.286 DeleteAllRecords

DeleteAllRecords

Name: DeleteAllRecords -- Remove all records

Synopsis: DeleteAllRecords Force/S
RC = Success

Function: Removes all records from the active index of the addressed
database. If you do not specify the Force parameter, this command does
exactly the same as Record/Remove all. That means, that a requester
may show up, which will ask you, whether you really want to remove all
records. To prevent this behavior, specify Force. This command may be
only called in record mode.

Arguments: Force - Suppress all warnings

Results: RC - Success

1.287 DeleteConstant

DeleteConstant

Name: DeleteConstant - Delete a constant (7)

Synopsis: DeleteConstant Name/A
RC = Success

Function: Deletes the specified constant in the addressed database. If a
constant of the specified name does not exist, an error will be
returned. Constants are most commonly used in Fiasco formulas, but
may be also used for other purposes. The user may view and change the
constants of a database using the

Constants requester
.

Arguments: Name - Name of the constant to be deleted.

Results: RC - Success.

fiasco 176 / 252

1.288 DeleteLVFieldEntry

DeleteLVFieldEntry

Name: DeleteLVFieldEntry - Delete a listview entry

Synopsis: DeleteLVFieldEntry FieldID/A,Record/K/N,ListEntry/A/N
RC = Success

Function: Deletes the specified entry in a listview field. This command
may be only called in record mode.

Arguments: FieldID - ID of a listview field
ListEntry - Number of the entry in the listview to be deleted
Record - Number of the record, in which the entry will be deleted. If
you omit this argument, the active record will be used.

Results: RC - Success

1.289 DeleteRecord

DeleteRecord

Name: DeleteRecord -- Delete a record

Synopsis: DeleteRecord Record/K/N,Force/S
RC = Success

Function: Removes the active or specified record from the active index.
The the active record is remove, another record will be activated. If
you do not specify the Force parameter, this command does exactly the
same as Record/Remove. That means, that a requester may show up, which
will ask you, whether you really want to remove this record. To
prevent this behavior, specify Force. This command may be only called
in record mode.

Arguments: Record - Record to be deleted. The active one will be used if
not specified.
Force - No warnings.

Results: RC - Success

1.290 Export

fiasco 177 / 252

Export

Name: Export -- Export a database

Synopsis: Export File/A,RecStart=RS/K,RecEnd=RE/K,RecSep=RP/K,
FieldStart=FS/K,FieldEnd=FE/K,FieldSep=FP,FirstRecIDs/K,
MarkedOnly/S
RC = Success

Function: Calls the export function of Fiasco. See the Import/Export
chapter for more information about exporting. If you do not specify a
parameter, it will be empty.

Arguments: File - File to write
RecStart,RecEnd,RecSep,FieldStart,FieldEnd,FieldSep - structure parameters
LVEntrySep - structure parameter for listview fields
FirstRecIDs - First Record will contain field IDs
MarkedOnly - Exports only marked records

Results: RC - Success

1.291 Fault

Fault

Name: Fault -- Convert an error code to text

Synopsis: Fault ErrorCode/N,Var/K
RC = Success
Result = Error text

Function: Converts a Fiasco error number as found in FIASCO.LASTERROR
into a human-readable format. It will be localized. Because
FIASCO.LASTERROR can also return Amiga DOS error codes, this function
also handles these codes.

Arguments: ErrorCode - Fiasco error code

Results: RC - Success.
Result - Localized error text.

1.292 Filter

Filter

fiasco 178 / 252

Name: Filter - Create a filtered index

Synopsis: Filter SearchInfo/K/A,Index/K
RC = Success

Function: Creates a filter according to the search criteria specified in
the search info. It will be activated after it has been created. This
command may be only called in record mode.

Arguments: SearchInfo - Name of search info to use.
Index - Name of index to use. Default: ARexxFilter.fidx.

Results: RC - Success.

1.293 Find

Find

Name: Find - Search for data

Synopsis: Find SearchInfo/K/A,Record/K/N,Reverse/S,All=Stem/K,Var/K
RC = Success
Result = Found Record

Function: Searches for a pattern that is specified in the SearchInfo.
This search info may be created with the commands

NewSearchInfo
and

SetSearchField
. This command has two modes: You may search for a

single matching record. In that mode you may specify the Record after
which the search will begin. The number of the next matching record or
of the previous matching record, if Reverse was specified, will be
returned in Result. By calling that command again with the Record
argument set to the last match, you may search for the next match. See
the example for the use of this mode. The second mode allows you to
search the whole database at one time. If you specify the name of a
stem variable after the keyword All, this function will search the
whole database and store the record numbers of the matches in the stem
elements stem.1, . . . stem.n. The number of matches will be stored in
stem.count. Important: Do not use that mode if a very large number of
matches is predictable. In that case, the first mode is faster and
more memory efficient. More about searching with ARexx can be found
in the section

Searching with ARexx
. This command may be only

called in record mode.

Arguments: SearchInfo - The name of the search info to use.
Record - Number of record after which the search will begin.
Mutually exclusive to All.

fiasco 179 / 252

Reverse - Search the database backwards.
All - Search the whole database once and store all matches in the
specified stem variable. Mutually exclusive to Record.

Results: RC - Zero if a match has been found
Result - Number of found record

Example:

/* Find-Example.frx */

/* Create a new search info */

NewSearchInfo Name "ARexxSI"

/* Set the search info to search for the first record

* in which the field with the ID Test is not empty

*/

SetSearchField SearchInfo "ARexxSI" FieldID "Test" Pattern "?#?"

rc = 0
startrecord = 0

/* Continue searching until nothing is found */

do while rc = 0

Find SearchInfo "ARexxSI" Record startrecord Var "startrecord"

if rc = 0 then
do

/* The number of the match will be

* stored in startrecord. Now do something

* with it.

*/

say startrecord
end

end

/* All records done */

1.294 FlushRecords

FlushRecords

Name: FlushRecords - Clean up memory (7)

fiasco 180 / 252

Synopsis: FlushRecords

Function: Tries to free as much memory as possible. This is done by
removing records from ram, which can be reloaded from disk.

Arguments: None.

Results: None.

1.295 GetAttr

GetAttr

Name: GetAttr -- Get an Fiasco attribute

Synopsis: GetAttr Object/A,Name/K,Attribute,Stem/K,Var/K
RC = Success
Result = Attribute value

Function: Reads the specified attribute and returns it.

Arguments: Object - Object type to be examined.
Name - Some object types require a name to be specified.
Attribute - Name of attribute to be returned.
Stem - The attributes of an object will be returned in a stem variable.

Results: RC - Success.
Result - Value of the requested attribute.

Objects: Application - Data related to Fiasco.
Projects - Returns all the open databases in a stem variable.
No further attributes.
Project - Data related to one Fiasco database. Name may be
specified. If you specify the special value Active, the active (in
contrast to the addressed) project will be examined. Default:
Addressed project.
Window - Data related to one Fiasco database window. Name may
be specified. If you specify the special value Active, the active (in
contrast to the addressed) project will be examined. Default:
Addressed project.
Fields - Returns all the fields of the addressed database in a
stem variable. No further attributes.
Field - Data related to a Fiasco field in the addressed
database. Name required.

Attributes for Application: Version - Internal version of Fiasco in the
format ver.rev.
ReleaseVersion - Release version of Fiasco.
Screen - Name of public screen Fiasco runs on.
RegUser - Name of registered user of Fiasco.

fiasco 181 / 252

Attributes for Project: ARexx - Name of ARexx port.
FileName - Complete file name of database.
Path - Path of database.
File - File name of database.
Changes - Not equal zero if database has been changed.

Attributes for Window: Left - Left edge of window.
Top - Top edge of window.
Width - Width of window.
Height - Height of window.
Title - Title of window.
Screen - Public screen of window.

Attributes for Field: Left - Left edge of field.
Top - Top edge of field.
Width - Width of field.
Height - Height of field.
ARexxScript - ARexx script of field.
PickerARexx - ARexx script for picker button.
Formula - Formula for field.
Type - Type of field.
ListLeft - Left edge in list window.
ListWidth - Width in list window.
Shortcut - Keyboard shortcut for field.
InitContType - Type of initial content. One of LAST, KEY or OWN.
InitContValue - Value of initial content.
MaxChars - Max chars of field. Not supported by all fields.
MinValue - Minimum value of field. Not supported by all fields.
MaxValue - Maximum value of field. Not supported by all fields.
Format - Format of field. Not supported by all fields.
Labels - Labels of field. Not supported by all fields. Will be
returned in stem variable.
Precision - Precision of field. Not supported by all fields.
Command - Command for field. Not supported by all fields.
Stack - Stack for field. Not supported by all fields.
Virtual - Status of virtual flag of field. 1 or 0.
ListHidden - Is field hidden in the list? 1 or 0.
Hidden - Is field hidden in the mask? 1 or 0.
ReadOnly - Is field read only? 1 or 0.
Listview - Is field a listview field? 1 or 0.

1.296 GetConstant

GetConstant

Name: GetConstant - Get the value of a constant (7)

Synopsis: GetConstant Name/A,Var/K
RC = Success
Result = Value of constant

Function: Reads the value of a constant in the addressed Fiasco database.

fiasco 182 / 252

If the constant does not exist, an error will be returned. Constants
are most commonly used in Fiasco formulas, but may be also used for
other purposes. The user may view and change the constants of a
database using the

Constants requester
.

Arguments: Name - Name of the constant.

Results: RC - Success.
Result - The value of the specified constant

1.297 GetField

GetField

Name: GetField -- Read the content of a field

Synopsis: GetField FieldID,Record/K/N,ListEntry/K/N,ListEntryCount/S,
ExtFormat/S,Stem/K,Var/K
RC = Success
Result = FieldContent

Function: Reads the content of the specified Field in the active or
specified record and returns it in result. If you specify a Stem
variable, the contents of all fields will be set into that ARexx stem
variable. The stem elements are the field IDs. You may change after
this call the values of some variables and use

SetField
with its Stem

argument to write the values back to the database. Please note that
with the Stem argument the commands need much more execution time than
the simple calls. Thus, you should use these commands only if you need
to set several fields at a time. This command may be only called in
record mode.

Arguments: FieldID - ID of Field
Record - Number of record
ListEntry - Only if field is a listview field. Specifies the
number of the entry in the listview, whose content should be returned.
Counting from 1.
ListEntryCount - Only if field is a listview field. Returns the
number of entries in the listview.
ExtFormat - If specified, the field content will be returned in an
extended format, suitable for printing, etc. This extended format may
use locale settings, etc. You should not make any assumptions about
the resulting format (for example by parsing it in ARexx scripts). See
also the Result table. (Fiasco 2.2)
Stem - Return all contents in the specified stem variable.

Results: RC - Success
Result - is equal to the current content of the field, if rc = 0.

fiasco 183 / 252

The format (In brackets: ExtFormat):
String - the string itself
Integer - the number itself
Float - the fp number
Slider - the value of the slider
Cycle - the number of the active label (the active label string)
Date - the date in the format DD.MM.[YY]YY (in the current locale format)
Time - the time in the format HH:MM:SS (in the current locale format)
Extern - the string itself.
Datatyp.- the string itself.
Var String- the string itself. Newlines will be converted to *n.
If the field is a listview field, you have to use the ListEntry

argument to select the entry to be returned. The format will be then
the format of the underlying fieldtype.

Notes: Before release 2.2, this document claimed that the date and time
field data would be returned in the current locale format. However, it
has always been the case, that - if ExtFormat is not specified - these
values are formatted independantly from the locale setting.

1.298 GetRecordMark

GetRecordMark

Name: GetRecordMark - Check the mark of a record

Synopsis: GetRecordMark Record/K/N,Var/K
RC = Success
Result = Marked or not marked

Function: Returns the current state of the mark of a record in the
addressed Fiasco database. This command may be only called in record
mode.

Arguments: Record - Number of record to be checked. Default: active.

Results: RC - Success
Result - 1 if record is marked, otherwise 0.

1.299 HideProject

HideProject

Name: HideProject - Hide a Fiasco project

Synopsis: HideProject Project/K
RC = Success

fiasco 184 / 252

Function: Closes all windows of the addressed or specified project.

Arguments: Project - Name of project to be hidden. May be the file name
or the full path.

Results: RC - Success

1.300 Import

Import

Name: Import -- Import a database

Synopsis: Import File/A,RecStart=RS/K,RecEnd=RE/K,RecSep=RP/K,
FieldStart=FS/K,FieldEnd=FE/K,FieldSep=FP,

SkipLines/K,StartLine/N/K,FirstRecIDs/K,AppendFields/S
RC = Success

Function: Calls the import function of Fiasco. The specified file will be
imported into the current project using the specified parameters. For
more information on import and export see section

Import and Export
.

You may also use the escape sequences of Fiasco. If you do not
specify a parameter, it will be empty.

Arguments: File - Name of File
RecStart,RecEnd,RecSep,FieldStart,FieldEnd,FieldSep - the
structuring characters
SkipLines - Comment introducer
StartLine - Length of initial comment
FirstRecIDs - First Record contains IDs
AppendFields - Append new fields

Results: Result - Success

Notes: The option Overwrite old project of the import requester is not
directly supported. You have to emulate it using

Clear
.

1.301 LoadDTFieldObject

LoadDTFieldObject

fiasco 185 / 252

Name: LoadDTFieldObject - Load a datatypes field

Synopsis: LoadDTFieldObject FieldID/A
RC = Success

Function: Loads the contents of a datatypes field, which was "deferred".
This command may be only called in record mode.

Arguments: FieldID - ID of datatypes field

Results: RC - Success

1.302 LockGUI

LockGUI

Name: LockGUI - Lock Fiasco’s GUI

Synopsis: LockGUI

Function: Locks the GUI of Fiasco. The pointer will appear as a "wait
clock". After locking the GUI, the ARexx script can run, without the
danger of being influenced by the user. Before the script ends,

UnlockGUI
must be called in order to give the control back to the

user. LockGUI and UnlockGUI may be nested.

Arguments: None.

Results: None.

1.303 MarkMatch

MarkMatch

Name: MarkMatch - Mark matching records

Synopsis: MarkMatch SearchInfo/K/A
RC = Success

Function: Marks the records that match the specified search info. The old
marks will be overwritten. This command may be only called in record
mode.

Arguments: SearchInfo - Name of the search info to be used.

fiasco 186 / 252

Results: RC - Success

1.304 MarkRecord

MarkRecord

Name: MarkRecord -- Control marking of records

Synopsis: MarkRecord Record/K/N,All/S,Set/S,UnSet/S,Toggle/S
RC = Success

Function: MarkRecord can be used to change the marking of one (specified
or active) or all records in the addressed database. You may set,
unset or toggle the marking. This command may be only called in
record mode.

Arguments: Record - Number of record to be affected. Default: Active.
All - Affect all records. Mutually exlusive to Record
Set - Set the mark.
UnSet - Remove the mark.
Toggle - Marked will become unmarked and vice-versa.

Results: RC - Success

1.305 MenuControl

MenuControl

Name: MenuControl -- Switch pull down menus on or off (8)

Synopsis: MenuControl On/S,Off/S
RC = Success

Function: This command can be used to switch the pull down menus locally
to one database on or off to limit the possible actions by the user.

Arguments: On - Switch menus on
Off - Switch menus off

Results: RC - Success

1.306 MoveRecord

fiasco 187 / 252

MoveRecord

Name: MoveRecord -- Change a record’s position

Synopsis: MoveRecord Record/K/N,To/A/N
RC = Success

Function: Moves the active or specified record in the active index to the
new specified position. This command does not work if the active index
does automatic sorting. This command does not affect other indices.
This command may be only called in record mode.

Arguments: Record - Number of record to be moved. If not specified, the
active record will be used.
To - Number of record after which the record will be inserted.
You have to specify the number of the record before the record was
moved.

Results:

1.307 New

New

Name: New -- Create a new project

Synopsis: New Project/K,Iconified/S,Var/K
RC = Success
Result = New ARexx Port

Function: Creates a new database project. If Iconified is not specified,
a new window is opened and activated. It is then entirely empty.

Arguments: Project - File name of new project. If not specified,
Unnamed.fdb will be used.
Iconified - The project window will be not opened.

Results: rc - Success.
Result - The name of the new ARexx port. Can be used with Address.

1.308 NewSearchInfo

NewSearchInfo

Name: NewSearchInfo - Create a new search info

fiasco 188 / 252

Synopsis: NewSearchInfo Name/K,Fields/S,Formula/K,Var/K
RC = Success
Result = Search info name

Function: Creates a new search info. You may specify an own name for the
new search info with the argument Name. If a search info with that
name should already exist, it will be deleted. If you do not specify
the Name argument, this function will create an unique name and return
it in Result. If you want to search for fields with that search info,
you will have to use the command

SetSearchField
to set the fields and

patterns to search for. If you want to search by a formula, you have
to specify it now with the Formula argument.

Arguments: Name - Name of the search info to create. If not specified, a
unique name will be created.
Field - Specify if you want to search by fields.
Formula - If you want to search by formula, specify the formula after
this keyword.

Results: RC - Success
Result - Name of the newly created search info

1.309 Open

Open

Name: Open - Open a Fiasco database

Synopsis: Open File/A,New/S,Iconified/S,Force/S,Var/K
RC = Success
Result = ARexx Port Name

Function: Tries to read a fiasco database. If you specify only the File
argument, the data will be loaded into the addressed project. If there
are changed data in it, a warning requester will be opened before. If
you want to suppress this behaviour, specify the Force argument. If
you specify New, Fiasco will load the data into a new project. If you
specify Iconified, Fiasco will leave the project window closed.

Arguments: Name - File name of database to be opened.
New - Create a new project.
Iconified - Do not open the new project window. Only in
combination with New.
Force - No warnings.

Results: RC - Success.
Result - Name of ARexx port of the project the database has
been loaded into. Useful with New.

fiasco 189 / 252

1.310 OpenListWindow

OpenListWindow

Name: OpenListWindow -- Open the list window

Synopsis: OpenListWindow

Function: Opens the list window of the currently addressed project. If it
is already open, nothing will be done.

Arguments: None.

Results: None.

1.311 OpenServiceWindow

OpenServiceWindow

Name: OpenServiceWindow - Open the service window

Synopsis: OpenServiceWindow

Function: Opens the
service window
, if it is not already open.

Arguments: None.

Results: None.

1.312 PasteRecord

PasteRecord

Name: PasteRecord -- Paste a record from the clipboard

Synopsis: PasteRecord Record/K/N,Unit/K/N,Inactive/S
RC = Success

Function: Inserts a record from the clipboard into the addressed Fiasco
database. The record may be written to the clipboard by

fiasco 190 / 252

CopyRecord
or

CutRecord
. This command may be only called in record mode.

Arguments: Record - Number of record after which the new record will be
inserted. Default: the active record.
Unit - Number of clipboard unit. Default: 0.
Inactive - Do not activate the new record.

Results: RC - Success

1.313 Progress

Progress

Name: Progress -- Show a progress bar

Synopsis: Progress Done/A/N,Max/A/N
RC = Success

Function: Displays a nice progress bar in the service window, as known of
Sort or Open Project. You should reset the status gadget with

ResetStatus
when the operation has completed.

Arguments: Done -- the number of data items currently processed.
Max -- the number of all data items.

Results: None.

1.314 Quit

Quit

Name: Quit -- Exit Fiasco

Synopsis: Quit

Function: Closes all databases and exits Fiasco. No warnings will be
done. After this command you cannot access any ARexx ports of Fiasco.

Arguments: None.

fiasco 191 / 252

Results: None.

1.315 ReadSettings

ReadSettings

Name: ReadSettings -- Read Fiasco settings (8)

Synopsis: ReadSettings File/A
RC = Success

Function: Reads Fiasco settings from the specified file and activates
these settings.

Arguments: File - File to read Fiasco settings from.

Results: RC - Success

1.316 RecompileFormulas

RecompileFormulas

Name: RecompileFormulas - Update all formulas (7)

Synopsis: RecompileFormulas
RC = Success

Function: Recompiles (i.e. updates) all formulas in the addressed
database. This especially useful after a call to

SetConstant
.

Arguments: None.

Results: RC - Success.

1.317 RequestChoice

RequestChoice

Name: RequestChoice - Request a choice from the user

fiasco 192 / 252

Synopsis: RequestChoice Body/A,Gadgets/A,Title/K,Var/K
RC = Success
Result = Choice

Function: Creates an intuition easy-requester with the specified
parameters. Works very similar to the CLI command Requestchoice. The
differences: Slightly different parameters, puts the requester up on
Fiasco’s screen.

Arguments: Body - Main text of requester.
Gadgets - Gadgets at the bottom of requester. Each choice
must be separated by a |.
Title - Title of requester.

Results: RC - Success.
Result - Number of selected gadget, 0 for the rightmost one.

1.318 RequestField

RequestField

Name: RequestField - Request a field from the user

Synopsis: RequestField Default/K,Text/A,Var/K
RC = Success
Result = Selected field

Function: Opens a requester with a list of all fields of the adressed
project. The requester can display an additional message given in the
Text argument. The user can select one field and click on Ok or can
Cancel the requester.

Arguments: Default - The field that will be selected when the requester opens.
Text - The text to be displayed.

Results: RC - Success. Will be 5 if user cancelled requester.
Result - ID of the selected field.

1.319 RequestFile

RequestFile

Name: RequestFile -- Open a file requester

Synopsis: RequestFile File,Pattern/K,Title/K,SaveMode/S,DrawersOnly/S,NoIcons/S,
ProjectRelative/S,Var/K
RC = Success
Result = Selected file

fiasco 193 / 252

Function: Puts up an ASL file requester. Works very similar to the CLI
command Requestfile. The differences: Slightly different parameters,
puts the requester up on Fiasco’s screen.

Arguments: File - Initial File including path for the requester
Pattern - Initial Pattern
Title - Title for the requester
SaveMode - Activates savemode: Black background, no selection
via doubleclick
DrawersOnly - Displays only Drawers
NoIcons - Filters Icons
ProjectRelative - The requested file will be relative to the addressed
database.

Results: RC - Success. Will be 5 if user cancelled requester.
Result - Selected file.

1.320 RequestNumber

RequestNumber

Name: RequestNumber -- Request a number

Synopsis: RequestNumber Default/K/N,Title/K,Text/K/A,Var/K
RC = Success
Result = Requested number

Function: Asks the user to input an integer number. He may cancel the
request. You can supply additional information using the Text
argument.

Arguments: DefaultValue - Value of integer gadget on startup. Will be
zero if not specified.
Title - Optional. Window title of requester.
Text - Additional text to display in requester. May contain
newlines (*n). Please note that this argument is required and must be
specified with a leading keyword. This is for compability with future
versions of Fiasco which may not require the Text argument.

Results: RC - Success. Will be 5 if user cancelled requester.
Result - Requested number.

1.321 RequestString

RequestString

Name: RequestString -- Request a string from the user

fiasco 194 / 252

Synopsis: RequestString Default/K,Title/K,Text/K/A,Var/K
RC = Success
Result = Requested string

Function: Asks the user to input a string. He may cancel the request. You
can supply additional information using the Text argument.

Arguments: DefaultValue - Value of string gadget on startup. Will be
empty if not specified.
Title - Optional. Window title of requester.
Text - Additional text to display in requester. May contain
newlines (*n). Please note that this argument is required and must be
specified with a leading keyword. This is for compability with future
versions of Fiasco which may not require the Text argument.

Results: RC - Success. Will be 5 if user cancelled requester.
Result - Requested string.

1.322 ResetStatus

ResetStatus

Name: ResetStatus -- Reset the status gadget

Synopsis: ResetStatus

Function: Resets the status gadget in the service window. It will show
the default information after this call. If the service window is not
open, nothing will be done.

Arguments: None.

Results: None.

1.323 RevealProject

RevealProject

Name: RevealProject -- Reveal a hidden project

Synopsis: RevealProject Project/K
RC = Success

Function: Open all windows of a hidden Fiasco project. This project will
get the active one. If a project is specified, this project will be
revealed, otherwise the addressed project.

fiasco 195 / 252

Arguments: Project - File name or full path of project.

Results: RC - Success

1.324 Save

Save

Name: Save -- Save a Fiasco database

Synopsis: Save
RC = Success

Function: Saves the addressed Fiasco database under the old name on disk.

Arguments: none.

Results: RC - Success.

1.325 SaveAs

SaveAs

Name: SaveAs -- Save a Fiasco database under a new name.

Synopsis: SaveAs Name/K
RC = Success

Function: Saves the addressed database under a given name on disk. If you
specify a new name after the Name keyword, this name will be used. If
you do not specify Name, the user will be prompted with a file
requester to specify a new name.

Arguments: Name - New file name. If not specified, a file requester will
be opened.

Results: RC - Success.

1.326 SaveSettings

SaveSettings

Name: SaveSettings -- Save Fiasco settings (8)

fiasco 196 / 252

Synopsis: SaveSettings File/A
RC = Success

Function: Saves the active Fiasco settings to the specified file.

Arguments: File - File to save the settings to.

Results: RC - Success

1.327 SetAttr

SetAttr

Name: SetAttr -- Set an Fiasco attribute

Synopsis: SetAttr Object/A,Name/K,Attribute,Value/A
RC = Success

Function: Sets the specified attribute.

Arguments: Object - Object type to be set.
Name - Some object types require a name to be specified.
Attribute - Name of attribute to be set.
Value - New value for attribute.

Results: RC - Success.

Objects: Field - Data related to a Fiasco field in the addressed
database. Name required. May be only used in mask mode.

Attributes for Field: Left - Left edge of field.
Top - Top edge of field.
Width - Width of field.
Height - Height of field.
ARexxScript - ARexx script of field.
PickerARexx - ARexx script for picker button.
Formula - Formula for field.
ListLeft - Left edge in list window.
ListWidth - Width in list window.
Shortcut - Keyboard shortcut for field.
InitContType - Type of initial content. One of LAST, KEY or OWN.
InitContValue - Value of initial content.
MaxChars - Max chars of field. Not supported by all fields.
MinValue - Minimum value of field. Not supported by all fields.
MaxValue - Maximum value of field. Not supported by all fields.
Format - Format of field. Not supported by all fields.
Precision - Precision of field. Not supported by all fields.
Command - Command for field. Not supported by all fields.
Stack - Stack for field. Not supported by all fields.
Virtual - Status of virtual flag of field. 1 or 0.
ListHidden - Is field hidden in the list? 1 or 0.
Hidden - Is field hidden in the mask? 1 or 0.

fiasco 197 / 252

ReadOnly - Is field read only? 1 or 0.

1.328 SetConstant

SetConstant

Name: SetConstant - Set a constant (7)

Synopsis: SetConstant Name/A,Value/A/F
RC = Success

Function: Sets a constant to the specified value in the addressed
project. If a constant of the same name already exists, it will be
overwritten, otherwise a new constant will be created. Constants are
most commonly used in Fiasco formulas, but may be also used for other
purposes. The user may view and change the constants of a database
using the

Constants requester
. If the formulas of the database are

supposed to use the new or changed constant, you have to call

RecompileFormulas
after this command.

Arguments: Name - Name of the constant to set.
Value - Value for the constant.

Results: RC - Success.

1.329 SetField

SetField

Name: SetField - Set the content of a field

Synopsis: SetField FieldID,Record/K/N,ListEntry/K/N,CreateListEntries/S,
ExtFormat/S,Stem/K,Cont/F
RC = Success

Function: Sets the content of the specified field in the active or
specified record to the specified content. If Stem is used, Fiasco
will copy the values of the ARexx variables with the names
stemname.fieldID to the respective fields. If a variable is not set,
the field will not be changed. Useful with

GetField Stem
see there for

fiasco 198 / 252

a description. Entries in listview fields are normally neither
created, nor removed by this command. Thus, if you have a listview
field with three entries and you call SetField Stem MyStem with MyStem
initialized with four entries for the listview field, only the first
three will be copied and the fourth entry will be ignored. If you have
initialized MyStem to contain less entries for the listview than it
contains, the last entries in the listview will be left unchanged.
However, if you use the CreateListEntries switch, this command will
remove all old entries from the listview and replace them by the
entries in the stem variable. This command may be only called in
record mode.

Arguments: FieldID - ID of a single field to be set
Record - Number of record
ListEntry - Only if field is a listview field. Number of the
entry in the listview to be set to the new value. Counting from 1.
CreateListEntries - See above for explanation. Only in combination
with Stem. New in Fiasco 2.2.
ExtFormat - If specified, SetField uses the extended format that
is returned by

GetField ExtFormat
. New in Fiasco 2.2. Cont - New

content of the field. This argument takes the whole input inclusive
spaces. The interpretation of this arg depends on the fieldtype (In
brackets: ExtFormat):
String - is copied directly
Integer - Numbers are read directly, other things are 0
Float - dto.
Boolean - 1 or TRUE = selected, 0 or FALSE = not selected
Slider - Number is read. Bad numbers will be adjusted.
Cycle - Number or name of label is taken.
Date - Date in the format DD.MM.[YY]YY (current locale format)
Time - Time in the format HH:MM:SS (current locale format)
Extern - is copied directly
Datat. - is copied directly
Var String - is copied directly. The string *n will be converted to a
line break. This works, however, only if the string is enclosed in
quotes.
If the field is a listview field, use ListEntry to set the content of

a particular entry. Use the format of the underlying fieldtype. To add
entries to listviews, either use the CreateListEntries switch or use

AddLVFieldEntry
.

Results: RC - Success

Notes: Before release 2.2, this document claimed that the date and time
field data would be required in the current locale format. However, it
has always been the case, that - if ExtFormat is not specified - these
values are formatted independantly from the locale setting.

fiasco 199 / 252

1.330 SetMode

SetMode

Name: SetMode - Set the working mode

Synopsis: SetMode Mask=MaskMode/S,Record=RecordMode/S
RC = Success

Function: Sets the addressed Fiasco project to the specified mode.

Arguments: MaskMode - Activate mask mode.
RecordMode - Activate record mode.

Results: RC - Success.

1.331 SetSearchField

SetSearchField

Name: SetSearchField - Add a field to a search info

Synopsis: SetSearchField SearchInfo/K/A,FieldID/K/A,Blur/K/N,Pattern/K/A/F
RC = Success

Function: Adds a field and the pattern to a search info in field mode.
The specified field must match the pattern in order to have the search
info match a record.

Arguments: SearchInfo - Name of the search info to be modified.
FieldID - ID of the field to be searched.
Blur - Blur factor. When not specified, blurred search will be turned off.
Pattern - Pattern for the field.

Results: RC - Success

1.332 SetStatus

SetStatus

Name: SetStatus - Show a status string

Synopsis: SetStatus Text/A
RC = Success

fiasco 200 / 252

Function: Displays the specified text in the status gadget of the service
window.

Arguments: Text - Text to be shown.

Results: RC - Success.

1.333 Sort

Sort

Name: Sort -- Sort a database

Synopsis: Sort Fields/A/M,Descending/S,Index/K
RC = Success

Function: Creates an sorted index for the addressed database according to
the alphabetical or equivalent priority of the contents of the
specified fields. This command may be only called in record mode.

Arguments: Fields - Fields after which the database will be sorted. First
field has the highest priority.
Descending - Sort backwards.
Index - Name of index to be created. Default:
ARexxSort.fidx.

Results:

1.334 UnlockGUI

UnlockGUI

Name: UnlockGUI - Unlock Fiasco’s GUI

Synopsis: UnlockGUI
RC = Success

Function: Unlock the GUI, which has been previously locked using
LockGUI
.

The user has again access to Fiasco. LockGUI and UnlockGUI may be
nested.

Arguments: None.

Results: RC - Not equal zero if GUI was not locked.

fiasco 201 / 252

1.335 Example Projects

Example Projects

The directory Databases of the Fiasco distribution contains several
Fiasco projects. Some of them may be also used for own purposes. The
following sections contain descriptions of some of the databases included
in the Fiasco 2.2 distribution.

Organizer
Addressbook and reminder

FamilyTree
Data about your ancestors

PD Disks
Cataloges your PD disks

Videos
Catalog of video tapes

Picture Database
Manages your pictures

Mulitmedia Database
A mini-encyclopedia

Mailing List Archive
Discussion archive for the WWW

1.336 Organizer

Organizer

The organizer directory contains two databases: An address book database
and a appointments databases, that can be used as a reminder program.

The address book is an extended version of the addresses database of
previous Fiasco releases. It contains the classic fields such as Name,
Address, Phone, etc.

The fields for Phone, Fax or Zipcode are string fields, because they
also have to take characters like "/" or must have a leading "0" (which
would be swallowed by a integer field).

Furthermore, action buttons are assigned to the fields Phone, Fax and
eMail. All buttons call ARexx scripts. The script for the phone field
calls the script dial.frx that tries to call the phone number with a
modem. When the connection is being built, a requester opens with the
response gadget Hang up. You may take up your phone and click on Hang up
to be able to speak with the person. More details about dial.frx are

fiasco 202 / 252

directly contained in the script as comments. If you want to use it with
your own address database, you can simply adopt it to it.

The fax button can be used to send a fax. The script fax.frx called
by it currently supports only the program STFax. If you have another fax
program with an ARexx port, adding support for it to the script, should
be not difficult.

The mail button calls a mailer to send an eMail to the eMail address.
The script mail.frx currently supports only the mailer YAM by Marcel
Beck.

The other database in the directory can be used to manage
appointments. Simply fill in your appointments. You may set an explicit
date for appointments or only a weekday. Whether you use the date or a
weekday is controlled by the boolean fields at the right side of the
respective fields.

The button Check Appointments scans the database for appointments
that are current. With the Ann. field you may set the time in days before
the appointment at which you will be reminded about a appointment.

1.337 FamilyTree

FamilyTree

The family tree consists of the projects "persons.fdb" and
"families.fdb". "persons.fdb" contains all persons, which are used in the
family tree. You may also enter sex, date of birth, etc. here. These data
are used by "families.fdb" with relations, to get names of spouses,
children, etc. Additionally, there are fields for marriage and divorce.
Caused by the intensive use of relations, this project only contains 7
"real" fields, which are stored on disk. The other 6 fields are loaded
from "persons".

1.338 PD Disks

PD Disks

This database stores the descriptions of programs on PD libraries, such
as the Fish Disks. It contains fields for library name, disk number,
program name, program version, description and author. The button Scan
disk can be used to import a contents file of a library automatically
into the database. The ReadFish.rexx script currently supports the
formats of Fish Disks, SaarAG disks and of PD disks of the german Amiga
Magazin. It also supports contents files, which have been joined to one
big file.

1.339 Videos

fiasco 203 / 252

Videos

The video database can be used to manage your homevideo collection. The
database consists of two projects: "movies.fdb" and "tapes.fdb". "Movies"
takes the informations for each movie (Genre, Director, etc.). The field
"Tape" connects each film with one tape, which can be found in "tapes".
Here is the play length of each tape defined. A relation calculates the
used space on the tapes.

1.340 Picture Database

Picture Database

Fiasco’s picture database uses datatypes fields, thus you need Amiga OS
3.0 to use it. It’s mask contains eight datatypes fields, which are used
to display thumbnail images of the pictures. The picture database is
controlled by ARexx scripts.

When the database inserts a new file, which can be done with the Add
Dir or Add File button, the program CreateThumbnail creates a smaller
version of the picture in IFF format and puts it in the TN directory.
CreateThumbnail also uses the datatypes.library. Thus, all you can insert
all picture formats, for which you have installed a datatype, into the
picture database. However, CreateThumbnail cannot handle HAM or EHB
pictures.

With Add File you can pick a picture with a file requester, which
will be automatically inserted into the database.

Add Dir serves to insert the pictures in a whole directory. After you
have selected the directory to scan, another requester opens, where you
can choose, whether you only want to scan the selected directory, all
subdirectories if it or even the Lha archives in it. The picture database
handles Lha archives transparently, you do not need an archive file
handler. With some modifications to the ARexx scripts, you may also use
other archive programs, such as LZX.

Below each datatypes field, there are three buttons for controlling
the field. Dis uses MultiView to display the picture. Of course, by
changing the ARexx script display.rexx you may also choose another
program. Inf displays additional information about the picture, such as
size and depth. From here, you may also choose to display the picture, to
display the picture with VT or to copy the picture to another location.
Del finally, removes the picture from the database.

The Search button at the upper right of the mask can be used to
search for a filename.

1.341 Multimedia Database

Multimedia Database

fiasco 204 / 252

This is a database that uses the multimedia features of Fiasco for a kind
of encyclopedia. The data included as example in this database are a bit
spare for a encyclopedia, though. However, this databases shows what is
possible and is open for your own data.

Each record represents an entry for a Term. The name of the term can
be specified in the field at the upper left of the mask. Below it, there
is a var string field that can be used to specify a longer text
describing the item.

No encyclopedia without cross references. The listview field at the
lower left may contain several names of other terms in the database. To
go to any reference, you have to activate it in the listview and click on
the Goto Cross Reference button that starts an ARexx script that uses
Fiasco’s search function to search for the specified term. The Cross
References listview uses the Select Only field attribute. If you want to
edit the entries, you have to deactivate this attribute.

The right part of the mask serves for the multimedia. For each record
you can specify Documents. Selecting any entry in the listview will cause
the document to be automatically displayed in the datatypes field with
the ID Document_Display below. The documents may not be only pictures,
you can also specify sound files and all other files for which datatypes
are available.

The mechanism behind this multimedia part is a bit more complicated
than the other parts of the mask, but also easy to understand. The
Documents listview displays only names for the documents that can be
freely assigned to the documents. Then, there is another listview, that
is normally hidden. Its ID is Doc_Files. There you have to specify the
file names for all the documents specified in the Documents listview. To
display the selected document in the datatypes field, a formula is used.
It is placed in the datatypes field, which has also set the virtual
attribute, because the contents of this field are only important for
runtime. The formula is:

active(documents) != -1 ? doc_files[active(documents)] : ""

Thus, the
datatypes field looks, whether a entry is selected in the Documents
listview. If it is, the file name at the same position in the doc_files
listview is copied into the datatypes field, which will display it. If no
entry is active, an empty string will be copied into it, which causes no
file to be displayed.

To edit these data, you have to switch off the Select Only attribute
of the Documents listview and you have to reveal the Doc_files listview.

1.342 Mailing List Archive

Mailing List Archive

If you run a mailing list, this Fiasco database may be useful for you. It
helps you to archive all messages from the list and -- which is the most

fiasco 205 / 252

important point -- creates automatically a html version of the archive,
ready for use on a web page. Thus, the visitors of your web page will be
able to view the contents of the mailing list. To create the database,
you have to export the mails from your mail program. You have to ensure,
that the mails contain the complete headers. Otherwise, the project will
not be able to import the mails. With MicroDot II you can export mails
including the headers this way: Open the message reader of the individual
mail, select (whole message) in the listview in the upper right of the
window and click on Save.

To import this mail into the mailing list archive, click on the
button Import Mail in the mask window. You will be prompted to specify
the file to import. If you have saved several mail files in one
directory, you can use the Scan Directory button. When the mailing list
archive imports the mails, it creates for each mail one record. The
header data for each mail are displayed at the right side of the mask and
the mail body at the bottom of the mask.

The Fiasco mailing list archive allows you to customize the layout of
the html output. Headlines and footers for each page the archive creates,
can be defined in the files tpl1.html and tpl2.html. These files will be
inserted at the start or at the end, respectively, of all pages. The
Fiasco distribution comes with example versions of these files. The name
of the mailing list, document colors and some other settings may be
directly defined in the createhtml.frx file, which is also located in the
project directory.

To create the html pages, click on the Create HTML button. It is
recommended, that you create a new directory solely for the output of the
archive. After exporting, the main page can be accessed with
directory/index.html. Now you can watch with any WWW browser the pages
locally on your computer. With an FTP program, you may transfer these
files to your internet site.

A "real life" example of this database can be found on the Fiasco
Support Site:
http://www.amigaworld.com/support/fiasco

1.343 Legal Things

Legal Things

The Program "Fiasco" and associated files, hereafter called Fiasco, are
provided "as is". No representations or warranties are made regarding to
accuracy, reliability or correctness of Fiasco, either expressed or
implied. In no case am I responsible for any damages or data losses
caused by this software. If you store important data on your computer,
you should create in any case backup copies of these data!

Fiasco is not Public Domain. I reserve all rights.
Fiasco Copyright © 1995-1998 Nils Bandener.

Fiasco may be redistributed under the following conditions:

· The program package has to be complete. Starting with release 2.0, the

fiasco 206 / 252

distribution has been due to its size divided into several parts. The
archive Fiasco_main.lha contains the main program, libraries, locale
catalogs and example databases. The archives Fiasco_doc_eng.lha,
Fiasco_doc_deu.lha and Fiasco_doc_ita.lha contain the Fiasco
documentation in the respective languages in AmigaGuide and TeX-DVI
format. The section

file list
contains a listing of all archives of

the Fiasco 2.1 distribution. Because of the seperate archives for
documentation, the main archive does not contain any documentation.
Thus, you must distribute at least one of the language archives. It is
still strongly recommended, that you distribute all archives of the
Fiasco distribution, especially when you distribute Fiasco on a
CD-ROM. Distributing Fiasco in unarchived form is allowed, as long you
keep the conditions stated above.

· Fiasco may not be distributed for commercial purposes without a
written permission by the author. This includes the distribution of
Fiasco for excessively high prices. You may only charge a small fee
for media and copying. The distribution on CD-ROMs is allowed, if the
price of a single CD-ROM is not higher than USD 20 or DM 30.
Distribution on cover disks or cover CDs of magazines is allowed, if
the price of the magazine is less than USD 10 or DM 12 in the case of
floppy disks or USD 12 or DM 16 in the case of compact disks.

I grant herby special permission to distribute Fiasco on the
"Meeting Pearls" CD-ROMs and on the "Aminet" CD-ROMs.

There is a special floppy disk based distribution of Fiasco 2.1. It
consists of two disks with archived contents and an installer script
which has been adapted to handle extraction and installation
automatically. This distribution is not available via Aminet. If you are
interested in it, send me a mail and the shipping costs listed in the

shareware section
. You will also recieve this distribution if you order a

registered Fiasco version on DD disks.

If you include Fiasco in your PD collection, coverdisk, etc. and a
copy is left over, you may feel free to send me this copy.

The keyfile, which you recieve after registering for Fiasco, is not
freely redistributable. You may use it only on your own computer system.
Manipulating the keyfile is also prohibited.

textfield.gadget 3.1 is Copyright © 1995 by Mark Thomas. The complete
textfield.gadget distribution, including developer information, can be
found on Aminet or on the Aminet Set 2C CD-ROM in dev/gui/textfield.lha.

gtlayout.library is by Olaf Barthel. It may be freely distributed and
freely used. New versions of the gtlayout.library appear frequently with
‘term’.

WBPath is Copyright © 1994 by Ralph Babel. The WBPath developer
information is distributed with Fiasco in the Development/WBPath
directory.

fiasco 207 / 252

LX is written by Jonathan Forbes and Copyright © 1993 by Xenomiga
Technology. LX is used by the installer script of the Fiasco disk
distribution. The complete LX distribution can be found in Aminet or on
the Aminet Set 2A CD-ROM in util/arc/lx103.lha.

Installer and Installer project icon Copyright © 1995-1996 ESCOM AG.
All Rights Reserved. Reproduced and distributed under license from ESCOM
AG.

Installer software is provided "as-is" and subject to change; no
warranties are made. All use is at your own risk. No liability or
responsibility is assumed.

Shareware

1.344 Shareware

Shareware

Starting with release 2.0, Fiasco is shareware. That means, that you are
allowed to test Fiasco for a period of 30 days. If you want to continue
using Fiasco after that period, you will have to register for Fiasco. You
will recieve a "keyfile", which allows you to save more than 15 records.

Price List

Registration fee for Fiasco 2.2 | USD 25.00 | DM 30.00
---------------------------------+------------+---------
Shipping costs Europe | USD 4.00 | DM 5.00
---------------------------------+------------+---------
Shipping costs International | USD 6.00 | DM 8.00
---------------------------------+------------+---------
Shipping costs eMail | free | free

Shipping costs include two DD disks or one HD disk, which contain the
keyfile and the latest release version of Fiasco. You may choose to
recieve your keyfile by eMail. In that case you do not have to pay any
shipping costs, however, you will only recieve the keyfile, not the
latest Fiasco version.

Paying methods

There are three methods of paying for Fiasco:

· Cash: Simply put the money into your letter.

· Euro cheques: Put the cheque in your letter. Please do not send other
cheques!

· Transfer to my bank account:
Kasseler Sparkasse; bank code (BLZ) 520 503 53; Account no. 1100353258

fiasco 208 / 252

Please include your name and address in the transfer. This
is the only possible paying method if you order by eMail. Delivery
will start when I have recieved the money.

The only accepted currencies are German DM or US Dollar.

Please send the filled-in registration form, which is included in the
Fiasco distribution, to one of the following addresses:

Nils Bandener
Dekanatsgasse 4
D-34369 Hofgeismar
Germany

Internet: Nils@dinoex.sub.org

Senders of Gifts for Fiasco 1.x

If you already have sent me a gift for Fiasco 1.x until December, 31st
1996, you can get a free keyfile for Fiasco 2.2. You do not have to pay
anything if you choose to recieve the keyfile by eMail. If you want to
recieve it by snail mail, you will have to pay the shipping costs listed
above.

Polish Residents

If you are a Polish resident, you can get a Fiasco registration from WMFH
for a special price. Information addresses:
WWW: http://amiga.com.pl/fiasco/
eMail: silverdr@amiga.com.pl

1.345 File List

File List

The Fiasco release 2.2 distribution consists of these files: Archive
Fiasco_main.lha:

Fiasco_2.2/ARexx.info
Fiasco_2.2/ARexx/age.frx
Fiasco_2.2/ARexx/age.frx.info
Fiasco_2.2/ARexx/arexxprint.rexx
Fiasco_2.2/ARexx/arexxprint.rexx.info
Fiasco_2.2/ARexx/cap.frx
Fiasco_2.2/ARexx/cap.frx.info
Fiasco_2.2/ARexx/converttolistview.frx
Fiasco_2.2/ARexx/converttolistview.frx.info
Fiasco_2.2/ARexx/dbstructure.frx
Fiasco_2.2/ARexx/dbstructure.frx.info
Fiasco_2.2/ARexx/dummy.frx
Fiasco_2.2/ARexx/dummy.frx.info
Fiasco_2.2/ARexx/graphprint.frx
Fiasco_2.2/ARexx/graphprint.frx.info

fiasco 209 / 252

Fiasco_2.2/ARexx/importcolumn.frx
Fiasco_2.2/ARexx/importcolumn.frx.info
Fiasco_2.2/ARexx/print.frx
Fiasco_2.2/ARexx/print.frx.info
Fiasco_2.2/ARexx/requestdt.frx
Fiasco_2.2/ARexx/requestdt.frx.info
Fiasco_2.2/ARexx/unlockgui.frx
Fiasco_2.2/ARexx/unlockgui.frx.info
Fiasco_2.2/Catalogs/Dansk/Fiasco.catalog
Fiasco_2.2/Catalogs/deutsch/fiasco.catalog
Fiasco_2.2/Catalogs/español/fiasco.catalog
Fiasco_2.2/Catalogs/Italiano/fiasco.catalog
Fiasco_2.2/Catalogs/svenska/fiasco.catalog
Fiasco_2.2/Databases.info
Fiasco_2.2/Databases/Addresses2.info
Fiasco_2.2/Databases/Addresses2/Adressen.fdb
Fiasco_2.2/Databases/Addresses2/Adressen.fdb.info
Fiasco_2.2/Databases/Addresses2/Adressen.frec
Fiasco_2.2/Databases/Addresses2/Adressen/Standard.fidx
Fiasco_2.2/Databases/Addresses2/Adressmanager-Konv.rexx
Fiasco_2.2/Databases/Addresses2/Adressmanager-Konv.rexx.info
Fiasco_2.2/Databases/Aminet.info
Fiasco_2.2/Databases/Aminet/Aminet.fdb
Fiasco_2.2/Databases/Aminet/Aminet.fdb.info
Fiasco_2.2/Databases/Aminet/Aminet.frec
Fiasco_2.2/Databases/Aminet/Aminet/Standard.fidx
Fiasco_2.2/Databases/Aminet/copyarc.frx
Fiasco_2.2/Databases/Aminet/extract.frx
Fiasco_2.2/Databases/Aminet/Scancont.frx
Fiasco_2.2/Databases/FamilyTree.info
Fiasco_2.2/Databases/FamilyTree/Families.fdat
Fiasco_2.2/Databases/FamilyTree/Families.fdb
Fiasco_2.2/Databases/FamilyTree/Families.fdb.info
Fiasco_2.2/Databases/FamilyTree/Families.frec
Fiasco_2.2/Databases/FamilyTree/Families/Standard.fidx
Fiasco_2.2/Databases/FamilyTree/Persons.fdb
Fiasco_2.2/Databases/FamilyTree/Persons.fdb.info
Fiasco_2.2/Databases/FamilyTree/Persons.frec
Fiasco_2.2/Databases/FamilyTree/Persons/Standard.fidx
Fiasco_2.2/Databases/GraphDemo.info
Fiasco_2.2/Databases/GraphDemo/Fragments.fdb
Fiasco_2.2/Databases/GraphDemo/Fragments.fdb.info
Fiasco_2.2/Databases/GraphDemo/Fragments.frec
Fiasco_2.2/Databases/GraphDemo/Fragments/Standard.fidx
Fiasco_2.2/Databases/Mailing List Archive.info
Fiasco_2.2/Databases/Mailing List Archive/createhtml.frx
Fiasco_2.2/Databases/Mailing List Archive/CreateHTML.frx.info
Fiasco_2.2/Databases/Mailing List Archive/Example Output.info
Fiasco_2.2/Databases/Mailing List Archive/Example Output/1.html
Fiasco_2.2/Databases/Mailing List Archive/Example Output/2.html
Fiasco_2.2/Databases/Mailing List Archive/Example Output/index.html
Fiasco_2.2/Databases/Mailing List Archive/importmails.frx
Fiasco_2.2/Databases/Mailing List Archive/MLArchive.fdat
Fiasco_2.2/Databases/Mailing List Archive/MLArchive.fdb
Fiasco_2.2/Databases/Mailing List Archive/MLArchive.fdb.info
Fiasco_2.2/Databases/Mailing List Archive/MLArchive.frec
Fiasco_2.2/Databases/Mailing List Archive/MLArchive/Standard.fidx

fiasco 210 / 252

Fiasco_2.2/Databases/Mailing List Archive/scandir.frx
Fiasco_2.2/Databases/Mailing List Archive/tpl1.html
Fiasco_2.2/Databases/Mailing List Archive/tpl1.html.info
Fiasco_2.2/Databases/Mailing List Archive/tpl2.html
Fiasco_2.2/Databases/Mailing List Archive/tpl2.html.info
Fiasco_2.2/Databases/Multimedia.info
Fiasco_2.2/Databases/Multimedia/A4000T.iff
Fiasco_2.2/Databases/Multimedia/Amiga.iff
Fiasco_2.2/Databases/Multimedia/gotoxref.frx
Fiasco_2.2/Databases/Multimedia/MMEnc.fdat
Fiasco_2.2/Databases/Multimedia/MMEnc.fdb
Fiasco_2.2/Databases/Multimedia/MMEnc.frec
Fiasco_2.2/Databases/Multimedia/MMEnc/Standard.fidx
Fiasco_2.2/Databases/Organizer.info
Fiasco_2.2/Databases/Organizer/Addresses.fdat
Fiasco_2.2/Databases/Organizer/Addresses.fdb
Fiasco_2.2/Databases/Organizer/Addresses.fdb.info
Fiasco_2.2/Databases/Organizer/Addresses.frec
Fiasco_2.2/Databases/Organizer/Addresses/Standard.fidx
Fiasco_2.2/Databases/Organizer/Appointments.fdat
Fiasco_2.2/Databases/Organizer/Appointments.fdb
Fiasco_2.2/Databases/Organizer/Appointments.fdb.info
Fiasco_2.2/Databases/Organizer/Appointments.frec
Fiasco_2.2/Databases/Organizer/Appointments/Standard.fidx
Fiasco_2.2/Databases/Organizer/checkappointments.frx
Fiasco_2.2/Databases/Organizer/dial.frx
Fiasco_2.2/Databases/Organizer/fax.frx
Fiasco_2.2/Databases/Organizer/Labels.fpr
Fiasco_2.2/Databases/Organizer/Labels.fpr.info
Fiasco_2.2/Databases/Organizer/ListLaTeX.fpr
Fiasco_2.2/Databases/Organizer/ListLaTeX.fpr.info
Fiasco_2.2/Databases/Organizer/mail.frx
Fiasco_2.2/Databases/PD-Disks.info
Fiasco_2.2/Databases/PD-Disks/Disks.fdat
Fiasco_2.2/Databases/PD-Disks/Disks.fdb
Fiasco_2.2/Databases/PD-Disks/Disks.fdb.info
Fiasco_2.2/Databases/PD-Disks/Disks.frec
Fiasco_2.2/Databases/PD-Disks/Disks/Standard.fidx
Fiasco_2.2/Databases/PD-Disks/ReadFish.rexx
Fiasco_2.2/Databases/PD-Disks/ReadFish.rexx.info
Fiasco_2.2/Databases/PictureDatabase.info
Fiasco_2.2/Databases/PictureDatabase/AddPicture.frx
Fiasco_2.2/Databases/PictureDatabase/CreateThumbnail
Fiasco_2.2/Databases/PictureDatabase/DelPicture.frx
Fiasco_2.2/Databases/PictureDatabase/Display.frx
Fiasco_2.2/Databases/PictureDatabase/PicInfo.frx
Fiasco_2.2/Databases/PictureDatabase/Pictures.fdb
Fiasco_2.2/Databases/PictureDatabase/Pictures.fdb.info
Fiasco_2.2/Databases/PictureDatabase/Pictures.frec
Fiasco_2.2/Databases/PictureDatabase/Pictures/Standard.fidx
Fiasco_2.2/Databases/PictureDatabase/ScanDir.frx
Fiasco_2.2/Databases/PictureDatabase/SearchPicture.frx
Fiasco_2.2/Databases/PictureDatabase/StartProg
Fiasco_2.2/Databases/PictureDatabase/TN/TN_1_0
Fiasco_2.2/Databases/PictureDatabase/TN/TN_1_1
Fiasco_2.2/Databases/Videos.info
Fiasco_2.2/Databases/Videos/Movies.fdat

fiasco 211 / 252

Fiasco_2.2/Databases/Videos/Movies.fdb
Fiasco_2.2/Databases/Videos/Movies.fdb.info
Fiasco_2.2/Databases/Videos/Movies.frec
Fiasco_2.2/Databases/Videos/Movies/Standard.fidx
Fiasco_2.2/Databases/Videos/Tapes.fdat
Fiasco_2.2/Databases/Videos/Tapes.fdb
Fiasco_2.2/Databases/Videos/Tapes.fdb.info
Fiasco_2.2/Databases/Videos/Tapes.frec
Fiasco_2.2/Databases/Videos/Tapes/Standard.fidx
Fiasco_2.2/Development.info
Fiasco_2.2/Development/Locale.info
Fiasco_2.2/Development/Locale/Fiasco.cd
Fiasco_2.2/Development/Locale/Fiasco.cd.info
Fiasco_2.2/Development/Locale/Fiasco.ct
Fiasco_2.2/Development/Locale/Fiasco.ct.info
Fiasco_2.2/Development/Locale/Locale.readme
Fiasco_2.2/Development/Locale/Locale.readme.info
Fiasco_2.2/Development/Locale/v5_v6_changes.txt
Fiasco_2.2/Development/Locale/v5_v6_changes.txt.info
Fiasco_2.2/Development/Locale/v6_v8_changes.txt
Fiasco_2.2/Development/Locale/v6_v8_changes.txt.info
Fiasco_2.2/Development/WBPath.info
Fiasco_2.2/Development/WBPath/pathtest
Fiasco_2.2/Development/WBPath/pathtest.c
Fiasco_2.2/Development/WBPath/pathtest.c.info
Fiasco_2.2/Development/WBPath/pathtest.info
Fiasco_2.2/Development/WBPath/wbpath.h
Fiasco_2.2/Development/WBPath/wbpath.h.info
Fiasco_2.2/Development/WBPath/wbpath.o
Fiasco_2.2/Development/WBPath/wbpath.o.info
Fiasco_2.2/Documentation.info
Fiasco_2.2/Fiasco
Fiasco_2.2/Fiasco.info
Fiasco_2.2/gadgets/textfield.gadget
Fiasco_2.2/gtlayout.library
Fiasco_2.2/icons/ARexx.info
Fiasco_2.2/icons/ARexxScript.info
Fiasco_2.2/icons/Databases.info
Fiasco_2.2/icons/def_FiascoPrint.info
Fiasco_2.2/icons/Documentation.info
Fiasco_2.2/icons/Drawer.info
Fiasco_2.2/icons/Fiasco.dvi.info
Fiasco_2.2/icons/Fiasco.guide.info
Fiasco_2.2/icons/Fiasco.info
Fiasco_2.2/icons/FiascoProject.info
Fiasco_2.2/icons/XPort.info
Fiasco_2.2/icons/XPortData.info
Fiasco_2.2/Install.info
Fiasco_2.2/Install/Deutsch.info
Fiasco_2.2/Install/English.info
Fiasco_2.2/Install/Install
Fiasco_2.2/Libs/MC68020.info
Fiasco_2.2/Libs/MC68020/gtlayout.library
Fiasco_2.2/ReadMe.txt
Fiasco_2.2/ReadMe.txt.info
Fiasco_2.2/RegForm.txt
Fiasco_2.2/RegForm.txt.info

fiasco 212 / 252

Fiasco_2.2/XPort.info
Fiasco_2.2/XPort/mpearls_III_findpeals.fxp
Fiasco_2.2/XPort/mpearls_III_findpeals.fxp.info
Fiasco_2.2/XPort/RFF.fxp
Fiasco_2.2/XPort/RFF.fxp.info
Fiasco_2.2/XPort/StdTwist.fxp
Fiasco_2.2/XPort/StdTwist.fxp.info

Archive Fiasco_doc_eng.lha:

Fiasco_2.2/Documentation/English/Fiasco.dvi
Fiasco_2.2/Documentation/English/Fiasco.dvi.info
Fiasco_2.2/Documentation/English/Fiasco.guide
Fiasco_2.2/Documentation/English/Fiasco.guide.info
Fiasco_2.2/Documentation/English.info

Archive Fiasco_doc_deu.lha:
Fiasco_2.2/Documentation/Deutsch/Fiasco.dvi
Fiasco_2.2/Documentation/Deutsch/Fiasco.dvi.info
Fiasco_2.2/Documentation/Deutsch/Fiasco.guide
Fiasco_2.2/Documentation/Deutsch/Fiasco.guide.info
Fiasco_2.2/Documentation/Deutsch.info

1.346 Error Codes

Error Codes

This section lists all error codes that may be generated by Fiasco 2.2.
In most cases the error codes are only available to the user by Fiasco’s
ARexx port and the variable FIASCO.LASTERROR. In some cases, Fiasco error
requesters also show the error code. The ARexx command

Fault
can be used

to convert the code into a localized error text.

1000 - Unknown command or function: An ARexx command or a formula
function is unknown for Fiasco. May be caused by misspelling or using
an obsolete Fiasco version.

1001 - Bad arguments: The arguments to an ARexx command or a formula
function are not valid.

1002 - Unknown field ID: The field ID specified for an ARexx command or
used in a formula does not exist in the respective database.

1003 - No record: A record is required and not available.

1004 - Unknown project: The specified project is currently not loaded by
Fiasco.

fiasco 213 / 252

1005 - Wrong mode: A command requires that Fiasco is in a specific mode
that is currently not active.

1006 - Wrong field type: An ARexx command or a formula tried to access a
field that does not allow such an access because of its type.

1007 - Search failed: The search function did not found a match.

1008 - Project already active: The project is already active.

1009 - GUI not locked: UnlockGUI tried to unlock a GUI that was not
locked.

1010 - Could not activate field: ActivateField could not activate a
field.

1011 - Not listview: An ARexx command or a formula tried to access a
field as a listview field, although it is not a listview field.

1012 - Index out of range: The index/entry number for a listview field
does not exist.

1013 - Unknown index: Index file not found.

1014 - Could not activate index: Index file could not be activated.

1015 - Unknown search info: An ARexx command tried to used a search info
that does not exist.

1016 - ARexx server not running: The RexxMast process does not exist.

1017 - ARexx error: Universal ARexx error.

1018 - Unknown field type: A field type was specified that does not
exist. Could be caused by misspelling or by using an obsolete Fiasco
version.

1019 - Field already exists: CreateField tried to create a field with the
ID of an already existant field.

1101 - Unmatched parenteses: An opening brace was not matched by a
closing brace in a formula.

1102 - Missing operand: You specified in a formula an operator but left
out a operand that is required.

1103 - Illegal operand: A operator cannot use the operand associated to
it.

1104 - Syntax error: General syntax error.

1105 - Expression expected: An expression was expected but did not exist.

1106 - If without else: The ? operator was found without a matching :.

1107 - Else without if: A : was found without a matching ?.

fiasco 214 / 252

1200 - Math error: General math error.

1201 - Underflow: A number is too small to be used.

1202 - Overflow: A number is too large to be used.

1203 - Division by zero: Numbers may not be divided by zero.

1204 - Not a valid number: A number is not valid.

1205 - Not comparable: Numbers cannot be compared.

1206 - Domain: The argument of a mathematic function is not valid.

1207 - Out of range: A number is out of its range.

1301 - Unknown object type: Object type for GetAttr or SetAttr is not
known. Could be caused by misspelling or an obsolete Fiasco version.

1302 - Object name missing: An object for GetAttr or SetAttr requires an
object name and none has been specified.

1303 - Unknown object name: The name for an object is not known. May be
caused by misspelling.

1304 - Unknown attribute: An attribut is not known by Fiasco. May be
caused by misspelling or an obsolete Fiasco version.

Fiasco can also generate Amiga DOS error codes. These are the most
common ones:

103 - No free store: Not enough memory for a operation. Try to free
some memory and try again or expand your system.

115 - Bad number: A number was requested but Fiasco got something
different.

116 - Required argument missing: Fiasco requires more arguments than
currently specified.

117 - Keyword needs argument: A keyword has been specified without an
argument.

118 - Too many arguments: You specified more arguments than allowed.

119 - Unmatched quotes: A string is not terminated by ".

304 - Break: The user cancelled an operation.

1.347 Relation Checklist

fiasco 215 / 252

Relation Checklist

· create key field "there". Optionally activate "unique key".

· create real field "there". In case of string, extern or datatypes,
remember "max chars".

· save project.

· create key field "here". Must be the same type as "there".

· create real field "here". Must be the same type as "there". In the
case of string, extern or datatypes, "max chars" must be equal.

· save project.

· open relation requester for real field "here".

· select key "here"

· select relation file

· select key and real field "there". If the correct field is not
displayed, check type and in case of string, extern or datatypes max
chars.

· select Ok

1.348 Technical Information

Technical Information

This chapter contains information about the internal working of some
Fiasco functions. This may be useful for a better understanding of these
functions.

Implementation of Clipboard Support

1.349 Implementation of the Clipboard support

Implementation of the Clipboard support

The menuitems
Cut Record
,
Copy Record
and

Paste Record
use the clipboard

to store data temporarily. The clipboard of the Amiga OS is meant to
provide a interface for different programs to share certain types of

fiasco 216 / 252

data. To make this possible, the clipboard may only contain IFF data.

Fiasco uses unit 0 of the clipboard and stores its data in IFF-FTXT
files with a specific format. Each field gets a separate chunk. In this
chunk the field content is stored in ASCII format.

The order of the chunks depends on the internal field list of Fiasco.
Fiasco also uses this order to find out, which data belongs to which
field while pasting the clipboard-contents.

With most other programs, you cannot create such structured IFF-FTXT
files. The pasting in other programs is better supported. For example the
conclip- program pastes the data correctly, while MultiView displays only
the first chunk.

1.350 Bugs

Bugs

If you find any bug in Fiasco, please send a detailed description to
me
.

Please include information about your processor, OS version and other
configuration. This is best made with the ShowConfig program in the Tools
drawer.

These bugs are currently known:

· Weird bug in the print function: On some systems, Fiasco does only
print the first record if position 0;0 is occopied by a field. If you
move that field one position to the left, printing will work normally.

· The frame of the list window flashes sometimes in a weird way under
Kickstart 37.x

· Seems to leave sometimes some memory allocated.

· Produces with asl.library 40.6 and Kickstart 40.70 MungWall hits after
closing a filerequester. I think this is a bug of asl or intuition but
not of Fiasco.

1.351 To do

To do

Fiasco is of course not perfect, at all. Here is a list of all things,
which will be perhaps added at a later point (no guarantee!). If you have

fiasco 217 / 252

an Idea, send it to
me
!

· Complete rewrite of Fiasco’s mask user interface. This could feature a
smoth scrolling, more configuration options like a overwrite mode for
string fields and the possibility to have several masks for one
database.

· Internal multitasking.

· Completely configurable menus.

· A mark by pattern function that does not overwrite the old marks.

· "Packing" of projects: search for unused fields and make used as small
as possible.

· Checking, whether a similar record already exists (automatically)

· "Input only once" field attribute

· Option to save a Fiasco project in one file (as it was with Fiasco
1.x)

· Option to protect databases with passwords. Perhaps with several "user
levels", i.e. read access and write access.

· Datatypes fields, which load their contents after the user did nothing
for a short time period. This would make browsing through records
faster.

· "Cache" for datatypes fields data.

· Fiasco should display the number of the active record and the number
of all records (as in the service window) in the window title bar.

· There should be some control (e.g. from ARexx) whether fields are
disabled or not.

· The order how string fields are activated should be controlable.

· Better project handling.

· Change of index handling.

· Undo function.

· More GUI support ARexx commands, such as a generic listview requester.

· Possibility to cancel mask operations from an ARexx script or similar.

· Fiasco’s ARexx port and perhaps also other functions should have
another method to identify records than by its record number.

· More flexibile field copying function.

fiasco 218 / 252

Furthermore, I am working on a pOS port of Fiasco.

1.352 Credits

Credits

I would like to thank the following people
who have helped me in some way to create Fiasco:

Reinhard Katzmann Betatesting
Giuseppe Sacco Betatesting
Ulrich Scholz Betatesting
Carsten Klein Betatesting
Curtis Stanton Revision of my English docs
Dirk Hartstein Betatesting
Gregor B. Rosenauer Betatesting
Lutz Kalkof Betatesting and advertising ;-)
Giuseppe Chillemi Betatesting and Italian catalog
Claudio Mazzuco Italian catalog
Thomas Schwarz Betatesting
Michael A. Krehan Betatesting
Martin Sahlén Swedish catalog
Per Torp Danish catalog
Ralf Terber Betatesting
Javier Romero Spanish catalog
Olaf Barthel gtlayout.library
Mark Thomas textfield.gadget
Ralph Babel WBPath
Jay Miner Inventing the Amiga
Commodore Producing the Amiga
ESCOM Well, Amiga Developer CD?
VisCORP Having wanted to buy the Amiga
Gateway 2000 Let’s see...
proDAD Creating pOS

Thanks of course also to all registered users!

1.353 Support for Fiasco

Support for Fiasco

Updates

New versions of Fiasco will be uploaded to Aminet first. They should be
available in the directory biz/dbase. For more information about Aminet,
send an eMail with the word Help in the mail body to
Aminet-Server@aminet.org.

Mailing List

fiasco 219 / 252

To subscribe to the Fiasco mailing list, send a mail with the text
subscribe fiasco in the mail body to majordomo@in-tec.de. To write
messages into the list, write to fiasco@amigaworld.com.

If you have problems while subscribing to the mailing list, you may
try to subscribe to the backup mailing list. This mailing list will be
used in the case when the normal mailing list is be down. Send a mail
with the subject subscribe fiasco to listserv@wanderer.gun.de . Please
also read the introduction mail from the mailing list.

Word Wide Web

There is also an internet homepage for Fiasco. You may obtain the latest
news about Fiasco there. The URL is
http://www.amigaworld.com/support/fiasco/.

Author

The author of Fiasco can be reached at the following addresses:
Nils Bandener
Dekanatsgasse 4
D-34369 Hofgeismar
Germany

Internet: nils@dinoex.sub.org
Some AmigaGuide versions apparently handle the

At-Sign different from others. Thus, here is the address once again, if
the address above should be not readable:

Internet: nils@dinoex.sub.org

1.354 Index

Index

#?
Wildcards

?
Wildcards

about menuitem
Project/About...

abs()
abs()

acos()
acos()

fiasco 220 / 252

ActivateDBWindow
ActivateDBWindow

ActivateField
ActivateField

ActiveIndex
ActiveIndex

ActiveRecord
ActiveRecord

activerecord()
activerecord()

add element menuitem
Element/Add...

add field menuitem
Field/Add Field...

Add gadget
Add

add record menuitem
Record/Add Record

AddLVFieldEntry
AddLVFieldEntry

AddRecord
AddRecord

advanced usage
Advanced Usage of Fiasco Databases

alternative format
Converting Fields

Amiga DOS
Wildcards

AmigaGuide
Fiasco’s Graphic User Interface

AmigaGuide
Requirements

annotations
Project Options Requester

appicon
Project/Hide

ARexx
The ARexx Port

fiasco 221 / 252

ARexx debug menuitem
Control/ARexx-Debug

ARexx/accessing
Accessing the Port

ARexx/database shutdown
Project Options Requester

ARexx/database shutdown
User Interface Settings Requester

ARexx/database startup
Project Options Requester

ARexx/database startup
User Interface Settings Requester

ARexx/debugging
Debugging ARexx Scripts

ARexx/Fiasco 2.1
The ARexx Port

ARexx/LastError
Results of Commands

ARexx/port
Accessing the Port

ARexx/print
Printing with ARexx

ARexx/program shutdown
User Interface Settings Requester

ARexx/program startup
User Interface Settings Requester

ARexx/quotes
Arguments of Commands

ARexx/rc
Results of Commands

ARexx/Result
Results of Commands

ARexx/searching with
Searching with ARexx

ARexx/stem variables
Results of Commands

ARexx/success
Results of Commands

fiasco 222 / 252

ARexx/Var
Results of Commands

ARexxPrint.rexx
Printing with TeX

ARexxSort.fidx
Sort

ASCII
Slider Fieldtype

ASCII
Import and Export

asin()
asin()

atan()
atan()

auto-open service win
User Interface Settings Requester

Babel, Ralph
Legal Things

backslash
How to Specify Special Characters

bar
Bar Fieldtype

Barthel, Olaf
Legal Things

boolean
Boolean Fieldtype

button
Button Fieldtype

C
Slider Fieldtype

C
How to Specify Special Characters

CalculateFormula
CalculateFormula

CD ROM mode
Project Options Requester

ceil()
ceil()

fiasco 223 / 252

character-classes in im-export
How to Specify Special Characters

checkbox
Boolean Fieldtype

choices
Cycle Fieldtype

Clear
Clear

clipping of print elements
The Print Mask

CloneRecord
CloneRecord

Close
Close

CloseListWindow
CloseListWindow

CloseServiceWindow
CloseServiceWindow

conditional operator
Operators

constants
Constants

constants menu item
Database/Constants...

constants requester
Constants Requester

convert field menuitem
Field/Convert Field...

convert field requester
Convert Field Requester

ConvertField
ConvertField

copy record menuitem
Record/Copy Record

CopyRecord
CopyRecord

count menuitem
Compare/Count...

fiasco 224 / 252

count requester
Count Requester

counting matches
Count

CountRecords
CountRecords

create group menuitem
Field/Create Group

create icons
User Interface Settings Requester

CreateField
CreateField

CreateThumbnail
Picture Database

current entry operator
Operators

current()
Operators

currentdate()
currentdate()

currenttime()
currenttime()

cursor
The Mask Window

cursor keys
The Mask Window

cut record menuitem
Record/Cut Record

CutRecord
CutRecord

cycle
Cycle Fieldtype

cycle trough fields with enter
User Interface Settings Requester

data structure
Basic elements of a Database

database settings menuitem
Settings/Databases...

fiasco 225 / 252

database settings requester
Database Settings Requester

database shutdown script
Project Options Requester

database startup script
Project Options Requester

datatypes
Datatypes Fieldtype

datatypes/animation
Datatypes Fieldtype

datatypes/immediate playing
Datatypes Fieldtype

datatypes/scrolling
Datatypes Fieldtype

datatypes/sound
Datatypes Fieldtype

datatypes/speeding up record changes
Datatypes Fieldtype

date
Date Fieldtype

datediff()
datediff()

day()
day()

debugging of ARexx scripts
Debugging ARexx Scripts

delete all records menuitem
Record/Delete all Records

Delete gadget
Delete

delete record menuitem
Record/Delete Record

DeleteAllRecords
DeleteAllRecords

DeleteConstant
DeleteConstant

DeleteLVFieldEntry
DeleteLVFieldEntry

fiasco 226 / 252

DeleteRecord
DeleteRecord

descending
Sort Requester

Diskexpander
Requirements

display menuitem
Settings/Display...

display settings requester
Display Settings Requester

dragging
The Mask Window

dummy.frx
Accessing the Port

dummy.frx
Style Conventions

dummy.frx
Debugging ARexx Scripts

duplicate element menuitem
Element/Duplicate

duplicate field menuitem
Field/Duplicate Field

duplicate record menuitem
Record/Duplicate Record

dynamic service win
User Interface Settings Requester

edit active field menuitem
Field/Edit active Field...

edit body menuitem
Control/Edit Body

edit element menuitem
Element/Edit...

edit filter menuitem
Compare/Filter...

edit foot menuitem
Control/Edit Foot

edit head menuitem
Control/Edit Head

fiasco 227 / 252

edit index requester
New/Edit Index Requester

edit named field menuitem
Field/Edit named Field...

edit relation menuitem
Field/Edit Relation...

edit usermenu menuitem
Settings/User Menu...

edit usermenu requester
User Menu Requester

editing the print mask
The Print Mask

editor menu item
Settings/External Programs and Paths...

eepic
GraphPrint.rexx

EHB
Picture Database

element type submenu
Element/Element Type

enter
User Interface Settings Requester

erase menuitem
Project/Erase

erase menuitem in print window
Project/Erase

error codes
Error Codes

escape sequences in im-export
How to Specify Special Characters

escape wildcards
Wildcards

exit menuitem
Project/Exit

Export
Export

export
Import and Export

fiasco 228 / 252

export menuitem
Project/Export...

export/requester
Export Requester

export/required marking chars
Structure of Import/Export files

export/structure of files
Structure of Import/Export files

extern
Extern Fieldtype

external data
Import and Export

external programs and paths
External Programs and Paths Requester

external programs and paths menu item
Settings/External Programs and Paths...

factor
Blurred Search

false
Boolean Fieldtype

Fault
Fault

Fiasco 1.x
Indices Requester

FIASCO.LASTERROR
Results of Commands

fiasco_port
Accessing the Port

field requester
Field Requester

field type cycle gadget
Mask Mode

fields
Fields

fields/ARexx
Standard Attributes

fields/attributes
Field Requester

fiasco 229 / 252

fields/automatic activation
User Interface Settings Requester

fields/bar
Bar Fieldtype

fields/boolean
Boolean Fieldtype

fields/button
Button Fieldtype

fields/converting
Converting Fields

fields/cycle
Cycle Fieldtype

fields/datatypes
Datatypes Fieldtype

fields/date
Date Fieldtype

fields/default value
Standard Attributes

fields/double clicking
The Mask Window

fields/dragging
The Mask Window

fields/extern
Extern Fieldtype

fields/float
Float Fieldtype

fields/formula
Standard Attributes

fields/formulas
Fields

fields/groups
Groups

fields/height
Standard Attributes

fields/identification of a
Standard Attributes

fields/init cont
Standard Attributes

fiasco 230 / 252

fields/integer
Integer Fieldtype

fields/listview
Listview Fieldtype

fields/picker button
Standard Attributes

fields/predefined values
Standard Attributes

fields/programming
Standard Attributes

fields/selecting multiple
The Mask Window

fields/shifting
Field Requester

fields/slider
Slider Fieldtype

fields/squeezing
Field Requester

fields/string
String Fieldtype

fields/tab cycling
The Mask Window

fields/text
Text Fieldtype

fields/time
Time Fieldtype

fields/validity of attributes
Field Requester

fields/var string
Var String Fieldtype

fields/virtual
Standard Attributes

fields/virtual
Virtual Fields

fields/width
Standard Attributes

fieldtype menuitem
Field/Fieldtype

fiasco 231 / 252

File card structure
Mask

file cards
Records

filter
Filter

Filter
Filter

filter menuitem
Compare/Filter...

filter requester
Filter Requester

filter/disabling
Filter

Find
Find

find menuitem
Compare/Find...

find next menuitem
Compare/Find next

find previous menuitem
Compare/Find previous

find requester
Search Requester

first record menuitem
Record/First Record

float
Float Fieldtype

floor()
floor()

FlushRecords
FlushRecords

fonts
Mask

Forbes, Jonathan
Legal Things

foreign data
Import and Export

fiasco 232 / 252

formatdate()
formatdate()

formatstring
Slider Fieldtype

formattime()
formattime()

formula requester
Formula Requester

formulas
Formulas

formulas/boolean values
Constant Values

formulas/constants
Constants

formulas/fields
Fields

formulas/functions
Functions

formulas/index numbers
Fields

formulas/listview fields
Fields

formulas/numbers
Constant Values

formulas/operators
Operators

formulas/returned values
Constant Values

formulas/strings
Constant Values

formulas/value conversions
Constant Values

formulas/values
Constant Values

function keys
User Menu Requester

functions
Functions

fiasco 233 / 252

functions
Function Reference

functions menu item
Database/Functions...

functions requester
Functions Requester

gadgets
Mask

gadtools.library
Mask

get from list menuitem
Project/Get from List

get from mask menuitem
Project/Get from Mask

GetAttr
GetAttr

GetConstant
GetConstant

GetField
GetField

GetRecordMark
GetRecordMark

goto record menuitem
Record/Goto...

goto record requester
Goto Requester

GraphPrint.rexx
GraphPrint.rexx

grouping groups
Groups

grouping groups
Field/Create Group

groups
Groups

groups/grouping
Groups

groups/grouping groups
Field/Create Group

fiasco 234 / 252

gtlayout.library
Legal Things

gtlayout.library
Requirements

GUI
Fiasco’s Graphic User Interface

HAM
Picture Database

Hawes, William S.
The ARexx Port

help
Fiasco’s Graphic User Interface

help
Requirements

hide column menuitem
List/Hide column

hide project menuitem
Project/Hide

HideProject
HideProject

hierarchical structures
Introduction

hour()
hour()

html
Mailing List Archive

icon
Project/Hide

icons
User Interface Settings Requester

IFF
Datatypes Fieldtype

Import
Import

import
Import and Export

import menuitem
Project/Import...

fiasco 235 / 252

import/requester
Import Requester

import/required marking chars
Structure of Import/Export files

import/structure of files
Structure of Import/Export files

import/updating databases
Updating databases with Im/Export

index
Indices

index history
The Index History

index history
Database/Previous active Index

index requester
New/Edit Index Requester

indices
Indices

indices
Using Indices

indices menuitem
Database/Indices...

indices requester
Indices Requester

indices/history
The Index History

Installer
Legal Things

integer
Integer Fieldtype

internal print function
Internal Print Function

key
Creating Relations

Knuth, Donald E.
Printing with TeX

last record menuitem
Record/Last Record

fiasco 236 / 252

left()
left()

lg()
lg()

Lha
Picture Database

list
List

list window menuitem
Control/List Window

list/activating records
The List Window

list/changing column position
The List Window

list/changing column width
The List Window

list/clean up
The List Window

list/field IDs
The List Window

list/head
The List Window

list/hiding columns
The List Window

list/layout
The List Window

list/marked records
The List Window

list/marks
Using Marks

list/revealing columns
The List Window

listview
Listview Fieldtype

listview sum operator
Operators

ln()
ln()

fiasco 237 / 252

load settings menuitem
Settings/Load Settings...

LoadDTFieldObject
LoadDTFieldObject

local data
Relations

locale.library
Date Fieldtype

locale.library
Time Fieldtype

locale.library
Sort Requester

localization
Requirements

LockGUI
Style Conventions

LockGUI
LockGUI

low memory situations
Importing of Data

LX
Legal Things

LZX
Picture Database

mailing list archive
Mailing List Archive

mark all records menuitem
Record/Mark all Records

mark menuitem
Compare/Mark...

mark record menuitem
Record/Mark Record

mark requester
Mark Requester

marking characters
Structure of Import/Export files

MarkMatch
MarkMatch

fiasco 238 / 252

MarkRecord
MarkRecord

marks
Using Marks

mask
Mask

mask mode
Mask Mode

mask mode menuitem
Control/Mask Mode

mask/stretching
Mask Stretching

memory pools
Requirements

MenuControl
MenuControl

menuhelp
Fiasco’s Graphic User Interface

minute()
minute()

month()
month()

mouse
The Mask Window

MoveRecord
MoveRecord

multimedia database
Multimedia Database

name of author
Project Options Requester

narrator.device
User Interface Settings Requester

New
New

new index requester
New/Edit Index Requester

new look proportional gadgets
Display Settings Requester

fiasco 239 / 252

new menuitem
Project/New

NewSearchInfo
NewSearchInfo

next act. index menu item
Database/Next active Index

next record menuitem
Record/Next

No Index
Record/Delete Record

numrecords()
numrecords()

online help
Requirements

online-help
About this Document

Open
Open

open menuitem
Project/Open...

open menuitem in print window
Project/Open...

open new menuitem
Project/Open new...

OpenListWindow
OpenListWindow

OpenServiceWindow
OpenServiceWindow

operands
Operators

operators
Operators

options menu item
Database/Options...

options menuitem in print window
Project/Options...

options requester
Project Options Requester

fiasco 240 / 252

overwrite old project
Import

paste record menuitem
Record/Paste Record

PasteRecord
PasteRecord

paths menu item
Settings/External Programs and Paths...

paths requester
External Programs and Paths Requester

picture database
Picture Database

pools
Requirements

popup gadget requester
Popup Gadget Requester

pOS
To do

prev. act. index menu item
Database/Previous active Index

previous record menuitem
Record/Previous

print
Printing a Database

print mask files
Print Mask Files

print menuitem
Project/Print...

print menuitem in print window
Project/Print

print/ARexx
Printing with ARexx

print/clipping
The Print Mask

print/editing the print mask
The Print Mask

print/element requester
Print Element Requester

fiasco 241 / 252

print/field elements
The Print Mask

print/formfeed elements
The Print Mask

print/internal print function
Internal Print Function

print/list
Internal Print Function

print/mask
Internal Print Function

print/mask files
Print Mask Files

print/options requester
Print Options Requester

print/printing
Internal Print Function

print/printing with TeX
Printing with TeX

print/standard mask
Internal Print Function

print/text elements
The Print Mask

print/window
The Print Window

printf()
printf()

printing with ARexx
Printing with ARexx

program arguments
Starting Fiasco

program shutdown script
User Interface Settings Requester

program startup
User Interface Settings Requester

program startup script
User Interface Settings Requester

Progress
Progress

fiasco 242 / 252

project file/size of
Datatypes Fieldtype

project file/size of
Extern Fieldtype

project file/size of
String Fieldtype

project options requester
Project Options Requester

projects/active
Active project

proportional gadgets
Display Settings Requester

Quit
Quit

quit menu item
Project/Quit

quotes and ARexx
Arguments of Commands

rand()
rand()

RawDoFmt()
Slider Fieldtype

read only media
Project Options Requester

ReadArgs()
Arguments of Commands

ReadSettings
ReadSettings

recalc list menuitem
List/Recalc List

RecompileFormulas
RecompileFormulas

record mode
Record Mode

record mode menuitem
Control/Record Mode

record/numbers
Indices

fiasco 243 / 252

records
Records

records/activating
The List Window

records/cloning
Working with Records

records/copy
Working with Records

records/creating
Working with Records

records/cut
Working with Records

records/delete
Working with Records

records/deleted
Database/Reorganize...

records/list
The List Window

records/numbers
Goto Requester

records/paste
Working with Records

records/recover
Record/Delete Record

recover deleted records
Record/Delete Record

relation requester
Relation Requester

relation/remote
Relations

relations
Relations

relations/1:L
Relation Types

relations/1:N
Relation Types

relations/here
Relations

fiasco 244 / 252

relations/local
Relations

relations/N:L
Relation Types

relations/N:Sum
Relation Types

relations/only read
Relation Types

relations/there
Relations

relations/types
Relation Types

relations/updating
Database/Reload Relations

relations/updating
Database Settings Requester

relations/writing
Database Settings Requester

reload relations menu item
Database/Reload Relations

remote data
Relations

remove element menuitem
Element/Remove

remove field menuitem
Field/Remove Field

remove relation menuitem
Field/Remove Relation

reorganize menu item
Database/Reorganize...

replace
Replace

replace menuitem
Compare/Replace...

replace requester
Replace Requester

request database
User Interface Settings Requester

fiasco 245 / 252

RequestChoice
RequestChoice

RequestField
RequestField

RequestFile
RequestFile

RequestNumber
RequestNumber

RequestString
RequestString

ResetStatus
ResetStatus

resolve group menuitem
Field/Resolve Group

Result
Results of Commands

reveal project menuitem
Project/Reveal...

reveal project requester
Reveal Project Requester

RevealProject
RevealProject

right()
right()

round()
round()

Save
Save

save as menuitem
Project/Save As...

save as menuitem in print window
Project/Save as...

save menuitem
Project/Save

save menuitem in print window
Project/Save

save settings as menuitem
Settings/Save Settings as...

fiasco 246 / 252

save settings menuitem
Settings/Save Settings

SaveAs
SaveAs

SaveSettings
SaveSettings

saving disk space
Relations

screenmode requester
Requirements

screenmode requester
Display Settings Requester

search
Searching in a Database

search requester
Search Requester

search/ARexx
Searching with ARexx

search/by fields
Searching by Fields

search/by formulas
Searching by Formulas

search/joker
Wildcards

search/matching records
Searching by Fields

search/mode
Searching in a Database

search/patterns
Patterns

search/requester
Searching in a Database

search/search info
Search Information

search/wildcards
Wildcards

search/wildcards for numbers
Wildcards for numbers

fiasco 247 / 252

second()
second()

security requesters
Working with Records

security requesters
User Interface Settings Requester

select index requester
Indices Requester

service window
Progress

service window
SetStatus

service window
The Service Window

service window menuitem
Control/Service Window

service window/fixed position
User Interface Settings Requester

service window/M
Using Marks

service window/marks
Using Marks

service window/open on startup
User Interface Settings Requester

SetAttr
SetAttr

SetConstant
SetConstant

SetField
SetField

SetMode
SetMode

SetSearchField
SetSearchField

SetStatus
SetStatus

shareware
Shareware

fiasco 248 / 252

shift
Field Requester

show all columns menuitem
List/Show all columns

show column menuitem
List/Show column...

show column requester
Show Column Requester

shutdown script
Project Options Requester

shutdown script
User Interface Settings Requester

sign()
sign()

sin()
cos()

sin()
sin()

single quotes
Arguments of Commands

slider
Slider Fieldtype

Sort
Sort

sort menuitem
Compare/Sort...

sort requester
Sort Requester

special characters in im-export
How to Specify Special Characters

special host
GraphPrint.rexx

speech
User Interface Settings Requester

sqrt()
sqrt()

stack
Starting Fiasco

fiasco 249 / 252

standard print mask
Internal Print Function

starting Fiasco
Starting Fiasco

starting Fiasco twice
Starting Fiasco

startup script
Project Options Requester

startup script
User Interface Settings Requester

statistic menu item
Database/Statistic...

statistic requester
Statistic Requester

status gadget
SetStatus

strcat()
strcat()

strcmp()
strcmp()

stretching
Mask Stretching

stricmp()
stricmp()

string
String Fieldtype

strlen()
strlen()

strmid()
strmid()

strrev()
strrev()

strstr()
strstr()

structure of Import/Export files
Structure of Import/Export files

sum()
Operators

fiasco 250 / 252

tab cycling
The Mask Window

tab key
User Interface Settings Requester

talking
User Interface Settings Requester

tan()
tan()

tape deck gadgets
Record Mode

TeX
Printing with TeX

text
Text Fieldtype

textfield.gadget
Var String Fieldtype

textfield.gadget
Legal Things

textfield.gadget
Requirements

Thomas, Mark
Var String Fieldtype

Thomas, Mark
Legal Things

time
Time Fieldtype

toggle all marks menuitem
Record/Toggle all Marks

tolerance
Blurred Search

tolower()
tolower()

toupper()
toupper()

true
Boolean Fieldtype

Unique Key
Creating Relations

fiasco 251 / 252

UnlockGUI
UnlockGUI

unmark all records menuitem
Record/Unmark all Records

unmark record menuitem
Record/Unmark Record

update relations
Database Settings Requester

updating databases
Updating databases with Im/Export

use * as pattern
Database Settings Requester

user interface settings
Settings/User Interface...

user interface settings
User Interface Settings Requester

user-defined functions
Functions

usermenu requester
User Menu Requester

using indices
Using Indices

var string
Var String Fieldtype

version()
version()

virtual fields
Standard Attributes

virtual fields
Virtual Fields

wait clock
LockGUI

WBPath
Legal Things

workbench
Project/Hide

write relations
Database Settings Requester

fiasco 252 / 252

XFH
Requirements

year()
year()

	fiasco
	Fiasco.guide
	Introduction
	About this Document
	Features
	News
	Getting Started
	Requirements
	Installation
	Starting Fiasco
	Quick Start
	Basic elements of a Database
	Records
	Indices
	Fields
	Mask
	List
	Editing Modes in Fiasco
	Record Mode
	Mask Mode
	Simple Usage of Fiasco Databases
	Working in the Mask
	Working with Records
	Advanced Usage of Fiasco Databases
	Converting Fields
	Groups
	Using Indices
	The Index History
	Using Marks
	Relations
	Relation Types
	Creating Relations
	Virtual Fields
	Searching in a Database
	Searching by Fields
	Patterns
	Wildcards
	Wildcards for numbers
	Blurred Search
	Searching by Formulas
	Search Information
	Searching with ARexx
	Count
	Replace
	Filter
	Printing a Database
	Internal Print Function
	The Print Mask
	Print Mask Files
	Printing with TeX
	Printing with ARexx
	GraphPrint.rexx
	Import and Export
	Structure of Import/Export files
	How to Specify Special Characters
	Importing of Data
	Exporting of Data
	Updating databases with Im/Export
	Fieldtypes
	Standard Attributes
	String Fieldtype
	Integer Fieldtype
	Float Fieldtype
	Boolean Fieldtype
	Cycle Fieldtype
	Slider Fieldtype
	Date Fieldtype
	Time Fieldtype
	Extern Fieldtype
	Datatypes Fieldtype
	Var String Fieldtype
	Text Fieldtype
	Button Fieldtype
	Bar Fieldtype
	Listview Fieldtype
	Fiasco's Graphic User Interface
	The Mask Window
	Mask Stretching
	The List Window
	The Service Window
	Add
	Delete
	First
	Previous
	Next
	Last
	Active project
	Status
	Fieldtype
	Menus
	Project/New
	Project/Erase
	Project/Open...
	Project/Open new...
	Project/Save
	Project/Save As...
	Project/Import...
	Project/Export...
	Project/Print...
	Project/Hide
	Project/Reveal...
	Project/About...
	Project/Quit
	Database/Options...
	Database/Statistic...
	Database/Indices...
	Database/Previous active Index
	Database/Next active Index
	Database/Reorganize...
	Database/Reload Relations
	Database/Functions...
	Database/Constants...
	Record/Add Record
	Record/Duplicate Record
	Record/Delete Record
	Record/Delete all Records
	Record/Cut Record
	Record/Copy Record
	Record/Paste Record
	Record/Previous
	Record/Next
	Record/First Record
	Record/Last Record
	Record/Goto...
	Record/Mark Record
	Record/Unmark Record
	Record/Mark all Records
	Record/Unmark all Records
	Record/Toggle all Marks
	Field/Fieldtype
	Field/Add Field...
	Field/Edit active Field...
	Field/Edit named Field...
	Field/Duplicate Field
	Field/Remove Field
	Field/Edit Relation...
	Field/Remove Relation
	Field/Create Group
	Field/Resolve Group
	Field/Convert Field...
	List/Hide column
	List/Show column...
	List/Show all columns
	List/Recalc List
	Compare/Find...
	Compare/Find next
	Compare/Find previous
	Compare/Filter...
	Compare/Replace...
	Compare/Count...
	Compare/Sort...
	Compare/Mark...
	Control/Record Mode
	Control/Mask Mode
	Control/Service Window
	Control/List Window
	Control/ARexx-Debug
	Settings/Databases...
	Settings/User Interface...
	Settings/User Menu...
	Settings/Display...
	Settings/External Programs and Paths...
	Settings/Save Settings
	Settings/Save Settings as...
	Settings/Load Settings...
	The Print Window
	Project/Erase
	Project/Open...
	Project/Get from Mask
	Project/Get from List
	Project/Save
	Project/Save as...
	Project/Print
	Project/Options...
	Project/Exit
	Element/Element Type
	Element/Add...
	Element/Edit...
	Element/Duplicate
	Element/Remove
	Control/Edit Head
	Control/Edit Body
	Control/Edit Foot
	All Requesters
	Import Requester
	Export Requester
	Reveal Project Requester
	Project Options Requester
	Statistic Requester
	Indices Requester
	New/Edit Index Requester
	Functions Requester
	Constants Requester
	Goto Requester
	Field Requester
	Popup Gadget Requester
	Convert Field Requester
	Relation Requester
	Formula Requester
	Show Column Requester
	Search Requester
	Filter Requester
	Replace Requester
	Count Requester
	Mark Requester
	Sort Requester
	Database Settings Requester
	User Interface Settings Requester
	User Menu Requester
	Display Settings Requester
	External Programs and Paths Requester
	Print Options Requester
	Print Element Requester
	Formulas
	Constant Values
	Fields
	Constants
	Operators
	Functions
	Function Reference
	abs()
	activerecord()
	asin()
	acos()
	atan()
	ceil()
	cos()
	currentdate()
	currenttime()
	datediff()
	day()
	floor()
	formatdate()
	formattime()
	hour()
	left()
	lg()
	ln()
	minute()
	month()
	numrecords()
	printf()
	rand()
	right()
	round()
	second()
	sign()
	sin()
	sqrt()
	strcat()
	strcmp()
	stricmp()
	strlen()
	strmid()
	strrev()
	strstr()
	tan()
	tolower()
	toupper()
	version()
	year()
	The ARexx Port
	Style Conventions
	Accessing the Port
	Arguments of Commands
	Results of Commands
	Debugging ARexx Scripts
	ARexx commands by alphabet
	ARexx commands by function
	ActivateDBWindow
	ActivateField
	ActiveIndex
	ActiveRecord
	AddLVFieldEntry
	AddRecord
	CalculateFormula
	Clear
	CloneRecord
	Close
	CloseListWindow
	CloseServiceWindow
	ConvertField
	CopyRecord
	CountRecords
	CreateField
	CutRecord
	DeleteAllRecords
	DeleteConstant
	DeleteLVFieldEntry
	DeleteRecord
	Export
	Fault
	Filter
	Find
	FlushRecords
	GetAttr
	GetConstant
	GetField
	GetRecordMark
	HideProject
	Import
	LoadDTFieldObject
	LockGUI
	MarkMatch
	MarkRecord
	MenuControl
	MoveRecord
	New
	NewSearchInfo
	Open
	OpenListWindow
	OpenServiceWindow
	PasteRecord
	Progress
	Quit
	ReadSettings
	RecompileFormulas
	RequestChoice
	RequestField
	RequestFile
	RequestNumber
	RequestString
	ResetStatus
	RevealProject
	Save
	SaveAs
	SaveSettings
	SetAttr
	SetConstant
	SetField
	SetMode
	SetSearchField
	SetStatus
	Sort
	UnlockGUI
	Example Projects
	Organizer
	FamilyTree
	PD Disks
	Videos
	Picture Database
	Multimedia Database
	Mailing List Archive
	Legal Things
	Shareware
	File List
	Error Codes
	Relation Checklist
	Technical Information
	Implementation of the Clipboard support
	Bugs
	To do
	Credits
	Support for Fiasco
	Index

