eCos Reference Manual

eCos Reference Manual
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 by Red Hat, Inc.Nick Garnett (eCosCentric)Jonathan Larmour
(eCosCentric)Andrew Lunn (Ascom)Gary Thomas (MLB Associates)Bart Veer (eCosCentric)

Documentation licensing terms

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright
holder.

Trademarks

Red Hat, the Red Hat Shadow Man logo®, eCos™, RedBoot™, GNUPro®, and Insight™ are trademarks of Red Hat, Inc.
Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.
Intel® is a registered trademark of Intel Corporation.

Motorola™ is a trademark of Motorola, Inc.

ARM® is a registered trademark of Advanced RISC Machines, Ltd.

MIPS™ is a trademark of MIPS Technologies, Inc.

Toshiba® is a registered trademark of the Toshiba Corporation.

NEC® is a registered trademark if the NEC Corporation.

Cirrus Logic® is a registered trademark of Cirrus Logic, Inc.

Compag® is a registered trademark of the Compag Computer Corporation.

Matsushita™ is a trademark of the Matsushita Electric Corporation.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of The Open Group.

Microsoft®, Windows®, and Windows NT® are registered trademarks of Microsoft Corporation, Inc.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

Warranty

eCos and RedBoot are open source software, covered by a modified version of the GNU General Public Licence (http://www.gnu.org/copyleft/gpl.html),
and you are welcome to change it and/or distribute copies of it under certain conditions. See http://sources.redhat.com/ecos/license-overview.html for
more information about the license.

eCos and RedBoot software have NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law. Except when otherwise stated in
writing, the copyright holders and/or other parties provide the software “as is” without warranty of any kind, either expressed or implied, including, but

not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the
software is with you. Should the software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who may modify and/or redistribute

the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use
or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a
failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

Table of Contents

I. THE BCOS KEBIMEL. .ottt ettt ettt st e b e e et e ebe et e ebeeneesbesaeenbesbeeasesbeeaeessesaeenbesbenneenns xXiii
KEIMEI OVEIVIEW.......icveceeeiteieeectesteete ettt e ettt ete st e e st e sbeebeebeensesbeeaaesbesbeenbesbeessesbesaeesbesbeensenbesneessesanentens 25
Y1V 18] o] o Jo] TSP USSR UR PP PP 33
QLI C=T= 10 Ko (Y= 1o T« 37
AL C=T= 00 I Ta Y014 g =1 (0] o 41
LI 1 C=T= (o o700 1 {01 45
A C=T= 00 (=T 0 01T =10 o T 47
I a1 C=T= Lo I o] g o1 1 1T=T TSSO P TPTRTPR PP SRTRT 49
g g (gL == T I = - 51
I 1 €=T= (o o (ST 1 U Tox (0] €= 53
EXCEPLON NANGING....ctittiecte ettt st nbne 55
(070101] (=1 £ TSROSO PSR USSRRORR 57
(O [0 Tod TSROSO 59
Y2 F= U .4 1SS 61
IVIULEXES ...ttt ettt e ettt e ettt e sabeeesabeeeaatee e seeaabeeesaseeesaseaaanbeseaaseseasseeanseesnneeasnteeaanseeesanes 63
CONAILION VATADIESoi ettt s e e ee et e e s beesaeesate e beesaeesasesabeesaeeessesnbeesseessessnseens 69
Y=t apT=T o] gL (=TSSR RPRRR 73
AU DOXES ...ttt et et e e et e et e e ebeeeaeesabe e beeebeesabesbeenbeesaeesnteeseestessabeereenteesaes 75
LY =T 1 = Vo USRS 77
1o &SR 79
SCHEAUIET CONIAL.....ceiiciectee e et te e st e st e e beesbeeeaseenbeesaeesasesnteesseesseesnseens 81
L1 C=T 0T o1 F= T o | 1 o S 83
Kernel Real-time CharaCteriZatiOn..........ccceicve et ettt e saee s te e sre e sre s sre e reesreesnes 89

I1. REABOOI™ USEI'S GUILE......eccviireeieeiteceeiteeteeite et eeeesreseesbesteeabesbeseesaesaeestesbeesbasbeessessesseessesbennsesbesseensesnes XCiX
1. Getting Started With REABOOL.........ccceieieeeeee et ettt s e e sre e ae e enennens 1

More information about RedB00t 0N the WED..........cccccviiiieeiicececece e 1
LISy 1T Yo T =T | 20 SRS 1
USEI INEEITACE. ... vttt ettt st sttt be e e s be e e e sbesbe e beebeeasetesaeebesbeeabebesseanbesreeneas 2
RedBoot Editing COMMEANGSccviiiiieiieie ettt sttt seene e 2
REABOOt STAMTUP IMOTE......ceeiiiieeie et st sttt ebe b e 3
REdBOOt RESOUICE USAGE.......cc ittt sttt et sttt b et sa b seebe e 4
[P T ST Y0 10 (o YO 4
RAM RESOUICES ..ottt ettt e e et e e e e st e e e e e s tte e e e e e saateeeesabsseeeseassseeeesasseeeessanbaneansnn 4
Configuring the RedBo0t ENVIFONMENL.........cccoiiriiireireeet e 5
Target Network ConfIQUIAtiONL.........cccoiireirieeree e 5

HOSt NetWOrk CONfIQUIALION......co.euereeiireetireeieresie sttt ebe e 6
Enable TFTP on Red Hat LINUX B.2........cciiiiiiieeeeecrie ettt 6

Enable TFTP on Red Hat LiNUX 7 (OF NEWEL)......ccviririeerieirieierieeeseeieseseeeseeeseens 7

Enable BOOTP/DHCP server on Red Hat LiUX........cccveeeeeeeieeecieeeree e 7

Enable DNS server on Red Hat LiNUX........covviveeeeeiiee e 8

RedBOOt NEIWOIK QAEWAY........cc.eeveieeeieeniesie ettt sb e e 9

Y 1[o7=1 1[0] o NSRRI 9

2. RedBoot Commands and EXAMPIES........cccociiiiiiiieirene ettt 11
LY goTo 18 o3 1 o] o U OPRRPRRORRRRRPR 11
COmMMON COMIMANAS.cctieitieitiieiteeieeitee e et e steesbesereesbeesabesbe e beesaaessseenbeesbeesasesaseesbessnsesaseesrens 13
= L= TSSO PR PSRRI 13

(o= 10 [0 [= L (=PTSRS 15

(o7 To] o[NP RSP 17

(o =Y] 1= U PRPSRRPR 19

0 1S ST 23

[0 01 0] TSSOSO PTSTO 25
DIt bbb bbb e e 27
o= U6 (o [OSSO TSP ST PTSTPPPTPPRPITRIOR 29

[0 7= T SRS SRSRS 31

[0 0701 1 01 o O PRSPPSO 35
0TSSR 37

11T OSSR URRR 39
(ST ST PUSPPURTRPPRURPN 41

(L] 571 o PSPPI 43
Flash Image SYSem (FIS).......oo et s 45
L1 ST L0 U SRR 45

LLESTE L] PO PP 47

LT L L= TP USRS U PP 49

FIS CIBALE. ...ttt et b et b b e n s 51

FIS TOAM. .. bbb e e 53

LTS3 0 (=1 = =SSOSR 55

FIS TOCK. 1.ttt bbb bbbttt 57

FIS UNIOCK ...ttt ettt et 59
LEESTN=T = L TSSOSO 61

BT WUTEEL et bbbttt 63
Persistent State Flash-based Configuration and CantrQl..........ccccvevvvvvvvreceniesiesie e seseenns 65
Executing Programs from ReABOQOL ..o 68
0 o PSSP 68

LSS o PP 71

3. REDUIIAING REUBOOL.......ccuiiiiiete ettt bbb et st b et sb e 73
a0 T [T 1o) o OSSR 73
Rebuilding RedB0oO0t USING €COSCONTIG......cceriiieirieirieereeie e 73
Rebuilding RedBoot from the Configuration TQOL...........ccovverriiieineireeeeeeee 74

4. UPAAtING REUBOOL........cuiuiitiiieiieeeree ettt b bbbttt s 75
a0 T [T 1o o SRS 75
Load and start a RedB0oOt RAM INSTANCE.....c.coiiiririieeeeeete e 75
Update the primary RedBoot flash image........cccooeerieineneceeee e 76
Reboot; run the new RedBOOt IMAGE......cccoeeririiirieeieeee ettt 77

5. INStallation ANd TESTNGccccereriiieee ettt st b e e e e e e e bt sbe st besee e eneas 79
AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board..........ccccecenenren. 79
OVBIVIBW.. ..ttt ettt sttt a bt bt st b et e e aeeh e b e s e e se e e e be b e et eE e b e s e neeneebesbeseeseeneeneas 79
INItIAl INSTAIALION......cceeieerie e e bbb 79
Preparing to program the Doard..........c.cciiiiiiinciine e 79

Preparing to use the JTAG debUQQEL.......ccveeeieeieiee e 80

Loading the RAM-based RedBoot Via JTAG........cccoeveveevesceereseeese e e 80

Loading the boot PROM-based RedBoot via the RAM mode RedBoat........... 81

AddItioNal COMMEANTAS.......oiiiirieerre e e b b e e e ens 82

Y L2700 T0] Y 1Y/ =T o TSP OPP PRI 82
[2g=T o101 [o [T aTo I = L=To | 210) AP 83
ARM/ARMT7 ARM EVAIUBLOI 7 T....cviiiiiieirieiirieesieesis ettt 83
(@Y= YT TSR 84
INTtAL INSEAIALION. ...t 84
QuiCk downIoad INSTLIUCLIONS.......c.cieeveeireeiesteceece ettt sre et s beeaaeebeereennas 84
Special RedB0o0t COMMANGS......covcieeiiiiriireeeeee e e e see e s see e e e sre e seseeneesens 85

MEMIOTY IMBIDS. ...ttt et e e e reer e e r e e nne e nnenreenn e 85

ReDUIAING REUBOOL ..ottt e 85

ARM/ARM7+ARMO ARM INEGTALOL......ciiieiirieiirieiiieieeeiees et 85
OVBIVIBW.. ..ttt ettt st s e e st s et st et et et e aeeae et e seeseeneeseesesaeseessenseneeneenesbeseesenneeneas 85

T LU= U 1y =11 = o] o PSR 86
Quick dOWNIOAd INSLIUCTIONS.....civeeeeeiiriesie et eneas 86
Special RedB0o0Ot COMMANAS........ccoiiiiiiiriiiriere et 87
LT g aTe] Y 1Y F= T o LTSRS 87
RebUIIAING REABOOL........coui ittt e bbb 88
ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+DeVA........cccvierereiinnienieienenenesenenens 88
OVBIVIBW.. ..ttt ettt h bt b e st e b et e e Rt ehe b e seese e e e b e e bt et se et e s et eneebesbesbeseeneeneas 88
Initial Installation Method. ..o e 88
Special RedB0o0t COMMEANGS......ccuciirireriirtiieieeee sttt ae e e eneas 88
=70 00] YA Y/ =T o TSRS 88
(YT 01U 1o TaTe T = L=Te | =70 Lo A 89
ARM/ARM7 Atmel AT91 Evaluation Board (EB4Q)..........cccoeeeieieriesecieese e 89
OVBIVIBW.. ..ttt etttk sttt h bt b et e et aeeb e b e s e e se e e e b e e bt bt se e b e e e e eneebe et e s beseeneeneas 89
Initial Installation Method.ccoiiiiii e 89
Special RedB00t COMMANGS......cc.coueiiiiisiiieiieeee st tesae e e e re e saeneenens 90

Y L=T0 0 0] YA Y/ =T o SRS PP 90

(=T 01011 [o [T aTo T =T | 2o) AP 91
ARM/ARM?Y Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312).....cccccccuvrirninerieneenn. 91
L@ Y=Y OSSO 91
Initial Installation Method...........cooiriirie e 91
Special RedBo0ot COMMANAS........ccooiiiiiriiirie e 92
MEMIOTY IMBIDS. ...ttt e e e r e er e r e r e e nnesaeennenreenn e 92
Platform RESOUICE USAOE........ccoveiririirieterestere ettt s 92
ReDUIAING REUBOOL.........couiiieiieie ettt 92
ARM/ARMY Agilent AAED2000.........ccccieererereeneeeeeeeseeseeseeseeseesessessessesssssesssesssssessessessensesens 93
OVBIVIBW.. ..ttt st s te e et s st sae st e te e e st sbe s beseeseeneesenbesaeseetenseneeneeaesbeneeseeneenens 93
Initial Installation Method. ..o e 93
RedBoot as Primary BOOtMONITOL. ... 93

Special RedB0o0ot COMMANAS........ccoiiiiiirieirerie et 95
MEIMOIY IMBPS. ... ettt s a e e nr e sr e er e e 95
ReDUIdING REUBOOL ..ottt 96
ARM/ARMO Altera EXCAlIDUL........coueiieiee e 96
OVBIVIBW.. ..ttt et st a bbb e b et e e aeeb e e b e s e e se et ehe e b e s et se et e e et eneebesbeseeseeneeneas 96
Initial Installation Method. ..o e 97
FIash ManagemeNt..........c.oiii et e s 97
Special RedB0o0t COMMEANGS......coccciiiririiriiie ettt ae e eneas 97
MEMIOTY IMBIDS. ..ttt ettt st b et b e et et e s h et e b e ebe e s e eb e e e e snesaeennesreennenns 98

(Y= o 1N 1o TaTe T = =Te | =70 Lo A 98
ARM/StrongARM(SAL110) INtel EBSA 285......coiiirieiiieneesieesiee s 99
OVBIVIBW.. ..ttt etk sttt h bt bt s e et eae e bt b e s b e se e e e b e bt s bt se e b e e e e ebeebesbesbeneeneeneas 99
Initial Installation Method. ..o e 99
Communication CRANNELS........c.ooii e 99
Special RedB00t COMMANGS......cc.coveiiiiiciiieieeee e st e e e re e aesaeneenens 99

Y =70 a0] Y AV F=T o S PR OPP PRI 99
Platform RESOUICE USAQE.......ccoviirririerieeeeetistesteseeseesessesse e teseseesessesseseeseessesessesssssenses 100

[RT=T 01011 o [TaTo I L=To | 2] o) A 100
ARM/StrongARM(SAL100) INtel BIULUS......coeeeererieiirieeieee et e e sre s 100
(@Y= YT OSSR 100
Initial Installation Method..........ccocvvirerereeer e sreen 101

Special RedBoOt COMMANGUS......ccvieeeiiirisiererie et se e seeee e ettt see e esesreseeseens 101

MEMOTY IMAPS.....eiiee it s n e e 101
Platform RESOUICE USAOE........cv ittt e 101
RebUIldING REUBOOL.........ccciieiieereee bbb 101
ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board..........c.ccccoeeeneieneininennieenn 102
OVBIVIBW.. ..ttt sttt ettt e et e s b e et st e e e et e st ebesbe s eeseeneeneeae e bt sbenbebeneeneesenbeseesnans 102
Initial Installation Method. ..o e e 102
Special RedBo0t COMMEANGS......coiiiiirirerieeieie ettt sse b e e 102
LT g aTe] YA 1Y F= T o LSRR U PSP 102
Platform RESOUICE USAQE... ..ottt st sbe st e e 103
RebUIldING REABOOL........oouiii et e e 103
ARM/StrongARM(SA1110) Intel SA1110 (ASSADEL).....ccvrvirereirieiree e 103
OVBIVIBW.. ..ttt sttt ettt et b e h e e a e b e ke e et e heeb e s b e s e e seemeeae e Rt ebesb et et e e et ebesbenbesrens 104
Initial Installation Method. ... s 104
Special RedB0o0Ot COMMANTS.......ccceeieiireeierieeieseeeese e ree e sre e see s eaesreens 104

Y =70 T0] Y\ F=T o T RPN 104
Platform RESOUICE USAQE........ccveeeieeee ettt ee et eneanneens 105

[2T=T 01011 To [T aTo T2 L=To | 210 o) AT 105
ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine..... 105
(@Y= YT TSRS 105
INItAL INSEAITALION......cotiiceeee e e 106
DOWNIOAA INSIIUCLIONS......coviiieiriee ettt 106
Cohabiting with POST iN FIASH......cc.cceiiiiesc et 107
Special RedBo0ot COMMANS........ccoiriiiirirereree e 107
LT g L0 Y 1Y = T LSO PP 108

[N E= T o o Fo a0 0 0 o 109

(g1 LY B D 1YY 109
ReDUIAING REUBOOL.........ccuiiiieeerete et 109
ARM/StrongARM(SA11X0) Compad iPAQ POCKEIRC.......cooiiirerereee s 109
OVBIVIBW.. .ttt sttt ettt te e e e e s s be s et e e e e e e seebesbeseeseeneeneeseasesbebenteneeneesenbeseeseens 109

T L= U 1Sy =11 = U1 T o 110
Installing RedBoot on the iPAQ using WINdows/CE...........cccccoeineinnienncnenn. 110

Installing RedBoot on the iPAQ - using the Compagq boot loader.................... 110

Setting up and testing REABOOL...........coeireireireeieeesees s 111

Installing RedBoot permManently....... ... 111

ReStoring WINAOWS/CE........ccoiiiiiieiee et e 112

Additional COMMEANGS......couiiiiiieireee ettt b e e e e e sae b b es 112
LT g aTe] YA 1Y F= T o LSRR U PSP 113
RebUIIAING REABOOL........oiieiei et e e 113
ARM/StrongARM(SA11X0) IntrinSyc CerfCUbE........cooiiiiiiiiieer e 114
OVBIVIBW. ..ttt sttt ettt et b bt et b e et h e e b e b e e e se e e e Rt e he e bt sb et et e e e neebesbesbeneen 114
INItIAl INSTAIALION. ... coviieeie e e e 114
Additional COMMEANTS........ooiiiiiee bbb e s 114
MEMOTY IMAPS.... it itieiie sttt st b e bbb e s b e e s teebe e sbeesateeabeesbeesaeenarenae 115
[R4=T o 1UT1 o T aTo T = T=Te | =0 Lo) AR 116
ARM/Xscale Cyclone IQ80310.......cccciuiiiereieeieesesrestesiesese e sre s e saeseesessesresressesseee e snesresseses 116
OVBIVIBW. ...ttt ettt sttt et st e st st e b e e e bt s e e b e s et et b en e b e ne st e st e e s et eb et enentenan 116
Initial Installation MEthod...........cooi i s 116
T g oo o L= TSRS 117
Using RedBoot with ARM BOOIOAEL...........cccvrueeeerere et 117
Special RedB0o0t COMMANGS......ccciveeririririerereeesese e seseeeees et seseeseeeesesseseesnens 118

Q80310 HArdWare TESES......ccuvviireireriereeeeeesiesteseeseesessesse e eesaeseesessessesseseeneesessessessensen 118

ReDUIAING REUBOOL.........ccueiieiieerieie e e 119

INEEITUPTS ..o e e n e e 119
MEMOTY IMAPS......eeieeiiieee e e e e s s s 120
Platform RESOUICE USAOE........ceiieirieie ettt 121
ARM/Xscale INtel IQBOB2L.......coeeeeeeieeierie ettt s a e s e et e e eae e es 121
OVBIVIBW.. .. ettt sttt ettt s e et e s bt s et st e et e e e st et e st e seeseemeeneeaeebesbesbenbene et esenbeseeseens 122
Initial Installation Method.cooiiiiie e e 122
SWILCN SETINGS. .. ettt ettt st s b et et se et ebesbe b seens 122

[B 2 @0 To (=TSR 123
Special RedB0o0ot COMMEANGS.......oiiiiririeiisieie et s sse b e e 125
MEMOTY TESTS ...ttt et b e se e e e e s be e e b e b e e e e e eais 125

Repeating MEmMOTY TESIS....ccuiiiirere ettt e s 125
Repeat-On-Fail MEmOrY TESIS. ...t 126

ROtary SWItCh S1 TESL. ..o e 126

7 SegMENT LED TeSIS....uiiiiiiieiiie sttt sttt s sne e 126

182544 Ethernet Configuration.........cccuevecereiieeseserees e 126

Battery StatUS TeSL.. ..o s 126

Battery Backup SDRAM MeMOIY TESL.....ccciiiiirierieiieeee e 126

LT L= LT PO SOOI 127

PCIBUS TESL. ittt sttt st st se et st st e e benenaenens 127

(1 21U @ Vo o T3 o o o T 127

[RT=T 01011 To [T aTo I =T | 2] o) A 127
LT U o 127
LT g aTe] Y 1Y = T LSO T PRSP 128
Platform RESOUICE USAOE........cv ittt 129
CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board...........c.cc....... 129
L@ Y= 1S 129
Initial Installation Method.ccocv i e 130
Special RedBo0ot COMMANAS........cooiiiiirieiriere e 130
Special Note on Serial Channel.........ccoiiii s 130
ReDUIAING REUBOOL ..ottt 130
CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board....................... 131
OVBIVIBW.. ..ttt ettt sttt ettt ae s et st e be e et e st et e s be s eeseemeeneeaessesbenbenbeneeneesesbeseeseans 131
Initial Installation Method.cooiii e e 131
Special RedB0o0t COMMEANGS......ciuiiiieririeiieiere et st se e ere e seeseens 132
Special Note on Serial Channel..........oii e 132
RebUIIAING REABOOL........oieiecieee ettt e e 132
FRV/FRV400 Fujitsu FR-V 400 (MB-9309L1).......cccetiiirieirieerisesesiesesieneste e nees 132
OVBIVIBW.. ..ttt ettt sttt b bt et st e b e e et e Rt e b e b e s e e se e e e neebe e bt sb et et e e et abesbenbeseens 132
Initial Installation Method. ... s 132
Special RedB0o0Ot COMMANTS.......ccceecieiiiieieceeese et eaenre e 133
MEIMOTY IMIAPS.... it etiiitie sttt sttt st b e b e st e be e b e e s bee e ateebeesbeesneeenbeesbeesneesnrennn 133
[RY=T 01U o T aTo = =Te | =70 Lo) A 133
IA32/X86 XBB-BASEA PC.....oeiieiieiirieierieie ettt sttt sttt 133
OVBIVIBW. ..ttt ettt et b bt et b b et et he e b e b s e e se e e e Rt e bt e bt sb et et e e eneebesbenbeneens 134
INItAL INSEAITALION.cviieieee et e 134

[F= TS g I F= T T 1T 1 =T o | 134
Special RedB00t COMMANGS......cceiueeeiiiiisirereeeee st e e seesee s e sressessesee e esesreseesnens 134
MEMOIY IMTAPS.... ittt ettt sttt sttt s ee b b e s b e s te e b e sbeesateenbeesbeesneennreenee 135

[RT=T 01011 To [T aTo I L=To | 2] o) A 135
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelV 5Kc) Atlas Board.........coovvvveereeenenesinnnnns 135
L@ YT 1SS 135

Vi

viii

LaTLEE= YRR ESy r= 11 = AT o TR 135

Quick download INSLIUCHIONS.....cc.eoveeeire e 135

Atlas download fOrMAL...........coeiriririee e 136

FIaSh MaNAgEMENL.......c.coi i bbb 136
Additional CoNfig OPLIONS.....c.coeirrirrerre e 136

Additional COMMEANTUS......c.ooiiiiieeee et st sae e ean 137

L1 (] 0 AU o1 TSSOSO 137
LT g aTe] YN AV F= T o LTSRS URT PSP 138
RebUIIAING REABOOL........oieiiiet et bbb e e 138
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelV 5Kc) Malta Board.........ccccceevveevreeriniennn 138
OVBIVIBW. ..ttt sttt ettt sttt h bt s ae st e ke e et e he e b e b e s eese e e e ae e Rt e bt sb et e be e et ebenbesbeneens 139
INItIAl INSTAITALION......cotiieiieeee e e e 139
Quick download INSIUCLIONS.......cccceeieieceeee e s ens 139

Malta download fOrMAL........cccooriririe e e e 139

Additional COMMEANTS......c.oiiiiiee bbb e see s 140

LY =T] 0] £ T TP ROURRPRTPN 140

Y =70 aT0] Y\ F=T o 1T PR OPR PRSP 141

[2g=T 01011 o [T aTo I L=To | 2o) A 141
MIPS/RM7000 PMC-SIerra OCEIOL.......ccoveerriririeisieiesiee sttt 142
L@ Y= YT SRS 142
Additional COMMANTS.......coiiiiiiiriere bbb 142
LT T 20 1Y F= T L3S 143

[R4=T 01011 o [T aTo I L=To | 2] o) A 143
MIPS/VRA4375 NEC DDB-VRCAST5......ooiieiteiteeeeete ettt cteeee sttt ste e sre e stesreebesbesnnenreene 143
L@ YT 1S 143
Initial Installation Method.cccvvirereeeece e e 144
Special RedBoot COMMANAS........cociiiiirerere e 144
MEMOTY IMAIPS. ...ttt r e e e e s nresr e n e neenn e e s 144
(g TT T B D 1YY T 145
ReDbUIdING REUBOOL.........cceiieiiee ettt 145
PowerPC/MPC860T Analogue & Micro POWErPC 8BQT.........ccovererenereeneeneeseee e 145
L@ YT 1SS 145
Initial Installation Method. ... e s 145
Special RedB0o0ot COMMANAS........ccoiiiitiirieirieereie et 145
LT g aTe] AN 1Y F= T o LTSRS URUPR 146
RebUIIAING REABOOL........ooiiiee et e e 146
PowerPC/MPC8XX MOtOrOla IMBX.......ooicireieriisieie ettt 146
OVBIVIBW. ..ttt ettt sttt b bt et b e e e et e Rt eb e s b e s eese e e e aeeheebesb et enbe e e neabesbesbeseens 146
Initial Installation Method...........cocoiii e s 146
Special RedB0o0ot COMMEANGS......coiiiiiririeiirieeee et st sre b b e 147
MEIMOTY IMIAPS.... it itieiee ittt sttt sttt b e s ee e be e b e e s bee e ateebe e sbeesnteeabeenbeesneesnrnnne 147

(Y= o181 o [T aTo = T=Te | =To o A 147
SuperH/SH3(SH7708) Hitachi EDKT7708.........cccoveirrienrenisieesieesiee s essnnens 148
OVBIVIBW.. ..ttt sttt b et et b bt et b e e et e bt eb e s b e s e e se e e e Reebe e bt eb et e b e e eneebeebenbeneens 148
Initial Installation Method...........cocoiii e s 148
MEMOIY IMIAPS.... ittt ettt sttt ettt e b e b s be e st e e be e sbeesateeabeesbeesneesnrennee 148

[RT=T 01011 o [T aTo I L=To | 21 o) AR 148
SuperH/SH3(SH7709) Hitachi Solution ENgine 7709.........cccovvveieeieeesese e s 148
(@Y= YT TSRS 149
Initial Installation Method...........ccooirrirre e 149
Special RedB0o0t COMMANGS......ccciveeririieiriiiereeesesese e seeseee s e st eeseeseeeesesseseeseens 149
LT g L0 Y 1Y = T LS TP T PRSP 150

LT LSLA D A= PR 151

ReDUIAING REUBOOL.........ccueiieiieeriee e e 151
SuperH/SH3(SH7729) HitaChi HS7729RCl.......cveceeeeeeeeeeeeeeeeesieseeseeseee s essssesasssssnoon 151
OVEBIVIEW......eviteeteeete et eete st et e e te et et e e te e e e stesae e besbeeasaabeeseesesaeensesbeeseentesbeensesseansessessenntestenns 151

Initial Installation Method. ..o e 151

Special RedBo0ot COMMANAS........cceiiiiiiriirieereee e 152

LT g aTe] YA\ F= T o LSRR 152
RebUIIAING REABOOL........ooieceet et e e 153
SuperH/SH3(SH77X9) Hitachi Solution ENgine 77X9........cccoiiiirinienene e 153
OVEBIVIEW......eviteeeeeste et ete st e e et et este e e e stesae e testeeaseateese e sesaeensesbeeseentesseensesneensessessenntensenns 153

Initial INstallation MEthO..........ceoiiiece e s 154

Special RedB0o0t COMMEANGS......couiiiiiririiriiniee ettt bbb b e e 154

Y =70 0T0] YA 1Y/ =T o 1T PRSP RPRTRNY 155

ETNEINET DIIVEL......ceeitiiteite et et bbbttt b e s et e 155
[RY=T 01U 1o T aTo == Te | =To Lo A 155
SuperH/SH4(SH7751) Hitachi Solution ENQinNe 7751.......cccovioeiivieiesecese e 155
OVBIVIBW.. .ttt sttt et b et et b bt et b e e e et e bt e bt bt s e e se e e e Re e bt e bt eb e b et e e et ebeebenbennens 156

Initial Installation Method...........cooivriieee e 156

Special RedB00t COMMANGS......cceiueeeirrrertesereeseee s e e seesee et este e e e esesreseesnens 156

MEMOTY IMAPS..... tiiieiiee sttt sttt bbb st nb e e s bte st e e be e sbeesnteebeenbeesneesnreeee 157

L =T o T=y 1Y ST 157

[RT=T 01011 To [T aTo I =T | 2] o) A 157

I1l. The eCos Hardware Abstraction Layer (HAL) ...ccoocoeeeereiireeeeese e et es 159
L 1 0T [T oo 161
7. Architecture, Variant and PlatfOrm.........covo ettt s e e st re e e 163
8. GENEIAI PIINCIPIES ...ttt ettt sttt b et bbbt b e st st e bt ettt nesnene s 165
LS I o [(=T o = Tt 167
[Fo YT D= {1 1 10} TSRS 167

BYEE OFUEI. ...ttt 167

0= Lo 1= I I =T £ = 4o o T 167

BaSE TY DS it e e s 167

ATOMIC TYPBS ottt ettt b bbbt b et bt e bt e b e b 168
Architecture CharacCterization............ccoiiieiiii e e s se e e saean 168
REQISIEr SAVE FOIMMIAL.....ceiecieie ettt bbb e e 168

Thread Context INItIAaliZatioN..........ccocviiiceece e e 168

Thread ContexXt SWILCRING.........ooie e 169

Bt INAEXING. .+ttt ettt bbbt b et aenae e ean 169

[AlE thrEe@d ACHIVITY......coiieececeeee et e e 170

REOIAEI DAITIEE. ...ttt e e 170
BreakpOint SUPPOIL.......cveiicecieee ettt ettt ete st e e e saesreesresaeensesreenneneeens 170

(€D S] o] o0 1 SO SRR SRR 170

Setimp and [oNGJMP SUPPQLL.....cviie e eeee e see s e e enaenreens 171

SEACK SIZES ...ttt b b e ettt b e s bbb et eb b b nren 171

AdAress TranSIAtION.........cciiriiirere ettt 171

(€1(o] 0 F= 1l =T 01 1= SO TSRS 172

L a1 C=T U] o1 F= U o |11V SRS 172
VECTON NUIMDEIS ...ttt ettt e bbb 172

INtErrupt StAte CONTIOL.....uiieeeceeeece s srenen 173

ISR and VSR MaNagemMENL.......cccvvirerereeeeesieseseeseesessesseseessesesessessessesssseessssessesssssenses 173

Interrupt controller MAaNAgEMENL..........coirierireeree e e 174

(4o T3 Qo0 1o RS TTS 175

MICrOSECONA DEIAY.......ccuiirieirieeriee ettt 175

HAL 1O ettt ettt st e b e e be et sheeaae s beebeenbesbeeaaesaesaeeseesaeenbenteennenrenns 176
REGISTEN AUUIESS. ...ttt ettt 176
REQISTEE FEAM. ...ttt bbb e e 176
REGISTE WITLE....c.e ettt bbbttt 176

(0= Tt LI O 0] o1 1o] FS OSSP 177
CaChE DIMENSIONS......eiieieeeteetere ettt ettt s e e et sesbe st et e see e enesbeseeseens 177
Global Cache CONIQL......ccciiiiie et bbb b seen 178
Cache LiNE CONLIOL......cuieeeeieee et bbbt 179

01T T ox o £SO USSP 180

(D] F=To | a1 1S3 (ol STV o] o Lo] 4 FO RO USRSTRRPRPI 181

SIMP SUPPOM. .ttt ettt ettt s h e b e e e sae e e e sbe s Rt e b e s b e e e e eneeneeseesreenrenreen 181
Target Hardware LIMITatiONS.........ccvcieiiieere ettt sae e e 181
[LN IS0 o] o L0 o PR OPRPPRRN 182

CPU CONLIOL...tiitiie et s e 182
TeSt-aNd-SEt SUPPOIL... .ottt s st esae e e neennean 183
S] o xS 183
SCREAUIET LOCK.....ceiieeiireetiietere et 184
T 1(=Ty 0] o o 10 (] o S 185
O ot (ot =Y o] (o] T = Vg T |1 o 187

L N IS = T (1 O 187

VECLOIS AN VSRS...c ottt ettt sttt ettt 188

Default Synchronous Exception Handling........coocveverereenienieie e e see e seens 190

Default INterrupt HaNGIING ..o e 190

S 0T i1 o I U [o = OSSR 193

a0 T [T 1o) o SRS 193

L IS F o £ SR 193
HAL ClASSES.. . eueeeeueetisiesieseeeeeieesit st e e e et ste e seeaenessessesaestense e eneesesteseeseensenessesssssensan 193
FIlE DESCIIPLIONS. ...eeeteeetee ettt ettt sttt s b et et 194

COMMON HAL ...t sttt ae et tenreene 194
AFCHILECTUIE HAL ...ttt snen 195
VATANT HAL ...ttt sttt e enesbeseeseen 196
[Eo a0 g o SO 197
AUXITANY HAL .ottt 197
Virtual Vectors (eCos/ROM Monitor Calling INterface).........ccoouvevereereneneneeeeese e 197
RV (0T LY=ok (o] £ TSRS 198
Initialization (or Mechanism VS. POIICY).....ccccoiriiiiiieerene e 198
Pros and Cons of Virtual VECIOIS.........coeieirireie e 198
AVAIIADIE SEIVICES....cuiieiieie et b e seen 199
The COMMS ChaNNEIS......ccoiiieeee e e e 200
Console and Debugging Channels.........cccccveeeiiiecce s 200
=TT |1 Vo SO 200
Controlling the Console Channel........ccccceciiecin e 200
Footnote: Design Reasoning for Control of Console Channel......................... 202
The calling INterface ARN.......oeeecee et 202
IMPIEMENTEA SEIVICES.....iciiieeceiee et re e seens 203
(O] 141 0= 1 1] o1 1 204
Implementation detailS.........cccoveeeiiiiiseeee e 204
NEW PIAfOrM POIS ..ottt st 204
NEW arChit@CtUIE POILS.....uieeeeeere et seeen 205
[O CRANNEIS.....ei et ettt st et et 205

AVAIIADIE PrOCEUUINES......oeeeeeeee ettt eee e et e e et e ree e e st e e eete e s saeessbeesareesanneas 205

COMPALTDITTY....vceeeeeeeeeeee e 207

Implementation DEtaAIlS. ..o e 207

NEW PlatfOrm POIS.....coui ittt s 207

HAL COdiNG CONVENTIONScotiiiiiiieiirieie ettt ettt st ebe s 208
IMPIEMENTALION ISSUBS.....coviiiieiieeie ettt 208

SOUICE COAE ELAIIS .. .ottt st n e seen 209

NS (To I o (= To [T ST 210

PIAtfOrmM HAL POIING ...c..i ittt b et st bbb se e b sbesee e 210

HAL Platform POrting PrOCESScoiieieerierie ettt e s 210

BIIET OVEIVIBW.. ...ttt et e e s 211

Y =] o 0) S (= ISP 211

Minimal reqQUIrEMENLS.......cceiieiee e e 211

AddING FEALUIES... e 213

HINES e r e e e 214

HAL PIAfOrM CDL ...ttt e 215

EC0S DAtabASE.......coeciirectice s 215

CDL File LAYOUL....c.vvcveiiiisisieteee ettt 216

SEAMTUD Ty Pttt bbb e et s re e s eenne e 216

[T01]To 0] o] 10 g 300 217

CommOoNn Target OPLIONS.....ccviereeeeeese e st et sae e e e sne e sreen 218

Platform MemOKY LAYOUL.........ccviiireriereeesiseseseeeesese s st eae e sse et seeneenessesnsseeneas 221

[0 0T 113 221

RESEIVEA REGIONS....c.c ittt st sttt 221

Platform Serial DeviCe SUPPQLL.........ccoriirrerreeree e 221

Variant HAL POIING. ..ot e bbb 223

HAL Variant POrting PrOCESS.ccuv ittt 223

[T I T g - U | A 5 223

(0= 1ol g1 I S 0] o] o o] ¢ AT OO 225
ArChiIiteCtUre HAL POMING. .. cuieiuiirieirie ettt 226

HAL Architecture POrting PrOCESS........cir ittt 226

CDL REQUITEMENTSetitiietirietereetese ettt b e et sb s n s nens 231

12. FULUIE AEVEIOPIMENES. .. ettt sttt et e b et b et bt e e b s 235
IV. The ISO Standard C and Math LIDFraries ..o 237
13. C and mMath lIDrary OVEIVIEWV.cciiiiee ettt e s 239
INCluded NON-ISO FUNCHONS.......cooiieiire et e sb e seen 239
Math library compatibility MOGES..........oooiiiiieeee e 240

g Eo T a1 TSRSV 240
Thread-safety and re-ENtranCy........ccuecieeere it eesresreas 242

Some implementation detailS..........cccveieiieeeie i 242

B I LT 10 IR 1] PR 243

(O 11 0] =T VA= = 5 £ o TSRS 244

V. /O Package (DEVICE DIIVEIS)......ccccieiueueeiiestistestesteseesestestestessessesessessestestessessessesessessessessesssssssessessessenes 247
2 [o (o To [N ox 1 o] o FHUS OSSOSO 249
L5, USEE APttt bR R et n s 251
16. Serial driVer ETAIIS.......cvo e 253
REW SEIAI DIIVEL.....coiiiierceeeeresesi ettt ettt 253
RUNtIME CONFIQUIALION.....cviiieeirieierete et 253

e I T = 1R 254

(oo T Lo /11 L= OO S ST 255

(oo T Lo T (= T ISP 255

Xi

Xii

(Yo [o T o (= A oo] o S 255

CYJ_I0_SEL_CONTIG. .ttt 257

LI 2 1Y ST 258
RUNtIME CONFIQUIALTION......ccviiieeiiiieieee e e 259

10 =3 =TS 259

17. HOW 1O WITEE @ DIFIVEL......iitiieeeeeeeeeeee sttt st sttt eb et b e e e ne e saesbe b s 261
How to Write a Serial Hardware Interface DIVEL.........coooiiiiiiiieeieeeeee e 262
(D A = o I =t o1 Y OO 262
Serial ChannNel STIUCTULE........coiii et st e be b b e 263
Serial FUNCHONS SITUCTULE........oii ettt bbb e 264
(111 0= Tod &P UT SRS 265
Serial testing With SEr_filter........coo i e s 266
RALIONAIR......eeeee e bbbt e b e 266

TRE PrOTOCOL. ...ttt ettt s se s 266

TRHE SEIAI TESIS...itiiteeeiet ettt b e s b b s e e ae b e e nan 267
Y=t U 1 =T U ST Vo TSRS 268

A NOLE ON FAIUMES ... s 269
=T 10 T T 11T TSR 269

18. Device Driver Interface to the Kernel.........ooiieiiiiieseseserese s 271
QL E=T U] 0101, Yo 1= S 271
Y o3 a0 a1 17= 11 o VR 271
]V U o) oL SRS 272
DEVICE DIIVEN MOEIS. ...ttt ettt e et 272
SYNCAIONIZALION LEVEIS.....ce ittt st sttt 273
TRE APttt et e ettt e et be e be s be e s beebeeaeebeeaeeatesbeebeebeeaeetesaeerenaean 274
CYO_ANV_ISE_IOCK ...ttt 274
CYO_ANV_ISI_UNIOCK.ctitiietirietireetes ettt 274
CYO_ArV_SPINIOCK _INIE.. ettt s 275
CYQ_drV_SPINIOCK _OESIIQY...c.ecvieeiieetiisteerieereee ettt 275
CYO_ArV_SPINIOCK _SPIN....iiiiiieiirietireeteisi ettt 276
CYQ_ArV_SPINIOCK _ClEAT......c.eiiitiiitieeteest et 276
CYO_ArV_SPINIOCK Y.ttt 276
CYQ_ArV_SPINIOCK _TESL. ..ottt 277
CYg_drv_SPIiNIOCK_SPIN_INTSAVE.......ceieieiiriiirieirieiereet et 277
Cyg_drv_spinlock_Clear INtSAVE........cooiiiirieeeeeee e 278
CYQ__ AV _ASE_IOCK ..ttt bbb be b b e 278

CYQ__ AV _ASI _UNIOCK ...ttt bbb et sbe b e e 279

CYQ_ ANV IMULEX ML ettt st et b e e sbe b e e 279
CYQ_ArV_MUIEX_AESIIOY. . cueruirtirieieeeeiiei ettt s sttt sbe b e e 280

CYQ_ ANV _MUEEX_TOCK. ...ttt bbb 280
CYQ_drV_MULEX _trYIOCK......ecciieteciece e naenre e 280
CYQ_drv_MULEX _UNIOCK.......cciiitieiiie ettt se e s eneenre e 281
CYQ_ArV_MULEX _FEIEASE.ccieeteeiisee ettt st esae e e eesraeneenre e 281

o Y7o I o [V2 oo T [111 S5 S 282

o370 I o [a VAR oo o e (1S3 i (o 20U 282

(oY e |8V oo Lo [N U1 SRS 283

(oo e | 8V oo Lo [N o 1 -1 S 283

(037 e | 8 VA oo o [o] o T=To (o7 X SRS 284

(oY e | AV 101 (=14 (U]) A o] (Y= L= RSP 284
CYQ_Arv_interrupt_delete.......oovieveeceee e 285
Cyg_drv_interrupt_ attaCh.......ccooe e 285
CYg_drv_interrupt_detach.... ... s 286

(oY e |8V 101 (=10 U 1 A 14T LS PSSR 286

cyg_drv_interrupt_mask_iNtUNSATE..........coeiiiiiiireree s 286
CYQ_drv_iNterrupt_UNMASK.......cocireiiitiirieeriee st 287
cyg_drv_interrupt_unmask _iNtUNSafe.........cocooeieieiininie e 287
cyg_drv_interrupt_acknOWIEAGE..........cvvriiriiiireircree s 288
CYQ_drv_interrupt_CONFIQUIE........cureuiiitiirteertee ettt 288
CYQ_ArvV_INtErruPt IEVEL.. ..o e 289

(Yo e | VA 101 (=10 U] o) AST= A ol o LU USSP 289

(Yo e | AV 101 C=Tu U] o) Ao [=] A o o | TR U PSSR 290

0o I 1T = S OO U PR PTPROUTOTURRPRPRIN 290

CY G D SR Lt et bbbt e sae e e e ne b en 291

V1. File System Support INFrASIIUCLUIEc..eeiiiiee et ae e e snesaen 293
TR [011 feTo 18 o1 1o o PSSR 295
B O 1Ty £Sy (=T ¢ T = o = PSS 297
21 MOUNT TADIE. ...ttt sttt r e e r e r e r e s 299
22, FHIE TADIE. ...ttt 301
P2 T B T 1= Tox (o] 1= TSP RS TTR 303
B2 ot T o) T (o] o 305
25. Initialization and MOUNTING........ccceieieeeesies ettt se e s saesresee e e eseenesrentenes 307
26, SOCKELS....o.eiutererereeee sttt E e R R Rt 309
B2 S 1= 1=t TSP S ST R 311
S T D= o 313
29. WIItING & NEW FIlESYSTIEIM ..ottt st st sttt seene 315
RV LI O B o] = YOS 319
30. ThE ECOS PCI LIDIAIY....cuiiiiiirietireeterieteriste ettt sttt st st e b e b et b e snene s 321
PCI LIDIANY.c.c ettt bbb e b et b et b et bt bbb e et 321

O T @Y= 1= SR 321

INILALIZING ThE DUS.....ceieee e 321

SCANNING TOF HEVICEScuiiieiiiciieeteet et 321

Generic config INFOrMALION........cc.cireiiirtee s 322

Specific config INFOrMAtION..........ooiie e 323

P {[oTox= 111 gTo a0 =10 1] oY S0P 323

L1 (] 0 AU o1 TSRO U PP 324

ACHVALING 8 OBVICE ...ttt ettt a e bt e e ne b e e nean 324

LINKS <t bbb bt ae bbb et neeh e e ean 325

O | o] = U YA (=1 =T (=] (=S 325
PCILIBDIANY APttt 325
DETINILIONS ...ttt 325

Types and data SITUCIUIES.......c.eccececeece ettt eesaesnean 325

FUNCHIONS......e ettt et 326

RESOUICE AllOCALIAN.veeireireeereee et e 327

PCI Library HardWare APL..........ocoiieieeieeese e seeseeese et esae et ste s e ene s snesnenean 328

HAL PCI SUPPOIT. ..ttt sttt sttt sttt sbe e st e s be e nbeesneesnreenee 329

VIII. eC0os POSIX cOMPAtiDIlity [QYET ...c.vcueeeeiiceieeeseeee sttt st r e 331
31. POSIX Standard SUPPOLL. ...t sees 333
Process Primitives [POSIX SECHON.J].....cccoiiirreireerieeriee et 333
FUNCLIONS IMPIEMENTELL......coieiieeee e 333

FUNCHONS OMILEEA........citiiieeereeeee et bbb 333

N[0 (2SO PP PUPRPRRPRTN 334

Process Environment [POSIX SECHONA].......coiiiiiiiirieiree e 334

Xiii

Xiv

FUNCIONS IMPIEMENTEL.......coiiiiieee e s 334

[T Ted (0] 4 1S3 1 1 11T 334
N[0 (TP P PO PR OPPRPRPRTN 335
Files and Directories [POSIX SECHON.S].......coiiiiiiiireiriet e 335
FUNCiONS IMPIEMENTEL.......co i e 336
(Lol (0] 4 T3 1 1 11T o R 336
N[(TSRS 336
Input and Output [POSIX SECLION B....civereeererieriirienierie st seen 336
FUNCtions IMpPIEmMENTE............ocii i e e 336
FUNCLONS OMITIEM......eitiitiieeeee et s e e 337
N[(TSRO PSP 337
Device and Class Specific Functions [POSIX SectiQn.Z]........ccoceoeorinieninieneneienenene s 337
FUNCLIONS IMPIEMENTEM........coiieeee e 337
FUNCLONS OMITIEM.eitiiiieece bbb e e s 337
N[(TSRO 338
C Language Services [POSIX SECHON.B]...cccciiiieierieiisiciee e sie s eesie e eee s see e sreeeesneens 338
FUNCLIONS IMPIEMENTEM........coiieeee et 338
FUNCHONS OMILEEA........ectiiciecciee e st 338
[N (TP PR PR 338
System Databases [POSIX SECHOM]....cccoviriiiiiereieeerere st sreen 339
FUNCtions IMPIEMENLEM.........c..cviiiieeeeee e e en 339
FUNCHONS OMILEEA......c.citiiiieerieee et 339
INOTES. . ettt ettt h et b bt E e se e e e R e Rt Rt e R e R e R et e ne Rt bR e e e ene R e nnenrenan 339
Data Interchange Format [POSIX Section 10].......cccccveireirrenreneseresiee e 339
Synchronization [POSIX SECHON LL]....cccciiiiriireereenesienesieesiee st 339
FUNCLIONS IMPIEMENTEL.......co i e 339
FUNCLONS OMITEEM......ccieie ettt nesneseeean 340
N[0 £SO O PRPTPUPRPRTPTN 340
Memory Management [POSIX SECHION 12].......ccciiiiriineireee e 341
FUNCioNS IMPIEMENTELL......coiiieee e 341
FUNCIONS OMITIEM......eceeieeeeeeeee ettt s e ean 341
N[0 (SO P PO PR PUPRPRRPPTN 341
Execution Scheduling [POSIX SeCHON L3]......ccoeiirieirieirieiresie st 341
FUNCioNS IMPIEMENTEL.......c.oiviieeee e 341
FUNCLIONS OMITEEM.eieieieeeee ettt s e ean 342
N[(T USSP U PP 342
Clocks and Timers [POSIX SECHON LA]......ccoiiiiiieieieeerierie e 342
FUNCtions IMPIEmMENTEU............oooii i e e 343
FUNCLONS OMITEEM.eitiieieec ettt e e 343
N[(T USSR U PSP 343
Message Passing [POSIX SECHON LA].....cccciiiiieiiceeie et 343
FUNCLIONS IMPIEMENTEM........coiiee et 343
FUNCLONS OMITIEM.citiieeiee et e e 344
[N (TR U PSP 344
Thread Management [POSIX SECHON 16].....ccccceiiiieiieniciere et se e 344
FUNCtions IMPIEMENTEM.........c.ooi i e 344
FUNCHONS OMILEEA........coiiieeiieeeree e st 344
N[(TP U PSP 344
Thread-Specific Data [POSIX SECHON L7].....cccvieiiieeiere e re et 345
FUNCtions IMPIEMENLEA.........c.ooviirieeee e s e en 345
FUNCHONS OMILEEA........coiiiieeieeeee e st 345
N[0 (=SSO P PO PPRTOPPRPRTPTN 345

Thread Cancellation [POSIX SeCtion L8........cccoirrrirririireirieeeeeseesee e 346

FUNCiONS IMPIEMENTEL.......co i s 346

FUNCHONS OMITIEM......eoteiee ettt s seeean 346

N[0 (ST P PO PR PPPRPRPPTN 346
NON-POSIX FUNCLONS.....cctiitiieieeeiesiesie ettt s bt se e sesteseeseens 346
GENETAl I/O FUNCHONS ...ttt sttt st ese st saennens 346

SOCKET FUNCHIONS. ...ttt ettt bbb e e e enesbesaeseens 346

N[(T RO URT PSP 347
References and BibliOgraphy.. ... e e e 349
O 71 I]SSR 349
B2, LUTRON APttt sttt ettt st et se et se et e se et et et ene st esesaebessebeseebeseebeneebenestenessanens 351
INtroduCtion TOLITRON. ...ccuiiieee et e bbb b e 351
JUTRON GNAECOS. ... ettt e et b e bt e e e e e st b e sbesbese e s et e e e st eneebenbe s 351
Task Management FUNCLIONS........ccviiiieie e te et ste st e e e e nnennean 352

[o] o 1= o] (] o 353
Task-Dependent Synchronization FUNCHONS........cccccveiiiienese e 353
0 o] A=Y] (T 354
Synchronization and Communication FUNCHONS.........ccccvcivivvinerereeseceses e 354
0 o] A=Y] (T 356

Extended Synchronization and Communication FUNCHONS.........cccccveevrivvivrienereereeeneseseens 357
Interrupt ManagemMent fUNCHONS........c.cviereeeser e e e sre e srens 357

ETOr CRECKING ...ttt bbbttt 358

Memory pool Management FUNCLQNS. ...t 358
ETOr CRECKING ...ttt bbbt 359

Time Management FUNCHONS........cooiriiie e 360
ETOr CRECKING ...ttt bbb 360

System Management FUNCLIONS.oo ittt s 361
EITOr CRECKING ...ttt bbb 361

NEtWOrk SUPPOIT FUNCLONS. ..ottt e 361
HITRON Configuration FAQ........ciieireereet ettt nn s 362

DO O o S] = Tt S0 o] o Lo i {0 =T 0 1 SO 367
S I =l (=T g g ST B 1Y gl B =] T | o SRR 369
IS T: 10 4] o] S O Lo [SRR 371
35. CoNfiguIiNG [P AGUIESSES.......e ittt ettt s b e st b e b e e e e e e sae b b s 373
36. TesStsS and DEMONSIIALIONS......cc.eiiieereee ettt b s e e bbb e e b e saesbe b s 375
[To] o] o F= o3 1Q (=11 £ TSRO U SRUSRURPRURI 375
BUIliNg the NEIWOIK TESES.... .ottt 375
StANAAIONE TESLS.....couiieiiteieee ettt e b et be bbb e e e e ebesbesaeseenean 375
PerfOrMENCE TESL.. .ttt b et ae bbb et ebesbe e e 376
INEEIACTIVE TESES. ...ttt ettt bbbttt b b e e e st ae bt b et et e e et ebenbenbeseen 377
MAINTENANCE TOOLSueite ittt et s b ettt ebesbesbe e 378

7. SUPPOIT FEALUIES. ...ccutiitie ittt sttt sttt st s b st e b e s b e e sat e e be e s beesaeesabe e sbeenseenatas 379
L 1 S SRR T 379
3 1 OSSO 379

38. TCP/IP Library REFEIENCE.cccvceeeeeeee ettt ettt s a e sne et s 381
Fo =100 (o] g aT= 11T g = U V= 381

Lo = L0 1S =T o= 382

0] V4TS o] (o 1= SO TSSOSO 383
=10 =T £ 384

Lo T=] = 1o (o [T | {o NSRS 386
JETNOSTDYNAME ...ttt e 391

XV

XVi

Lo T=] (1= o [0 [£ OSSPSR 393

GEINAIMEINTO. ...ttt bbbt b et b ettt b e e st s e 395
(010 [S] (T o | TP U PO R PP 398
JEIPIOTOBINL. ... s s e ae e sr e s 399

U SEIDYNAMIE. ...ttt b bbb bt n et n e e 401
JEESEIVENL.....cetiiii e e e e e 402

1T NAMELIOINAEX ... ettt sttt e b e e e e e be s e e sbesheebesbeeasesbesanessesaeentestenns 404

101 SO PR PTUPUUYPRURTPRPI 405

1= (S o] o] (Lo =Y o= ot OSSO 408

1= GO 1 o ST o= T = USSP 411

1 1= A 1= SRS 415

] TSRO 416

15T 0 = T [0 [S 417

1T 1SG>SR 418

L= A= o (o 1] 1 0] o F RS S 419

S SO PP STURY PR PRTPRTPI 420
L£STST0] Y= PSSP PSSO 421

= (oL 0d =T o] PRSP RPRRR 423

o1 TSSOSO 425
(oT0] 0] 01T 0! TP 426

Lo =0 01T =g = PR 428

Lo =0 Tod (= Ut = 429

Lo =50 Tod (o o 431

o o 1 R 434

1 | TSP P PSPPI 435

LS =T o 437

£ 1 o S 439

RSy 1110 0 441

LS Lo 1] 442

RS0 1o 1] 1 o - 1 444

XI. FreeBSD TCP/IP Stack POrt fOr @C0S.......oiiiiiriiirieiirieieseeie sttt s sre e snene s 447
39. Networking StaCK FEATUIES.........coi ittt b et 449
40. Freebsd TCP/IP StACK POLL......ccueeeeeetisie ettt e see st se e eaesbeseeseens 451
=0 [U OO 451
BUilding the NEtWOIK STACK........cciiiii e 451
N TP 453
Standard NETWOTKINGcoereeererere ettt et e et be bbb e e e e enesaesaeseenean 453
ENNANCEA SEIECLE). . cueruereertiiee ettt e et s b et be b b saen 453

XII. OpenBSD TCP/IP Stack port fOr @C0S......ociiiiieceese sttt aesreens 455
42. Networking StaCk FEALUIES.......ccvii ettt sae et te e e sne e e neennean 457
43. OpeNBSD TCP/IP StACK POIL....cuiieee ettt st enaesne e e neesnean 459
L= 100 = PP RPPRPRR 459
BUilding the NetWOrK STACK........ccciiiiie e sren 459
A RSP SSN 461
Standard NEIWOTKING.......eiereeeeeeireresteeee s et e e see s s e ste st esaeee e esessestesseseeseesessesssseensen 461

[g = U o =T o RS = 1= Tox (/TS 461

XII1. DNS for €C0S and REUBOOL.........cooeiitieteectee et etes st e st e steesresstessbessressbeesaessbessatessseesbessneesnseessenan 463
I 0 N 1 TSRS 465
[N SR A SRS 465

XIV. ETNEINET DEVICE DIIVEIS ..o iteee ettt s et e e et e e et e s st ese bt e sesaessabeessasesssassessbeessabesessseessrreesareesanes 467

46. GeneriC Ethernet DEVICE DIIVEL.......cccoiiiiireeeeeee st ee ettt st st te e e e eseseesaeseens 469
GENENC ENEINEEL APt sttt e s aesaeenbesteens 469
ReVIEW Of the TUNCHIONS........cciiiece et e st b e e e 471

LT U Tt 1T o SRR 471

SEAM FUNCHON.....ceecee ettt et e s be e e e saeeanesresaeentesreens 472

S (o] o8 {1 g [ox 1 o] o VRPN 472
(070 o1 (0] 0T 11 1] o FOS SRS 472
Can-SeNd fFUNCLION.........cciieeececeee e st st re e s resreentesreens 473
SENA FUNCHION. ...ttt st b e et besb b e 473
DEIIVET FUNCHION. ...ttt bbbt b s e e 474
RECEIVE TUNCLION......ciuiitiiiei b e e 475

PO TUNCLION ...t bbbt b s e sae e ean 475
INtErTUPt-VECIOr FUNCLION.eciieee ettt 475
0o oL gl =NV gl U o 1o] O 476
Callback INIE FUNCHION......ceiiiiiee e e bbb bt 476
Callback TX-DONE FUNCHOML.......cieireetiieiiriereee e 476
Callback RECEIVE FUNCHIOM......c.cieireeiieriirieriee et 476
Calling graph for Transmission and RECEPLON......cccecveerierevirereree e 477
I TS 1S3 (o o TSSOSO 477
RECEBIVE. ...ttt e e bbbt bbbttt 477

D S Y PSS 479

A7. SNIMP TOMECOS....ccti et itecte ettt ettt ste et e st st et e e be e e e sae s e e sbesbeeabesbeesseasesaeesbesbeenbesbesseensesaeessesrenn 481
VBISION. .. ettt ettt ettt et et et e ete s be e e beebe e b e ebeeaeesbesaeeatesbeeseenbeeseensesheeneesbeeseenbeateensentesanessesaean 481
SNMP packages in theCOSSOUICE rePOSITONY......coueirirerrieririeeriee sttt seeaens 481
MIBS SUPPOITEM. ...ttt sttt bttt b et b et bbbt 481
Changes t0 EC0S SOUMTES.cueuiririeerteerteie st sttt st ettt se bttt ste st seebeseebeseebeseebesesbe e sbenessenens 482
Starting the SNIMP AQEIIL......c..ciiiiriereereer ettt b e et sbe e snene 482
CONTIGUING ECOS. ...ttt sttt et b et e bt e bt et e b e et e b e srenen 483

Version USAge (V1, V2 OF V3)...oiuciieerieirieieeeieisieesieesie ettt 483

L= 0L TP T PP SUR ORI TO 484

SNMPA.CONT - FIB 1.ttt et st e e e be e sreeeaeeeanas 484

LIS A 0F= LTSS 484

SNMP clients and PACKAGE USE........oeruiurirerieiine ettt s sae e eas 485
UNiMpPIemented fEALUIES.o et e et be b e 486

IMIB COMIPIIET <.t ettt b e e e et s e bt aesb et et e e e e ebesbesbeseens 486

S8l] oo B oo | FH USSP 487

XVI. EMDEAAEU HTTP SEIVET ..ottt ettt sttt sb b et ae b ae e s 497

48. EMDEAAEI HTTP SEIVEAL......iititeeieeieeteste ettt sttt s et sb bbb b e 499
INEFAUCTION. ...ttt b b e et s e bbb et et e e e e ebenbenbeneen 499
Y CT VLS @] o =T aT 4= L1 T a 499
Y=Y VLT g @do) o U] =11 o] o 500

CYGNUM_HTTPD_SERVER_PORT.....ccetttitierteierteiesiesesessessesessssesessanessenessesessssessesessesesseses 500
CYGDAT_HTTPD_SERVER_ID...ccutietiietiistinestesestesesseseseesessesessssensssesessenessesessssessesessesesseses 500
CYGNUM_HTTPD_THREAD_COUNT....cctttitiuerteuerteieseeseseesesessessssesessesessenessesessssessesessesesseses 500
CYGNUM_HTTPD_THREAD_PRIORITY...c.cctttrueuererierierereeseseesesssseessesessenessesessssessesessesesseses 500
CYGNUM_HTTPD_THREAD_STACK_SIZE....ccceitireiriereseereseesessesessssesssesssesssessssessssesssseses 500
CYGNUM_HTTPD_SERVER_BUFFER_SIZE.....cctitetitetiseetisierissesessssessssessssssssessssessssesesseses 501
CYGNUM_HTTPD_SERVER_DELAY......ctstitititeeiteestesessesessesessesessssesssessssessssessssessssesssseses 501
SUPPOrt FUNCLONS N0 MACTOS.......cciiiiiiirieieriete sttt b e et seene 501
[I STV o] o Lo] PSSP USSR 501

XVii

XViii

GeNEral HTIML SUPPOLL......c.tieiireetireetiist ettt 501

TADIE SUPPOIL. ..ottt bbb 502

FOIMS SUPPOLL. ...ttt et e srenes 502

Predefined HanIEIS.........c.o et e 503

VA1 (T I, o] oL o] OSSP 504

XVII. FTP Client for @C0S TCP/IP SEACKccciiiiieiieeiee ettt s e see s 505
9. FTP ClIENT FEATUIES.eiuieeiteettste ettt ettt sttt h et et e e e st bt b e s be b e se et ebesbesbeseans 507

L I O 1T o A SRS 507

110 <TI0 =3 PR RR R R 507

110 < 01U L ST OO 507

L1 0 Tex 1T oL A o] 1L P 507

XV CRC AIGOIERIMS ettt ettt s e e bt e bt b et seese e e eneeaesaeseeean 509
50. CRC FUNCHONS.....cctiteieeeeiiettrte sttt b bt a st b e e b e b st e e e st bt sbeseesn e s et e st eneerenbees 511
CREC AP .ttt ettt st b e et b etk b et E Rt b e ek ek e bt be et e nrenea 511
CYO_POSIX_CIT32e.uiteuieerisietesieteseetesessesessesessesessesesseseseeseseesessesessssensssansssenessesessesessesesseses 511

(03[0 T 0] (o3 7P R PRSPPI 511

(oo T =) {0 [=T o (o 2SS 511

(031 o (031 X TPV UT PP TSTSURPRPRO 511

XIX. CPU 1080 MEASUIEMENTS.....cciiiiriereereeeetisieseeseesteseesesessessessessessesessessessessensessesessessessessessessesessessessensen 513
51. CPU LOAU MEASUIEMENLS......eiuireeieeeeetistesieseeseesessessessessesseseesessessessessessesessessessessessessesesssssessenes 515

(O U 10 T Vo 1A = S 515
CYQ_CPUlOAd_CAlIDIALe.......cueeeiiceiet s 515
CYO_CPUIOAA_CIEALE......cuieeeieetireeterie ettt nn s 515
CYO_CPUIOAA_AEIEBLA.......c.iieeiectieteeee e 515
CYO_CPUIOAA_GBL....ceieieeiieete ettt 515

Implementation detailS....... ... e 516

D O O o] o] o= 1uTe a1 oo 1111 e RS S ST 517
52. Profiling fUNCHONS. ..ot bbb e s a e 519

N TS 519

o]0 1L o o SRR 519

XXI. eCos Power Management SUPPOIL........cccciiiiiiin i 521
T a Lo o [0 ox i o] o WSS P PSPPSR 523
Power Management INfOrMation..........cc.ooe oo ieieeie s st 527
Changing POWET IMOUES........ccuiiieeesie et eeste st ste st e sae e e e saeeaesseesaestesseestesseesaessesneessessennsansenns 531
STU] o] oo i {0 g e {o AN 1Y/ Yo [] =SS 533
Attached and Detached CONIOIELS ... 535
Implementing @ POWET CONLIOIIBE ...ttt snesre s 537

XX €C0S USB SIAVE SUPPOI...ciiiiiiiesiereeietisesestesteaeses e ste s e s e saeseesessessessessensesessessessessessesssssssessessessensen 541
[0 [0 T3 1o o R 543

USB ENUMEIAtION DALaA........cciiieeeieiitieseecee et sreeeessteestesssessaessstesssesssessbesssesssessnsessesssessnsesnseessenss 547
Starting UP @ USB DEVICE......couiuireiereeteirteeste sttt sttt st sttt b e b e s be st b et sttt seene s 553
(=Y = L B 1 1 555
Receiving Data from the HOSL..........ciiee e 559
Sending Data to the HOSL.........coiiiieie ettt st 561
HAItEA ENAPOINTS. ...ttt e b e e bbbttt e e et 563
CONTOI ENAPOINTS....cteiiiteiiieetereete ettt et st b et b et eb et b st s e b e b e seebeneeb e e et et ebenesnenen 565
Data ENAPOINTS.cveuiiieiiieeterieiesese sttt et st b ettt et b bt e b e e b et b et bbbt st bene et e eb e 571
WItING 8 USB DEVICE DIIVEL ..ottt 573
=TS (] T E TSSOSO PTUPTSTPPT 579

XXIII. eCos Support for Developing USB-ethernet Peripherals...........cocooieiiniinninninneneseeneens 589

T 0o 1T 1o 1o PSSR 591
Initializing the USB-ethernet PACKAGE..........ccovieiieiieee e 593
USB-ethernet Data TranSTEIS.. ..ot st 595
USB-ethernet State HaNAING........coeiiiirieieee e 597
Network Device for the @C0S TCP/IP STACK. ..ot 599
Example HOSt-SIdE DEVICE DIIVEL........coiiiiiieeeeeieeie ettt e se e s be e s 601
ComMMUNICALION PrOTOCOL.c.ciuiiiitiie et e et e b e ae b b e 603
XXIV. @C0S SYNTNELIC TAIGEL......ceiueitiiteriereeeeeriere ettt et bbb e et be bt e e e e e eneenesaeseeean 605
OVBIVIBW. ..ttt ettt sttt e ettt he b be s e et e he e b e bt ee e e e b e R e e Rt e bt eh e b e s e et emeeb e e bt sbeee et et eneeaesbenbenes 607
103 r= L F= A o] o OSSP PO 609
Running a Synthetic Target APPIICAtIQN..........cccceeiiiieere e e 611
The 1/0O Auxiliary’s USEr INTEITACE........ccii ettt ne e snesneen 617
THE CONSOIE DEVICE. ...ttt bbbt b e sttt be b e b be e et ebesbesbeseen 623
YY) (T IO 1| S 625
WItING NEW DEVICES = tAITEL.ueieeeeetire s stieee e e s e e sre e e e e enestesbeseeseeneenesnesneseenean 627
WIHtING NEW DEVICES = NOSL.....cuiiieieecieeiee sttt e et saesa e e enennesneseenean 633
L0} 111 o 643
XXV, SALLX0 USB DEVICE DIIVEN.....cueeceeiteeieectecteeteeteeieesteseestesteesteebesseessesaesssestesseessesseesssssssnsessessessessenns 647
SALLX0 USB DEVICE DIIVEL.....cuiiiieireeieeeeeteteseseessesessessessessesseseesessessessessessessssessessessensessesesssssessenes 649
XXVI. NEC UPDO85XX USB DEVICE DIIVE......cceiiieieeieeeeeesese e seeesiesieseesteseeseesessestesteseesesneesessessessnnees 653
NEC UPDO985XX USB DEVICE DIIVEL.....cciiiiieieieeeteee e siesieee sttt e st saeseesse e nessessessesseses 655
XXVII. Synthetic Target EtNEIrNEt DIIVETcooiiiiiiiiereee ettt 659
Synthetic Target EtNEINEt DIIVL.......cco ittt 661
XXVIII. Synthetic Target WatChdOg DEVICE ..ot 667
Synthetic Target WatChdOg DEVICE........cccceiiiieeieeeeiere et 669

XiX

XX

List of Tables

13-1. Behavior of math exception handling..........ccoovvieiereieeienie e 241

List of Examples

1-1. Sample DHCP configuration file

1-2. Sampléetc/named.conf ~ fOr R@A HaAt LINUX 7.X..ccuciiiiiiciiiee ettt 8

XXi

XXil

|. The eCos Kernel

Kernel Overview

Name
Kernel — Overview of the eCos Kernel
Description

The kernel is one of the key packages in all of eCos. It provides the core functionality needed for developing
multi-threaded applications:

1. The ability to create new threads in the system, either during startup or when the system is already running.
2. Control over the various threads in the system, for example manipulating their priorities.

3. A choice of schedulers, determining which thread should currently be running.

4. A range of synchronization primitives, allowing threads to interact and share data safely.

5. Integration with the system’s support for interrupts and exceptions.

In some other operating systems the kernel provides additional functionality. For example the kernel may also
provide memory allocation functionality, and device drivers may be part of the kernel as well. This is not the
case for eCos. Memory allocation is handled by a separate package. Similary each device driver will typically
be a separate package. Various packages are combined and configured using the eCos configuration technology
to meet the requirements of the application.

The eCos kernel package is optional. It is possible to write single-threaded applications which do not use any
kernel functionality, for example RedBoot. Typically such applications are based around a central polling loop,
continually checking all devices and taking appropriate action when 1/O occurs. A small amount of calculation

is possible every iteration, at the cost of an increased delay between an 1/0O event occurring and the polling loop
detecting the event. When the requirements are straightforward it may well be easier to develop the application
using a polling loop, avoiding the complexities of multiple threads and synchronization between threads. As
requirements get more complicated a multi-threaded solution becomes more appropriate, requiring the use
of the kernel. In fact some of the more advanced packages in eCos, for example the TCP/IP stack, use multi-
threading internally. Therefore if the application uses any of those packages then the kernel becomes a required
package, not an optional one.

The kernel functionality can be used in one of two ways. The kernel provides its own C API, with functions
like cyg_thread_create andcyg_mutex_lock . These can be called directly from application code or from
other packages. Alternatively there are a number of packages which provide compatibility with existing API’s,
for example POSIX threads iITRON. These allow application code to call standard functions such as
pthread_create , and those functions are implemented using the basic functionality provided by the eCos
kernel. Using compatibility packages in an eCos application can make it much easier to reuse code developed
in other environments, and to share code.

Although the different compatibility packages have similar requirements on the underlying kernel, for example
the ability to create a new thread, there are differences in the exact semantics. For examp)d T&ex
compliance requires that kernel timeslicing is disabled. This is achieved largely through the configuration
technology. The kernel provides a number of configuration options that control the exact semantics that are
provided, and the various compatibility packages require particular settings for those options. This has two
important consequences. First, it is not usually possible to have two different compatibility packages in one
eCos configuration because they will have conflicting requirements on the underlying kernel. Second, the
semantics of the kernel's own API are only loosely defined because of the many configuration options. For
examplecyg_mutex_lock will always attempt to lock a mutex, but various configuration options determine
the behaviour when the mutex is already locked and there is a possibility of priority inversion.

25

Kernel Overview

26

The optional nature of the kernel package presents some complications for other code, especially device
drivers. Wherever possible a device driver should work whether or not the kernel is present. However there
are some parts of the system, especially those related to interrupt handling, which should be implemented
differently in multi-threaded environments containing the eCos kernel and in single-threaded environments
without the kernel. To cope with both scenarios the common HAL package provides a driver API, with func-
tions such asyg_drv_interrupt_attach . When the kernel package is present these driver API functions
map directly on to the equivalent kernel functions suctygsinterrupt_attach , using macros to avoid any
overheads. When the kernel is absent the common HAL package implements the driver API directly, but this
implementation is simpler than the one in the kernel because it can assume a single-threaded environment.

Schedulers

When a system involves multiple threads, a scheduler is needed to determine which thread should currently
be running. The eCos kernel can be configured with one of two schedulers, the bitmap scheduler and the
multi-level queue (MLQ) scheduler. The bitmap scheduler is somewhat more efficient, but has a number of

limitations. Most systems will instead use the MLQ scheduler. Other schedulers may be added in the future,

either as extensions to the kernel package or in separate packages.

Both the bitmap and the MLQ scheduler use a simple numerical priority to determine which thread should
be running. The number of priority levels is configurable via the optie@NUM_KERNEL_SCHED_PRIORITIES

but a typical system will have up to 32 priority levels. Therefore thread priorities will be in the range 0 to 31,
with 0 being the highest priority and 31 the lowest. Usually only the system’s idle thread will run at the lowest
priority. Thread priorities are absolute, so the kernel will only run a lower-priority thread if all higher-priority
threads are currently blocked.

The bitmap scheduler only allows one thread per priority level, so if the system is configured with 32 priority
levels then it is limited to only 32 threads — still enough for many applications. A simple bitmap can be
used to keep track of which threads are currently runnable. Bitmaps can also be used to keep track of threads
waiting on a mutex or other synchronization primitive. Identifying the highest-priority runnable or waiting
thread involves a simple operation on the bitmap, and an array index operation can then be used to get hold of
the thread data structure itself. This makes the bitmap scheduler fast and totally deterministic.

The MLQ scheduler allows multiple threads to run at the same priority. This means that there is no limit on
the number of threads in the system, other than the amount of memory available. However operations such as
finding the highest priority runnable thread are a little bit more expensive than for the bitmap scheduler.

Optionally the MLQ scheduler supports timeslicing, where the scheduler automatically switches from one
runnable thread to another when some number of clock ticks have occurred. Timeslicing only comes into
play when there are two runnable threads at the same priority and no higher priority runnable threads. If
timeslicing is disabled then a thread will not be preempted by another thread of the same priority, and
will continue running until either it explicitly yields the processor or until it blocks by, for example,
waiting on a synchronization primitive. The configuration opti@ssSEM_KERNEL_SCHED_TIMESLIGEd
CYGNUM_KERNEL_SCHED_TIMESLICE_TICKeontrol timeslicing. The bitmap scheduler does not provide
timeslicing support. It only allows one thread per priority level, so it is not possible to preempt the current
thread in favour of another one with the same priority.

Another important configuration option that affects the MLQ scheduler BY-
GIMP_KERNEL_SCHED_SORTED_QUEUERIs determines what happens when a thread blocks, for example by
waiting on a semaphore which has no pending events. The default behaviour of the system is last-in-first-out
queuing. For example if several threads are waiting on a semaphore and an event is posted, the thread that gets
woken up is the last one that callegh_semaphore_wait . This allows for a simple and fast implementation

of both the queue and dequeue operations. However if there are several queued threads with different
priorities, it may not be the highest priority one that gets woken up. In practice this is rarely a problem:
usually there will be at most one thread waiting on a queue, or when there are several threads they will

Kernel Overview

be of the same priority. However if the application does require strict priority queueing then the option
CYGIMP_KERNEL_SCHED_SORTED_QUEBHESBuId be enabled. There are disadvantages: more work is needed
whenever a thread is queued, and the scheduler needs to be locked for this operation so the system’s dispatch
latency is worse. If the bitmap scheduler is used then priority queueing is automatic and does not involve any
penalties.

Some kernel functionality is currently only supported with the MLQ scheduler, not the bitmap scheduler. This
includes support for SMP systems, and protection against priority inversion using either mutex priority ceilings
or priority inheritance.

Synchronization Primitives

The eCos kernel provides a number of different synchronization primitivegexes condition variables
counting semaphoremail boxesandevent flags

Mutexes serve a very different purpose from the other primitives. A mutex allows multiple threads to share a
resource safely: a thread locks a mutex, manipulates the shared resource, and then unlocks the mutex again. The
other primitives are used to communicate information between threads, or alternatively from a DSR associated
with an interrupt handler to a thread.

When a thread that has locked a mutex needs to wait for some condition to become true, it should use a
condition variable. A condition variable is essentially just a place for a thread to wait, and which another
thread, or DSR, can use to wake it up. When a thread waits on a condition variable it releases the mutex
before waiting, and when it wakes up it reacquires it before proceeding. These operations are atomic so that
synchronization race conditions cannot be introduced.

A counting semaphore is used to indicate that a particular event has occurred. A consumer thread can wait
for this event to occur, and a producer thread or a DSR can post the event. There is a count associated with
the semaphore so if the event occurs multiple times in quick succession this information is not lost, and the
appropriate number of semaphore wait operations will succeed.

Mail boxes are also used to indicate that a particular event has occurred, and allows for one item of data to be
exchanged per event. Typically this item of data would be a pointer to some data structure. Because of the need
to store this extra data, mail boxes have a finite capacity. If a producer thread generates mail box events faster
than they can be consumed then, to avoid overflow, it will be blocked until space is again available in the malil
box. This means that mail boxes usually cannot be used by a DSR to wake up a thread. Instead mail boxes are
typically only used between threads.

Event flags can be used to wait on some number of different events, and to signal that one or several of these
events have occurred. This is achieved by associating bits in a bit mask with the different events. Unlike a
counting semaphore no attempt is made to keep track of the number of events that have occurred, only the fact
that an event has occurred at least once. Unlike a mail box it is not possible to send additional data with the
event, but this does mean that there is no possibility of an overflow and hence event flags can be used between
a DSR and a thread as well as between threads.

The eCos common HAL package provides its own device driver API which contains some of the above syn-
chronization primitives. These allow the DSR for an interrupt handler to signal events to higher-level code. If
the configuration includes the eCos kernel package then the driver API routines map directly on to the equiv-
alent kernel routines, allowing interrupt handlers to interact with threads. If the kernel package is not included
and the application consists of just a single thread running in polled mode then the driver APl is implemented
entirely within the common HAL, and with no need to worry about multiple threads the implementation can
obviously be rather simpler.

27

Kernel Overview

28

Threads and Interrupt Handling

During normal operation the processor will be running one of the threads in the system. This may be an
application thread, a system thread running inside say the TCP/IP stack, or the idle thread. From time to time
a hardware interrupt will occur, causing control to be transferred briefly to an interrupt handler. When the
interrupt has been completed the system’s scheduler will decide whether to return control to the interrupted
thread or to some other runnable thread.

Threads and interrupt handlers must be able to interact. If a thread is waiting for some 1/O operation to com-
plete, the interrupt handler associated with that I/O must be able to inform the thread that the operation has
completed. This can be achieved in a number of ways. One very simple approach is for the interrupt handler
to set a volatile variable. A thread can then poll continuously until this flag is set, possibly sleeping for a
clock tick in between. Polling continuously means that the cpu time is not available for other activities, which
may be acceptable for some but not all applications. Polling once every clock tick imposes much less over-
head, but means that the thread may not detect that the 1/0O event has occurred until an entire clock tick has
elapsed. In typical systems this could be as long as 10 milliseconds. Such a delay might be acceptable for some
applications, but not all.

A better solution would be to use one of the synchronization primitives. The interrupt handler could signal a
condition variable, post to a semaphore, or use one of the other primitives. The thread would perform a wait
operation on the same primitive. It would not consume any cpu cycles until the I/O event had occurred, and
when the event does occur the thread can start running again immediately (subject to any higher priority threads
that might also be runnable).

Synchronization primitives constitute shared data, so care must be taken to avoid problems with concurrent
access. If the thread that was interrupted was just performing some calculations then the interrupt handler
could manipulate the synchronization primitive quite safely. However if the interrupted thread happened to be
inside some kernel call then there is a real possibility that some kernel data structure will be corrupted.

One way of avoiding such problems would be for the kernel functions to disable interrupts when executing
any critical region. On most architectures this would be simple to implement and very fast, but it would mean
that interrupts would be disabled often and for quite a long time. For some applications that might not matter,
but many embedded applications require that the interrupt handler run as soon as possible after the hardware
interrupt has occurred. If the kernel relied on disabling interrupts then it would not be able to support such
applications.

Instead the kernel uses a two-level approach to interrupt handling. Associated with every interrupt vector is
an Interrupt Service Routine or ISR, which will run as quickly as possible so that it can service the hardware.
However an ISR can make only a small number of kernel calls, mostly related to the interrupt subsystem, and

it cannot make any call that would cause a thread to wake up. If an ISR detects that an I/O operation has
completed and hence that a thread should be woken up, it can cause the associated Deferred Service Routine
or DSR to run. A DSR is allowed to make more kernel calls, for example it can signal a condition variable or
post to a semaphore.

Disabling interrupts prevents ISRs from running, but very few parts of the system disable interrupts and then
only for short periods of time. The main reason for a thread to disable interrupts is to manipulate some state
that is shared with an ISR. For example if a thread needs to add another buffer to a linked list of free buffers
and the ISR may remove a buffer from this list at any time, the thread would need to disable interrupts for

the few instructions needed to manipulate the list. If the hardware raises an interrupt at this time, it remains
pending until interrupts are reenabled.

Analogous to interrupts being disabled or enabled, the kernel has a scheduler lock. The various kernel functions
such agyg_mutex_lock andcyg_semaphore_post will claim the scheduler lock, manipulate the kernel data
structures, and then release the scheduler lock. If an interrupt results in a DSR being requested and the scheduler
is currently locked, the DSR remains pending. When the scheduler lock is released any pending DSRs will run.
These may post events to synchronization primitives, causing other higher priority threads to be woken up.

Kernel Overview

For an example, consider the following scenario. The system has a high priority thread A, responsible for

processing some data coming from an external device. This device will raise an interrupt when data is available.
There are two other threads B and C which spend their time performing calculations and occasionally writing

results to a display of some sort. This display is a shared resource so a mutex is used to control access.

At a particular moment in time thread A is likely to be blocked, waiting on a semaphore or another synchro-
nization primitive until data is available. Thread B might be running performing some calculations, and thread

C is runnable waiting for its next timeslice. Interrupts are enabled, and the scheduler is unlocked because none
of the threads are in the middle of a kernel operation. At this point the device raises an interrupt. The hardware
transfers control to a low-level interrupt handler provided by eCos which works out exactly which interrupt
occurs, and then the corresponding ISR is run. This ISR manipulates the hardware as appropriate, determines
that there is now data available, and wants to wake up thread A by posting to the semaphore. However ISR’s
are not allowed to callyg_semaphore_post directly, so instead the ISR requests that its associated DSR be
run and returns. There are no more interrupts to be processed, so the kernel next checks for DSR’s. One DSR
is pending and the scheduler is currently unlocked, so the DSR can run immediately and post the semaphore.
This will have the effect of making thread A runnable again, so the scheduler’s data structures are adjusted
accordingly. When the DSR returns thread B is no longer the highest priority runnable thread so it will be
suspended, and instead thread A gains control over the cpu.

In the above example no kernel data structures were being manipulated at the exact moment that the interrupt
happened. However that cannot be assumed. Suppose that thread B had finished its current set of calculations
and wanted to write the results to the display. It would claim the appropriate mutex and manipulate the display.
Now suppose that thread B was timesliced in favour of thread C, and that thread C also finished its calcu-
lations and wanted to write the results to the display. It would gall mutex_lock . This kernel call locks

the scheduler, examines the current state of the mutex, discovers that the mutex is already owned by another
thread, suspends the current thread, and switches control to another runnable thread. Another interrupt happens
in the middle of thisyg_mutex_lock call, causing the ISR to run immediately. The ISR decides that thread

A should be woken up so it requests that its DSR be run and returns back to the kernel. At this point there is a
pending DSR, but the scheduler is still locked by the catytp mutex_lock so the DSR cannot run immedi-

ately. Instead the call toyg_mutex_lock is allowed to continue, which at some point involves unlocking the
scheduler. The pending DSR can now run, safely post the semaphore, and thus wake up thread A.

If the ISR had calledyg_semaphore_post directly rather than leaving it to a DSR, it is likely that there would

have been some sort of corruption of a kernel data structure. For example the kernel might have completely
lost track of one of the threads, and that thread would never have run again. The two-level approach to interrupt
handling, ISR’s and DSR’s, prevents such problems with no need to disable interrupts.

Calling Contexts

eCos defines a number of contexts. Only certain calls are allowed from inside each context, for example most
operations on threads or synchronization primitives are not allowed from ISR context. The different contexts
are initialization, thread, ISR and DSR.

When eCos starts up it goes through a number of phases, including setting up the hardware and invoking C++
static constructors. During this time interrupts are disabled and the scheduler is locked. When a configuration
includes the kernel package the final operation is a calydoscheduler_start . At this point interrupts are
enabled, the scheduler is unlocked, and control is transferred to the highest priority runnable thread. If the
configuration also includes the C library package then usually the C library startup package will have created
a thread which will call the applicationisain entry point.

Some application code can also run before the scheduler is started, and this code runs in initialization context.
If the application is written partly or completely in C++ then the constructors for any static objects will be run.
Alternatively application code can define a functigg_user_start ~ which gets called after any C++ static
constructors. This allows applications to be written entirely in C.

29

Kernel Overview

30

void
cyg_user_start(void)

{

/* Perform application-specific initialization here */

}

It is not necessary for applications to provideya_user_start function since the system will provide a
default implementation which does nothing.

Typical operations that are performed from inside static constructocggounser_start include creating
threads, synchronization primitives, setting up alarms, and registering application-specific interrupt handlers.
In fact for many applications all such creation operations happen at this time, using statically allocated data,
avoiding any need for dynamic memory allocation or other overheads.

Code running in initialization context runs with interrupts disabled and the scheduler locked. It is not permitted

to reenable interrupts or unlock the scheduler because the system is not guaranteed to be in a totally consistent
state at this point. A consequence is that initialization code cannot use synchronization primitives such as
cyg_semaphore_wait to wait for an external event. It is permitted to lock and unlock a mutex: there are no
other threads running so it is guaranteed that the mutex is not yet locked, and therefore the lock operation will
never block; this is useful when making library calls that may use a mutex internally.

At the end of the startup sequence the system will oail scheduler_start and the various threads will

start running. In thread context nearly all of the kernel functions are available. There may be some restrictions

on interrupt-related operations, depending on the target hardware. For example the hardware may require
that interrupts be acknowledged in the ISR or DSR before control returns to thread context, in which case

cyg_interrupt_acknowledge should not be called by a thread.

At any time the processor may receive an external interrupt, causing control to be transferred from the current
thread. Typically a VSR provided by eCos will run and determine exactly which interrupt occurred. Then the
VSR will switch to the appropriate ISR, which can be provided by a HAL package, a device driver, or by the
application. During this time the system is running at ISR context, and most of the kernel function calls are
disallowed. This includes the various synchronization primitives, so for example an ISR is not allowed to post
to a semaphore to indicate that an event has happened. Usually the only operations that should be performed
from inside an ISR are ones related to the interrupt subsystem itself, for example masking an interrupt or
acknowledging that an interrupt has been processed. On SMP systems it is also possible to use spinlocks from
ISR context.

When an ISR returns it can request that the corresponding DSR be run as soon as it is safe to do so, and that will
run in DSR context. This context is also used for running alarm functions, and threads can switch temporarily to
DSR context by locking the scheduler. Only certain kernel functions can be called from DSR context, although
more than in ISR context. In particular it is possible to use any synchronization primitives which cannot block.
These includeyg_semaphore_post , cyg_cond_signal , cyg_cond_broadcast , cyg_flag_setbits , and
cyg_mbox_tryput . It is not possible to use any primitives that may block suchyassemaphore_wait
cyg_mutex_lock , Orcyg_mbox_put . Calling such functions from inside a DSR may cause the system to hang.

The specific documentation for the various kernel functions gives more details about valid contexts.

Error Handling and Assertions

In many APIs each function is expected to perform some validation of its parameters and possibly of the current
state of the system. This is supposed to ensure that each function is used correctly, and that application code is
not attempting to perform a semaphore operation on a mutex or anything like that. If an error is detected then
a suitable error code is returned, for example the POSIX funetionad_mutex_lock can return various

error codes includingINVAL andEDEADLK There are a number of problems with this approach, especially in

the context of deeply embedded systems:

Kernel Overview

1. Performing these checks inside the mutex lock and all the other functions requires extra cpu cycles and
adds significantly to the code size. Even if the application is written correctly and only makes system
function calls with sensible arguments and under the right conditions, these overheads still exist.

2. Returning an error code is only useful if the calling code detects these error codes and takes appropriate
action. In practice the calling code will often ignore any errors because the progrékmoess” that the
function is being used correctly. If the programmer is mistaken then an error condition may be detected and
reported, but the application continues running anyway and is likely to fail some time later in mysterious
ways.

3. If the calling code does always check for error codes, that adds yet more cpu cycles and code size overhead.

4. Usually there will be no way to recover from certain errors, so if the application code detected an error
such a€INVAL then all it could do is abort the application somehow.

The approach taken within the eCos kernel is different. Functions suslg asutex_lock ~ will not return an

error code. Instead they contain various assertions, which can be enabled or disabled. During the development
process assertions are normally left enabled, and the various kernel functions will perform parameter checks
and other system consistency checks. If a problem is detected then an assertion failure will be reported and
the application will be terminated. In a typical debug session a suitable breakpoint will have been installed
and the developer can now examine the state of the system and work out exactly what is going on. Towards
the end of the development cycle assertions will be disabled by manipulating configuration options within the
eCos infrastructure package, and all assertions will be eliminated at compile-time. The assumption is that by
this time the application code has been mostly debugged: the initial version of the code might have tried to
perform a semaphore operation on a mutex, but any problems like that will have been fixed some time ago.
This approach has a number of advantages:

1. In the final application there will be no overheads for checking parameters and other conditions. All that
code will have been eliminated at compile-time.

2. Because the final application will not suffer any overheads, it is reasonable for the system to do more work
during the development process. In particular the various assertions can test for more error conditions and
more complicated errors. When an error is detected it is possible to give a text message describing the
error rather than just return an error code.

3. There is no need for application programmers to handle error codes returned by various kernel function
calls. This simplifies the application code.

4.1f an error is detected then an assertion failure will be reported immediately and the application will be
halted. There is no possibility of an error condition being ignored because application code did not check
for an error code.

Although none of the kernel functions return an error code, many of them do return a status condition. For
example the functiotyg_semaphore_timed_wait waits until either an event has been posted to a semaphore,
or until a certain number of clock ticks have occurred. Usually the calling code will need to know whether the
wait operation succeeded or whether a timeout occutsgdsemaphore_timed_wait returns a boolean: a
return value of zero or false indicates a timeout, a non-zero return value indicates that the wait succeeded.

In conventional APIs one common error conditions is lack of memory. For example the POSIX function
pthread_create usually has to allocate some memory dynamically for the thread stack and other per-thread
data. If the target hardware does not have enough memory to meet all demands, or more commonly if the ap-
plication contains a memory leak, then there may not be enough memory available and the function call would
fail. The eCos kernel avoids such problems by never performing any dynamic memory allocation. Instead it
is the responsibility of the application code to provide all the memory required for kernel data structures and
other needs. In the case ofg_thread_create this means a cyg_thread data structure to hold the thread
details, and a char array for the thread stack.

31

Kernel Overview

32

In many applications this approach results in all data structures being allocated statically rather than dynami-
cally. This has several advantages. If the application is in fact too large for the target hardware’s memory then
there will be an error at link-time rather than at run-time, making the problem much easier to diagnose. Static
allocation does not involve any of the usual overheads associated with dynamic allocation, for example there
is no need to keep track of the various free blocks in the system, and it may be possible to elimiloate

from the system completely. Problems such as fragmentation and memory leaks cannot occur if all data is
allocated statically. However, some applications are sufficiently complicated that dynamic memory allocation
is required, and the various kernel functions do not distinguish between statically and dynamically allocated
memory. It still remains the responsibility of the calling code to ensure that sufficient memory is available, and
passing null pointers to the kernel will result in assertions or system failure.

SMP Support

Name

SMP— Support Symmetric Multiprocessing Systems

Description

eCos contains support for limited Symmetric Multi-Processing (SMP). This is only available on selected ar-
chitectures and platforms. The implementation has a number of restrictions on the kind of hardware supported.
These are described the Section calle&MP Supporin Chapter 9

The following sections describe the changes that have been made to the eCos kernel to support SMP operation.

System Startup

The system startup sequence needs to be somewhat different on an SMP system, although this is largely trans-
parent to application code. The main startup takes place on only one CPU, called the primary CPU. All other
CPUs, the secondary CPUs, are either placed in suspended state at reset, or are captured by the HAL and put
into a spin as they start up. The primary CPU is responsible for copying the DATA segment and zeroing the
BSS (if required), calling HAL variant and platform initialization routines and invoking constructors. It then
callscyg_start to enter the application. The application may then create extra threads and other objects.

It is only when the application callsyg_scheduler_start that the secondary CPUs are initialized. This
routine scans the list of available secondary CPUs and invekessMP_CPU_STARID start each CPU. Finally
it calls an internal functio@yg_Scheduler::start_cpu to enter the scheduler for the primary CPU.

Each secondary CPU starts in the HAL, where it completes any per-CPU initialization before
calling into the kernel atcyg_kernel_cpu_startup . Here it claims the scheduler lock and calls
Cyg_Scheduler::start_cpu

Cyg_Scheduler::start_cpu is common to both the primary and secondary CPUs. The first thing this code
does is to install an interrupt object for this CPU’s inter-CPU interrupt. From this point on the code is the same
as for the single CPU case: an initial thread is chosen and entered.

From this point on the CPUs are all equal, eCos makes no further distinction between the primary and sec-
ondary CPUs. However, the hardware may still distinguish between them as far as interrupt delivery is con-
cerned.

Scheduling

To function correctly an operating system kernel must protect its vital data structures, such as the run queues,
from concurrent access. In a single CPU system the only concurrent activities to worry about are asynchronous
interrupts. The kernel can easily guard its data structures against these by disabling interrupts. However, in a
multi-CPU system, this is inadequate since it does not block access by other CPUs.

The eCos kernel protects its vital data structures using the scheduler lock. In single CPU systems this is a
simple counter that is atomically incremented to acquire the lock and decremented to release it. If the lock is
decremented to zero then the scheduler may be invoked to choose a different thread to run. Because interrupts
may continue to be serviced while the scheduler lock is claimed, ISRs are not allowed to access kernel data
structures, or call kernel routines that can. Instead all such operations are deferred to an associated DSR routine
that is run during the lock release operation, when the data structures are in a consistent state.

33

SMP Support

34

By choosing a kernel locking mechanism that does not rely on interrupt manipulation to protect data structures,
it is easier to convert eCos to SMP than would otherwise be the case. The principal change needed to make
eCos SMP-safe is to convert the scheduler lock into a nestable spin lock. This is done by adding a spinlock and
a CPU id to the original counter.

The algorithm for acquiring the scheduler lock is very simple. If the scheduler lock’'s CPU id matches the
current CPU then it can just increment the counter and continue. If it does not match, the CPU must spin on
the spinlock, after which it may increment the counter and store its own identity in the CPU id.

To release the lock, the counter is decremented. If it goes to zero the CPU id value must be set to NONE and
the spinlock cleared.

To protect these sequences against interrupts, they must be performed with interrupts disabled. However, since
these are very short code sequences, they will not have an adverse effect on the interrupt latency.

Beyond converting the scheduler lock, further preparing the kernel for SMP is a relatively minor matter. The
main changes are to convert various scalar housekeeping variables into arrays indexed by CPU id. These
include the current thread pointer, the need_reschedule flag and the timeslice counter.

At present only the Multi-Level Queue (MLQ) scheduler is capable of supporting SMP configurations. The
main change made to this scheduler is to cope with having several threads in execution at the same time.
Running threads are marked with the CPU that they are executing on. When scheduling a thread, the scheduler
skips past any running threads until it finds a thread that is pending. While not a constant-time algorithm, as in
the single CPU case, this is still deterministic, since the worst case time is bounded by the number of CPUs in
the system.

A second change to the scheduler is in the code used to decide when the scheduler should be called to choose a
new thread. The scheduler attempts to keep the n CPUs running the n highest priority threads. Since an event or
interrupt on one CPU may require a reschedule on another CPU, there must be a mechanism for deciding this.
The algorithm currently implemented is very simple. Given a thread that has just been awakened (or had its
priority changed), the scheduler scans the CPUs, starting with the one it is currently running on, for a current
thread that is of lower priority than the new one. If one is found then a reschedule interrupt is sent to that CPU
and the scan continues, but now using the current thread of the rescheduled CPU as the candidate thread. In this
way the new thread gets to run as quickly as possible, hopefully on the current CPU, and the remaining CPUs
will pick up the remaining highest priority threads as a consequence of processing the reschedule interrupt.

The final change to the scheduler is in the handling of timeslicing. Only one CPU receives timer interrupts,
although all CPUs must handle timeslicing. To make this work, the CPU that receives the timer interrupt
decrements the timeslice counter for all CPUs, not just its own. If the counter for a CPU reaches zero, then
it sends a timeslice interrupt to that CPU. On receiving the interrupt the destination CPU enters the scheduler
and looks for another thread at the same priority to run. This is somewhat more efficient than distributing clock
ticks to all CPUs, since the interrupt is only needed when a timeslice occurs.

All existing synchronization mechanisms work as before in an SMP system. Additional synchronization mech-
anisms have been added to provide explicit synchronization for SMP, in the faspinddcks

SMP Interrupt Handling

The main area where the SMP nature of a system requires special attention is in device drivers and especially
interrupt handling. It is quite possible for the ISR, DSR and thread components of a device driver to exe-
cute on different CPUs. For this reason it is much more important that SMP-capable device drivers use the
interrupt-related functions correctly. Typically a device driver would use the driver API rather than call the
kernel directly, but it is unlikely that anybody would attempt to use a multiprocessor system without the kernel
package.

Two new functions have been added to the Kernel API tdarderrupt routing cyg_interrupt_set_cpu
andcyg_interrupt_get_cpu . Although not currently supported, special values for the cpu argument may be

SMP Support

used in future to indicate that the interrupt is being routed dynamically or is CPU-local. Once a vector has been
routed to a new CPU, all other interrupt masking and configuration operations are relative to that CPU, where
relevant.

There are more details of how interrupts should be handled in SMP systénesSection calle&MP Support
in Chapter 18

35

SMP Support

36

Thread creation

Name

cyg_thread_create — Create a new thread

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_create (cyg_addrword_t sched_info , cyg_thread_entry t* entry

cyg_addrword_t entry_data , char* name, void* stack_base , cyg_ucount32 stack_size
cyg_handle_t* handle , cyg_thread* thread);

Description

Thecyg_thread_create function allows application code and eCos packages to create new threads. In many
applications this only happens during system initialization and all required data is allocated statically. However
additional threads can be created at any time, if necessary. A newly created thread is always in suspended state
and will not start running until it has been resumed via a callytp thread_resume . Also, if threads are

created during system initialization then they will not start running until the eCos scheduler has been started.

The name argument is used primarily for debugging purposes, making it easier to keep track of which
cyg_thread structure is associated with which application-level thread. The kernel configurationcyation
VAR_KERNEL_THREADS_NAManNtrols whether or not this name is actually used.

On creation each thread is assigned a unique handle, and this will be stored in the location pointed at by the
handle argument. Subsequent operations on this thread including the requiredtead_resume should
use this handle to identify the thread.

The kernel requires a small amount of space for each thread, in the form of a cyg_thread data structure, to hold
information such as the current state of that thread. To avoid any need for dynamic memory allocation within
the kernel this space has to be provided by higher-level code, typically in the form of a static variable. The
thread argument provides this space.

Thread Entry Point

The entry point for a thread takes the form:
void
thread_entry_function(cyg_addrword_t data)

{
}

The second argument toyg_thread_create is a pointer to such a function. The third argument
entry _data is used to pass additional data to the function. Typically this takes the form of a pointer to
some static data, or a small integerpdf the thread does not require any additional data.

37

Thread creation

38

If the thread entry function ever returns then this is equivalent to the thread caliingread_exit . Even
though the thread will no longer run again, it remains registered with the scheduler. If the application needs to
re-use the cyg_thread data structure then a callgahread_delete is required first.

Thread Priorities

Thesched _info argument provides additional information to the scheduler. The exact details depend on the
scheduler being used. For the bitmap and miqueue schedulers it is a small integer, typically in the range 0 to 31,
with 0 being the highest priority. The lowest priority is normally used only by the system’s idle thread. The ex-
act number of priorities is controlled by the kernel configuration opieg6NUM_KERNEL_SCHED_PRIORITIES

It is the responsibility of the application developer to be aware of the various threads in the system, including
those created by eCos packages, and to ensure that all threads run at suitable priorities. For threads created by
other packages the documentation provided by those packages should indicate any requirements.

The functions cyg_thread_set_priority , cyg_thread_get_priority , and
cyg_thread_get_current_priority can be used to manipulate a thread’s priority.

Stacks and Stack Sizes

Each thread needs its own stack for local variables and to keep track of function calls and returns. Again it is
expected that this stack is provided by the calling code, usually in the form of static data, so that the kernel
does not need any dynamic memory allocation facilitigg. thread_create takes two arguments related to

the stack, a pointer to the base of the stack and the total size of this stack. On many processors stacks actually
descend from the top down, so the kernel will add the stack size to the base address to determine the starting
location.

The exact stack size requirements for any given thread depend on a number of factors. The most important is
of course the code that will be executed in the context of this code: if this involves significant nesting of
function calls, recursion, or large local arrays, then the stack size needs to be set to a suitably high value.
There are some architectural issues, for example the number of cpu registers and the calling conventions
will have some effect on stack usage. Also, depending on the configuration, it is possible that some other
code such as interrupt handlers will occasionally run on the current thread’'s stack. This depends in
part on configuration options such asYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STATKI
CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING

Determining an application’s actual stack size requirements is the responsibility of the application developer,
since the kernel cannot know in advance what code a given thread will run. However, the system does provide
some hints about reasonable stack sizes in the form of two constai®sUM_HAL_STACK_SIZE_MINIMUand
CYGNUM_HAL_STACK_SIZE_TYPICALThese are defined by the appropriate HAL package.MiNevUMvalue

is appropriate for a thread that just runs a single function and makes very simple system calls. Trying to create
a thread with a smaller stack than this is illegal. TitwPICAL value is appropriate for applications where
application calls are nested no more than half a dozen or so levels, and there are no large arrays on the stack.

If the stack sizes are not estimated correctly and a stack overflow occurs, the probably result is some form of
memory corruption. This can be very hard to track down. The kernel does contain some code to help detect
stack overflows, controlled by the configuration opt@GFUN_KERNEL_THREADS_STACK_CHECKI&Gmall

amount of space is reserved at the stack limit and filled with a special signature: every time a thread context
switch occurs this signature is checked, and if invalid that is a good indication (but not absolute proof) that
a stack overflow has occurred. This form of stack checking is enabled by default when the system is built
with debugging enabled. A related configuration optio@¥ssFUN_KERNEL_THREADS_STACK_MEASUREMENT
enabling this option means that a thread can call the funegi@nhread_measure_stack_usage to find out

Thread creation

the maximum stack usage to date. Note that this is not necessarily the true maximum because, for example, it
is possible that in the current run no interrupt occurred at the worst possible moment.

Valid contexts

cyg_thread_create may be called during initialization and from within thread context. It may not be called
from inside a DSR.

Example

A simple example of thread creation is shown below. This involves creating five threads, one producer and four
consumers or workers. The threads are created in the systgin'ser_start : depending on the configura-
tion it might be more appropriate to do this elsewhere, for example insithe

#include <cyg/hal/hal_arch.h >
#include <cyg/kernel/kapi.h >

/I These numbers depend entirely on your application

#define NUMBER_OF_WORKERS 4

#define PRODUCER_PRIORITY 10

#define WORKER_PRIORITY 11

#define PRODUCER_STACKSIZE CYGNUM_HAL_STACK_SIZE_TYPICAL

#define WORKER_STACKSIZE (CYGNUM_HAL_STACK_SIZE_MINIMUM + 1024)

static unsigned char producer_stacklPRODUCER_STACKSIZE];

static unsigned char worker_stacks[INUMBER_OF_ WORKERS][WORKER_STACKSIZE];
static cyg_handle_t producer_handle, worker_handlesiINUMBER_OF_WORKERS];
static cyg_thread_t producer_thread, worker_threadsiINUMBER_OF WORKERS];

static void
producer(cyg_addrword_t data)

{
}

static void
worker(cyg_addrword_t data)

{
}

void
cyg_user_start(void)

{

int i;

cyg_thread_create(PRODUCER_PRIORITY, &producer, 0, "producer”,
producer_stack, PRODUCER_STACKSIZE,
&producer_handle, &producer_thread);
cyg_thread_resume(producer_handle);
for (i = 0; i < NUMBER_OF_WORKERS; i++) {
cyg_thread_create(WORKER_PRIORITY, &worker, i, "worker",
worker_stacks[il, WORKER_STACKSIZE,
&(worker_handles[i]), &(worker_threads]i]));
cyg_thread_resume(worker_handlesi]);

39

Thread creation

Thread Entry Points and C++

For code written in C++ the thread entry function must be either a static member function of a class or an
ordinary function outside any class. It cannot be a normal member function of a class because such member
functions take an implicit additional arguments , and the kernel has no way of knowing what value to

use for this argument. One way around this problem is to make use of a special static member function, for
example:

class fred {
public:
void thread_function();
static void static_thread_aux(cyg_addrword_t);

h

void

fred::static_thread_aux(cyg_addrword_t objptr)

{
fred* object = static_cast <fred* >(objptr);
object- >thread_function();

}

static fred instance;

extern "C" void
cyg_start(void)
{

cyg_thread_create(...,
&fred::static_thread_aux,
static_cast <cyg_addrword_t >(&instance),

)]

Effectively this uses thentry _data argument tacyg_thread_create to hold thethis pointer. Unfortu-
nately this approach does require the use of some C++ casts, so some of the type safety that can be achieved
when programming in C++ is lost.

40

Thread information

Name

cyg_thread_self, cyg_thread_idle_thread, cyg thread get stack base,
cyg_thread_get stack_size, cyg_thread_measure_stack usage,
cyg_thread_get next, cyg_thread_get info, cyg_thread_find

information

Synopsis

#include <cyg/kernel/kapi.h >

cyg_handle_t cyg_thread_self (void);

cyg_handle_t cyg_thread_idle_thread (void);

cyg_addrword_t cyg_thread_get_stack _base (cyg_handle_t thread);
cyg_uint32 cyg_thread_get_stack_size (cyg_handle_t thread);
cyg_uint32 cyg_thread_measure_stack_usage (cyg_handle_t thread);
cyg_bool cyg_thread_get_next (cyg_handle_t * thread , cyg_uintl6 * id);
cyg_bool cyg_thread_get_info (cyg_handle_t thread , cyg_uintl6
*info);

cyg_handle_t cyg_thread_find (cyg_uint16 id);

Description

— Get basic thread

id , cyg_thread_info

These functions can be used to obtain some basic information about various threads in the system. Typically
they serve little or no purpose in real applications, but they can be useful during debugging.

cyg_thread_self
by cyg_thread_create
such agyg_thread_get_priority

cyg_thread_idle_thread

returns a handle corresponding to the current thread. It will be the same as the value filled in
when the current thread was created. This handle can then be passed to other functions

returns the handle corresponding to the idle thread. This thread is created auto-

matically by the kernel, so application-code has no other way of getting hold of this information.

cyg_thread_get_stack_base and cyg_thread_get_stack_size

created.

cyg_thread_measure_stack_usage is only

available if the

return information about a specific
thread’s stack. The values returned will match the values passgg toread_create

when this thread was

configuration option

CYGFUN_KERNEL_THREADS_STACK_MEASURENKENTNabled. The return value is the maximum number of
bytes of stack space used so far by the specified thread. Note that this should not be considered a true upper
bound, for example it is possible that in the current test run the specified thread has not yet been interrupted at
the deepest point in the function call graph. Never the less the value returned can give some useful indication

of the thread’s stack requirements.

cyg_thread_get_next

is used to enumerate all the current threads in the system. It should be called initially

with the locations pointed to bijiread andid set to zero. On return these will be set to the handle and ID of
the first thread. On subsequent calls, these parameters should be left set to the values returned by the previous
call. The handle and ID of the next thread in the system will be installed each time, tad a return value

indicates the end of the list.

41

Thread information

cyg_thread_get_info fills in the cyg_thread_info structure with information about the thread described by
thethread andid arguments. The information returned includes the thread’s handle and id, its state and
name, priorities and stack parameters. If the thread does not exist the function rgtarns

The cyg_thread_info structure is defined as followsdayg/kernel/kapi.h >, but may be extended in future
with additional members, and so its size should not be relied upon:

typedef struct

{
cyg_handle_t handle ;
cyg_uintl6 id ;
cyg_uint32 state ;
char *name;
cyg_priority_t set_pri
cyg_priority_t cur_pri
cyg_addrword_t stack_base ;
cyg_uint32 stack_size ;
cyg_uint32 stack_used ;

} cyg_thread_info;

cyg_thread_find returns a handle for the thread whose 10ds. If no such thread exists, a zero handle is
returned.

Valid contexts

cyg_thread_self may only be called from thread contegyg_thread_idle_thread may be called from
thread or DSR context, but only after the system has been initialidedthread_get_stack_base ,
cyg_thread_get_stack_size and cyg_thread_measure_stack_usage may be called any time after the

specified thread has been created, but measuring stack usage involves looping over at least part of the thread’s
stack so this should normally only be done from thread context.

Examples

A simple example of the use of tlegg_thread_get_next andcyg_thread_get_info follows:

#include <cyg/kernel/kapi.h >
#include <stdio.h >

void show_threads(void)

{
cyg_handle_t thread = O;

cyg_uintlé id = 0;

while(cyg_thread_get_next(&thread, &id))
{

cyg_thread_info info;

if(!cyg_thread_get_info(thread, id, &info))
break;

printf("ID: %04x name: %10s pri: %d\n",
info.id, info.name?info.name:"----

, info.set_pri);

42

Thread information

43

Thread information

44

Thread control

Name

cyg_thread_yield, cyg_thread_delay, cyg_thread_suspend,

cyg_thread_resume, cyg_thread_release — Control whether or not a thread is running
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_yield (void);

void cyg_thread_delay (cyg_tick_count t delay);
void cyg_thread_suspend (cyg_handle_t thread);
void cyg_thread_resume (cyg_handle_t thread);
void cyg_thread_release (cyg_handle_t thread);

Description

These functions provide some control over whether or not a particular thread can run. Apart from the required
use ofcyg_thread_resume to start a newly-created thread, application code should normally use proper syn-
chronization primitives such as condition variables or mail boxes.

Yield

cyg_thread_yield allows a thread to relinquish control of the processor to some other runnable thread which
has the same priority. This can have no effect on any higher-priority thread since, if such a thread were runnable,
the current thread would have been preempted in its favour. Similarly it can have no effect on any lower-priority
thread because the current thread will always be run in preference to those. As a consequence this function is
only useful in configurations with a scheduler that allows multiple threads to run at the same priority, for
example the mlqueue scheduler. If instead the bitmap scheduler was being useghtitesad_yield()

would serve no purpose.

Even if a suitable scheduler such as the miqueue scheduler has been conéigure@ad_yield will still

rarely prove useful: instead timeslicing will be used to ensure that all threads of a given priority get a fair
slice of the available processor time. However it is possible to disable timeslicing via the configuration option
CYGSEM_KERNEL_SCHED_TIMESLICHE which caseyg_thread_yield can be used to implement a form of
cooperative multitasking.

Delay

cyg_thread_delay allows a thread to suspend until the specified number of clock ticks have occurred. For
example, if a value of 1 is used and the system clock runs at a frequency of 100Hz then the thread will sleep
for up to 10 milliseconds. This functionality depends on the presence of a real-time system clock, as controlled
by the configuration optioBYGVAR_KERNEL_COUNTERS_CLOCK

If the application requires delays measured in milliseconds or similar units rather than in clock ticks, some
calculations are needed to convert between these units as describedks Usually these calculations can

45

Thread control

46

be done by the application developer, or at compile-time. Performing such calculations prior to every call to
cyg_thread_delay adds unnecessary overhead to the system.

Suspend and Resume

Associated with each thread is a suspend counter. When a thread is first created this counter is initialized to 1.
cyg_thread_suspend can be used to increment the suspend countergyanchread_resume decrements it.

The scheduler will never run a thread with a non-zero suspend counter. Therefore a newly created thread will
not run until it has been resumed.

An occasional problem with the use of suspend and resume functionality is that a thread gets suspended
more times than it is resumed and hence never becomes runnable again. This can lead to very
confusing behaviour. To help with debugging such problems the kernel provides a configuration option
CYGNUM_KERNEL_MAX_SUSPEND_COUNT_ASS#RSh imposes an upper bound on the number of suspend
calls without matching resumes, with a reasonable default value. This functionality depends on infrastructure
assertions being enabled.

Releasing a Blocked Thread

When a thread is blocked on a synchronization primitive such as a semaphore or a mutex, or when it is waiting
for an alarm to trigger, it can be forcibly woken up usieyg_thread_release . Typically this will call the

affected synchronization primitive to return false, indicating that the operation was not completed successfully.
This function has to be used with great care, and in particular it should only be used on threads that have been
designed appropriately and check all return codes. If instead it were to be used on, say, an arbitrary thread that
is attempting to claim a mutex then that thread might not bother to check the result of the mutex lock operation

- usually there would be no reason to do so. Therefore the thread will now continue running in the false belief
that it has successfully claimed a mutex lock, and the resulting behaviour is undefined. If the system has been
built with assertions enabled then it is possible that an assertion will trigger when the thread tries to release the
mutex it does not actually own.

The main use ofyg_thread_release is in the POSIX compatibility layer, where it is used in the implemen-
tation of per-thread signals and cancellation handlers.

Valid contexts

cyg_thread_yield can only be called from thread context, A DSR must always run to completion and cannot
yield the processor to some threagy_thread_suspend , cyg_thread_resume , andcyg_thread_release
may be called from thread or DSR context.

Thread termination

Name

cyg_thread_exit, cyg thread_Kill, cyg thread_delete — Allow threads to terminate
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_exit (void);
void cyg_thread_Kkill (cyg_handle_t thread);
void cyg_thread_delete (cyg_handle_t thread);

Description

In many embedded systems the various threads are allocated statically, created during initialization, and never
need to terminate. This avoids any need for dynamic memory allocation or other resource management fa-

cilities. However if a given application does have a requirement that some threads be created dynamically,

must terminate, and their resources such as the stack be reclaimed, then the kernel provides the functions
cyg_thread_exit , cyg_thread_Kkill , andcyg_thread_delete

cyg_thread_exit allows a thread to terminate itself, thus ensuring that it will not be run again by the sched-
uler. However the cyg_thread data structure passegigtahread_create remains in use, and the handle
returned byyg_thread_create remains valid. This allows other threads to perform certain operations on the
terminated thread, for example to determine its stack usageyyiehread_measure_stack_usage . When

the handle and cyg_thread structure are no longer requiygdhread_delete should be called to release
these resources. If the stack was dynamically allocated then this should not be freed until after the call to
cyg_thread_delete

Alternatively, one thread may usgg_thread_kill on another This has much the same effect as the affected
thread callingcyg_thread_exit . However killing a thread is generally rather dangerous because no attempt

is made to unlock any synchronization primitives currently owned by that thread or release any other resources
that thread may have claimed. Therefore use of this function should be avoidecygattead_exit is
preferredcyg_thread_kill cannot be used by a thread to kill itself.

cyg_thread_delete should be used on a thread after it has exited and is no longer required. After this call
the thread handle is no longer valid, and both the cyg_thread structure and the thread stack can be re-used
or freed. Ifcyg_thread_delete is invoked on a thread that is still running then there is an implicit call to
cyg_thread_kill

Valid contexts

cyg_thread_exit , cyg_thread_kill andcyg_thread_delete can only be called from thread context.

47

Thread termination

48

Thread priorities

Name

cyg_thread_get_priority, cyg_thread_get current_priority,

cyg_thread_set_priority — Examine and manipulate thread priorities
Synopsis

#include <cygl/kernel/kapi.h >

cyg_priority_t cyg_thread_get_priority (cyg_handle_t thread);

cyg_priority_t cyg_thread_get_current_priority (cyg_handle_t thread);

void cyg_thread_set_priority (cyg_handle_t thread , cyg_priority t priority);
Description

Typical schedulers use the concept of a thread priority to determine which thread should run next. Exactly
what this priority consists of will depend on the scheduler, but a typical implementation would be a small
integer in the range 0 to 31, with O being the highest priority. Usually only the idle thread will run at the
lowest priority. The exact number of priority levels available depends on the configuration, typically the option
CYGNUM_KERNEL_SCHED_PRIORITIES

cyg_thread_get_priority can be used to determine the priority of a thread, or more correctly the value last
used in acyg_thread_set_priority call or when the thread was first created. In some circumstances it is
possible that the thread is actually running at a higher priority. For example, if it owns a mutex and priority
ceilings or inheritance is being used to prevent priority inversion problems, then the thread'’s priority may have
been boosted temporarikyg_thread_get_current_priority returns the real current priority.

In many applications appropriate thread priorities can be determined and allocated statically. However, if it is
necessary for a thread’s priority to change at run-time thenyinehread_set_priority function provides
this functionality.

Valid contexts

cyg_thread_get_priority and cyg_thread_get_current_priority can be called from thread or DSR
context, although the latter is rarely usefiyly_thread_set_priority should also only be called from thread
context.

49

Thread priorities

50

Per-thread data

Name

cyg_thread_new_data_index, cyg_thread_free_data_index,
cyg_thread_get data, cyg_thread_get data ptr, cyg_thread_set data —
Manipulate per-thread data

Synopsis

#include <cyg/kernel/kapi.h >

cyg_ucount32 cyg_thread_new_data_index (void);

void cyg_thread_free_data_index (cyg_ucount32 index);

cyg_addrword_t cyg_thread_get_data (cyg_ucount32 index);
cyg_addrword_t* cyg_thread_get_data_ptr (cyg_ucount32 index);
void cyg_thread_set data (cyg_ucount32 index , cyg_addrword_t data);

Description

In some applications and libraries it is useful to have some data that is specific to each thread. For example,
many of the functions in the POSIX compatibility package return -1 to indicate an error and store additional
information in what appears to be a global variableo . However, if multiple threads make concurrent calls

into the POSIX library and iérro were really a global variable then a thread would have no way of knowing
whether the currerdrrno value really corresponded to the last POSIX call it made, or whether some other
thread had run in the meantime and made a different POSIX call which updated the variable. To avoid such
confusionerrno is instead implemented as a per-thread variable, and each thread has its own instance.

The support for per-thread data can be disabled via the configuration g®@ymR_KERNEL_THREADS_DATA

If enabled, each cyg_thread data structure holds a small array of words. The size of this array is determined
by the configuration optioBYGNUM_KERNEL_THREADS_DATA_MAKen a thread is created the array is filled

with zeroes.

If an application needs to use per-thread data then it needs an index into this array which has not yet been
allocated to other code. This index can be obtained by catligghread_new_data_index , and then used

in subsequent calls tyg_thread_get_data . Typically indices are allocated during system initialization and
stored in static variables. If for some reason a slot in the array is no longer required and can be re-used then it
can be released by callingg_thread_free_data_index ,

The current per-thread data in a given slot can be obtained usipghread_get data . This
implicitly operates on the current thread, and its single argument should be an index as returned by
cyg_thread_new_data_index . The per-thread data can be updated using thread_set data .Ifa
particular item of per-thread data is needed repeatedly thgnhread_get_data_ptr can be used to

obtain the address of the data, and indirecting through this pointer allows the data to be examined and updated
efficiently.

Some packages, for example the error and POSIX packages, have pre-allocated slots in the array of per-thread
data. These slots should not normally be used by application code, and instead slots should be allocated during
initialization by a call tocyg_thread_new_data_index . If it is known that, for example, the configuration

will never include the POSIX compatibility package then application code may instead decide to re-use the

51

Per-thread data

52

slot allocated to that packageyGNUM_KERNEL_THREADS_DATA_PQdt obviously this does involve a risk
of strange and subtle bugs if the application’s requirements ever change.

Valid contexts

Typically cyg_thread_new_data_index is only called during initialization, but may also be called at any time
in thread contextyg_thread_free_data_index ,ifused at all, can also be called during initialization or from
thread contextcyg_thread get data , cyg_thread_get_data_ptr , andcyg_thread_set_data may only

be called from thread context because they implicitly operate on the current thread.

Thread destructors

Name

cyg_thread_add_destructor, cyg_thread_rem_destructor — Call functions on thread
termination

Synopsis

#include <cyg/kernel/kapi.h >

typedef void (*cyg_thread_destructor_fn)(cyg_addrword_t);

cyg_bool_t cyg_thread_add_destructor (cyg_thread_destructor_fn fn, cyg_addrword_t data);
cyg_bool_t cyg_thread_rem_destructor (cyg_thread_destructor_fn fn, cyg_addrword_t data);
Description

These functions are provided for cases when an application requires a function to be automatically called when
a thread exits. This is often useful when, for example, freeing up resources allocated by the thread.

This support must be enabled with the configuration optisPKG_KERNEL_THREADS_DESTRUCTAOKBenN
enabled, you may register a function of type cyg_thread_destructor_fn to be called on thread termination
using cyg_thread_add_destructor . You may also provide it with a piece of arbitrary information in the
data argument which will be passed to the destructor funcfionwhen the thread terminates. If you no
longer wish to call a function previous registered witiy_thread_add_destructor , you may call
cyg_thread_rem_destructor with the same parameters used to register the destructor function. Both these
functions returnrue on success anidise on failure.

By default, thread destructors are per-thread, which means that registering a destructor function only registers
that function for the current thread. In other words, each thread has its own list of destructors. Alternatively you
may disable the configuration optiGiYyGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THRBMIiCh case any
registered destructors will be run whanythreads exit. In other words, the thread destructor list is global and

all threads have the same destructors.

There is a limit to the number of destructors which may be registered, which can be controlled with the
CYGNUM_KERNEL_THREADS_DESTRUCTG@RSfiguration option. Increasing this value will very slightly
increase the amount of memory in use, and WIGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
is enabled, the amount of memory used per thread will increase. When the limit has been reached,
cyg_thread_add_destructor will return false

Valid contexts

When CYGSEM_KERNEL_THREADS DESTRUCTORS PER_THRH®D enabled, these functions must
only be called from a thread context as they implicitly operate on the current thread. When
CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAEabled, these functions may be called from thread
or DSR context, or at initialization time.

53

Thread destructors

54

Exception handling

Name

cyg_exception_set_handler, cyg_exception_clear_handler,

cyg_exception_call_handler — Handle processor exceptions

Synopsis

#include <cygl/kernel/kapi.h >

void cyg_exception_set_handler (cyg_code_t exception_number , cyg_exception_handler_t*
new_handler , cyg_addrword_t new_data , cyg_exception_handler_t** old_handler
cyg_addrword_t* old_data);

void cyg_exception_clear_handler (cyg_code_t exception_number);

void cyg_exception_call_handler (cyg_handle_t thread , cyg_code_t exception_number

cyg_addrword_t exception_info);

Description

Sometimes code attempts operations that are not legal on the current hardware, for example dividing by zero,
or accessing data through a pointer that is not properly aligned. When this happens the hardware will raise
an exception. This is very similar to an interrupt, but happens synchronously with code execution rather than
asynchronously and hence can be tied to the thread that is currently running.

The exceptions that can be raised depend very much on the hardware, especially the processor. The corre-
sponding documentation should be consulted for more details. Alternatively the architectural HAL header file
hal_intrh , or one of the variant or platform header files it includes, will contain appropriate definitions. The
details of how to handle exceptions, including whether or not it is possible to recover from them, also depend
on the hardware.

Exception handling is optional, and can be disabled through the configuration option
CYGPKG_KERNEL_EXCEPTIONHE an application has been exhaustively tested and is trusted never to raise a
hardware exception then this option can be disabled and code and data sizes will be reduced somewhat. If
exceptions are left enabled then the system will provide default handlers for the various exceptions, but
these do nothing. Even the specific type of exception is ignored, so there is no point in attempting to decode
this and distinguish between say a divide-by-zero and an unaligned access. If the application installs
its own handlers and wants details of the specific exception being raised then the configuration option
CYGSEM_KERNEL_EXCEPTIONS_DEC®BE to be enabled.

An alternative handler can be installed usiyg_exception_set_handler . This requires a code for the
exception, a function pointer for the new exception handler, and a parameter to be passed to this handler. Details
of the previously installed exception handler will be returned via the remaining two arguments, allowing that
handler to be reinstated, or null pointers can be used if this information is of no interest. An exception handling
function should take the following form:

void
my_exception_handler(cyg_addrword_t data, cyg_code_t exception, cyg_addrword_t info)

{
}

55

Exception handling

56

The data argument corresponds totiesv_data parameter supplied tyg_exception_set_handler . The
exception code is provided as well, in case a single handler is expected to support multiple exceptions. The
info argument will depend on the hardware and on the specific exception.

cyg_exception_clear_handler can be used to restore the default handler, if desired. It is also possible for
software to raise an exception and cause the current handler to be invoked, but generally this is useful only for
testing.

By default the system maintains a single set of global exception handlers. However, since exceptions
occur synchronously it is sometimes useful to handle them on a per-thread basis, and have a different
set of handlers for each thread. This behaviour can be obtained by disabling the configuration
option CYGSEM_KERNEL_EXCEPTIONS_GLOBAIf per-thread exception handlers are being used then
cyg_exception_set_handler andcyg_exception_clear_handler apply to the current thread. Otherwise

they apply to the global set of handlers.

Caution

In the current implementation cyg_exception_call_handler can only be used on the
current thread. There is no support for delivering an exception to another thread.

Note: Exceptions at the eCos kernel level refer specifically to hardware-related events such as unaligned
accesses to memory or division by zero. There is no relation with other concepts that are also known as
exceptions, for example the throw and catch facilities associated with C++.

Valid contexts

If the system is configured with a single set of global exception handlersyhesxception_set_handler

and cyg_exception_clear_handler may be called during initialization or from thread context. If instead
per-thread exception handlers are being used then it is not possible to install new handlers during initialization
because the functions operate implicitly on the current thread, so they can only be called from thread context.
cyg_exception_call_handler should only be called from thread context.

Counters

Name

cyg_counter_create, cyg_counter_delete, cyg_counter_current_value,
cyg_counter_set value, cyg_counter_tick — Count event occurrences
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_counter_create (cyg_handle_t* handle , cyg_counter* counter);

void cyg_counter_delete (cyg_handle_t counter);

cyg_tick_count_t cyg_counter_current_value (cyg_handle_t counter);

void cyg_counter_set_value (cyg_handle_t counter , cyg_tick_count_t new_value);
void cyg_counter_tick (cyg_handle_t counter);

Description

Kernel counters can be used to keep track of how many times a particular event has occurred. Usually this
event is an external signal of some sort. The most common use of counters is in the implementation of clocks,
but they can be useful with other event sources as well. Application code canaltterolsto counters, causing

a function to be called when some number of events have occurred.

A new counter is initialized by a call teyg_counter_create . The first argument is used to return a handle to

the new counter which can be used for subsequent operations. The second argument allows the application to
provide the memory needed for the object, thus eliminating any need for dynamic memory allocation within
the kernel. If a counter is no longer required and does not have any alarms attachsg tb@mter_delete

can be used to release the resources, allowing the cyg_counter data structure to be re-used.

Initializing a counter does not automatically attach it to any source of events. Instead some other code needs
to call cyg_counter_tick whenever a suitable event occurs, which will cause the counter to be incremented
and may cause alarms to trigger. The current value associated with the counter can be retrieved using
cyg_counter_current_value and modified withcyg_counter_set_value . Typically the latter function is

only used during initialization, for example to set a clock to wallclock time, but it can be used to reset a
counter if necessary. Howeveyg_counter_set_value will never trigger any alarms. A newly initialized
counter has a starting value of 0.

The kernel provides two different implementations of counters. The default is
CYGIMP_KERNEL_COUNTERS_SINGLE_LISwhich stores all alarms attached to the counter on a single list.
This is simple and usually efficient. However when a tick occurs the kernel code has to traverse this list,
typically at DSR level, so if there are a significant number of alarms attached to a single counter this will affect
the system’s dispatch latency. The alternative implementatiMmgIMP_KERNEL_COUNTERS_MULTI_LIST

stores each alarm in one of an array of lists such that at most one of the lists needs to be searched per clock
tick. This involves extra code and data, but can improve real-time responsiveness in some circumstances.
Another configuration option that is relevant here G§GIMP_KERNEL_COUNTERS_SORT_LISWhich is

disabled by default. This provides a trade off between doing work whenever a new alarm is added to a counter
and doing work whenever a tick occurs. It is application-dependent which of these is more appropriate.

57

Counters

58

Valid contexts

cyg_counter_create is typically called during system initialization but may also be called in thread
context. Similarly cyg_counter_delete may be called during initialization or in thread context.
cyg_counter_current_value , ¢cyg_counter_set_value and cyg_counter_tick may be called during
initialization or from thread or DSR context. In faeg_counter_tick is usually called from inside a DSR

in response to an external event of some sort.

Clocks

Name

cyg_clock_create, cyg_clock_delete, cyg_clock to_counter,
cyg_clock_set_resolution, cyg_clock get resolution, cyg real_time_clock,
cyg_current_time — Provide system clocks

Synopsis

#include <cygl/kernel/kapi.h >

void cyg_clock_create (cyg_resolution_t resolution , cyg_handle_t* handle , cyg_clock*
clock);

void cyg_clock_delete (cyg_handle_t clock);

void cyg_clock_to_counter (cyg_handle_t clock , cyg_handle_t* counter);

void cyg_clock_set_resolution (cyg_handle_t clock , cyg_resolution_t resolution);
cyg_resolution_t cyg_clock_get_resolution (cyg_handle_t clock);

cyg_handle_t cyg_real_time_clock (void);

cyg_tick_count_t cyg_current_time (void);

Description

In the eCos kernel clock objects are a special forncminterobjects. They are attached to a specific type
of hardware, clocks that generate ticks at very specific time intervals, whereas counters can be used with any
event source.

In a default configuration the kernel provides a single clock instance, the real-time clock. This gets used
for timeslicing and for operations that involve a timeout, for examglg semaphore_timed_wait

If this functionality is not required it can be removed from the system using the configuration option
CYGVAR_KERNEL_COUNTERS_CLOORtherwise the real-time clock can be accessed by a call to
cyg_real_time_clock , allowing applications to attach alarms, and the current counter value can be obtained
usingcyg_current_time

Applications can create and destroy additional clocks if desired, usitgclock_create and
cyg_clock_delete . The first argument t@yg_clock_create specifies theresolutionthis clock will run

at. The second argument is used to return a handle for this clock object, and the third argument provides
the kernel with the memory needed to hold this object. This clock will not actually tick by itself. Instead

it is the responsibility of application code to initialize a suitable hardware timer to generate interrupts at
the appropriate frequency, install an interrupt handler for this, andcggllcounter_tick from inside

the DSR. Associated with each clock is a kernel counter, a handle for which can be obtained using
cyg_clock_to_counter

Clock Resolutions and Ticks

At the kernel level all clock-related operations including delays, timeouts and alarms work in units of clock
ticks, rather than in units of seconds or milliseconds. If the calling code, whether the application or some other
package, needs to operate using units such as milliseconds then it has to convert from these units to clock ticks.

59

Clocks

60

The main reason for this is that it accurately reflects the hardware: calling somethingrdeteep with

a delay of ten nanoseconds will not work as intended on any real hardware because timer interrupts simply
will not happen that frequently; instead calliogy_thread_delay ~ with the equivalent delay of O ticks gives

a much clearer indication that the application is attempting something inappropriate for the target hardware.

Similarly, passing a delay of five ticks tgg_thread_delay =~ makes it fairly obvious that the current thread

will be suspended for somewhere between four and five clock periods, as opposed to passing 50000000 to
nanosleep which suggests a granularity that is not actually provided.

A secondary reason is that conversion between clock ticks and units such as milliseconds can be somewhat
expensive, and whenever possible should be done at compile-time or by the application developer rather than
at run-time. This saves code size and cpu cycles.

The information needed to perform these conversions is the clock resolution. This is a structure with two
fields, a dividend and a divisor, and specifies the number of nanoseconds between clock ticks. For exam-
ple a clock that runs at 100Hz will have 10 milliseconds between clock ticks, or 10000000 nanoseconds.
The ratio between the resolution’s dividend and divisor will therefore be 10000000 to 1, and typical values
for these might be 1000000000 and 100. If the clock runs at a different frequency, say 60Hz, the numbers
could be 1000000000 and 60 respectively. Given a delay in hanoseconds, this can be converted to clock ticks
by multiplying with the the divisor and then dividing by the dividend. For example a delay of 50 millisec-
onds corresponds to 50000000 nanoseconds, and with a clock frequency of 100Hz this can be converted to
((50000000 * 100) / 1000000000) = 5 clock ticks. Given the large numbers involved this arithmetic normally
has to be done using 64-bit precision and the long long data type, but allows code to run on hardware with
unusual clock frequencies.

The default frequency for the real-time clock on any platform is usually about 100Hz, but platform-specific
documentation should be consulted for this information. Usually it is possible to override this default by con-
figuration options, but again this depends on the capabilities of the underlying hardware. The resolution for
any clock can be obtained usibgy_clock_get_resolution . For clocks created by application code, there is
also a functiortyg_clock_set_resolution . This does not affect the underlying hardware timer in any way,

it merely updates the information that will be returned in subsequent cadigtolock_get_resolution

changing the actual underlying clock frequency will require appropriate manipulation of the timer hardware.

Valid contexts

cyg_clock_create is usually only called during system initialization (if at all), but may also be called from
thread context. The same appliesyg_clock_delete . The remaining functions may be called during initial-
ization, from thread context, or from DSR context, although it should be noted that there is no locking between
cyg_clock_get_resolution andcyg_clock_set_resolution so theoretically it is possible that the former
returns an inconsistent data structure.

Alarms

Name

cyg_alarm_create, cyg_alarm_delete, cyg_alarm_initialize,

cyg_alarm_enable, cyg_alarm_disable — Run an alarm function when a number of events have
occurred

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_alarm_create (cyg_handle_t counter , cyg_alarm_t* alarmfn , cyg_addrword_t data ,

cyg_handle_t* handle , cyg_alarm* alarm);

void cyg_alarm_delete (cyg_handle_t alarm);

void cyg_alarm_initialize (cyg_handle_t alarm , cyg_tick_count_t trigger
cyg_tick_count_t interval);

void cyg_alarm_enable (cyg_handle_t alarm);

void cyg_alarm_disable (cyg_handle_t alarm);

Description

Kernel alarms are used together with counters and allow for action to be taken when a certain number of events
have occurred. If the counter is associated with a clock then the alarm action happens when the appropriate
number of clock ticks have occurred, in other words after a certain period of time.

Setting up an alarm involves a two-step process. First the alarm must be created with a call to
cyg_alarm_create . This takes five arguments. The first identifies the counter to which the alarm should be
attached. If the alarm should be attached to the system’s real-time clockyifesal_time_clock and
cyg_clock_to_counter can be used to get hold of the appropriate handle. The next two arguments specify
the action to be taken when the alarm is triggered, in the form of a function pointer and some data. This
function should take the form:

void
alarm_handler(cyg_handle_t alarm, cyg_addrword_t data)

{
}

The data argument passed to the alarm function corresponds to the third argument passed to
cyg_alarm_create . The fourth argument tocyg alarm_create is used to return a handle to the
newly-created alarm object, and the final argument provides the memory needed for the alarm object and thus
avoids any need for dynamic memory allocation within the kernel.

Once an alarm has been created a further catygoalarm_initialize is needed to activate it. The first
argument specifies the alarm. The second argument indicates the number of events, for example clock ticks,
that need to occur before the alarm triggers. If the third argument is 0 then the alarm will only trigger once. A
non-zero value specifies that the alarm should trigger repeatedly, with an interval of the specified number of
events.

61

Alarms

62

Alarms can be temporarily disabled and reenabled usigcalarm_disable ~ andcyg_alarm_enable . Alter-
natively another call teyg_alarm_initialize can be used to modify the behaviour of an existing alarm. If
an alarm is no longer required then the associated resources can be releaseghusim_delete

The alarm function is invoked when a counter tick occurs, in other words when there is a call to
cyg_counter_tick , and will happen in the same context. If the alarm is associated with the system’s
real-time clock then this will be DSR context, following a clock interrupt. If the alarm is associated with some
other application-specific counter then the details will depend on how that counter is updated.

If two or more alarms are registered for precisely the same counter tick, the order of execution of the alarm
functions is unspecified.

Valid contexts

cyg_alarm_create cyg_alarm_initialize is typically called during system initialization but may
also be called in thread context. The same appliesytp alarm_delete . cyg_alarm_initialize ,
cyg_alarm_disable and cyg_alarm_enable may be called during initialization or from thread or DSR
context, butcyg_alarm_enable andcyg_alarm_initialize may be expensive operations and should only
be called when necessary.

Mutexes

Name

cyg_mutex_init, cyg_mutex_destroy, cyg_mutex_lock, cyg_mutex_trylock,
cyg_mutex_unlock, cyg_mutex_release, cyg_mutex_set_ceiling,
cyg_mutex_set_protocol — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mutex_init (cyg_mutex_t* mutex);

void cyg_mutex_destroy (cyg_mutex_t* mutex);
cyg_bool_t cyg _mutex_lock (cyg_mutex_t* mutex);
cyg_bool_t cyg_mutex_trylock (cyg_mutex_t* mutex);
void cyg_mutex_unlock (cyg_mutex_t* mutex);

void cyg_mutex_release (cyg_mutex_t* mutex);

void cyg_mutex_set_ceiling (cyg_mutex_t* mutex , cyg_priority t priority);
void cyg_mutex_set_protocol (cyg_mutex_t* mutex , enum cyg_mutex_protocol protocol/);
Description

The purpose of mutexes is to let threads share resources safely. If two or more threads attempt to manipulate
a data structure with no locking between them then the system may run for quite some time without apparent

problems, but sooner or later the data structure will become inconsistent and the application will start behaving

strangely and is quite likely to crash. The same can apply even when manipulating a single variable or some

other resource. For example, consider:

static volatile int counter = O;

void
process_event(void)

{

counter++;

}

Assume that after a certain period of timeunter has a value of 42, and two threads A and B running

at the same priority calrocess_event . Typically thread A will read the value afounter into a register,
increment this register to 43, and write this updated value back to memory. Thread B will do the same, so
usuallycounter will end up with a value of 44. However if thread A is timesliced after reading the old value

42 but before writing back 43, thread B will still read back the old value and will also write back 43. The net
result is that the counter only gets incremented once, not twice, which depending on the application may prove
disastrous.

Sections of code like the above which involve manipulating shared data are generally known as critical regions.
Code should claim a lock before entering a critical region and release the lock when leaving. Mutexes provide
an appropriate synchronization primitive for this.

static volatile int counter = O;

63

Mutexes

64

static cyg_mutex_t lock;

void
process_event(void)

{

cyg_mutex_lock(&lock);
counter++;
cyg_mutex_unlock(&lock);

A mutex must be initialized before it can be used, by callipg mutex_init . This takes a pointer to a
cyg_mutex_t data structure which is typically statically allocated, and may be part of a larger data structure. If
a mutex is no longer required and there are no threads waiting on ityhenutex_destroy can be used.

The main functions for using a mutex atgy_mutex_lock andcyg_mutex_unlock . In normal operation
cyg_mutex_lock will return success after claiming the mutex lock, blocking if another thread currently
owns the mutex. However the lock operation may fail if other code calts mutex_release or
cyg_thread_release , so if these functions may get used then it is important to check the return value. The
current owner of a mutex should callg_mutex_unlock when a lock is no longer required. This operation
must be performed by the owner, not by another thread.

cyg_mutex_trylock is a variant otyg_mutex_lock that will always return immediately, returning success or
failure as appropriate. This function is rarely useful. Typical code locks a mutex just before entering a critical
region, so if the lock cannot be claimed then there may be nothing else for the current thread to do. Use of
this function may also cause a form of priority inversion if the owner owner runs at a lower priority, because
the priority inheritance code will not be triggered. Instead the current thread continues running, preventing the
owner from getting any cpu time, completing the critical region, and releasing the mutex.

cyg_mutex_release can be used to wake up all threads that are currently blocked inside a call to
cyg_mutex_lock for a specific mutex. These lock calls will return failure. The current mutex owner is not
affected.

Priority Inversion

The use of mutexes gives rise to a problem known as priority inversion. In a typical scenario this requires
three threads A, B, and C, running at high, medium and low priority respectively. Thread A and thread B are
temporarily blocked waiting for some event, so thread C gets a chance to run, needs to enter a critical region,
and locks a mutex. At this point threads A and B are woken up - the exact order does not matter. Thread A
needs to claim the same mutex but has to wait until C has left the critical region and can release the mutex.
Meanwhile thread B works on something completely different and can continue running without problems.
Because thread C is running a lower priority than B it will not get a chance to run until B blocks for some
reason, and hence thread A cannot run either. The overall effect is that a high-priority thread A cannot proceed
because of a lower priority thread B, and priority inversion has occurred.

In simple applications it may be possible to arrange the code such that priority inversion cannot occur, for
example by ensuring that a given mutex is never shared by threads running at different priority levels. However
this may not always be possible even at the application level. In addition mutexes may be used internally by
underlying code, for example the memory allocation package, so careful analysis of the whole system would
be needed to be sure that priority inversion cannot occur. Instead it is common practice to use one of two
techniques: priority ceilings and priority inheritance.

Priority ceilings involve associating a priority with each mutex. Usually this will match the highest priority
thread that will ever lock the mutex. When a thread running at a lower priority makes a successful call to

Mutexes

cyg_mutex_lock Or cyg_mutex_trylock its priority will be boosted to that of the mutex. For example, given

the previous example the priority associated with the mutex would be that of thread A, so for as long as it
owns the mutex thread C will run in preference to thread B. When C releases the mutex its priority drops to
the normal value again, allowing A to run and claim the mutex. Setting the priority for a mutex involves a call
to cyg_mutex_set_ceiling , which is typically called during initialization. It is possible to change the ceiling
dynamically but this will only affect subsequent lock operations, not the current owner of the mutex.

Priority ceilings are very suitable for simple applications, where for every thread in the system it is
possible to work out which mutexes will be accessed. For more complicated applications this may
prove difficult, especially if thread priorities change at run-time. An additional problem occurs for
any mutexes outside the application, for example used internally within eCos packages. A typical eCos
package will be unaware of the details of the various threads in the system, so it will have no way
of setting suitable ceilings for its internal mutexes. If those mutexes are not exported to application
code then using priority ceilings may not be viable. The kernel does provide a configuration option
CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIOWIAly can be used to

set the default priority ceiling for all mutexes, which may prove sufficient.

The alternative approach is to use priority inheritance: if a thread eajlsnutex_lock for a mutex that it
currently owned by a lower-priority thread, then the owner will have its priority raised to that of the current
thread. Often this is more efficient than priority ceilings because priority boosting only happens when nec-
essary, not for every lock operation, and the required priority is determined at run-time rather than by static
analysis. However there are complications when multiple threads running at different priorities try to lock a
single mutex, or when the current owner of a mutex then tries to lock additional mutexes, and this makes the
implementation significantly more complicated than priority ceilings.

There are a number of configuration options associated with priority inversion.
First, if after careful analysis it is known that priority inversion cannot arise then

the component CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL
can be disabled. More commonly this component will be enabled, and one of
either CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT or

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEImilbe selected, so that one of

the two protocols is available for all mutexes. It is possible to select multiple protocols, so that some mutexes
can have priority ceilings while others use priority inheritance or no priority inversion protection at all.
Obviously this flexibility will add to the code size and to the cost of mutex operations. The default for all
mutexes will be controlled by YGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT
and can be changed at run-time usifpg mutex_set_protocol

Priority inversion problems can also occur with other synchronization primitives such as semaphores. For
example there could be a situation where a high-priority thread A is waiting on a semaphore, a low-priority
thread C needs to do just a little bit more work before posting the semaphore, but a medium priority thread
B is running and preventing C from making progress. However a semaphore does not have the concept of an
owner, so there is no way for the system to know that it is thread C which would next post to the semaphore.
Hence there is no way for the system to boost the priority of C automatically and prevent the priority inversion.
Instead situations like this have to be detected by application developers and appropriate precautions have to
be taken, for example making sure that all the threads run at suitable priorities at all times.

65

Mutexes

66

Warning

The current implementation of priority inheritance within the eCos kernel does not han-
dle certain exceptional circumstances completely correctly. Problems will only arise if
a thread owns one mutex, then attempts to claim another mutex, and there are other
threads attempting to lock these same mutexes. Although the system will continue run-
ning, the current owners of the various mutexes involved may not run at the priority they
should. This situation never arises in typical code because a mutex will only be locked for
a small critical region, and there is no need to manipulate other shared resources inside
this region. A more complicated implementation of priority inheritance is possible but
would add significant overhead and certain operations would no longer be deterministic.

Warning

Support for priority ceilings and priority inheritance is not implemented for all schedulers.
In particular neither priority ceilings nor priority inheritance are currently available for the
bitmap scheduler.

Alternatives

In nearly all circumstances, if two or more threads need to share some data then protecting this data with a
mutex is the correct thing to do. Mutexes are the only primitive that combine a locking mechanism and pro-
tection against priority inversion problems. However this functionality is achieved at a cost, and in exceptional
circumstances such as an application’s most critical inner loop it may be desirable to use some other means of
locking.

When a critical region is very very small it is possible to lock the scheduler, thus ensuring that no other
thread can run until the scheduler is unlocked again. This is achieved with callg_t@heduler_lock
andcyg_scheduler_unlock . If the critical region is sufficiently small then this can actually improve both
performance and dispatch latency becaygemutex_lock also locks the scheduler for a brief period of time.

This approach will not work on SMP systems because another thread may already be running on a different
processor and accessing the critical region.

Another way of avoiding the use of mutexes is to make sure that all threads that access a
particular critical region run at the same priority and configure the system with timeslicing disabled
(CYGSEM_KERNEL_SCHED_TIMESLILE Without timeslicing a thread can only be preempted by a
higher-priority one, or if it performs some operation that can block. This approach requires that none of the
operations in the critical region can block, so for example it is not legal tocgalkemaphore_wait . It is

also vulnerable to any changes in the configuration or to the various thread priorities: any such changes may
now have unexpected side effects. It will not work on SMP systems.

Recursive Mutexes

The implementation of mutexes within the eCos kernel does not support recursive locks. If a thread has locked
a mutex and then attempts to lock the mutex again, typically as a result of some recursive call in a complicated
call graph, then either an assertion failure will be reported or the thread will deadlock. This behaviour is
deliberate. When a thread has just locked a mutex associated with some data structure, it can assume that that
data structure is in a consistent state. Before unlocking the mutex again it must ensure that the data structure
is again in a consistent state. Recursive mutexes allow a thread to make arbitrary changes to a data structure,
then in a recursive call lock the mutex again while the data structure is still inconsistent. The net result is that

Mutexes

code can no longer make any assumptions about data structure consistency, which defeats the purpose of using
mutexes.

Valid contexts

cyg_mutex_init , cyg_mutex_set_ceiling andcyg_mutex_set_protocol are normally called during ini-
tialization but may also be called from thread context. The remaining functions should only be called from
thread context. Mutexes serve as a mutual exclusion mechanism between threads, and cannot be used to syn-
chronize between threads and the interrupt handling subsystem. If a critical region is shared between a thread
and a DSR then it must be protected using scheduler_lock andcyg_scheduler_unlock . Ifacritical re-

gion is shared between a thread and an ISR, it must be protected by disabling or masking interrupts. Obviously
these operations must be used with care because they can affect dispatch and interrupt latencies.

67

Mutexes

68

Condition Variables

Name

cyg_cond_init, cyg_cond_destroy, cyg_cond_wait, cyg cond_timed_wait,
cyg_cond_signal, cyg cond_broadcast — Synchronization primitive
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_cond_init (cyg_cond_t* cond, cyg_mutex_t* mutex);

void cyg_cond_destroy (cyg_cond_t* cond);

cyg_bool_t cyg cond_wait (cyg_cond_t* cond);

cyg_bool_t cyg_cond_timed _wait (cyg_cond_t* cond, cyg_tick_count _t abstime);
void cyg_cond_signal (cyg_cond_t* cond);

void cyg_cond_broadcast (cyg_cond_t* cond);

Description

Condition variables are used in conjunction with mutexes to implement long-term waits for some condition to
become true. For example consider a set of functions that control access to a pool of resources:

cyg_mutex_t res_lock;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)

{
cyg_mutex_init(&res_lock);
<fill pool with resources >
}
res_t res_allocate(void)
{
res_t res;
cyg_mutex_lock(&res_lock); /I lock the mutex
if(res_count == 0) /I check for free resource
res = RES_NONE; /I return RES_NONE if none
else
{
res_count--; /I allocate a resources
res = res_pool[res_count];
}
cyg_mutex_unlock(&res_lock); /I unlock the mutex
return res;
}

void res_free(res_t res)

69

Condition Variables

70

{
cyg_mutex_lock(&res_lock); /I lock the mutex
res_pool[res_count] = res; /I free the resource
res_count++;
cyg_mutex_unlock(&res_lock); /I unlock the mutex
}

These routines use the variabés_count to keep track of the resources available. If there are none then
res_allocate returnsRES_NONEwhich the caller must check for and take appropriate error handling actions.

Now suppose that we do not want to ret®®S_NONRvhen there are no resources, but want to wait for one to
become available. This is where a condition variable can be used:

cyg_mutex_t res_lock;
cyg_cond_t res_walit;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)

{
cyg_mutex_init(&res_lock);
cyg_cond_init(&res_wait, &res_lock);
<fill pool with resources >

}

res_t res_allocate(void)
{
res_t res;

cyg_mutex_lock(&res_lock); /I lock the mutex

while(res_count == 0) /I wait for a resources
cyg_cond_wait(&res_wait);

res_count--; /I allocate a resource
res = res_pool[res_count];

cyg_mutex_unlock(&res_lock); /I unlock the mutex

return res;

void res_free(res_t res)
cyg_mutex_lock(&res_lock); /I lock the mutex

res_pool[res_count] = res; /I free the resource
res_count++;

cyg_cond_signal(&res_wait); /I wake up any waiting allocators

cyg_mutex_unlock(&res_lock); /I unlock the mutex

Condition Variables

In this version of the code, wheas_allocate detects that there are no resources it calls cond_wait

This does two things: it unlocks the mutex, and puts the calling thread to sleep on the condition variable. When
res_free is eventually called, it puts a resource back into the pool andsallsond_signal to wake up any

thread waiting on the condition variable. When the waiting thread eventually gets to run again, it will re-lock
the mutex before returning fronyg_cond_wait

There are two important things to note about the way in which this code works. The first is that the mutex unlock
and wait incyg_cond_wait are atomic: no other thread can run between the unlock and the wait. If this were
not the case then a call tes_free by that thread would release the resource but the cayltaond_signal

would be lost, and the first thread would end up waiting when there were resources available.

The second feature is that the callc@_cond_wait is in awhile loop and not a simplé statement. This

is because of the need to re-lock the mutexyih cond_wait when the signalled thread reawakens. If there

are other threads already queued to claim the lock then this thread must wait. Depending on the scheduler and
the queue order, many other threads may have entered the critical section before this one gets to run. So the
condition that it was waiting for may have been rendered false. Using a loop around all condition variable wait
operations is the only way to guarantee that the condition being waited for is still true after waiting.

Before a condition variable can be used it must be initialized with a callgaond_init . This requires two
arguments, memory for the data structure and a pointer to an existing mutex. This mutex will not be initialized
by cyg_cond_init , instead a separate calldgy_mutex_init is required. If a condition variable is no longer
required and there are no threads waiting on it fygncond_destroy ~ can be used.

When a thread needs to wait for a condition to be satisfied it camyeabond_wait . The thread must have
already locked the mutex that was specified in ¢ cond_init call. This mutex will be unlocked and

the current thread will be suspended in an atomic operation. When some other thread performs a signal or
broadcast operation the current thread will be woken up and automatically reclaim ownership of the mutex
again, allowing it to examine global state and determine whether or not the condition is now satisfied. The
kernel supplies a variant of this functiotyg_cond_timed_wait , which can be used to wait on the condi-

tion variable or until some number of clock ticks have occurred. The mutex will always be reclaimed before
cyg_cond_timed_wait returns, regardless of whether it was a result of a signal operation or a timeout.

There is nacyg_cond_trywait function because this would not serve any purpose. If a thread has locked the
mutex and determined that the condition is satisfied, it can just release the mutex and return. There is no need
to perform any operation on the condition variable.

When a thread changes shared state that may affect some other thread blocked on a condition variable, it should
call eithercyg_cond_signal orcyg_cond_broadcast . These calls do not require ownership of the mutex, but
usually the mutex will have been claimed before updating the shared state. A signal operation only wakes up
the first thread that is waiting on the condition variable, while a broadcast wakes up all the threads. If there are
no threads waiting on the condition variable at the time, then the signal or broadcast will have no effect: past
signals are not counted up or remembered in any way. Typically a signal should be used when all threads will
check the same condition and at most one thread can continue running. A broadcast should be used if threads
check slightly different conditions, or if the change to the global state might allow multiple threads to proceed.

Valid contexts

cyg_cond_init s typically called during system initialization but may also be called in thread context. The
same applies t@yg_cond_delete . cyg_cond_wait and cyg_cond_timedwait may only be called from
thread context since they may blockg_cond_signal ~ andcyg_cond_broadcast ~ may be called from thread

or DSR context.

71

Condition Variables

72

Semaphores

Name

cyg_semaphore_init, cyg_semaphore_destroy, cyg_semaphore_wait,
cyg_semaphore_timed_wait, cyg_semaphore_post, cyg semaphore_peek —
Synchronization primitive

Synopsis

#include <cygl/kernel/kapi.h >

void cyg_semaphore_init (cyg_sem_t* sem, cyg_count32 val);

void cyg_semaphore_destroy (cyg_sem_t* sem);

cyg_bool_t cyg_semaphore_wait (cyg_sem_t* sem);

cyg_bool_t cyg_semaphore_timed_wait (cyg_sem_t* sem, cyg_tick_count_t abstime);
cyg_bool_t cyg_semaphore_trywait (cyg_sem_t* sem);

void cyg_semaphore_post (cyg_sem_t* sem);

void cyg_semaphore_peek (cyg_sem_t* sem, cyg_count32* val);

Description

Counting semaphores aresgnchronization primitivehat allow threads to wait until an event has occurred.

The event may be generated by a producer thread, or by a DSR in response to a hardware interrupt. Associated
with each semaphore is an integer counter that keeps track of the number of events that have not yet been
processed. If this counter is zero, an attempt by a consumer thread to wait on the semaphore will block until
some other thread or a DSR posts a new event to the semaphore. If the counter is greater than zero then an
attempt to wait on the semaphore will consume one event, in other words decrement the counter, and return
immediately. Posting to a semaphore will wake up the first thread that is currently waiting, which will then
resume inside the semaphore wait operation and decrement the counter again.

Another use of semaphores is for certain forms of resource management. The counter would correspond to
how many of a certain type of resource are currently available, with threads waiting on the semaphore to claim
a resource and posting to release the resource again. In prestidéion variablesare usually much better

suited for operations like this.

cyg_semaphore_init is used to initialize a semaphore. It takes two arguments, a pointer to a cyg_sem_t
structure and an initial value for the counter. Note that semaphore operations, unlike some other parts of the
kernel API, use pointers to data structures rather than handles. This makes it easier to embed semaphores in
a larger data structure. The initial counter value can be any number, zero, positive or negative, but typically a
value of zero is used to indicate that no events have occurred yet.

cyg_semaphore_wait is used by a consumer thread to wait for an event. If the current counter is greater than
0, in other words if the event has already occurred in the past, then the counter will be decremented and the call
will return immediately. Otherwise the current thread will be blocked until therecig asemaphore_post

call.

cyg_semaphore_post is called when an event has occurs. This increments the counter and wakes up

the first thread waiting on the semaphore (if any). Usually that thread will then continue running inside

cyg_semaphore_wait ~and decrement the counter again. However other scenarioes are possible. For example
the thread callingcyg_semaphore_post may be running at high priority, some other thread running at

73

Semaphores

74

medium priority may be about to callg_semaphore_wait ~when it next gets a chance to run, and a low
priority thread may be waiting on the semaphore. What will happen is that the current high priority thread
continues running until it is descheduled for some reason, then the medium priority thread runs and its call
to cyg_semaphore_wait ~ succeeds immediately, and later on the low priority thread runs again, discovers
a counter value of 0, and blocks until another event is posted. If there are multiple threads blocked on a
semaphore then the configuration opt@yGIMP_KERNEL_SCHED_SORTED_QUEUWERrmines which one will

be woken up by a post operation.

cyg_semaphore_wait returns a boolean. Normally it will block until it has successfully decremented the
counter, retrying as necessary, and return success. However the wait operation may be aborted by a call to
cyg_thread_release , andcyg_semaphore_wait ~ will then return false.

cyg_semaphore_timed_wait is a variant otyg_semaphore_wait . It can be used to wait until either an event

has occurred or a number of clock ticks have happened. The function returns success if the semaphore wait
operation succeeded, or false if the operation timed out or was abortgd ltyread_release . If support for

the real-time clock has been removed from the current configuration then this function will not be available.
cyg_semaphore_trywait is another variant which will always return immediately rather than block, again
returning success or failure.

cyg_semaphore_peek can be used to get hold of the current counter value. This function is rarely useful except
for debugging purposes since the counter value may change at any time if some other thread or a DSR performs
a semaphore operation.

Valid contexts

cyg_semaphore_init is normally called during initialization but may also be called from thread context.
cyg_semaphore_wait and cyg_semaphore_timed_wait may only be called from thread context because
these operations may blockyg_semaphore_trywait , cyg_semaphore_post and cyg_semaphore_peek

may be called from thread or DSR context.

Mail boxes

Name

cyg_mbox_create, cyg_mbox_delete, cyg_mbox_get, cyg_mbox_timed_get,
cyg_mbox_tryget, cyg_mbox_peek_item, cyg_mbox_put, cyg_mbox_timed_put,
cyg_mbox_tryput, cyg _mbox_peek, cyg_mbox_waiting_to_get,
cyg_mbox_waiting_to_put — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mbox_create (cyg_handle_t* handle , cyg_mbox* mbox);

void cyg_mbox_delete (cyg_handle_t mbox);

void* cyg_mbox_get (cyg_handle_t mbox);

void* cyg_mbox_timed_get (cyg_handle_t mbox, cyg_tick_count_t abstime);
void* cyg_mbox_tryget (cyg_handle_t mbox);

cyg_count32 cyg_mbox_peek (cyg_handle_t mbox);

void* cyg_mbox_peek_item (cyg_handle_t mbox);

cyg_bool_t cyg_mbox_put (cyg_handle_t mbox, void* item);

cyg_bool_t cyg_mbox_timed_put (cyg_handle_t mbox, void* item , cyg_tick_count_t abstime);
cyg_bool_t cyg _mbox_tryput (cyg_handle_t mbox, void* item);

cyg_bool_t cyg_mbox_waiting_to_get (cyg_handle_t mbox);

cyg_bool_t cyg_mbox_waiting_to_put (cyg_handle_t mbox);

Description

Mail boxes are a synchronization primitive. Like semaphores they can be used by a consumer thread to wait
until a certain event has occurred, but the producer also has the ability to transmit some data along with each
event. This data, the message, is normally a pointer to some data structure. It is stored in the mail box itself,
so the producer thread that generates the event and provides the data usually does not have to block until some
consumer thread is ready to receive the event. However a mail box will only have a finite capacity, typically ten
slots. Even if the system is balanced and events are typically consumed at least as fast as they are generated,
a burst of events can cause the mail box to fill up and the generating thread will block until space is available
again. This behaviour is very different from semaphores, where it is only necessary to maintain a counter and
hence an overflow is unlikely.

Before a mail box can be used it must be created with a cajigtanbox_create . Each mail box has a unique
handle which will be returned via the first argument and which should be used for subsequent operations.
cyg_mbox_create also requires an area of memory for the kernel structure, which is provided by the cyg_mbox
second argument. If a mail box is no longer required th@nmbox_delete can be used. This will simply
discard any messages that remain posted.

The main function for waiting on a mail box tyg_mbox_get . If there is a pending message because of a

call tocyg_mbox_put thencyg_mbox_get will return immediately with the message that was put into the mail

box. Otherwise this function will block until there is a put operation. Exceptionally the thread can instead be
unblocked by a call teyg_thread_release , in which casecyg_mbox_get will return a null pointer. It is
assumed that there will never be a caltyg_mbox_put with a null pointer, because it would not be possible

to distinguish between that and a release operation. Messages are always retrieved in the order in which they
were put into the mail box, and there is no support for messages with different priorities.

75

Mail boxes

76

There are two variants @fyg_mbox_get . The first,cyg_mbox_timed_get will wait until either a message is
available or until a number of clock ticks have occurred. If no message is posted within the timeout then a null
pointer will be returnedcyg_mbox_tryget is a non-blocking operation which will either return a message if
one is available or a null pointer.

New messages are placed in the mail box by calliggmbox_put or one of its variants. The main put function

takes two arguments, a handle to the mail box and a pointer for the message itself. If there is a spare slot in
the mail box then the new message can be placed there immediately, and if there is a waiting thread it will be
woken up so that it can receive the message. If the mail box is currently fullctyembox_put will block

until there has been a get operation and a slot is availablecybhabox_timed_put ~ variant imposes a time

limit on the put operation, returning false if the operation cannot be completed within the specified number of
clock ticks. Thecyg_mbox_tryput variant is non-blocking, returning false if there are no free slots available
and the message cannot be posted without blocking.

There are a further four functions available for examining the current state of a mailbox. The results
of these functions must be used with care because usually the state can change at any time as a result
of activity within other threads, but they may prove occasionally useful during debugging or in special
situations.cyg_mbox_peek returns a count of the number of messages currently stored in the mail box.
cyg_mbox_peek_item retrieves the first message, but it remains in the mail box until a get operation is
performed.cyg_mbox_waiting_to_get and cyg_mbox_waiting_to_put indicate whether or not there are
currently threads blocked in a get or a put operation on a given mail box.

The number of slots in each mail box is controlled by a configuration option
CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_swmith a default value of 10. All mail boxes are the same size.

Valid contexts

cyg_mbox_create s typically called during system initialization but may also be called in thread context. The
remaining functions are normally called only during thread context. Of special nofg iabox_put which

can be a blocking operation when the mail box is full, and which therefore must never be called from DSR
context. It is permitted to catlyg_mbox_tryput , cyg_mbox_tryget , and the information functions from DSR
context but this is rarely useful.

Event Flags

Name

cyg_flag_init, cyg_flag_destroy, cyg_flag_setbits, cyg_flag_maskbits,
cyg_flag_wait, cyg_flag_timed_wait, cyg flag_poll, cyg_flag_peek,

cyg_flag_waiting — Synchronization primitive
Synopsis
#include <cyg/kernel/kapi.h >

void cyg_flag_init (cyg_flag_t* flag);
void cyg_flag_destroy (cyg_flag_t* flag);

void cyg_flag_setbits (cyg_flag_t* flag , cyg_flag_value_t value);

void cyg_flag_maskbits (cyg_flag_t* flag , cyg_flag_value_t value);
cyg_flag_value_t cyg_flag_wait (cyg_flag_t* flag , cyg_flag_value_t pattern
cyg_flag_mode_t mode);

cyg_flag_value_t cyg_flag_timed_wait (cyg_flag_t* flag , cyg_flag_value_t pattern
cyg_flag_mode _t mode, cyg_tick_count_t abstime);

cyg_flag_value_t cyg_flag_poll (cyg_flag_t* flag , cyg_flag_value_t pattern

cyg_flag_mode_t mode);
cyg_flag_value_t cyg_flag_peek (cyg_flag_t* flag);
cyg_bool_t cyg_flag_waiting (cyg_flag_t* flag);

Description

Event flags allow a consumer thread to wait for one of several different types of event to occur. Alternatively

it is possible to wait for some combination of events. The implementation is relatively straightforward. Each
event flag contains a 32-bit integer. Application code associates these bits with specific events, so for example
bit 0 could indicate that an I/O operation has completed and data is available, while bit 1 could indicate that
the user has pressed a start button. A producer thread or a DSR can cause one or more of the bits to be set, and
a consumer thread currently waiting for these bits will be woken up.

Unlike semaphores no attempt is made to keep track of event counts. It does not matter whether a given event
occurs once or multiple times before being consumed, the corresponding bit in the event flag will change only
once. However semaphores cannot easily be used to handle multiple event sources. Event flags can often be
used as an alternative to condition variables, although they cannot be used for completely arbitrary conditions
and they only support the equivalent of condition variable broadcasts, not signals.

Before an event flag can be used it must be initialized by a callddilag_init . This takes a pointer to a
cyg_flag_t data structure, which can be part of a larger structure. All 32 bits in the event flag will be set to 0,
indicating that no events have yet occurred. If an event flag is no longer required it can be cleaned up with a
call tocyg_flag_destroy , allowing the memory for theyg flag t structure to be re-used.

A consumer thread can wait for one or more events by calljagflag_wait . This takes three arguments.
The first identifies a particular event flag. The second is some combination of bits, indicating which events are
of interest. The final argument should be one of the following:

77

Event Flags

CYG_FLAG_WAITMODE_AND

The call tocyg_flag_wait will block until all the specified event bits are set. The event flag is not cleared
when the wait succeeds, in other words all the bits remain set.

CYG_FLAG_WAITMODE_OR

The call will block until at least one of the specified event bits is set. The event flag is not cleared on
return.

CYG_FLAG_WAITMODE_AND | CYG_FLAG_WAITMODE_CLR

The call will block until all the specified event bits are set, and the entire event flag is cleared when the
call succeeds. Note that if this mode of operation is used then a single event flag cannot be used to store
disjoint sets of events, even though enough bits might be available. Instead each disjoint set of events
requires its own event flag.

CYG_FLAG_WAITMODE_OR | CYG_FLAG_WAITMODE_CLR

The call will block until at least one of the specified event bits is set, and the entire flag is cleared when
the call succeeds.

A call to cyg_flag_wait normally blocks until the required condition is satisfied. It will return the value of

the event flag at the point that the operation succeeded, which may be a superset of the requested events. If
cyg_thread_release is used to unblock a thread that is currently in a wait operationgyfielag_wait

call will instead return 0.

cyg_flag_timed_wait is a variant otyg_flag_wait which adds a timeout: the wait operation must succeed
within the specified number of ticks, or it will fail with a return value ofcg_flag_poll is a non-blocking
variant: if the wait operation can succeed immediately it actsdygeflag_wait , otherwise it returns imme-
diately with a value of 0.

cyg_flag_setbits is called by a producer thread or from inside a DSR when an event occurs. The specified
bits are or'd into the current event flag value. This may cause a waiting thread to be woken up, if its condition
is now satisfied.

cyg_flag_maskbits can be used to clear one or more bits in the event flag. This can be called from a producer
when a particular condition is no longer satisfied, for example when the user is no longer pressing a particular
button. It can also be used by a consumer threadt@ FLAG_WAITMODE_CMgas not used as part of the wait
operation, to indicate that some but not all of the active events have been consumed. If there are multiple
consumer threads performing wait operations without using_FLAG_WAITMODE_CLURen typically some
additional synchronization such as a mutex is needed to prevent multiple threads consuming the same event.

Two additional functions are provided to query the current state of an eventyita@iag_peek returns the

current value of the event flag, angy_flag_waiting can be used to find out whether or not there are any
threads currently blocked on the event flag. Both of these functions must be used with care because other
threads may be operating on the event flag.

Valid contexts

cyg_flag_init is typically called during system initialization but may also be called in thread context. The
same applies toyg_flag_destroy . cyg_flag_wait andcyg_flag_timed_wait may only be called from
thread context. The remaining functions may be called from thread or DSR context.

78

Spinlocks

Name

cyg_spinlock_create, cyg_spinlock destroy, cyg_spinlock_spin,
cyg_spinlock_clear, cyg_spinlock_test, cyg_spinlock_spin_intsave,

cyg_spinlock_clear_intsave — Low-level Synchronization Primitive

Synopsis

#include <cygl/kernel/kapi.h >

void cyg_spinlock_init (cyg_spinlock_t* lock , cyg_bool t locked);

void cyg_spinlock_destroy (cyg_spinlock_t* lock);

void cyg_spinlock_spin (cyg_spinlock_t* lock);

void cyg_spinlock_clear (cyg_spinlock_t* lock);

cyg_bool_t cyg_spinlock_try (cyg_spinlock_t* lock);

cyg_bool_t cyg_spinlock_test (cyg_spinlock_t* lock);

void cyg_spinlock_spin_intsave (cyg_spinlock_t* lock , cyg_addrword_t* istate);
void cyg_spinlock_clear_intsave (cyg_spinlock_t* lock , cyg_addrword_t istate);
Description

Spinlocks provide an additional synchronization primitive for applications running on SMP systems. They
operate at a lower level than the other primitives such as mutexes, and for most purposes the higher-level
primitives should be preferred. However there are some circumstances where a spinlock is appropriate, espe-
cially when interrupt handlers and threads need to share access to hardware, and on SMP systems the kernel
implementation itself depends on spinlocks.

Essentially a spinlock is just a simple flag. When code tries to claim a spinlock it checks whether or not the flag
is already set. If not then the flag is set and the operation succeeds immediately. The exact implementation of
this is hardware-specific, for example it may use a test-and-set instruction to guarantee the desired behaviour
even if several processors try to access the spinlock at the exact same time. If it is not possible to claim
a spinlock then the current thead spins in a tight loop, repeatedly checking the flag until it is clear. This
behaviour is very different from other synchronization primitives such as mutexes, where contention would
cause a thread to be suspended. The assumption is that a spinlock will only be held for a very short time. If
claiming a spinlock could cause the current thread to be suspended then spinlocks could not be used inside
interrupt handlers, which is not acceptable.

This does impose a constraint on any code which uses spinlocks. Specifically it is important that spinlocks are
held only for a short period of time, typically just some dozens of instructions. Otherwise another processor
could be blocked on the spinlock for a long time, unable to do any useful work. It is also important that a thread
which owns a spinlock does not get preempted because that might cause another processor to spin for a whole
timeslice period, or longer. One way of achieving this is to disable interrupts on the current processor, and the
functioncyg_spinlock_spin_intsave is provided to facilitate this.

Spinlocks should not be used on single-processor systems. Consider a high priority thread which attempts to
claim a spinlock already held by a lower priority thread: it will just loop forever and the lower priority thread

will never get another chance to run and release the spinlock. Even if the two threads were running at the same
priority, the one attempting to claim the spinlock would spin until it was timesliced and a lot of cpu time would

be wasted. If an interrupt handler tried to claim a spinlock owned by a thread, the interrupt handler would loop

79

Spinlocks

80

forever. Therefore spinlocks are only appropriate for SMP systems where the current owner of a spinlock can
continue running on a different processor.

Before a spinlock can be used it must be initialized by a calldospinlock_init . This takes two arguments,
a pointer to acyg_spinlock_t data structure, and a flag to specify whether the spinlock starts off locked or
unlocked. If a spinlock is no longer required then it can be destroyed by a esl_tepinlock_destroy

There are two routines for claiming a spinlockg_spinlock_spin andcyg_spinlock_spin_intsave . The

former can be used when it is known the current code will not be preempted, for example because it is running
in an interrupt handler or because interrupts are disabled. The latter will disable interrupts in addition to claim-
ing the spinlock, so is safe to use in all circumstances. The previous interrupt state is returned via the second
argument, and should be used in a subsequent cajytapinlock_clear_intsave

Similarly there are two routines for releasing a spinlockeyg_spinlock_clear and
cyg_spinlock_clear_intsave . Typically the former will be used if the spinlock was claimed by a call to
cyg_spinlock_spin , and the latter whetyg_spinlock_intsave was used.

There are two additional routinesyg_spinlock_try is a non-blocking version ofyg_spinlock_spin

if possible the lock will be claimed and the function will returne ; otherwise the function will return
immediately with failurecyg_spinlock_test can be used to find out whether or not the spinlock is currently
locked. This function must be used with care because, especially on a multiprocessor system, the state of the
spinlock can change at any time.

Spinlocks should only be held for a short period of time, and attempting to claim a spinlock will never cause
a thread to be suspended. This means that there is no need to worry about priority inversion problems, and
concepts such as priority ceilings and inheritance do not apply.

Valid contexts

All of the spinlock functions can be called from any context, including ISR and DSR context. Typically
cyg_spinlock_init is only called during system initialization.

Scheduler Control

Name

cyg_scheduler_start, cyg_scheduler_lock, cyg_scheduler_unlock,
cyg_scheduler_safe _lock, cyg_scheduler_read_lock — Control the state of the scheduler

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_scheduler_start (void);

void cyg_scheduler_lock (void);

void cyg_scheduler_unlock (void);

cyg_ucount32 cyg_scheduler_read_lock (void);

Description

cyg_scheduler_start should only be called once, to mark the end of system initialization. In typical config-
urations it is called automatically by the system startup, but some applications may bypass the standard startup
in which caseyg_scheduler_start will have to be called explicitly. The call will enable system interrupts,
allowing I/O operations to commence. Then the scheduler will be invoked and control will be transferred to
the highest priority runnable thread. The call will never return.

The various data structures inside the eCos kernel must be protected against concurrent updates. Consider a
call to cyg_semaphore_post ~ which causes a thread to be woken up: the semaphore data structure must be
updated to remove the thread from its queue; the scheduler data structure must also be updated to mark the
thread as runnable; it is possible that the newly runnable thread has a higher priority than the current one, in
which case preemption is required. If in the middle of the semaphore post call an interrupt occurred and the
interrupt handler tried to manipulate the same data structures, for example by making another thread runnable,
then it is likely that the structures will be left in an inconsistent state and the system will fail.

To prevent such problems the kernel contains a special lock known as the scheduler lock. A typical kernel
function such asyg_semaphore_post ~ will claim the scheduler lock, do all its manipulation of kernel data
structures, and then release the scheduler lock. The current thread cannot be preempted while it holds the
scheduler lock. If an interrupt occurs and a DSR is supposed to run to signal that some event has occurred,
that DSR is postponed until the scheduler unlock operation. This prevents concurrent updates of kernel data
structures.

The kernel exports three routines for manipulating the scheduler dggkscheduler_lock can be called to

claim the lock. On return it is guaranteed that the current thread will not be preempted, and that no other code is
manipulating any kernel data structuregy_scheduler_unlock can be used to release the lock, which may
cause the current thread to be preemptggl.scheduler_read_lock can be used to query the current state

of the scheduler lock. This function should never be needed because well-written code should always know
whether or not the scheduler is currently locked, but may prove useful during debugging.

The implementation of the scheduler lock involves a simple counter. Code catygaitheduler_lock

multiple times, causing the counter to be incremented each time, as leng asheduler_unlock is called

the same number of times. This behaviour is different from mutexes where an attempt by a thread to lock a
mutex multiple times will result in deadlock or an assertion failure.

81

Scheduler Control

82

Typical application code should not use the scheduler lock. Instead other synchronization primitives such as
mutexes and semaphores should be used. While the scheduler is locked the current thread cannot be preempted,
so any higher priority threads will not be able to run. Also no DSRs can run, so device drivers may not be able

to service I/O requests. However there is one situation where locking the scheduler is appropriate: if some data
structure needs to be shared between an application thread and a DSR associated with some interrupt source,
the thread can use the scheduler lock to prevent concurrent invocations of the DSR and then safely manipulate
the structure. It is desirable that the scheduler lock is held for only a short period of time, typically some
tens of instructions. In exceptional cases there may also be some performance-critical code where it is more
appropriate to use the scheduler lock rather than a mutex, because the former is more efficient.

Valid contexts

cyg_scheduler_start can only be called during system initialization, since it marks the end of that phase.
The remaining functions may be called from thread or DSR context. Locking the scheduler from inside the
DSR has no practical effect because the lock is claimed automatically by the interrupt subsystem before running
DSRs, but allows functions to be shared between normal thread code and DSRs.

Interrupt Handling

Name

cyg_interrupt_create, cyg_interrupt_delete, cyg_interrupt_attach,

cyg_interrupt_detach, cyg_interrupt_configure, cyg_interrupt_acknowledge,
cyg_interrupt_enable, cyg_interrupt_disable, cyg_interrupt_mask,
cyg_interrupt_mask_intunsafe, cyg_interrupt_unmask,

cyg_interrupt_unmask_intunsafe, cyg_interrupt_set cpu,

cyg_interrupt_get_cpu, cyg_interrupt_get _vsr, cyg_interrupt_set_vsr —
Manage interrupt handlers

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_interrupt_create (cyg_vector _t vector , cyg_priority t priority , ¢yg_addrword_t
data , cyg_ISR_t* isr , cyg_DSR_t* dsr, cyg_handle_t* handle , cyg_interrupt* intr);
void cyg_interrupt_delete (cyg_handle_t interrupt);

void cyg_interrupt_attach (cyg_handle_t interrupt);

void cyg_interrupt_detach (cyg_handle_t interrupt ~);

void cyg_interrupt_configure (cyg_vector_t vector , cyg_bool_t level , cyg_bool_t up);
void cyg_interrupt_acknowledge (cyg_vector _t vector);

void cyg_interrupt_disable (void);

void cyg_interrupt_enable (void);

void cyg_interrupt_mask (cyg_vector _t vector);

void cyg_interrupt_mask_intunsafe (cyg_vector_t vector);

void cyg_interrupt_unmask (cyg_vector_t vector);

void cyg_interrupt_unmask_intunsafe (cyg_vector _t vector);

void cyg_interrupt_set_cpu (cyg_vector_t vector , cyg_cpu_t cpu);

cyg_cpu_t cyg_interrupt_get_cpu (cyg_vector_t vector);

void cyg_interrupt_get_vsr (cyg_vector _t vector , cyg VSR _t** vsr);

void cyg_interrupt_set_vsr (cyg_vector_t vector , cyg VSR_t* wvsr),

Description

The kernel provides an interface for installing interrupt handlers and controlling when interrupts occur. This
functionality is used primarily by eCos device drivers and by any application code that interacts directly with
hardware. However in most cases it is better to avoid using this kernel functionality directly, and instead the de-
vice driver API provided by the common HAL package should be used. Use of the kernel package is optional,
and some applications such as RedBoot work with no need for multiple threads or synchronization primitives.
Any code which calls the kernel directly rather than the device driver API will not function in such a configura-
tion. When the kernel package is present the device driver APl is implementedfias ’s to the equivalent

kernel calls, otherwise it is implemented inside the common HAL package. The latter implementation can be
simpler than the kernel one because there is no need to consider thread preemption and similar issues.

The exact details of interrupt handling vary widely between architectures. The functionality provided by the
kernel abstracts away from many of the details of the underlying hardware, thus simplifying application devel-
opment. However this is not always successful. For example, if some hardware does not provide any support
at all for masking specific interrupts then calliogy_interrupt_mask may not behave as intended: instead

of masking just the one interrupt source it might disable all interrupts, because that is as close to the desired

83

Interrupt Handling

behaviour as is possible given the hardware restrictions. Another possibility is that masking a given interrupt
source also affects all lower-priority interrupts, but still allows higher-priority ones. The documentation for the
appropriate HAL packages should be consulted for more information about exactly how interrupts are handled
on any given hardware. The HAL header files will also contain useful information.

Interrupt Handlers

Interrupt handlers are created by a caltyg interrupt_create . This takes the following arguments:

cyg_vector_twector

The interrupt vector, a small integer, identifies the specific interrupt source. The appropriate hardware
documentation or HAL header files should be consulted for details of which vector corresponds to which
device.

cyg_priority_tpriority

Some hardware may support interrupt priorities, where a low priority interrupt handler can in turn be
interrupted by a higher priority one. Again hardware-specific documentation should be consulted for
details about what the valid interrupt priority levels are.

cyg_addrword_tlata

cyg_ISR_tisr

84

When an interrupt occurs eCos will first call the associated interrupt service routine or ISR, then optionally
a deferred service routine or DSR. Tdl@ta argument tayg_interrupt_create will be passed to both
these functions. Typically it will be a pointer to some data structure.

When an interrupt occurs the hardware will transfer control to the appropriate vector service routine or
VSR, which is usually provided by eCos. This performs any appropriate processing, for example to work
out exactly which interrupt occurred, and then as quickly as possible transfers control the installed ISR.
An ISR is a C function which takes the following form:

cyg_uint32
isr_function(cyg_vector_t vector, cyg_addrword_t data)

{
cyg_bool_t dsr_required = 0;

return dsr_required ? CYG_ISR_CALL_DSR : CYG_ISR_HANDLED;

The first argument identifies the particular interrupt source, especially useful if there multiple instances of
a given device and a single ISR can be used for several different interrupt vectors. The second argument
is thedata field passed t@yg_interrupt_create , usually a pointer to some data structure. The exact
conditions under which an ISR runs will depend partly on the hardware and partly on configuration
options. Interrupts may currently be disabled globally, especially if the hardware does not support interrupt
priorities. Alternatively interrupts may be enabled such that higher priority interrupts are allowed through.
The ISR may be running on a separate interrupt stack, or on the stack of whichever thread was running at
the time the interrupt happened.

A typical ISR will do as little work as possible, just enough to meet the needs of the hardware and then
acknowledge the interrupt by callirgg_interrupt_acknowledge . This ensures that interrupts will be
quickly reenabled, so higher priority devices can be serviced. For some applications there may be one
device which is especially important and whose ISR can take much longer than normal. However eCos

Interrupt Handling

device drivers usually will not assume that they are especially important, so their ISRs will be as short as
possible.

The return value of an ISR is normally one ©¥G_ISR_CALL_DSRor CYG_ISR_HANDLEDThe former
indicates that further processing is required at DSR level, and the interrupt handler's DSR will be run
as soon as possible. The latter indicates that the interrupt has been fully handled and no further effort is
required.

An ISR is allowed to make very few kernel calls. It can manipulate the interrupt mask, and on SMP
systems it can use spinlocks. However an ISR must not make higher-level kernel calls such as posting to
a semaphore, instead any such calls must be made from the DSR. This avoids having to disable interrupts
throughout the kernel and thus improves interrupt latency.

cyg_DSR_dsr

If an interrupt has occurred and the ISR has returned a vahee ISR_CALL_DSR the system will call

the deferred service routine or DSR associated with this interrupt handler. If the scheduler is not currently
locked then the DSR will run immediately. However if the interrupted thread was in the middle of a kernel
call and had locked the scheduler, then the DSR will be deferred until the scheduler is again unlocked.
This allows the DSR to make certain kernel calls safely, for example posting to a semaphore or signalling
a condition variable. A DSR is a C function which takes the following form:

void

dsr_function(cyg_vector_t vector,

cyg_ucount32 count,
cyg_addrword_t data)

The first argument identifies the specific interrupt that has caused the DSR to run. The second argument
indicates the number of these interrupts that have occurred and for which the ISR requested a DSR.
Usually this will be1, unless the system is suffering from a very heavy load. The third argument is the
data field passed tayg_interrupt_create

cyg_handle_thandle

The kernel will return a handle to the newly created interrupt handler via this argument. Subsequent
operations on the interrupt handler such as attaching it to the interrupt source will use this handle.

cyg_interrupt*intr
This provides the kernel with an area of memory for holding this interrupt handler and associated data.

The call tocyg_interrupt_create simply fills in a kernel data structure. A typical next step is to call
cyg_interrupt_attach using the handle returned by the create operation. This makes it possible to have
several different interrupt handlers for a given vector, attaching whichever one is currently appropriate.
Replacing an interrupt handler requires a callct@_interrupt_detach , followed by another call to
cyg_interrupt_attach for the replacement handletyg_interrupt_delete can be used if an interrupt
handler is no longer required.

Some hardware may allow for further control over specific interrupts, for example whether an interrupt is level
or edge triggered. Any such hardware functionality can be accessedaygimgerrupt_configure : the

level argument selects between level versus edge triggeredptlaegument selects between high and low
level, or between rising and falling edges.

85

Interrupt Handling

86

Usually interrupt handlers are created, attached and configured during system initialization, while global inter-
rupts are still disabled. On most hardware it will also be necessary toygalhterrupt_unmask , since the
sensible default for interrupt masking is to ignore any interrupts for which no handler is installed.

Controlling Interrupts

eCos provides two ways of controlling whether or not interrupts happen. It is possible to disable and reenable
all interrupts globally, usingyg_interrupt_disable andcyg_interrupt_enable . Typically this works by
manipulating state inside the cpu itself, for example setting a flag in a status register or executing special
instructions. Alternatively it may be possible to mask a specific interrupt source by writing to one or to several
interrupt mask registers. Hardware-specific documentation should be consulted for the exact details of how
interrupt masking works, because a full implementation is not possible on all hardware.

The primary use for these functions is to allow data to be shared between ISRs and other code such as DSRs
or threads. If both a thread and an ISR need to manipulate either a data structure or the hardware itself, there
is a possible conflict if an interrupt happens just when the thread is doing such manipulation. Problems can
be avoided by the thread either disabling or masking interrupts during the critical region. If this critical region
requires only a few instructions then usually it is more efficient to disable interrupts. For larger critical regions

it may be more appropriate to use interrupt masking, allowing other interrupts to occur. There are other uses
for interrupt masking. For example if a device is not currently being used by the application then it may be
desirable to mask all interrupts generated by that device.

There are two functions for masking a specific interrupt souregy_interrupt_mask and
cyg_interrupt_mask_intunsafe . On typical hardware masking an interrupt is not an atomic operation,

so if two threads were to perform interrupt masking operations at the same time there could be problems.
cyg_interrupt_mask disables all interrupts while it manipulates the interrupt mask. In situations where
interrupts are already know to be disableg_interrupt_mask_intunsafe can be used instead. There are
matching functionsyg_interrupt_unmask andcyg_interrupt_unmask_intsafe

SMP Support

On SMP systems the kernel provides an additional two functions related to interrupt handling.
cyg_interrupt_set_cpu specifies that a particular hardware interrupt should always be handled on one
specific processor in the system. In other words when the interrupt triggers it is only that processor which
detects it, and it is only on that processor that the VSR and ISR will run. If a DSR is requested then it will also
run on the same CPU. The functieny_interrupt_get_cpu can be used to find out which interrupts are
handled on which processor.

VSR Support

When an interrupt occurs the hardware will transfer control to a piece of code known as the VSR, or Vector
Service Routine. By default this code is provided by eCos. Usually it is written in assembler, but on some
architectures it may be possible to implement VSRs in C by specifying an interrupt attribute. Compiler docu-
mentation should be consulted for more information on this. The default eCos VSR will work out which ISR
function should process the interrupt, and set up a C environment suitable for this ISR.

For some applications it may be desirable to replace the default eCos VSR and handle some interrupts directly.
This minimizes interrupt latency, but it requires application developers to program at a lower level. Usually
the best way to write a custom VSR is to copy the existing one supplied by eCos and then make appropriate
modifications. The functionyg_interrupt_get_vsr can be used to get hold of the current VSR for a given
interrupt vector, allowing it to be restored if the custom VSR is no longer requiygdnterrupt_set_vsr

Interrupt Handling

can be used to install a replacement VSR. Usuallytre argument will correspond to an exported label in
an assembler source file.

Valid contexts

In a typical configuration interrupt handlers are created and attached during system initialization, and
never detached or deleted. However it is possible to perform these operations at thread level, if desired.

Similarly cyg_interrupt_configure , Cyg_interrupt_set_vsr , and cyg_interrupt_set_cpu are
usually called only during system initialization, but on typical hardware may be called at any time.
cyg_interrupt_get_vsr andcyg_interrupt_get_cpu may be called at any time.

The functions for enabling, disabling, masking and unmasking interrupts can be called in any context, when
appropriate. It is the responsibility of application developers to determine when the use of these functions is
appropriate.

87

Interrupt Handling

88

Kernel Real-time Characterization

Name

tm_basic — Measure the performance of the eCos kernel

Description

When building a real-time system, care must be taken to ensure that the system will be able to perform properly
within the constraints of that system. One of these constraints may be how fast certain operations can be
performed. Another might be how deterministic the overall behavior of the system is. Lastly the memory
footprint (size) and unit cost may be important.

One of the major problems encountered while evaluating a system will be how to compare it with possible
alternatives. Most manufacturers of real-time systems publish performance numbers, ostensibly so that users
can compare the different offerings. However, what these numbers mean and how they were gathered is often
not clear. The values are typically measured on a particular piece of hardware, so in order to truly compare,
one must obtain measurements for exactly the same set of hardware that were gathered in a similar fashion.

Two major items need to be present in any given set of measurements. First, the raw values for the various
operations; these are typically quite easy to measure and will be available for most systems. Second, the deter-
minacy of the numbers; in other words how much the value might change depending on other factors within
the system. This value is affected by a number of factors: how long interrupts might be masked, whether or not
the function can be interrupted, even very hardware-specific effects such as cache locality and pipeline usage.
It is very difficult to measure the determinacy of any given operation, but that determinacy is fundamentally
important to proper overall characterization of a system.

In the discussion and numbers that follow, three key measurements are provided. The first measurement is
an estimate of the interrupt latency: this is the length of time from when a hardware interrupt occurs until its
Interrupt Service Routine (ISR) is called. The second measurement is an estimate of overall interrupt overhead:
this is the length of time average interrupt processing takes, as measured by the real-time clock interrupt (other
interrupt sources will certainly take a different amount of time, but this data cannot be easily gathered). The
third measurement consists of the timings for the various kernel primitives.

Methodology

Key operations in the kernel were measured by using a simple test program which exercises the various kernel
primitive operations. A hardware timer, normally the one used to drive the real-time clock, was used for these
measurements. In most cases this timer can be read with quite high resolution, typically in the range of a few
microseconds. For each measurement, the operation was repeated a number of times. Time stamps were ob-
tained directly before and after the operation was performed. The data gathered for the entire set of operations
was then analyzed, generating average (mean), maximum and minimum values. The sample variance (a mea-
sure of how close most samples are to the mean) was also calculated. The cost of obtaining the real-time clock
timer values was also measured, and was subtracted from all other times.

Most kernel functions can be measured separately. In each case, a reasonable number of iterations are per-
formed. Where the test case involves a kernel object, for example creating a task, each iteration is performed
on a different object. There is also a set of tests which measures the interactions between multiple tasks and
certain kernel primitives. Most functions are tested in such a way as to determine the variations introduced by
varying numbers of objects in the system. For example, the mailbox tests measure the cost of a '‘peek’ operation
when the mailbox is empty, has a single item, and has multiple items present. In this way, any effects of the
state of the object or how many items it contains can be determined.

89

Kernel Real-time Characterization

90

There are a few things to consider about these measurements. Firstly, they are quite micro in scale and only
measure the operation in question. These measurements do not adequately describe how the timings would be
perturbed in a real system with multiple interrupting sources. Secondly, the possible aberration incurred by the
real-time clock (system heartbeat tick) is explicitly avoided. Virtually all kernel functions have been designed

to be interruptible. Thus the times presented are typical, but best case, since any particular function may be
interrupted by the clock tick processing. This number is explicitly calculated so that the value may be included

in any deadline calculations required by the end user. Lastly, the reported measurements were obtained from
a system built with all options at their default values. Kernel instrumentation and asserts are also disabled for
these measurements. Any number of configuration options can change the measured results, sometimes quite
dramatically. For example, mutexes are using priority inheritance in these measurements. The numbers will
change if the system is built with priority inheritance on mutex variables turned off.

The final value that is measured is an estimate of interrupt latency. This particular value is not explicitly
calculated in the test program used, but rather by instrumenting the kernel itself. The raw number of timer ticks
that elapse between the time the timer generates an interrupt and the start of the timer ISR is kept in the kernel.
These values are printed by the test program after all other operations have been tested. Thus this should be a
reasonable estimate of the interrupt latency over time.

Using these Measurements

These measurements can be used in a number of ways. The most typical use will be to compare different real-
time kernel offerings on similar hardware, another will be to estimate the cost of implementing a task using
eCos (applications can be examined to see what effect the kernel operations will have on the total execution
time). Another use would be to observe how the tuning of the kernel affects overall operation.

Influences on Performance

A number of factors can affect real-time performance in a system. One of the most common factors, yet
most difficult to characterize, is the effect of device drivers and interrupts on system timings. Different device
drivers will have differing requirements as to how long interrupts are suppressed, for example. The eCos
system has been designed with this in mind, by separating the management of interrupts (ISR handlers) and
the processing required by the interrupt (DSR—Deferred Service Routine— handlers). However, since there
is so much variability here, and indeed most device drivers will come from the end users themselves, these
effects cannot be reliably measured. Attempts have been made to measure the overhead of the single interrupt
that eCos relies on, the real-time clock timer. This should give you a reasonable idea of the cost of executing
interrupt handling for devices.

Measured ltems

This section describes the various tests and the numbers presented. All tests use the C kernel API (available
by way of cyg/kernel/kapi.h). There is a single main thread in the system that performs the various tests.
Additional threads may be created as part of the testing, but these are short lived and are destroyed between
tests unless otherwise noted. The terminology “lower priority” means a priority that is less important, not
necessarily lower in numerical value. A higher priority thread will run in preference to a lower priority thread
even though the priority value of the higher priority thread may be numerically less than that of the lower
priority thread.

Kernel Real-time Characterization

Thread Primitives

Create thread
This test measures thgg_thread_create() call. Each call creates a totally new thread. The set of
threads created by this test will be reused in the subsequent thread primitive tests.

Yield thread
This test measures thgg_thread_yield() call. For this test, there are no other runnable threads, thus
the test should just measure the overhead of trying to give up the CPU.

Suspend [suspended] thread
This test measures thgg_thread_suspend() call. A thread may be suspended multiple times; each
thread is already suspended from its initial creation, and is suspended again.

Resume thread
This test measures tlgg_thread_resume() call. All of the threads have a suspend count of 2, thus this
call does not make them runnable. This test just measures the overhead of resuming a thread.

Set priority
This test measures theg_thread_set_priority() call. Each thread, currently suspended, has its pri-
ority set to a new value.

Get priority

This test measures theg_thread_get_priority() call.

Kill [suspended] thread

This test measures thgg_thread_kill() call. Each thread in the set is killed. All threads are known
to be suspended before being killed.

Yield [no other] thread

This test measures theyg_ thread_yield() call again. This is to demonstrate that the
cyg_thread_yield() call has a fixed overhead, regardless of whether there are other threads in the
system.

Resume [suspended low priority] thread
This test measures theg_thread_resume() call again. In this case, the thread being resumed is lower
priority than the main thread, thus it will simply become ready to run but not be granted the CPU. This
test measures the cost of making a thread ready to run.
Resume [runnable low priority] thread
This test measures thegg_thread_resume() call again. In this case, the thread being resumed is lower
priority than the main thread and has already been made runnable, so in fact the resume call has no effect.
Suspend [runnable] thread

This test measures thgg_thread_suspend() call again. In this case, each thread has already been
made runnable (by previous tests).

91

Kernel Real-time Characterization

Yield [only low priority] thread
This test measures tlgg_thread_yield() call. In this case, there are many other runnable threads, but
they are all lower priority than the main thread, thus no thread switches will take place.

Suspend [runnable-not runnable] thread
This test measures tlagg_thread_suspend() call again. The thread being suspended will become non-
runnable by this action.

Kill [runnable] thread
This test measures thgg_thread_kill() call again. In this case, the thread being killed is currently
runnable, but lower priority than the main thread.

Resume [high priority] thread
This test measures thegg_thread_resume() call. The thread being resumed is higher priority than the
main thread, thus a thread switch will take place on each call. In fact there will be two thread switches; one
to the new higher priority thread and a second back to the test thread. The test thread exits immediately.

Thread switch

This test attempts to measure the cost of switching from one thread to another. Two equal priority threads
are started and they will each yield to the other for a number of iterations. A time stamp is gathered in one
thread before theyg_thread_yield() call and after the call in the other thread.

Scheduler Primitives

Scheduler lock

This test measures tlgg_scheduler_lock() call.

Scheduler unlock [0 threads]
This test measures thgg_scheduler_unlock() call. There are no other threads in the system and the
unlock happens immediately after a lock so there will be no pending DSR’s to run.

Scheduler unlock [1 suspended thread]
This test measures thgg_scheduler_unlock() call. There is one other thread in the system which is
currently suspended.

Scheduler unlock [many suspended threads]

This test measures tlgg_scheduler_unlock() call. There are many other threads in the system which
are currently suspended. The purpose of this test is to determine the cost of having additional threads in
the system when the scheduler is activated by wayafscheduler_unlock()

Scheduler unlock [many low priority threads]

This test measures thsg_scheduler_unlock() call. There are many other threads in the system
which are runnable but are lower priority than the main thread. The purpose of this test is to deter-
mine the cost of having additional threads in the system when the scheduler is activated by way of
cyg_scheduler_unlock()

92

Kernel Real-time Characterization

Mutex Primitives

Init mutex
This test measures thgg_mutex_init() call. A number of separate mutex variables are created. The
purpose of this test is to measure the cost of creating a new mutex and introducing it to the system.
Lock [unlocked] mutex

This test measures tlegg_mutex_lock() call. The purpose of this test is to measure the cost of locking
a mutex which is currently unlocked. There are no other threads executing in the system while this test
runs.

Unlock [locked] mutex

This test measures thgg_mutex_unlock() call. The purpose of this test is to measure the cost of
unlocking a mutex which is currently locked. There are no other threads executing in the system while
this test runs.

Trylock [unlocked] mutex

This test measures thyg_mutex_trylock() call. The purpose of this test is to measure the cost of
locking a mutex which is currently unlocked. There are no other threads executing in the system while
this test runs.

Trylock [locked] mutex

This test measures thgg_mutex_trylock() call. The purpose of this test is to measure the cost of
locking a mutex which is currently locked. There are no other threads executing in the system while this
test runs.

Destroy mutex
This test measures thgg_mutex_destroy() call. The purpose of this test is to measure the cost of
deleting a mutex from the system. There are no other threads executing in the system while this test runs.
Unlock/Lock mutex

This test attempts to measure the cost of unlocking a mutex for which there is another higher priority
thread waiting. When the mutex is unlocked, the higher priority waiting thread will immediately take
the lock. The time from when the unlock is issued until after the lock succeeds in the second thread is
measured, thus giving the round-trip or circuit time for this type of synchronizer.

Mailbox Primitives

Create mbox
This test measures tlegg_mbox_create() call. A number of separate mailboxes is created. The purpose
of this test is to measure the cost of creating a new mailbox and introducing it to the system.

Peek [empty] mbox

This test measures thgg_mbox_peek() call. An attempt is made to peek the value in each mailbox,
which is currently empty. The purpose of this test is to measure the cost of checking a mailbox for a value
without blocking.

93

Kernel Real-time Characterization

Put [first] mbox

This test measures tlegg_mbox_put() call. One item is added to a currently empty mailbox. The pur-
pose of this test is to measure the cost of adding an item to a mailbox. There are no other threads currently
waiting for mailbox items to arrive.

Peek [1 msg] mbox

This test measures thgg_mbox_peek() call. An attempt is made to peek the value in each mailbox,
which contains a single item. The purpose of this test is to measure the cost of checking a mailbox which
has data to deliver.

Put [second] mbox

This test measures thgg_mbox_put() call. A second item is added to a mailbox. The purpose of this
test is to measure the cost of adding an additional item to a mailbox. There are no other threads currently
waiting for mailbox items to arrive.

Peek [2 msgs] mbox

This test measures thgg_mbox_peek() call. An attempt is made to peek the value in each mailbox,
which contains two items. The purpose of this test is to measure the cost of checking a mailbox which has
data to deliver.

Get [first] mbox

This test measures thgg_mbox_get() call. The first item is removed from a mailbox that currently
contains two items. The purpose of this test is to measure the cost of obtaining an item from a mailbox
without blocking.

Get [second] mbox

This test measures thgg_mbox_get() call. The last item is removed from a mailbox that currently
contains one item. The purpose of this test is to measure the cost of obtaining an item from a mailbox
without blocking.

Tryput [first] mbox

This test measures thgg_mbox_tryput() call. A single item is added to a currently empty mailbox.
The purpose of this test is to measure the cost of adding an item to a mailbox.

Peek item [non-empty] mbox

This test measures tlagy_mbox_peek_item() call. A single item is fetched from a mailbox that contains
a single item. The purpose of this test is to measure the cost of obtaining an item without disturbing the
mailbox.

Tryget [non-empty] mbox

This test measures thgg_mbox_tryget() call. A single item is removed from a mailbox that contains
exactly one item. The purpose of this test is to measure the cost of obtaining one item from a non-empty
mailbox.

Peek item [empty] mbox

This test measures tligg_mbox_peek_item() call. An attempt is made to fetch an item from a mailbox
that is empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox
is empty.

94

Kernel Real-time Characterization

Tryget [empty] mbox
This test measures tlgg_mbox_tryget() call. An attempt is made to fetch an item from a mailbox that
is empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox is
empty.

Waiting to get mbox

This test measures tlegg_mbox_waiting_to_get() call. The purpose of this test is to measure the cost
of determining how many threads are waiting to obtain a message from this mailbox.

Waiting to put mbox

This test measures tlegg_mbox_waiting_to_put() call. The purpose of this test is to measure the cost
of determining how many threads are waiting to put a message into this mailbox.

Delete mbox

This test measures thgg_mbox_delete() call. The purpose of this test is to measure the cost of de-
stroying a mailbox and removing it from the system.

Put/Get mbox

In this round-trip test, one thread is sending data to a mailbox that is being consumed by another thread.
The time from when the data is put into the mailbox until it has been delivered to the waiting thread is
measured. Note that this time will contain a thread switch.

Semaphore Primitives

Init semaphore

This test measures tlgg_semaphore_init() call. A number of separate semaphore objects are created
and introduced to the system. The purpose of this test is to measure the cost of creating a new semaphore.

Post [0] semaphore
This test measures tlagg_semaphore_post() call. Each semaphore currently has a value of 0 and there
are no other threads in the system. The purpose of this test is to measure the overhead cost of posting to a
semaphore. This cost will differ if there is a thread waiting for the semaphore.
Wait [1] semaphore
This test measures thgg_semaphore_wait() call. The semaphore has a current value of 1 so the call
is non-blocking. The purpose of the test is to measure the overhead of “taking” a semaphore.
Trywait [0] semaphore

This test measures thgg_semaphore_trywait() call. The semaphore has a value of 0 when the call
is made. The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without
blocking. In this case, the answer would be no.

Trywait [1] semaphore

This test measures thgg_semaphore_trywait() call. The semaphore has a value of 1 when the call
is made. The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without
blocking. In this case, the answer would be yes.

95

Kernel Real-time Characterization

Peek semaphore
This test measures thogg_semaphore_peek() call. The purpose of this test is to measure the cost of
obtaining the current semaphore count value.

Destroy semaphore

This test measures theg_semaphore_destroy() call. The purpose of this test is to measure the cost of
deleting a semaphore from the system.

Post/Wait semaphore

In this round-trip test, two threads are passing control back and forth by using a semaphore. The
time from when one thread callsyg_semaphore_post() until the other thread completes its
cyg_semaphore_wait() is measured. Note that each iteration of this test will involve a thread switch.

Counters

Create counter

This test measures thgg_counter_create() call. A number of separate counters are created. The
purpose of this test is to measure the cost of creating a new counter and introducing it to the system.

Get counter value

This test measures thgg_counter_current_value() call. The current value of each counter is ob-
tained.

Set counter value

This test measures thgg_counter_set_value() call. Each counter is set to a new value.

Tick counter

This test measures tlagg_counter_tick() call. Each counter is “ticked” once.

Delete counter

This test measures thgg_counter_delete() call. Each counter is deleted from the system. The pur-
pose of this test is to measure the cost of deleting a counter object.

Alarms

Create alarm

This test measures thgg_alarm_create() call. A number of separate alarms are created, all attached
to the same counter object. The purpose of this test is to measure the cost of creating a new counter and
introducing it to the system.

Initialize alarm

This test measures tlgg_alarm_initialize() call. Each alarm is initialized to a small value.

Disable alarm

This test measures tlgg_alarm_disable() call. Each alarm is explicitly disabled.

96

Kernel Real-time Characterization

Enable alarm

This test measures theg_alarm_enable() call. Each alarm is explicitly enabled.

Delete alarm

This test measures theg_alarm_delete() call. Each alarm is destroyed. The purpose of this test is to
measure the cost of deleting an alarm and removing it from the system.

Tick counter [1 alarm]

This test measures thgg_counter_tick() call. A counter is created that has a single alarm attached
to it. The purpose of this test is to measure the cost of “ticking” a counter when it has a single attached
alarm. In this test, the alarm is not activated (fired).

Tick counter [many alarms]

This test measures tlgg_counter_tick() call. A counter is created that has multiple alarms attached
to it. The purpose of this test is to measure the cost of “ticking” a counter when it has many attached
alarms. In this test, the alarms are not activated (fired).

Tick & fire counter [1 alarm]

This test measures theg_counter_tick() call. A counter is created that has a single alarm attached to

it. The purpose of this test is to measure the cost of “ticking” a counter when it has a single attached alarm.
In this test, the alarm is activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Tick & fire counter [many alarms]

This test measures thgg_counter_tick() call. A counter is created that has multiple alarms attached

to it. The purpose of this test is to measure the cost of “ticking” a counter when it has many attached
alarms. In this test, the alarms are activated (fired). Thus the measured time will include the overhead of
calling the alarm callback function.

Alarm latency [0 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are no threads that can be run,
other than the system idle thread, when the clock interrupt occurs (all threads are suspended).

Alarm latency [2 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are exactly two threads which
are running when the clock interrupt occurs. They are simply passing back and forth by way of the
cyg_thread_yield() call. The purpose of this test is to measure the variations in the latency when there
are executing threads.

Alarm latency [many threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are a number of threads which
are running when the clock interrupt occurs. They are simply passing back and forth by way of the
cyg_thread_yield() call. The purpose of this test is to measure the variations in the latency when there

are many executing threads.

97

Kernel Real-time Characterization

98

lI. RedBoot™ User’s Guide

XCix

Kernel Real-time Characterization

Chapter 1. Getting Started with RedBoot

RedBoot™ is an acronym for "Red Hat Embedded Debug and Bootstrap”, and is the standard embedded system
debug/bootstrap environment from Red Hat, replacing the previous generation of debug firmware: CygMon and
GDB stubs. It provides a complete bootstrap environment for a range of embedded operating systems, such as
embedded Linux™ and eCos™, and includes facilities such as network downloading and debugging. It also
provides a simple flash file system for boot images.

RedBoot provides a wide set of tools for downloading and executing programs on embedded target systems,
as well as tools for manipulating the target system’s environment. It can be used for both product development
(debug support) and for end product deployment (flash and network booting).

Here are some highlights of RedBoot’s capabilities:

» Boot scripting support

- Simple command line interface for RedBoot configuration and management, accessible via serial (terminal)
or Ethernet (telnet)

+ Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet connectivity
is limited to local network only)

. Attribute Configuration - user control of aspects such as system time and date (if applicable), default Flash
image to boot from, default failsafe image, static IP address, etc.

« Configurable and extensible, specifically adapted to the target environment

« Network bootstrap support including setup and download, via BOOTP, DHCP and TFTP
+ X/YModem support for image download via serial

« Power On Self Test

Although RedBoot is derived from eCos, it may be used as a generalized system debug and bootstrap con-
trol software for any embedded system and any operating system. For example, with appropriate additions,
RedBoot could replace the commonly used BIOS of PC (and certain other) architectures. Red Hat is currently
installing RedBoot on all embedded platforms as a standard practice, and RedBoot is now generally included
as part of all Red Hat Embedded Linux and eCos ports. Users who specifically wish to use RedBoot with the
eCos operating system should refer to @etting Started with eCodocument, which provides information

about the portability and extendability of RedBoot in an eCos environment.

More information about RedBoot on the web

The RedBoot Net Distribution web site (http://sources.redhat.com/redboot/) contains downloadable sources
and documentation for all publically released targets, including the latest features and updates.

Installing RedBoot

To install the RedBoot package, follow the procedures detailed in the accompanying README.

Although there are other possible configurations, RedBoot is usually run from the target platform’s flash boot
sector or boot ROM, and is designed to run when your system is initially powered on. The method used to install
the RedBoot image into non-volatile storage varies from platform to platform. In general, it requires that the
image be programmed into flash in situ or programmed into the flash or ROM using a device programmer. In
some cases this will be done at manufacturing time; the platform being delivered with RedBoot already in place.
In other cases, you will have to program RedBoot into the appropriate device(s) yourself. Installing to flash

Chapter 1. Getting Started with RedBoot

in situ may require special cabling or interface devices and software provided by the board manufacturer. The
details of this installation process for a given platform will be found in Installation and Testing. Once installed,
user-specific configuration options may be applied, usindgatefig command, providing that persistent data
storage in flash is present in the relevant RedBoot versionttge8ection callecConfiguring the RedBoot
Environmenfor details.

User Interface

RedBoot provides a command line user interface (CLI). At the minimum, this interface is normally available
on a serial port on the platform. If more than one serial interface is available, RedBoot is normally configured
to try to use any one of the ports for the CLI. Once command input has been received on one port, that port
is used exclusively until the board is reset or the channel is manually changed by the user. If the platform
has networking capabilities, the RedBoot CLI is also accessible usingrbe access protocol. By default,
RedBoot runseinet on port TCP/9000, but this is configurable and/or settable by the user.

RedBoot also contains a set of GDB "stubs", consisting of code which supports the GDB remote protocol.
GDB stub mode is automatically invoked when the '$’ character appears anywhere on a command line unless
escaped using the '\’ character. The platform will remain in GDB stub mode until explicitly disconnected (via
the GDB protocol). The GDB stub mode is available regardless of the connection method; either serial or
network. Note that if a GDB connection is made via the network, then special care must be taken to preserve
that connection when running user code. eCos contains special network sharing code to allow for this situation,
and can be used as a model if this methodology is required in other OS environments.

RedBoot Editing Commands

RedBoot uses the following line editing commands.

NOTE: In this description, “A means the character formed by typing the letter “A” while holding down the
control key.

- Delete (Ox7F) orBackspace (0x08) erases the character to the left of the cursor.
« “A moves the cursor (insertion point) to the beginning of the line.

» "K erases all characters on the line from the cursor to the end.

+ E positions the cursor to the end of the line.

- "D erases the character under the cursor.

« “F moves the cursor one character to the right.

+ "B moves the cursor one character to the left.

« P replaces the current line by a previous line from the history buffer. A small number of lines can be kept
as history. Using ~P (and *N), the current line can be replaced by any one of the previously typed lines.

« N replaces the current line by the next line from the history buffer.

In the case of théconfig command, additional editing commands are possible. As data are entered for this
command, the current/previous value will be displayed and the cursor placed at the end of that data. The user

Chapter 1. Getting Started with RedBoot

may use the editing keys (above) to move around in the data to modify it as appropriate. Additionally, when
certain characters are entered at the end of the current value, i.e. entered separately, certain behavior is elicited.

+ " (caret) switch to editing the previous item in tfeenfig list. If fconfig edits item A, followed by item B,
pressing * when changing item B, allows you to change item A. This is similar to the up arrow. Note: ~P and
AN do not have the same meaning while editiognfig data and should not be used.

- . (period) stop editing any further items. This does not change the current item.

- Return leaves the value for this item unchanged. Currently it is not possible to step through the value for
the start-up script; it must always be retyped.

RedBoot Startup Mode

RedBoot can normally be configured to run in a number of startup modes (or just "modes" for short), deter-
mining its location of residence and execution:

ROM mode

In this mode, RedBoot both resides and executes from ROM memory (flash or EPROM). This mode is
used when there are limited RAM resources. The flash commands cannot update the region of flash where
the RedBoot image resides. In order to update the RedBoot image in flash, it is necessary to run a RAM
mode instance of RedBoot.

ROMRAM mode

In this mode, RedBoot resides in ROM memory (flash or EPROM), but is copied to RAM memory before
it starts executing. The RAM footprint is larger than for ROM mode, but there are two advantages to make
up for this: it normally runs faster (relevant only on slower boards) and it is able to update the flash region
where the image resides.

RAM mode

In this mode, RedBoot both resides and executes from RAM memory. This is used for updating a primary
ROM mode image in situ and sometimes as part of the RedBoot installation on the board when there’s
already an existing (non-RedBoot) boot monitor available.

You can only use ROM and ROMRAM mode images for booting a board - a RAM mode image cannot
run unless loaded by another ROM monitor. There is no need for this startup mode if a RedBoot ROM-
RAM mode image is the primary boot monitor. When this startup mode is programmed into flash (as a
convenience as it's fast to load from flash) it will generally be named as "RedBoot[RAM]" in the FIS
directory.

The chosen mode has influence on flash and RAM resource usagedseection calletRedBoot Resource
Usagg and the procedure of an in situ update of RedBoot in flash@éepter 4.

The startup mode is controlled by the option CYG_HAL_STARTUP which resides in the platform HAL. Some
platforms provide only some of the RAM, ROM, and ROMRAM modes, others provide additional modes.

To see mode of a currently executing RedBoot, issueéinsion command, which prints the RedBoot banner,
including the startup mode (here ROM):

RedBoot> version

Chapter 1. Getting Started with RedBoot

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

RedBoot Resource Usage

RedBoot takes up both flash and RAM resources depending on its startup mode and number of enabled features.
There are also other resources used by RedBoot, such as timers. Platform-specific resources used by RedBoot
are listed in the platform specific parts of this manual.

Both flash and RAM resources used by RedBoot depend to some degree on the features enabled in the RedBoot
configuration. It is possible to reduce in particular the RAM resources used by RedBoot by removing features
that are not needed. Flash resources can also be reduced, but due to the granularity of the flash (the block sizes),
reductions in feature size do not always result in flash resource savings.

Flash Resources

On many platforms, a ROM mode RedBoot image resides in the first flash sectors, working as the board’s
primary boot monitor. On these platforms, it is also normal to reserve a similar amount of flash for a secondary
RAM mode image, which is used when updating the primary ROM mode image.

On other platforms, a ROMRAM mode RedBoot image is used as the primary boot monitor. On these platforms
there is not normally reserved space for a RAM mode RedBoot image, since the ROMRAM mode RedBoot is
capable of updating the primary boot monitor image.

Most platforms also contain a FIS directory (keeping track of available flash space) and a RedBoot config
block (containing RedBoot board configuration data).

To see the amount of reserved flash memory, rurighést command:

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot[RAM] 0x00020000 0x06020000 0x00020000 0x060213C0O
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 Ox0000FO00 0x00000000

To save flash resources, use a ROMRAM mode RedBoot, or if using a ROM mode RedBoot, avoid reserving
space for the RedBoot[RAM] image (this is done by changing the RedBoot configuration) and download the
RAM mode RedBoot whenever it is needed. If the RedBoot image takes up a fraction of an extra flash block,
it may be possible to reduce the image size enough to free this block by removing some features.

RAM Resources

RedBoot reserves RAM space for its run-time data, and such things as CPU exception/interrupt tables. It
normally does so at the bottom of the memory map. It may also reserve space at the top of the memory map
for configurable RedBoot features such as the net stack and zlib decompression support.

To see the actual amount of reserved space, issueetisgon command, which prints the RedBoot banner,
including the RAM usage:

RedBoot> version

Chapter 1. Getting Started with RedBoot

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

Platform: FooBar (SH 7615)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x06000000-0x06080000, 0x06012498-0x06061000 available
FLASH: 0x00000000 - 0x00080000, 8 blocks of 0x00010000 bytes each.

To simplify operations that temporarily need data in free memory, the limits of free RAM are also available as
aliases (aligned to the nearest kilo-byte limit). These are named FREEMEMLO and FREEMEMHI, and can
be used in commands like any user defined alias:

RedBoot> load -r -b %{FREEMEMLO} file
Raw file loaded 0x06012800-0x06013e53, assumed entry at 0x06012800

RedBoot> X -b %{FREEMEMHI}
06061000: 86 F5 EB D8 3D 11 51 F2 96 F4 B2 DC 76 76 8F 77 |...=.Q...w.w|
06061010: E6 55 DD DB F3 75 5D 15 EO F3 FC D9 C8 73 1D DA |.U..u]....s.|

To reduce RedBoot's RAM resource usage, use a ROM mode RedBoot. The RedBoot features that use most
RAM are the net stack, the flash support and the gunzip support. These, and other features, can be disabled to
reduce the RAM footprint, but obviously at the cost of lost functionality.

Configuring the RedBoot Environment

Once installed, RedBoot will operate fairly generically. However, there are some features that can be configured
for a particular installation. These depend primarily on whether flash and/or networking support are available.
The remainder of this discussion assumes that support for both of these options is included in RedBoot.

Target Network Configuration

Each node in a networked system needs to have a unique address. Since the network support in RedBoot is
based on TCP/IP, this address is an IP (Internet Protocol) address. There are two ways for a system to “know”
its IP address. First, it can be stored locally on the platform. This is known as having a static IP address.
Second, the system can use the network itself to discover its IP address. This is known as a dynamic IP address.
RedBoot supports this dynamic IP address mode by use of the BOOTP (a subset of DHCP) protocol. In this
case, RedBoot will ask the network (actually some generic server on the network) for the IP address to use.

NOTE: Currently, RedBoot only supports BOOTP. In future releases, DHCP may also be supported, but
such support will be limited to additional data items, not lease-based address allocation.

The choice of IP address type is made viaftwnfig command. Once a selection is made, it will be stored in
flash memory. RedBoot only queries the flash configuration information at reset, so any changes will require
restarting the platform.

Here is an example of the RedBdobnfig command, showing network addressing:

RedBoot> fconfig -I

Chapter 1. Getting Started with RedBoot

Run script at boot: false

Use BOOTP for network configuration: false
Local IP address: 192.168.1.29

Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1

GDB connection port: 9000

Network debug at boot time: false

In this case, the board has been configured with a static IP address listed as the Local IP address. The default
server IP address specifies which network node to communicate with for TFTP service. This address can be
overridden directly in the TFTP commands.

TheDNS server IP address option controls where RedBoot should make DNS lookups. A setting of 0.0.0.0
will disable DNS lookups. The DNS server IP address can also be set at runtime.

If the selection foruse BOOTP for network configuration had beenrue , these IP addresses would be
determined at boot time, via the BOOTP protocol. The final number which needs to be configured, regardless of
IP address selection mode, is thBB connection port . RedBoot allows for incoming commands on either

the available serial ports or via the network. This port number is the TCP port that RedBoot will use to accept
incoming connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot commands.
In particular, it is possible to communicate with RedBoot via the telnet protocol. For example, on Linux®:

% telnet redboot_board 9000
Connected to redboot_board
Escape character is ‘.
RedBoot>

Host Network Configuration

RedBoot may require three different classes of service from a network host:

« dynamic IP address allocation, using BOOTP
« TFTP service for file downloading
« DNS server for hostname lookups

Depending on the host system, these services may or may not be available or enabled by default. See your
system documentation for more details.

In particular, on Red Hat Linux, neither of these services will be configured out of the box. The following will
provide a limited explanation of how to set them up. These configuration setups must be dane as the
host or server machine.

Enable TFTP on Red Hat Linux 6.2

1. Ensure that you have the tftp-server RPM package installed. By default, this installs the TFTP server in a
disabled state. These steps will enable it:

2. Make sure that the following line is uncommented in the controldilginetd.conf
tftp dgram udp wait root {usr/sbin/tcpd /usr/sbin/in.tftpd

3. Ifitwas necessary to change the line in Step 2, then the inetd server must be restarted, which can be done
via the command:

Chapter 1. Getting Started with RedBoot

service inet reload

Enable TFTP on Red Hat Linux 7 (or newer)

1. Ensure that the xinetd RPM is installed.
2. Ensure that the tftp-server RPM is installed.
3. Enable TFTP by means of the following:
/sbin/chkconfig tftp on
Reload the xinetd configuration using the command:
/sbin/service xinetd reload

Create the directory /tftpboot using the command
mkdir /tftpboot

NOTE: Under Red Hat 7 you must address files by absolute pathnames, for example: /tftpboot/boot.img
not /boot.img , as you may have done with other implementations. On systems newer than Red Hat 7 (7.1
and beyond), filenames are once again relative to the /tftpboot directory.

Enable BOOTP/DHCP server on Red Hat Linux

First, ensure that you have the proper packalgs, (notdhcpd) installed. The DHCP server provides Dynamic

Host Configuration, that is, IP address and other data to hosts on a network. It does this in different ways. Next,
there can be a fixed relationship between a certain node and the data, based on that node’s unique Ethernet
Station Address (ESA, sometimes called a MAC address). The other possibility is simply to assign addresses
that are free. The sample DHCP configuration file shown does both. Refer to the DHCP documentation for
more detalils.

Example 1-1. Sample DHCP configuration file

--------------- /etc/dhcpd.conf
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name-servers 198.41.0.4, 128.9.0.107;
option domain-name “bogus.com”;
allow bootp;
shared-network BOGUS {
subnet 192.168.1.0 netmask 255.255.255.0 {
option routers 192.168.1.101;
range 192.168.1.1 192.168.1.254;
}
}
host mbx {
hardware ethernet 08:00:3E:28:79:B8;
fixed-address 192.168.1.20;
filename “/tftpboot/192.168.1.21/zImage”;

Chapter 1. Getting Started with RedBoot

default-lease-time -1;
server-name “srvr.bugus.com”;
server-identifier 192.168.1.101;
option host-name “mbx”;

}
Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

Enable DNS server on Red Hat Linux

First, ensure that you have the proper RPM packeaing-nameserver installed. Then change the con-
figuration (in/etc/named.conf) so that thdorwarders point to the primary nameservers for your machine,
normally using the nameservers listeddtt/resolv.conf

Example 1-2. Sampl@etc/named.conf ~ for Red Hat Linux 7.x

--------------- /etc/named.conf
/I generated by named-bootconf.pl

options {
directory "/var/named";
/*
* If there is a firewall between you and nameservers you want
* to talk to, you might need to uncomment the query-source
* directive below. Previous versions of BIND always asked
* questions using port 53, but BIND 8.1 uses an unprivileged
* port by default.
*/
/I query-source address * port 53;

forward first;

forwarders {
212.242.40.3;
212.242.40.51;

b

I

/I a caching only nameserver config

1

/I Uncomment the following for Red Hat Linux 7.2 or above:
I controls {

I inet 127.0.0.1 allow { localhost; } keys { rndckey; };
%
/I include "/etc/rndc.key";
zone """ IN {
type hint;

file "named.ca";

b

zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; }

Chapter 1. Getting Started with RedBoot

h

zone "0.0.127.in-addr.arpa" IN {
type master;
file "named.local”;
allow-update { none; };

h
Make sure the server is started with the command:

service named start

and is started on next reboot with the command

chkconfig named on

Finally, you may wish to changetc/resolv.conf to use127.0.0.1 as the nameserver for your local
machine.

RedBoot network gateway

RedBoot cannot communicate with machines on different subnets because it does not support routing. It al-
ways assumes that it can get to an address directly, therefore it always tries to ARP and then send packets
directly to that unit. This means that whatever it talks to must be on the same subnet. If you need to talk to
a host on a different subnet (even if it's on the same ‘wire’), you need to go through an ARP proxy, provid-
ing that there is a Linux box connected to the network which is able to route to the TFTP server. For exam-
ple: /proc/sysinet/ipv4icont/ <interface> /proxy_arp where<interface> should be replaced with
whichever network interface is directly connected to the board.

Verification

Once your network setup has been configured, perform simple verification tests as follows:

+ Reboot your system, to enable the setup, and then try to ‘ping’ the target board from a host.

» Once communication has been established, try to ping a host using the RedBoot ping command - both by IP
address and hostname.

« Try using the RedBoot load command to download a file from a host.

Chapter 1. Getting Started with RedBoot

10

Chapter 2. RedBoot Commands and Examples

Introduction

RedBoot provides three basic classes of commands:

« Program loading and execution
« Flash image and configuration management
+ Miscellaneous commands

Given the extensible and configurable nature of eCos and RedBoot, there may be extended or enhanced sets of
commands available.

The basic format for commands is:

RedBoot> COMMAND [-S]... [-s val]... operand

Commands may require additional information beyond the basic command name. In most cases this additional
information is optional, with suitable default values provided if they are not present.

Format Description Example

-S A boolean switch; the behavior of| RedBoot> fis init -f
the command will differ, depending
on the presence of the switch. In
this example, thef switch
indicates that a complete
initialization of the FIS data shoul
be performed. There may be many
such switches available for any
given command and any or all of
them may be present, in any orde

jon

=

-s val A qualified value; the letter "s" RedBoot> dump -b 0x100000
introduces the value, qualifying it'sl 0x20

meaning. In the exampleh
0x100000 specifies where the
memory dump should begin. There
may be many such switches
available for any given command
and any or all of them may be
present, in any order.

11

Chapter 2. RedBoot Commands and Examples

12

Format Description Example

operand A simple value; some commands| RedBoot> fis delete JFFS2
require a single parameter for
which an additionatX switch
would be redundant. In the
example JFFS2 is the name of a
flash image. The image name is
always required, thus is no need to
qualify it with a switch. Note that
any un-qualified operand must
always appear at the end of the
command.

The list of available commands, and their syntax, can be obtained by tgplpgt the command line:

RedBoot> help

Manage aliases kept in FLASH memory
alias name [value]

Set/Query the system console baud rate
baudrate [-b <rate>]

Manage machine caches
cache [ON | OFF]

Display/switch console channel
channel [-1] <channel number>]

Display disk partitions

disks
Display (hex dump) a range of memory

dump -b <location> [-I <length>] [-s]
Manage flash images

fis {cmds}

Manage configuration kept in FLASH memory
fconfig [-i] [-] [-n] [-f] [-d] | [-d] nickname [value]
Execute code at a location
go [-w <timeout>] [entry]
Help about help?
help [<topic>]
Set/change IP addresses

ip_address [-1 <local_ip_address>] [-h <server_address>]
Load a file
load [-1] [-v] [-d] [-c <channel>] [-h <host>] [-m {TFTP | HTTP | {x]y}MODEM | disk}]

[-b <base_address>] <file_name>
Network connectivity test

ping [-v] [n <count>] [t <timeout>] [-i <IP_addr]
-h <host>
Reset the system
reset
Display RedBoot version information
version
Display (hex dump) a range of memory
X -b <location> [-| <length>] [-s]

Commands can be abbreviated to their shortest unique string. Thus in the list djolovdum and dump are
all valid for thedump command. Théconfig command can be abbreviati] butf would be ambiguous with
fis.

There is one additional, special command. When RedBoot detects '$’ or '+’ (unless escaped via '\') in a com-
mand, it switches to GDB protocol mode. At this point, the eCos GDB stubs take over, allowing connections
from a GDB host. The only way to get back to RedBoot from GDB mode is to restart the platform.

NOTE: Multiple commands may be entered on a single line, separated by the semi-colon “;” character.

The standard RedBoot command set is structured around the bootstrap environment. These commands are
designed to be simple to use and remember, while still providing sufficient power and flexibility to be useful. No
attempt has been made to render RedBoot as the end-all product. As such, things such as the debug environment
are left to other modules, such as GDB stubs, which are typically included in RedBoot.

The command set may be also be extended on a platform basis.

Common Commands

alias

Name

alias — Manipulate command line aliases

Synopsis

alias { name}[value]

Arguments

Name Type Description Default

name Name 'The name for this alias. |none

value String Replacement value for thaone
alias.

Description

Thealias command is used to maintain simple command line aliases. These aliases are shorthand for longer
expressions. When the pattern %{name} appears in a command line, including in a script, the corresponding
value will be substituted. Aliases may be nested.

If no value is provided, then the current value of the alias is displayed.

If the system supports non-volatile configuration data vigtbafig command (sethe Section calletPersis-
tent State Flash-based Configuration and ConimoChapter 2, then the value will be saved and used when
the system is reset.

13

alias

14

Examples

Set an alias.

RedBoot> alias joe "This is Joe"
Update RedBoot non-volatile configuration - continue (y/n)? n

Display an alias.

RedBoot> alias joe
'joe’ = 'This is Joe’

Use an alias. Note: tHe" command simply echoes the command to to console.

RedBoot> = %f{joe}
This is Joe

Aliases can be nested.

RedBoot> alias frank "Who are you? %f{joe}"

Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %f{frank}

Who are you? This is Joe

Notice how the value of %{frank} changes when %{joe} is changed since the value of %{joe} is not evaluated
until %{frank} is evaluated.

RedBoot> alias joe "This is now Josephine"

Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %f{frank}

Who are you? This is now Josephine

baudrate

Name

baudrate — Set the baud rate for the system serial console

Synopsis

baudrate [-b rate]

Arguments

Name Type Description Default

-b rate Number The baud rate to use for none
the serial console.

Description

Thebaudrate command sets the baud rate for the system serial console.
If no value is provided, then the current value of the console baud rate is displayed.

If the system supports non-volatile configuration data viaftbefig command (sethe Section calleéPersis-
tent State Flash-based Configuration and ConimoChapter 2, then the value will be saved and used when
the system is reset.

Examples

Show the current baud rate.

RedBoot> baudrate
Baud rate = 38400

Change the console baud rate. In order to make this operation safer, there will be a slight pause after the first
message to give you time to change to the new baud rate. If it doesn’t work, or a less than affirmative answer
is given to the "continue" prompt, then the baud rate will revert to the current value. Only after the baud rate
has been firmly established wiledBoogive you an opportunity to save the value in persistent storage.

RedBoot> baudrate -b 57600

Baud rate will be changed to 57600 - update your settings
Device baud rate changed at this point

Baud rate changed to 57600 - continue (y/n)? y

Update RedBoot non-volatile configuration - continue (y/n)? n

15

baudrate

16

cache

Name

cache — Control hardware caches

Synopsis

cache [on | off]

Arguments

Name Type Description Default
on Turn the caches on none
off Turn the caches off none
Description

Thecachecommand is used to manipulate the caches on the processor.

With no options, this command specifies the state of the system caches.

When an option is given, the caches are turned off or on appropriately.

Examples

Show the current cache state.

RedBoot> cache
Data cache: On, Instruction cache: On

Disable the caches.

RedBoot> cache off
RedBoot> cache
Data cache: Off, Instruction cache: Off

Enable the caches.

RedBoot> cache on
RedBoot> cache
Data cache: On, Instruction cache: On

17

cache

18

channel

Name

channel — Select the system console channel

Synopsis

channel [-1 | channel_number]

Arguments

Name Type Description Default
-1 Reset the console channglone
channel_number Number Select a channel none
Description

With no arguments, thehannelcommand displays the current console channel number.

When passed an argument of 0 upward, this command switches the console channel to that channel num-
ber. The mapping between channel numbers and physical channels is platform specific but will typically be
something like channel O is the first serial port, channel 1 is the second, etc.

When passed an argument of -1, this command reverts RedBoot to responding to whatever channel receives
input first, as happens when RedBoot initially starts execution.

Examples

Show the current channel.

RedBoot> channel
Current console channel id: 0

Change to an invalid channel.

RedBoot> channel 99
**Error. bad channel number '99’

Revert to the default channel setting (any console mode).

RedBoot> channel -1

19

channel

20

cksum

Name

cksum — Compute POSIX checksums

Synopsis

cksum {-b location }{-I length }

Arguments

Name Type Description Default

-b location Memory address Location in memory for |none
stat of data.

-l length Number Length of data none

Description

Computes the POSIX checksum on a range of memory (either RAM or FLASH). The values printed (decimal
cksum, decimal length, hexadecimal cksum, hexadecimal length) can be compared with the output from the
Linux program 'cksum’.

Examples

Checksum a buffer.

RedBoot> cksum -b 0x100000 -1 0x100
POSIX cksum = 3286483632 256 (0xc3e3c2b0 0x00000100)

Checksum an area of memory after loading a file. Note that the base address and length parameters are provided
by the preceding load command.

RedBoot> load -r -b %{FREEMEMLO} redboot.bin

Raw file loaded 0x06012800-0x0602f0a8

RedBoot> cksum

Computing cksum for area 0x06012800-0x0602f0a8

POSIX cksum = 2092197813 116904 (0x7cb467b5 0x0001c8a8)

21

cksum

22

disks

Name

disks — List available disk partitions.

Synopsis

disks

Arguments

None.

Description

Thedisks command is used to list disk partitions recognized by RedBoot.

Examples

Show what disk partitions are available.

RedBoot> disks

hdal Linux Swap

hda2 Linux

00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>...ccccewn. |
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |..x.p......

23

disks

24

dump

Name

dump — Display memory.

Synopsis

dump {-b location }[-| length][-s][-1]-2]-4]

Arguments

Name Type Description Default

-b location Memory address Location in memory for |none
start of data.

-l length Number Length of data 32

-S Boolean Format data using
Motorola S-records.

-1 /Access one byte (8 bits) atl

a time. Only the least
significant 8 bits of the
pattern will be used.
-2 Access two bytes (16 bits)L
at a time. Only the least
significant 16 bits of the
pattern will be used.

-4 IAccess one word (32 bits)1
at a time.

Description

Display a range of memory on the system console.

Thex is a synonym fodump.

Note that this command could be detrimental if used on memory mapped hardware registers.

The memory is displayed at most sixteen bytes per line, first as the raw hex value, followed by an ASCII
interpretation of the data.

Examples

Display a buffer, one byte at a time.

RedBoot> mfill -b 0x100000 -I 0x20 -p OxDEADFACE
RedBoot> x -b 0x100000
00100000: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE J|...ccooen.

25

dump

00100010: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |...........

Display a buffer, one short (16 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -2
00100000: FACE DEAD FACE DEAD FACE DEAD FACE DEAD
00100010: FACE DEAD FACE DEAD FACE DEAD FACE DEAD

Display a buffer, one word (32 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -4
00100000: DEADFACE DEADFACE DEADFACE DEADFACE
00100010: DEADFACE DEADFACE DEADFACE DEADFACE

Display the same buffer, using Motorola S-record format.

RedBoot> dump -b 0x100000 -s
S31500100000CEFAADDECEFAADDECEFAADDECEFAADDESE
S31500100010CEFAADDECEFAADDECEFAADDECEFAADDETE

Display a buffer, with visible ASCII strings.

RedBoot> d -b 0xfe00b0O00 -l 0x80

OxFEOOBO000: 20 25 70 OA 00 00 00 00 41 74 74 65 6D 70 74 20 | %p.....Attempt |
OxFEO0B010: 74 6F 20 6C 6F 61 64 20 53 2D 72 65 63 6F 72 64 |to load S-record|
OxFEO0B020: 20 64 61 74 61 20 74 6F 20 61 64 64 72 65 73 73 | data to address|
OxFEOOB030: 3A 20 25 70 20 5B 6E 6F 74 20 69 6E 20 52 41 4D |: %p [not in RAM|
OxFEOOB040: 5D OA 00 00 2A 2A 2A 20 57 61 72 6E 69 6E 67 21 |]...* Warning!|
OxFEO0B050: 20 43 68 65 63 6B 73 75 6D 20 66 61 69 6C 75 72 | Checksum failur|
OxFEOOB060: 65 20 2D 20 41 64 64 72 3A 20 25 6C 78 2C 20 25 |e - Addr: %lx, %|
OXFEO0BO070: 30 32 6C 58 20 3C 3E 20 25 30 32 6C 58 0OA 00 00 |02IX <> %02IX...|
OxFEO0OB080: 45 6E 74 72 79 20 70 6F 69 6E 74 3A 20 25 70 2C |Entry point: %p,|

26

help

Name

help — Display help on available commands

Synopsis

help [topic]

Arguments

Name Type Description Default

topic String 'Which command to All commands
provide help for.

Description

Thehelp command displays information about the available RedBoot commandtpfas given, then the
display is restricted to information about that specific command.

If the command has sub-commands, dig).then the topic specific display will print additional information
about the available sub-commands. special (ICMP) packets to a specific host. These packets should be auto-
matically returned by that host. The command will indicate how many of these round-trips were successfully

completed.

Examples

Show generic help. Note that the contents of this display will depend on the various configuration options for

RedBoot when it was built.

RedBoot> help

Manage aliases kept in FLASH memory

alias name [value]
Manage machine caches
cache [ON | OFF]

Display/switch console channel
channel [-1] <channel number >]
Compute a 32bit checksum [POSIX algorithm] for a range of memory
cksum -b <location > -I <length >
Display (hex dump) a range of memory
[l <length >] [-s] [-1|2]4]

dump -b <location >
Manage FLASH images
fis {cmds}

Manage configuration kept in FLASH memory

fconfig [-i] [-] [-n] [-f] [-d] | [-d] nickname [value]

Execute code at a location

go [-w <timeout >] [entry]

Help about help?
help [<topic >]

27

help

Set/change IP addresses

ip_address [-I <local_ip_address >] [-h <server_address >]
Load a file
load [-1] [-v] [-d] [-h <host >] [-m {TFTP | HTTP | {xly}MODEM -c <channel_number >}]

[(b <base_address >] <file_name >
Compare two blocks of memory

mcmp -s <location > -d <location > -l <length > [-1]-2|-4]
Fill a block of memory with a pattern
mfill -b <location > -l <length > -p <pattern > [-1]-2|-4]
Network connectivity test
ping [-v] [-n <count >] [l <length >] [t <timeout >] [-r <rate >]

[<IP_addr >] -h <IP_addr >
Reset the system
reset
Display RedBoot version information
version
Display (hex dump) a range of memory
X -b <location > [-I <length >] [-s] [-1]|2|4]

Help about a command with sub-commands.

RedBoot> help fis
Manage FLASH images

fis {cmds}
Create an image

fis create -b <mem_base> -l <image_length > [-s <data_length >]

[-f <flash_addr >] [-e <entry_point >] [-r <ram_addr >] [-n] <name>

Display an image from FLASH Image System [FIS]

fis delete name
Erase FLASH contents

fis erase -f <flash_addr > - <length >

Display free [available] locations within FLASH Image System [FIS]
fis free

Initialize FLASH Image System [FIS]
fis init [-f]

Display contents of FLASH Image System [FIS]
fis list [-c] [-d]
Load image from FLASH Image System [FIS] into RAM

fis load [-d] [-b <memory_load_address >] [-c] name
Write raw data directly to FLASH
fis write -f <flash_addr > -b <mem_base> -I <image_length >

28

ip_address

Name

ip_address — Set IP addresses

Synopsis

ip_address|[-I local IP_address][-h server_IP_address][-d DNS_server IP_address]

Arguments

Name Type Description Default

-l local_IP_address Numeric IP or DNS nameThe IP address RedBootnone
should use.

-h Numeric IP or DNS nameThe IP address of the |none

server_IP_address default server. Use of thig
address is implied by
other commands, such as
load.

-d Numeric IP or DNS nameThe IP address of the |none

DNS_server_IP_addresg DNS server.

Description

Theip_addresscommand is used to show and/or change the basic IP addresses used by RedBoot. IP addresses
may be given as numeric values, e.g. 192.168.1.67, or as symbolic names such as www.redhat.com if DNS
support is enabled.

The-l option is used to set the IP address used by the target device.
The-h option is used to set the default server address, such as is usedibgdlvemmand.

The -d option is used to set the default DNS server address which is used for resolving symbolic network
addresses. Note that an address of 0.0.0.0 will disable DNS lookups.

Examples

Display the current network settings.
RedBoot> ip_address

IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 0.0.0.0

Change the DNS server address.

29

ip_address

30

RedBoot> ip_address -d 192.168.1.101
IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 192.168.1.101

Change the default server address.

RedBoot> ip_address -h 192.168.1.104
IP: 192.168.1.31, Default server: 192.168.1.104, DNS server IP: 192.168.1.101

load

Name

load — Download programs or data to the RedBoot platform

Synopsis

load [-v][-d][-r][-m [[xmodem | ymodem] | tftp | disk]] [-h server_IP_address][-b loca-

tion][-c channel][file_name]

Arguments
Name Type Description Default
-V Boolean Display a small spinner |quiet
(indicator) while the
download is in progress.
This is just for feedback,
especially during long
loads. Note that the option
has no effect when using|a
serial download method
since it would interfere
with the protocol.
-d Boolean Decompress data streamnon-compressed data
(gzip data)
-r Boolean Raw (or binary) data formatted (S-records, ELF
image, etc)
-m tftp Transfer data via the TFTP
network using TFTP
protocol.
-m http Transfer data via the TFTP
network using HTTP
protocol.
-m xmodem Transfer data using TFTP
X-modenprotocol.
-m ymodem Transfer data using TFTP
'Y-modenprotocol.
-m disk Transfer data from a locallFTP
disk.
-h Numeric IP or DNS nameThe IP address of the |Value set byip_address
server_IP_address TFTP or HTTP server.

31

load

32

Name Type Description Default

-b location Number Address in memory to |Depends on data format
load the data. Formatted
data streams will have ar
implied load address
which this option may
override.

-c channel Number Specify which 1/0 channeDepends on data format
to use for download. This
option is only supported
when using either
xmodem or ymodem
protocol.

file_name String The name of the file on [None
the TFTP or HTTP serve
or the local disk. Details
of how this is specified for
TFTP are host-specific.
For local disk files, the
name must be idisk
filenameformat. The disk
portion must match one of
the disk names listed by

thedisks command.

Description

Theload command is used to download data into the target system. Data can be loaded via a network con-
nection, using either the TFTP or HTTP protocols, or the console serial connection using the X/Y modem

protocol. Files may also be loaded directly from local filesystems on disk. Files to be downloaded may either
be executable images in ELF executable program format, Motorola S-record (SREC) format or raw data.

Examples

Download a Motorola S-record (or ELF) image, using TFTP, specifying the base memory address.
RedBoot> load redboot.ROM -b 0x8c400000

Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Download a Motorola S-record (or ELF) image, using HTTP, specifying the host [server] address.
RedBoot> load /redboot.ROM -m HTTP -h 192.168.1.104

Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Load an ELF file from /dev/hdal which should be an EXT2 patrtition:

RedBoot> load -mode disk hdal:hello.elf

Entry point: 0x00020000, address range: 0x00020000-0x0002fd70

load

33

load

34

mcmp

Name

mcmp— Compare two segments of memory

Synopsis

mcmp {-s locationl

}{-d location1

Y length }[-1]-2]-4]

Arguments
Name Type Description Default
-slocationl Memory address Location for start of data.none
-d location2 Memory address Location for start of data.none
-l length Number Length of data none
-1)Access one byte (8 bits) at
a time. Only the least
significant 8 bits of the
pattern will be used.
-2 Access two bytes (16 bitsy¥
at a time. Only the least
significant 16 bits of the
pattern will be used.
-4)Access one word (32 bitg)4
at a time.
Description

Compares the contents of two ranges of memory (RAM, ROM, FLASH, etc).

Examples

Compare two buffers which match (resulgjgie).

RedBoot> mfill -b 0x100000 -l 0x20 -p OXxDEADFACE
RedBoot> mfill -b 0x200000 -I 0x20 -p OxDEADFACE
RedBoot> mcmp -s 0x100000 -d 0x200000 -I 0x20

Compare two buffers which don’t match. Only the first non-matching element is displayed.

RedBoot> mcmp -s 0x100000 -d 0x200000 -I 0x30 -2
Buffers don't match - 0x00100020=0x6000, 0x00200020=0x0000

35

mcmp

36

mfill

Name
mfill — Fill RAM with a specified pattern

Synopsis

mfill {-b location }{-I length }{-p value }[-1]|-2]-4]

Arguments

Name Type Description Default

-b location Memory address Location in memory for |none
start of data.

-l length Number Length of data none

-p pattern Number Data value to fill with 0

-1)Access one byte (8 bits) at

a time. Only the least
significant 8 bits of the
pattern will be used.

-2 Access two bytes (16 bitsy¥
at a time. Only the least
significant 16 bits of the
pattern will be used.

-4)Access one word (32 bitg)4
at a time.

Description

Fills a range of memory with the given pattern.

Examples

Fill a buffer with zeros.

RedBoot> x -b 0x100000 -I 0x20

00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>...ccccevne |
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |..x.p."..-
RedBoot> mfill -b 0x100000 -I 0x20

RedBoot> x -b 0x100000 -l 0x20

00100000: 00 00 00 00 OO0 OO OO OO 0O OO OO OO OO0 00 00 00 |.ccerereeerrunns |
00100010: 00 00 00 00 OO0 OO0 OO OO OO0 OO 00 00 00 00 00 00 |ecweorereerne |

Fill a buffer with a pattern.

37

mfill

38

RedBoot>
RedBoot>

00100000:
00100010:

mfill -b 0x100000 -I 0x20 -p OxDEADFACE

X -b 0x100000 -l 0x20
CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE

CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE

ping

Name

ping — Verify network connectivity

Synopsis

ping [-v] [local_IP_address IR
server_IP_address }

| length][-n count][t timeout] [r rate] {-h

Arguments

Name Type Description Default
-V Boolean Be verbose, displaying |quiet
information about each
packet sent.

-n local_IP_address Number Controls the number of (10
packets to be sent.

-i local_IP_address Numeric IP or DNS nameThe IP address RedBoot|Value set byip_address
should use.

-h Numeric IP or DNS nameThe IP address of the hogtone
server_|IP_address to contact.

-l length Number The length of the ICMP 64
data payload.

-r length Number How fast to deliver 1000ms (1 second)
packets, i.e. time betweep
successive sends. A value
of 0 sends packets as
quickly as possible.

-t length Number How long to wait for the [1000ms (1 second)
round-trip to complete,

specified in milliseconds.

Description

The ping command checks the connectivity of the local network by sending special (ICMP) packets to a
specific host. These packets should be automatically returned by that host. The command will indicate how
many of these round-trips were successfully completed.

Examples
Test connectivity to host 192.168.1.101.

RedBoot> ping -h 192.168.1.101
Network PING - from 192.168.1.31 to 192.168.1.101

39

ping

40

PING - received 10 of 10 expected

Test connectivity to host 192.168.1.101, with verbose reporting.

RedBoot> ping -h 192.168.1.101 -v -n 4
Network PING

seq:
seq:
seq:
seq:
PING

1,
2,
3,
4,

time:
time:
time:
time:

- from 192.168.1.31 to 192.168.1.101
1 (ticks)
1 (ticks)
1 (ticks)
1 (ticks)

- received 10 of 10 expected

Test connectivity to a non-existent host (192.168.1.109).
RedBoot> ping -h 192.168.1.109 -v -n 4
PING: Cannot reach server '192.168.1.109' (192.168.1.109)

reset

Name

reset — Reset the device

Synopsis

reset

Arguments

None

Description

Theresetcommand causes the target platform to be reset. Where possible (hardware support permitting), this
will be equivalent to a power-on reset condition.

Examples

Reset the platform.

RedBoot> reset

. Resetting.+... Waiting for network card: .

Socket Communications, Inc: Low Power Ethernet CF Revision C 5V/3.3V 08/27/98
Ethernet eth0: MAC address 00:c0:1b:00:ba:28

IP: 192.168.1.29, Default server: 192.168.1.101

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:41:41, May 14 2002

Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x01fc0000, 0x00014748-0x01f71000 available

FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes each.
RedBoot>

41

reset

42

version

Name

version — Display RedBoot version information

Synopsis

version

Arguments

None

Description

Theversioncommand simply displays version information about RedBoot.

Examples
Display RedBoot’s version.

RedBoot> version

RedBoot(tm) debug environment - built 09:12:03, Feb 12 2001
Platform: XYZ (PowerPC 860)

Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x00400000

43

version

44

Flash Image System (FIS)

fis init

If the platform has flash memory, RedBoot can use this for image storage. Executable images, as well as data,
can be stored in flash in a simple file store. Tisecommand (fis is short for Flash Image System) is used to
manipulate and maintain flash images.

Name

fis init — Initialize Flash Image System (FIS)

Synopsis

fisinit [-f]

Arguments

Name Type Description Default

-f All blocks of flash
memory (except for the
boot blocks) will be
erased as part of the
initialization procedure.

Description

This command is used to initialize the Flash Image System (FIS). It should normally only be executed once,
when RedBoot is first installed on the hardware. If the reserved images or their sizes in the FIS change, due to
a different configuration of RedBoot being used, it may be necessary to issue the command again though.

Note: Subsequent executions will cause loss of previously stored information in the FIS.

Examples

Initialize the FIS directory.

RedBoot> fis init
About to initialize [format] flash image system - continue (y/n)? y
*** |nitialize FLASH Image System
Warning: device contents not erased, some blocks may not be usable
. Erase from 0x00070000-0x00080000: .
. Program from 0x0606f000-0x0607f000 at 0x00070000: .

45

fis init

Initialize the FIS directory and all of flash memaory, except for first blocks of the flash where the boot monitor
resides.

RedBoot> fis init -f

About to initialize [format] flash image system - continue (y/n)? y
*** |nitialize FLASH Image System

... Erase from 0x00020000-0x00070000:

... Erase from 0x00080000-0x00080000:

... Erase from 0x00070000-0x00080000: .

. Program from 0x0606f000-0x0607f000 at 0x00070000: .

46

fis list

Name

fis list — List Flash Image System directory

Synopsis

fis list [-f]

Arguments

Name Type Description Default

-C Show image checksum
instead of memory
address (columniem
addr is replaced by
Checksum).

-d Show image data length
instead of amount of flash
occupied by image
(columnLength is
replaced bypatalen).

Description

This command lists the images currently available in the FIS. Certain images used by RedBoot have fixed
names and have reserved slots in the FIS (these can be seen after usimgniheommand). Other images
can be manipulated by the user.

Note: The images are listed in the order they appear in the FIS directory, not by name or creation time.

Examples
List the FIS directory.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0x0000F000 0x00000000

List the FIS directory, with image checksums substituted for memory addresses.

47

fis list

48

RedBoot> fis list -c

Name FLASH addr Checksum Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x00000000 0x00001000 0x00000000
FIS directory 0x00070000 0x00000000 0x0000FO00 0x00000000

List the FIS directory with image data lengths substituted for flash block reservation lengths.

RedBoot> fis list

Name FLASH addr Mem addr Datalen Entry point
RedBoot 0x00000000 0x00000000 0x00000000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00000000 0x00000000
FIS directory 0x00070000 0x00070000 0x00000000 0x00000000

fis free

Name

fis free — Free flash image

Synopsis

fis free

Description

This command shows which areas of the flash memory are currently not in use. When a block contains non-
erased contents it is considered in use. Since it is possible to force an image to be loaded at a particular flash
location, this command can be used to check whether that location is in use by any other image.

Note: There is currently no cross-checking between actual flash contents and the FIS directory, which
mans that there could be a segment of flash which is not erased that does not correspond to a named
image, or vice-versa.

Examples

Show free flash areas.
RedBoot> fis free

0xA0040000 .. OxAQ7C0000
0xA0840000 .. OxAOFCO0000

49

fis free

50

fis create

Name

fis create — Create flash image

Synopsis

fiscreate {-b data address }{-I length }[-f flash address][-e entry][-r relocation
address][-s data length][-n][name]

Arguments

Name Type
-b Number

Description Default
)Address of datato be |Address of last loaded file.
written to the flash. If not set in a load
operation, it must be
specified.

D

Number

Length of flash area to
occopy. If specified, and

exists, the length must

directory.

the named image alreadyalready exists, or the

match the value in the Flfile. If neither are set, it

Length of area reserved i
FIS directory if the image

length of the last loaded

must be specified.

Number

)/Address of flash area to
occopy.

The address of an area
reserved in the FIS
directory for extant
images. Otherwise the fir
free block which is large
enough will be used.

st

Number

Entry address for an

thefis load command.

executable image, used Tgaded file.

The entry address of last

Number

thefis load command.
This is only relevant for
images that will be loade
with thefis load
command.

)Address where the imagéThe load address of the
should be relocated to bylast loaded file.

Number

Actual length of data
written to image. This is
used to control the range
over which the checksum
is made.

It defaults to the length of
the last loaded file.

51

fis create

Name Type Description Default
-n \When set, no image data
will be written to the flash,
Only the FIS directory
will be updated.

name String Name of flash image.

Description

This command creates an image in the FIS directory. The data for the image must existin RAM memory before
the copy. Typically, you would use the RedBdotd command to load file into RAM and then tffis create
command to write it to a flash image.

Examples

Trying to create an extant image, will require the action to be verified.

RedBoot> fis create RedBoot -f 0xa0000000 -b 0x8c400000 -I 0x20000
An image named ‘RedBoot’ exists - continue (y/n)? n

Create a new test image, let the command find a suitable place.

RedBoot> fis create junk -b 0x8c400000 -I 0x20000

... Erase from 0xa0040000-0xa0060000: .

... Program from 0x8c400000-0x8c420000 at 0xa0040000: .
... Erase from 0xa0fe0000-0xal000000: .

. Program from 0x8c7d0000-0x8c7f0000 at OxaOfe0000: .

Update the RedBoot[RAM] image.

RedBoot> load redboot RAM.img

Entry point: 0x060213c0, address range: 0x06020000-0x06036ccO
RedBoot> fis create RedBoot[RAM]

No memory address set.

An image named 'RedBoot[RAM] exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot[RAM]
at 0x00020000..0x00036¢bf from 0x06020000 - continue (y/n)? y

... Erase from 0x00020000-0x00040000: ..
... Program from 0x06020000-0x06036ccO0 at 0x00020000: ..
... Erase from 0x00070000-0x00080000: .

. Program from 0x0606f000-0x0607f000 at 0x00070000: .

52

fis load

Name

fis load

Synopsis

— Load flash image

fisload [-b load address][-c][-d][name]

Arguments

Name

Type

Description

Default

-b

Number

IAddress the image shoul
be loaded to. Executable
images normally load at
the location to which the
file was linked. This
option allows the image t
be loaded to a specific
memory location, possibl
overriding any assumed
location.

tf not specified, the
address associated with
the image in the FIS
directory will be used.

O

Compute and print the
checksum of the image
data after it has been
loaded into memory.

Decompress gzipped
image while copying it
from flash to RAM.

name

String

The name of the file, as
shown in the FIS
directory.

Description

This command is used to transfer an image from flash memory to RAM.

Once the image has been loaded, it may be executed usigg ttenmand.

Examples

Load and run RedBoot[RAM] image.

RedBoot> fis load RedBoot[RAM]

RedBoot> go

53

fis load

54

fis delete

Name

fis delete — Delete flash image

Synopsis

fis delete { name}

Arguments
Name Type Description Default
name Number Name of image that

should be deleted.
Description

This command removes an image from the FIS. The flash memory will be erased as part of the execution of
this command, as well as removal of the name from the FIS directory.

Note: Certain images are reserved by RedBoot and cannot be deleted. RedBoot will issue a warning if this
is attempted.

Examples

RedBoot> fis list

Name flash addr ~ Mem addr Length Entry point
RedBoot 0xA0000000 0OxA0000000 0x020000 0x80000000
RedBoot config ~ OXAOFC0000 OxAOFCO0000 0x020000 0x00000000
FIS directory OXAOFEO000 OxAOFEO000 0x020000 0x00000000

junk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot> fis delete junk
Delete image ‘junk’ - continue (y/n)? y

. Erase from 0xa0040000-0xa0060000: .
. Erase from 0xaOfe0000-0xal1000000: .
. Program from 0x8c7d0000-0x8c7f0000 at 0xaOfe0000: .

55

fis delete

56

fis lock

Name

fis lock — Lock flash area

Synopsis

fislock {-f flash_address }{-I length }

Arguments
Name Type Description Default
flash_address Number)Address of area to be
locked.
length Number Length of area to be
locked.
Description

This command is used to write-protect (lock) a portion of flash memory, to prevent accidental overwriting of
images. In order to make make any modifications to the flash, a matihimgock command must be issued.
This command is optional and will only be provided on hardware which can support write-protection of the
flash space.

Note: Depending on the system, attempting to write to write-protected flash may generate errors or warn-
ings, or be benignly quiet.

Examples

Lock an area of the flash

RedBoot> fis lock -f 0xa0040000 -I 0x20000
. Lock from 0xa0040000-0xa0060000: .

57

fis lock

58

fis unlock

Name

fis unlock — Unlock flash area

Synopsis

fis unlock {-f flash_address }{-I length }

Arguments
Name Type Description Default
flash_address Number)Address of area to be
unlocked.
length Number Length of area to be
unlocked.
Description

This command is used to unlock a portion of flash memory forcibly, allowing it to be updated. It must be issued
for regions which have been locked before the FIS can reuse those portions of flash.

Note: Some flash devices power up in locked state and always need to be manually unlocked before they
can be written to.

Examples

Unlock an area of the flash

RedBoot> fis unlock -f 0xa0040000 -l 0x20000
. Unlock from 0xa0040000-0xa0060000: .

59

fis unlock

60

fis erase

Name

fis erase = — Erase flash area

Synopsis

fis erase{-f flash_address }{-I length }

Arguments
Name Type Description Default
flash_address Number)Address of area to be
erased.
length Number Length of area to be
erased.
Description

This command is used to erase a portion of flash memory forcibly. There is no cross-checking to ensure that
the area being erased does not correspond to an existing image.

Examples

Erase an area of the flash

RedBoot> fis erase -f 0xa0040000 -l 0x20000
.. Erase from 0xa0040000-0xa0060000: .

61

fis erase

62

fis write

Name

fis write — Write flash area

Synopsis

fis write {-b mem_address } {-| length }{-f flash_address }

Arguments
Name Type Description Default
mem_address Number Address of data to be
written to flash.
length Number Length of data to be
writtem.
flash_address Number)Address of flash to write
to.
Description

This command is used to write data from memory to flash. There is no cross-checking to ensure that the area
being written to does not correspond to an existing image.

Examples

Write an area of data to the flash

RedBoot> fis write -b 0x0606f000 -I 0x1000 -f 0x00020000
* CAUTION * about to program FLASH
at 0x00020000..0x0002ffff from 0x0606f000 - continue (y/n)? y
. Erase from 0x00020000-0x00030000: .
. Program from 0x0606f000-0x0607f000 at 0x00020000: .

63

fis write

64

Chapter 2. RedBoot Commands and Examples
Persistent State Flash-based Configuration and Control

RedBoot provides flash management support for storage in the flash memory of multiple executable images
and of non-volatile information such as IP addresses and other network information.

RedBoot on platforms that support flash based configuration information will report the following message the
first time that RedBoot is booted on the target:

flash configuration checksum error or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by runféngfibe
command as described below. At this point you may also wish to rutiighait command. See other fis
commands irthe Section calle&lash Image System (FLS)

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the configuration.
However, the basic operation used to maintain this information is the same. Usiicoitfig - command, the
information may be displayed and/or changed.

If the optional flagi is specified, then the configuration database will be reset to its default state. This is also
needed the first time RedBoot is installed on the target, or when updating to a newer RedBoot with different
configuration keys.

If the optional flag-l is specified, the configuration data is simply listed. Otherwise, each configuration pa-
rameter will be displayed and you are given a chance to change it. The entire value must be typed - typing
just carriage return will leave a value unchanged. Boolean values may be entered using the firstfiatter (
true,f for false). At any time the editing process may be stopped simply by entering a period (.) on the line.
Entering the caret (") moves the editing back to the previous item. See “RedBoot Editing Comntheds”,
Section calledRedBoot Editing Commands Chapter 1

If any changes are made in the configuration, then the updated data will be written back to flash after getting
acknowledgment from the user.

If the optional flag-n is specified (with or without!) then “nicknames” of the entries are used. These are
shorter and less descriptive than “full” names. The full name may also be displayed by addindl&te

The reason for telling you nicknames is that a quick way to set a single entry is provided, using the format

RedBoot> fconfig nickname value

If no value is supplied, the command will list and prompt for only that entry. If a value is supplied, then the
entry will be set to that value. You will be prompted whether to write the new information into flash if any
change was made. For example

RedBoot> fconfig -l -n

boot_script: false

bootp: false

bootp_my_ip: 10.16.19.176

bootp_server_ip: 10.16.19.66

dns_ip: 10.16.19.1

gdb_port: 9000

net_debug: false

RedBoot> fconfig bootp_my_ip 10.16.19.177

bootp_my_ip: 10.16.19.176 Setting to 10.16.19.177

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from 0x507c0000-0x507e0000: .

. Erase from 0x507c0000-0x507e0000: .

. Program from 0x0000a8d0-0x0000acd0 at 0x507c0000: .
. Lock from 0x507c0000-0x507e0000: .

RedBoot>

65

Chapter 2. RedBoot Commands and Examples

66

Additionally, nicknames can be used like aliases via the format %{nickname}. This allows the values stored
by fconfig to be used directly by scripts and commands.

Depending on how your terminal program is connected and its capabilities, you might find that you are unable
to use line-editing to delete the ‘old’ value when using the default behaviofaoafig nickname or just
plain fconfig, as shown in this example:

RedBoot> fco bootp
bootp: false_

The user deletes the word “false;” and enters “true” so the display looks like this:

RedBoot> fco bootp

bootp: true

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from ...

RedBoot>

To edit when you cannot backspace, use the optional-fla¢for “dumb terminal”) to provide a simpler
interface thus:

RedBoot> fco -d bootp
bootp: false ? _

and you enter the value in the obvious manner thus:

RedBoot> fco -d bootp

bootp: false ? true

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from ...

RedBoot> _

One item which is always present in the configuration data is the ability to execute a script at boot time. A
sequence of RedBoot commands can be entered which will be executed when the system starts up. Optionally,
a time-out period can be provided which allows the user to abort the startup script and proceed with normal
command processing from the console.

RedBoot> fconfig -I

Run script at boot: false

Use BOOTP for network configuration: false
Local IP address: 192.168.1.29

Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1

GDB connection port: 9000

Network debug at boot time: false

The following example sets a boot script and then shows it running.

RedBoot> fconfig

Run script at boot: false t
Boot script:

Enter script, terminate with empty line

>> fi li

Chapter 2. RedBoot Commands and Examples

Boot script timeout: O 10
Use BOOTP for network configuration: false .
Update RedBoot non-volatile configuration - continue (y/n)? y
. Erase from 0xa0Ofc0000-0xa0fe0000: .
. Program from 0x8c021f60-0x8c022360 at 0xaOfc0000: .
RedBoot>
RedBoot(tm) debug environment - built 08:22:24, Aug 23 2000
Copyright (C) 2000, Red Hat, Inc.

RAM: 0x8c000000-0x8c800000

flash: 0xa0000000 - 0xal000000, 128 blocks of 0x00020000 bytes ea.
Socket Communications, Inc: Low Power Ethernet CF Revision C \
5V/3.3V 08/27/98 IP: 192.168.1.29, Default server: 192.168.1.101 \

== Executing boot script in 10 seconds - enter ~C to abort

RedBoot> fi li
Name flash addr ~ Mem addr Length Entry point
RedBoot O0xA0000000 OxA0000000 0x020000 0x80000000

RedBoot config 0xAOFC0000 OxAOFC0000 0x020000 0x00000000
FIS directory OxAOFEO000 OxAOFEO000 0x020000 0x00000000
RedBoot>

NOTE: The bold characters above indicate where something was entered on the console. As you can see,
the fi li command at the end came from the script, not the console. Once the script is executed, command
processing reverts to the console.

NOTE: RedBoot supports the notion of a boot script timeout, i.e. a period of time that RedBoot waits before
executing the boot time script. This period is primarily to allow the possibility of canceling the script. Since
a timeout value of zero (0) seconds would never allow the script to be aborted or canceled, this value is
not allowed. If the timeout value is zero, then RedBoot will abort the script execution immediately.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run from RAM.
Other configurations are also possible. All RedBoot configurations will execute the boot script, but in certain
cases it may be desirable to limit the execution of certain script commands to one RedBoot configuration or
the other. This can be accomplished by prependiagiartup type>} to the commands which should be
executed only by the RedBoot configured for the specified startup type. The following boot script illustrates
this concept by having the ROM based RedBoot load and run the RAM based RedBoot. The RAM based
RedBoot will then list flash images.

RedBoot> fco

Run script at boot: false t

Boot script:

Enter script, terminate with empty line

>> {ROM}fis load RedBoot[RAM]

>> {ROM}go

>> {RAMfis li

>>

Boot script timeout (1000ms resolution): 2
Use BOOTP for network configuration: false

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from 0x007c0000-0x007e0000: .

67

. Erase from 0x007c0000-0x007e0000: .

. Program from 0xa0015030-0xa0016030 at 0x007df000: .
. Lock from 0x007c0000-0x007e0000: .

RedBoot> reset

. Resetting.

+Ethernet eth0: MAC address 00:80:4d:46:01:05

IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [ROM]
Red Hat certified release, version R1.xx - built 17:37:36, Aug 14 2001

Platform: 1Q80310 (XScale)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0xa0000000-0xa2000000, 0xa001b088-0xalfdf000 available

FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter "C to abort

RedBoot> fis load RedBoot[RAM]

RedBoot> go

+Ethernet ethO: MAC address 00:80:4d:46:01:05

IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [RAM]
Red Hat certified release, version R1.xx - built 13:03:47, Aug 14 2001

Platform: 1Q80310 (XScale)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0xa0000000-0xa2000000, 0xa0057fe8-0xalfdf000 available

FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter "C to abort

RedBoot> fis li

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot config 0x007DF0O00 0x007DF000 0x00001000 0x00000000
FIS directory 0x007E0000 0x007E0000 0x00020000 0x00000000
RedBoot>

Executing Programs from RedBoot

Once an image has been loaded into memaory, either vi@#tscommand or théis load command, execution
may be transfered to that image.

NOTE: The image is assumed to be a stand-alone entity, as RedBoot gives the entire platform over to it.
Typical examples would be an eCos application or a Linux kernel.

68

go

go

Name

go — Execute a program

Synopsis

go [-w timeout][start_address]

Arguments
Name Type Description Default
-w timeout Number How long to wait before [0
starting execution.
start_address Number Address in memory to |Value set by lastoad or
begin execution. fis load command.
Description

Thegocommand causes RedBoot to give control of the target platform to another program. This program must
execute stand alone, e.g. an eCos application or a Linux kernel.

If the -w option is used, RedBoot will print a message and then wait for a period of time before starting the
execution. This is most useful in a script, giving the user a chance to abort executing a program and move on
in the script.

Examples

Execute a programno explicit output from RedBoot

RedBoot> go 0x40040

Execute a program with a timeout.

RedBoot> go -w 10

About to start execution at 0x00000000 - abort with *C within 10 seconds
~C

RedBoot>

Note that the starting address was implied (0x00000000 in this example). The user is prompted that execution
will commence in 10 seconds. At anytime within that 10 seconds the user magtsip€ on the console and
RedBoot will abort execution and return for the next command, either from a script or the console.

69

go

70

exec

Name

exec — Execute a Linux kernel

Synopsis

exec [-w timeout][-r ramdisk address][-s ramdisk length][-b load address {-l
load_length }][-c kernel command line][entry point]

Arguments
Name Type Description Default
-w timeout Number Time to wait before 0
starting execution.
-r ramdisk_address Number Address in memory of |[None
"initrd"-style ramdisk -
passed to Linux kernel.
-sramdisk_length Number Length of ramdisk image None
passed to Linux kernel.
-b load_address Number)Address in memory of thevalue set byload or fis
Linux kernel image. load
-l load_length Number Length of Linux kernel |none
image.
-c ker- String Command line to pass tojNone
nel_command_line the Linux kernel.
entry_address Number Starting address for Linuxmplied by architecture
kernel execution
Description

Theexeccommand is used to execute a non-eCos application, typically a Linux kernel. Additional information
may be passed to the kernel at startup time. This command is quite special (and unique fyoraimenand)

in that the program being executed may expect certain environmental setups, for example that the MMU is
turned off, etc.

The Linux kernel expects to have been loaded to a particular memory location which is architecture depen-
dent(0xC0008000 in the case of the SA1110). Since this memory is used by RedBoot internally, it is not
possible to load the kernel to that location directly. Thus the requirement for the "-b" option which tells the
command where the kernel has been loaded. Wheexbecommand runs, the image will be relocated to the
appropriate location before being started. The "-r" and "-s" options are used to pass information to the kernel
about where a statically loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the command line
data contains any punctuation (spaces, etc), then it must be quoted using the double-quote character . If the

71

exec

72

quote character is required, it should be written as "\".

Examples

Execute a Linux kernel, passing a command line, which needs relocation. The result from RedBoot is normally
quiet, with the target platform being passed over to Linux immediately.

RedBoot> exec -b 0x100000 -l 0x80000 -c "noinitrd root=/dev/mtdblock3 console=ttySAQ"

Execute a Linux kernel, default entry address and no relocation required, with a timeowmtasized lines
are output from the loaded kernel.

RedBoot> exec -c "console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh" -w 5

Now booting linux kernel:

Base address 0x8c001000 Entry 0x8c210000

Cmdline : console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh

About to start execution at 0x8x210000 - abort with ~C within 5 seconds

Linux version 2.4.10-pre6 (...) (gcc version 3.1-stdsh-010931) #3 Thu Sep 27 11:04:23 BST 2001

Chapter 3. Rebuilding RedBoot

Introduction

RedBoot is built as an application on top of eCos. The makefile rules for building RedBoot are part of the eCos
CDL package, so it's possible to build eCos from the Configuration Tool, as well as from the command line
using ecosconfig.

Building RedBoot requires only a few steps: selecting the platform and the RedBoot template, importing a
platform specific configuration file, and finally starting the build.

The platform specific configuration file makes sure the settings are correct for building RedBoot on the given
platform. Each platform should provide at least two of these configurationrité#giot RAM.ecm for a RAM

mode RedBoot configuration angiboot ROM.ecm 0f redboot ROMRAM.ecm for a ROM or ROMRAM mode
RedBoot configuration. There may be additional configuration files according to the requirements of the par-
ticular platform.

The RedBoot build process results in a number of files in the instaltlirectory. The ELF fileedboot.elf

is the pricipal result. Depending on the platform CDL, there will also be generated versions of RedBoot in other
file formats, such asdboot.bin (binary format, good when doing an update of a primary RedBoot image,
seethe Section calledUpdate the primary RedBoot flash imaigeChapter 3, redboot.srec (Motorola S-

record format, good when downloading a RAM mode image for execution),eahabt.img (stripped ELF

format, good when downloading a RAM mode image for execution, smaller than the .srec file). Some platforms
may provide additional file formats and also relocate some of these files to a particular address making them
more suitable for downloading using a different boot monitor or flash programming tools.

The platform specific information i@hapter Sshould be consulted, as there may be other special instructions
required to build RedBoot for particular platforms.

Rebuilding RedBoot using ecosconfig

To rebuild RedBoot using the ecosconfig tool, create a temporary directory for building RedBoot, name it
according to the desired configuration of RedBoot, here RAM:

$ mkdir /tmp/redboot_RAM
$ cd /tmp/redboot_RAM

Create the build tree according to the chosen platform, here using the Hitachi Solution Engine 7751 board as
an example:

Note: It is assumed that the environment variable ECOS_REPOSITORY points to the eCos/RedBoot
source tree.

ecosconfig new se7751 redboot

CYGPKG_HAL_SH_7750, new inferred value 0

CYGPKG_HAL_SH_7751, new inferred value 1

CYGHWR_HAL_SH_IRQ USE_IRQLVL, new inferred value 1
CYGSEM_HAL_USE_ROM_MONITOR, new inferred value 0
CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM, new inferred value 0
CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS, new inferred value 1
CYGFUN_LIBC_STRING_BSD_FUNCS, new inferred value 0
CYGPKG_NS_DNS_BUILD, new inferred value 0

cccccccce

73

Chapter 3. Rebuilding RedBoot

74

Replace the platform name ("se7751") with the appropriate name for the chosen platform.

Then import the appropriate platform RedBoot configuration file, here for RAM configuration:

$ ecosconfig import ${ECOS_REPOSITORYY}/hal/sh/se7751/ VERSIONmisc/redboot_RAM.ecm
$ ecosconfig tree

Replace architecture ("sh"), platform ("se7751") and versid¥ERSION') with those appropriate for the
chosen platform and the version number of its HAL package. Also replace the configuration name ("red-
boot_ RAM.ecm") with that of the appropriate configuration file.

RedBoot can now be built:

$ make

The resulting RedBoot files will be in the associated install directory, in this exatme)i/bin

In Chapter Seach platform’s details are described in the form of shell variables. Using those, the steps to build
RedBoot are:

export REDBOOT_CFG=redboot_ ROM

export VERSION= VERSION

mkdir /tmp/${REDBOOT_CFG}

cd /tmp/${REDBOOT_CFG}

ecosconfig new ${TARGET} redboot

ecosconfig import ${ECOS_REPOSITORY}/hal/${ARCH_DIR}/${PLATFORM_DIR}/${VERSION}/misc/${REDBOOT_CFG}.ecm
ecosconfig tree

make

To build for another configuration, simply change REDBOOT _CF@efinition accordingly. Also make sure
the VERSIONvariable matches the version of the platform package.

Rebuilding RedBoot from the Configuration Tool

To rebuild RedBoot from the Configuration Tool, open the template winddwild->Templates) and select
the appropriate Hardware target and in Packages select "redboot". Then press OK. Depending on the platform,
a number of conflicts may need to be resolved before the build can be started; select "Continue".

Import the desired RedBoot configuration file from the platform HAllg->Import...). Depending on the
platform, a number of conflicts may need to be resolved before the build can be started; select "Continue".
For example, if the platform selected is Hitachi SE7751 board and the RAM configuration RedBoot should be
built, import the filehal/sh/se7751/ VERSIONmisc/redboot_RAM.ecm

Save the configuration somewhere suitable with enough disk space for building Re@BeotJave...).
Choose the name according to the RedBoot configuration, for exasaptet RAM.ecc

Then start the buildRuild->Library) and wait for it to complete. The resulting RedBoot files will be in the
associated install directory, for the example this wouldedBoot_RAM_install/bin

As noted above, each platform’s details are described Ghapter 5 Use the information
provided in the shell variables to find the configuration file - the path to it is
${ECOS_REPOSITORY}hal/${ARCH_DIR}/${PLATFORM_DIR}/${VERSION}/misc/${REDBOOT_CFG}.ecm ,
whereECOS_REPOSITORYoints to the eCos/RedBoot sourc¥&RSIONis the version of the package
(usually "current") andREDBOOT _CF(3 the desired configuration, e.g. redboot RAM.

Chapter 4. Updating RedBoot

Introduction

RedBoot normally resides in an EPROM or, more common these days, a flash on the board. In the former case,
updating RedBoot necessitates physically removing the part and reprogramming a new RedBoot image into it
using prommer hardware. In the latter case, it is often possible to update RedBoot in situ using Redboot’s flash
management commands.

The process of updating RedBoot in situ is documented in this section. For this process, it is assumed that the
target is connected to a host system and that there is a serial connection giving access to the RedBoot CLI.
For platforms with a ROMRAM mode RedBoot, skipttte Section calletUpdate the primary RedBoot flash

image

Note: The addresses and sizes included in the below are examples only, and will differ from those you will
see. This is normal and should not cause concern.

Load and start a RedBoot RAM instance

There are a number of choices here. The basic case is where a RAM mode image has been stored in the FIS
(flash Image System). To load and execute this image, use the commands:

RedBoot> fis load RedBoot[RAM]
RedBoot> go

If this image is not available, or does not work, then an alternate RAM mode image must be loaded:

RedBoot> load redboot RAM.img
Entry point: 0x060213c0, address range: 0x06020000-0x060369c8
RedBoot> go

Note: This command loads the RedBoot image using the TFTP protocol via a network connection. Other
methods of loading are available, refer to the load command for more details.

Note: If you expect to be doing this more than once, it is a good idea to program the RAM mode image
into the flash. You do this using the fis create command after having downloaded the RAM mode image,
but before you start it.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your
platform does not support locking, simply ignore the fis unlock and fis lock steps (the commands will not
be recognized by RedBoot).

RedBoot> fis unlock RedBoot[RAM]
.. Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot[RAM]

An image named 'RedBoot[RAM] exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot[RAM]
at 0x00020000..0x000369c7 from 0x06020000 - continue (y/n)? y

75

Chapter 4. Updating RedBoot

76

... Erase from 0x00020000-0x00040000: ..
... Program from 0x06020000-0x060369c8 at 0x00020000: ..
.. Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot[RAM]

.. Lock from 0x00000000-0x00020000: ..

Update the primary RedBoot flash image

An instance of RedBoot should now be running on the target from RAM. This can be verified by looking for
the mode identifier in the banner. It should be either [RAM] or [ROMRAM].

If this is the first time RedBoot is running on the board or if the flash contents has been damaged, initialize the
FIS directory:

RedBoot> fis init -f

About to initialize [format] FLASH image system - continue (y/n)? y
*** |nitialize FLASH Image System

... Erase from 0x00020000-0x00070000:

... Erase from 0x00080000-0x00080000:

... Erase from 0x00070000-0x00080000: .

. Program from 0x0606f000-0x0607f000 at 0x00070000: .

It is important to understand that the presence of a correctly initialized FIS directory allows RedBoot to au-
tomatically determine the flash parameters. Additionally, executing the steps below as stated without loading
other data or using other flash commands (than poséiblist) allows RedBoot to automatically determine

the image location and size parameters. This greatly reduces the risk of potential critical mistakes due to typo-
graphical errors. It is still always possible to explicitly specify parameters, and indeed override these, but it is
not advised.

Note: If the new RedBoot image has grown beyond the slot in flash reserved for it, it is necessary to
change the RedBoot configuration option CYGBLD_REDBOOT_MIN_IMAGE_SIZE so the FIS is created
with adequate space reserved for RedBoot images. In this case, it is necessary to re-initialize the FIS
directory as described above, using a RAM mode RedBoot compiled with the updated configuration.

Using theload command, download the new flash based image from the host, relocating the image to RAM::

RedBoot> load -r -b %{FREEMEMLO} redboot_ROM.bin
Raw file loaded 0x06046800-0x06062fe8, assumed entry at 0x06046800

Note: This command loads the RedBoot image using the TFTP protocol via a network connection. Other
methods of loading are available, refer to the load command for more details.

Note: Note that the binary version of the image is being downloaded. This is to ensure that the memory
after the image is loaded should match the contents of the file on the host. Loading SREC or ELF versions
of the image does not guarantee this since these formats may contain holes, leaving bytes in these holes

Chapter 4. Updating RedBoot

in an unknown state after the load, and thus causing a likely cksum difference. It is possible to use these,
but then the step verifying the cksum below may fail.

Once the image is loaded into RAM, it should be checksummed, thus verifying that the image on the target is
indeed the image intended to be loaded, and that no corruption of the image has happened. This is done using
thecksumcommand:

RedBoot> cksum
Computing cksum for area 0x06046800-0x06062fe8
POSIX cksum = 2535322412 116712 (0x971df32c 0x0001c7e8)

Compare the numbers with those for the binary version of the image on the host. If they do not match, try
downloading the image again.

Assuming the cksum matches, the next step is programming the image into flash using the FIS commands.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your
platform does not support locking, simply ignore fieeunlock andfis lock steps (the commands will not be
recognized by RedBoot).

RedBoot> fis unlock RedBoot
. Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot

An image named 'RedBoot’ exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot’
at 0x00000000..0x0001c7e7 from 0x06046800 - continue (y/n)? y

. Erase from 0x00000000-0x00020000: ..
. Program from 0x06046800-0x06062fe8 at 0x00000000: ..
. Erase from 0x00070000-0x00080000: .
. Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot
. Lock from 0x00000000-0x00020000: ..

Reboot; run the new RedBoot image

Once the image has been successfully written into the flash, simply reset the target and the new version of
RedBoot should be running.

When installing RedBoot for the first time, or after updating to a newer RedBoot with different configuration
keys, it is necessary to update the configuration directory in the flash usirfgaiiy command. Se¢he
Section calledPersistent State Flash-based Configuration and Comtr@hapter 2

77

Chapter 4. Updating RedBoot

78

Chapter 5. Installation and Testing

AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board

Overview

RedBoot supports the debug serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 115200,8,N,1 with RTS/CTS flow control. RedBoot can run from either flash,
and can support flash management for either the boot PROM or the system flash regions.

The following RedBoot configurations are supported:

Configuration Mode Description File

PROM [ROM] RedBoot running from thgedboot_ ROM.ecm
boot PROM and able to

access the system flash.
FLASH [ROM] RedBoot running from th@edboot_FLASH.ecm
system flash and able to
access the boot PROM.
RAM [RAM] RedBoot running from redboot_ RAM.ecm
RAM and able to access
the boot PROM.

Initial Installation

Unless a pre-programmed system flash module is available to be plugged into a new board, RedBoot must
be installed with the aid of a JTAG interface unit. To achieve this, the RAM mode RedBoot must be loaded
directly into RAM by JTAG and started, and thérat must be used to store the ROM mode RedBoot into the
boot PROM.

These instructions assume that you have binary images of the RAM-based and boot PROM-based RedBoot
images available.

Preparing to program the board

If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to be changed:

« Jumper across ST18 on the board to allow write access to the boot PROM.
+ Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.

« Set the switch S5 (on the front of the board) to boot from whichever flasbtibeing programmed. Note
that the RedBoot image cannot access the flash from which it is currently executing (it can only access the
other flash).

79

Chapter 5. Installation and Testing

80

The RedBoot binary image files should also be copied to the TFTP pickup area on the host providing TFTP
services if that is how RedBoot should pick up the images it is going to program into the flash. Alternatively,
the images can be passed by YMODEM over the serial link.

Preparing to use the JTAG debugger
The JTAG debugger will also need setting up:

1. Install the JTAG debugger software (WICE103E) on a PC running Windows (WIinNT is probably the best
choice for this) in “C:/PanaX”.

2. Install the Matsushita provided “project” into the “C:/Panax/wice103e/prj” directory.

3. Install the RedBoot image files into the “C:/Panax/wice103e/prj”’ directory under the names redboot.ram
and redboot.prom.

4. Make sure the PC’s BIOS has the parallel port set to full bidirectional mode.
5. Connect the JTAG debugger to the PC’s parallel port.

6. Connect the JTAG debugger to the board.

7. Set the switch on the front of the board to boot from “boot PROM”.

8. Power up the JTAG debugger and then power up the board.

9. Connect the board’s Debug Serial port to a computer by a null modem cable.

10. Start minicom or some other serial communication software and set for 115200 baud, 1-N-8 with hardware
(RTS/CTS) flow control.

Loading the RAM-based RedBoot via JTAG

To perform the first half of the operation, the following steps should be followed:

1. Start the JTAG debugger software.

2. Run the following commands at the JTAG debugger’s prompt to set up the MMU registers on the CPU.
ed 0xc0002000, 0x12000580

ed 0xd8c00100, 0x8000fe01
ed 0xd8c00200, 0x21111000
ed 0xd8c00204, 0x00100200
ed 0xd8c00208, 0x00000004

ed 0xdB8c00110, 0x8400fe01
ed 0xd8c00210, 0x21111000
ed 0xd8c00214, 0x00100200
ed 0xd8c00218, 0x00000004

ed 0xd8c00120, 0x8600ff81
ed 0xd8c00220, 0x21111000
ed 0xd8c00224, 0x00100200
ed 0xd8c00228, 0x00000004

ed 0xd8c00130, 0x8680ff81
ed 0xd8c00230, 0x21111000
ed 0xd8c00234, 0x00100200
ed 0xd8c00238, 0x00000004

Chapter 5. Installation and Testing

ed 0xd8c00140, 0x9800f801
ed 0xd8c00240, 0x00140000
ed 0xd8c00244, 0x11011100
ed 0xd8c00248, 0x01000001

ed 0xda000000, 0x55561645
ed 0xda000004, 0x000003cO
ed 0xda000008, 0x9000fe01
ed 0xda00000c, 0x9200fe01
ed 0xda000000, 0xa89b0654

3. Run the following commands at the JTAG debugger’s prompt to tell it what regions of the CPU’s address
space it can access:

ex 0x80000000,0x81ffffff,/mexram
ex 0x84000000,0x85ffffff,/mexram
ex 0x86000000,0x867fffff,/mexram
ex 0x86800000,0x87ffffff,/mexram
ex 0x8c000000,0x8cffffff,/mexram
ex 0x90000000,0x93ffffff,/mexram

4. Instruct the debugger to load the RAM RedBoot image into RAM:

_pc=90000000
u_pc
rd redboot.ram,90000000

5. Load the boot PROM RedBoot into RAM:
rd redboot.prom,91020000

6. Start RedBoot in RAM:
g

Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or DHCP server
to try and automatically get an IP address for the board. Note, however, that it should send a plus over the
serial port immediately, and the 7-segment LEDs should display “rh 8.

Loading the boot PROM-based RedBoot via the RAM mode RedBoot

Once the RAM mode RedBoot is up and running, it can be communicated with by way of the serial port.
Commands can now be entered directly to RedBoot for flashing the boot PROM.

1. Instruct RedBoot to initialise the boot PROM:
RedBoot> fi init

2. Write the previously loaded redboot.prom image into the boot PROM:
RedBoot> fi write -f 0x80000000 -b 0x91020000 -l 0x00020000

3. Check that RedBoot has written the image:

81

Chapter 5. Installation and Testing

RedBoot> dump -b 0x91020000
RedBoot> dump -b 0x80000000

Barring the difference in address, the two dumps should be the same.

4. Close the JTAG software and power-cycle the board. The RedBoot banners should be displayed again over
the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot will now be running.

5. Power off the board and unjumper ST18 to write-protect the contents of the boot PROM. Then power the
board back up.
6. Run the following command to initialise the system flash:

RedBoot> fi init

Then program the system flash based RedBoot into the system flash:

RedBoot> load -r -b %{FREEMEMLO} redboot FLASH.bin
RedBoot> fi write -f 0x84000000 -b %{FREEMEMLO} -I 0x00020000

NOTE: RedBoot arranges the flashes on booting such that they always appear at the same addresses,
no matter which one was booted from.

7. A similar sequence of commands can be used to program the boot PROM when RedBoot has been booted
from an image stored in the system flash.

RedBoot> load -r -b %{FREEMEMLO} /tftpboot/redboot_ROM.bin
RedBoot> fi write -f 0x80000000 -b %{FREEMEMLO} -l 0x00020000

Seethe Section calle®ersistent State Flash-based Configuration and Comtr@hapter ZXor details on
configuring the RedBoot in general, and allse Section calle&lash Image System (FI8) Chapter Zor
more details on programming the system flash.

Additional Commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this architec-
ture (seethe Section calle@Executing Programs from RedBoiot Chapter 2. The execparameters used for
ASB2305 board are:

-w <time>

Wait time in seconds before starting kernel
-c "params”

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed by “cmdline:”
if it was supplied.

82

Memory Maps

Chapter 5. Installation and Testing

RedBoot sets up the following memory map on the ASB2305 board.

NOTE: The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However, all
those regions can be accessed uncached by adding 0x20000000 to the address.

Physical Address Range

0x80000000 -
0x80000000 -
0x84000000 -
0x86000000 -
0x86F90000 -
0x86FA0000
0x86FB0000
0x8C000000
0x90000000
0x98000000
0x9C000000 -
O0x9E000000 -
0x9E040000 -

Ox9FFFFFFF
Ox81FFFFFF
Ox85FFFFFF
0x86007FFF

0x86F90003

0x86FA0003
0x86FBOO01F
Ox8FFFFFFF

- OX93FFFFFF
- OX9BFFFFFF

OX9DFFFFFF
OX9EO3FFFF
0X9E0400FF

OX9FFFFFF4 - OX9FFFFFF7
OXOFFFFFF8 - OXOFFFFFFF

0xA0000000 -
0xC0000000 -

OXBFFFFFFF
OXDFFFFFFF

Description

Cached Region

Boot PROM

System Flash

64Kbit Sys Config EEPROM

4x 7-segment LEDs

Software DIP Switches

PC16550 Debug Serial Port
On-Chip Memory (repeated 16Kb SRAM)
SDRAM

Paged PCI Memory Space (64Mb)
PCI Local SRAM (32Mb)

PCI 1/0 Space

AM33-PCI Bridge Registers

PCI Memory Page Register

PCI Config Registers

Uncached Mirror Region

CPU Control Registers

The ASB2305 HAL makes use of the on-chip memory in the following way:

0x8C000000 - Ox8COOOOFF hal_vsr_table
0x8C000100 - Ox8CO001FF hal_virtual_vector_table

0x8C001000 -

Linux command line (RedBoot exec command)

- Ox8CO03FFF Emergency DoubleFault Exception Stack

Currently the CPU’s interrupt table lies at the beginning of the RedBoot image, which must therefore be aligned

to a OxFFO00000 mask.

Rebuilding

These shell variables provide the platform-specific information needed for building RedBoot according to the

RedBoot

procedure described i@hapter 3

export TARGET=ash2305
export ARCH_DIR=mn10300
export PLATFORM_DIR=ash2305

The names of configuration files are listed above with the description of the associated modes.

83

Chapter 5. Installation and Testing

ARM/ARM7 ARM Evaluator7T

Overview

RedBoot supports both serial ports for communication and downloads. The default serial port settings are
38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from [redboot ROMA.ecm
flash address 0x20000,
with ARM Boot Monitor
in flash boot sector.

Initial Installation

RedBoot is installed using the on-board boot environment. See the user manual for full details.

Quick download instructions

Here are quick start instructions for downloading the prebuilt Redboot image:

Boot the board and press ENTER:

ARM Evaluator7T Boot Monitor PreRelease 1.00
Press ENTER within 2 seconds to stop autoboot
Boot:

+ Erase the part of the flash where RedBoot will get programmed:
Boot: flasherase 01820000 10000

+ Prepare to download the UU-encoded version of the RedBoot image:

Boot: download 10000
Ready to download. Use ’'transmit’ option on terminal emulator to download file.

- Either use ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to the serial port:
$ cat redboot.UU > /dev/ttySO

When complete, you should see:

Loaded file redboot.bin at address 000100000, size = 41960
Boot:

« Program the flash:
Boot: flashwrite 01820000 10000 10000

+ And verify that the module is available:

84

Chapter 5. Installation and Testing

Boot: rommodules

Header Base Limit
018057¢8 01800000 018059e7 BootStrapLoader v1.0 Apr 27 2000 10:33:58
01828f24 01820000 0182a3e8 RedBoot Apr 5 2001

» Reboot the board and you should see the RedBoot banner.

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the following memory map on the E7T board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range C B Description

0x00000000 - Ox0007ffff Y N SDRAM
0x03ff0000 - OxO3ffffff N N Microcontroller registers
0x01820000 - 0x0187ffff N N System flash (mirrored)

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=e7t

export ARCH_DIR=arm
export PLATFORM_DIR=e7t

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7+ARM9 ARM Integrator

Overview

RedBoot supports both serial ports for communication and downloads. The default serial port settings are
38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

85

Chapter 5. Installation and Testing

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm

RAM with RedBoot in the
flash boot sector.

ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Initial Installation

RedBoot is installed using the on-board bootPROM environment. See the user manual for full details.

Quick download instructions

Here are quick start instructions for downloading the prebuilt Redboot image:

- Set DIP switch S1[1] to the ON position and reset or power the board up. You will see the bootPROM startup
message on serial port A (J14):

Initialising...

ARM bootPROM [Version 1.3] Rebuilt on Jun 26 2001 at 22:04:10
Running on a Integrator Evaluation Board

Board Revision V1.0, ARM966E-S Processor

Memory Size is 16MBytes, Flash Size is 32MBytes

Copyright (c) ARM Limited 1999 - 2001. All rights reserved.

Board designed by ARM Limited

Hardware support provided at http://www.arm.com/

For help on the available commands type ? or h

boot Monitor >

. Issue the FLASH ROM load command:

boot Monitor > L
Load Motorola S-Records into flash

Deleting Image 0O

The S-Record loader only accepts input on the serial port.
Type Ctrl/C to exit loader.

- Either use the ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to the serial
port:

$ cat redboot.srec > /dev/ttySO

When complete, type Ctrl-C and you should see something similar to:

86

Chapter 5. Installation and Testing

Downloaded 5,394 records in 81 seconds.

Overwritten block/s
0

boot Monitor >

« Set DIP switch S1[1] to the OFF position and reboot the board and you should see the RedBoot banner.

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the following memory map on the Integrator board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

ARM7TDMI

Physical Address Range C B Description

0x00000000 - 0x0007ffff N N SSRAM

0x00080000 - OxOfffffff N N SDRAM (depends on part fitted)
0x10000000 - Ox1fffffff N N System control and peripheral registers
0x20000000 - Ox23ffffff N N Boot ROM (contains boot Monitor)
0x24000000 - Ox27ffffff N N FLASH ROM (contains RedBoot)
0x28000000 - Ox2bffffff N N SSRAM echo area

0x40000000 - Ox5fffffff N N PClI Memory access windows
0x60000000 - Ox60ffffff N N PCI 10 access window

0x61000000 - Ox61ffffff N N PCI config space window

0x62000000 - 0x6200ffff N N PCI bridge register window
0x80000000 - Ox8ffffffft N N SDRAM echo area (used for PCIl accesses)

ARM966E

Physical Address Range C B Description

0x00000000 - Ox000fffff N N SSRAM

0x00100000 - OxOfffffff N N SDRAM (depends on part fitted)
0x10000000 - Ox1fffffff N N System control and peripheral registers
0x20000000 - Ox23ffffff N N Boot ROM (contains boot Monitor)
0x24000000 - Ox27ffffff N N FLASH ROM (contains RedBoot)
0x28000000 - Ox2bffffff N N SSRAM echo area

0x40000000 - Ox5fffffff N N PClI Memory access windows
0x60000000 - Ox60ffffff N N PCI IO access window

0x61000000 - Ox61ffffff N N PCI config space window

0x62000000 - 0x6200ffff N N PCI bridge register window
0x80000000 - Ox8ffffffft N N SDRAM echo area (used for PCIl accesses)

87

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=integrator

export ARCH_DIR=arm
export PLATFORM_DIR=integrator

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9

88

Overview

RedBoot uses either of the serial ports. The default serial port settings are 38400,8,N,1. Management of on-
board flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method
Device programmer is used to program socketed flash parts with ROM version of RedBoot.

Alternatively, to install RedBoot on a target that already has eCos GDB stubs, download the RAM mode image
of RedBoot and run it. Initialize the flash image directdiyinit Then download the ROM version of RedBoot
and program it into flash:

RedBoot> load -b %{FREEMEMLO} -m ymodem
RedBoot> fi cr RedBoot

Special RedBoot Commands

None.

Chapter 5. Installation and Testing

Memory Maps

RedBoot sets up the following memory map on the PID board.

Physical Address Range Description

0x00000000 - 0x0007ffff DRAM

0x04000000 - 0x04080000 flash

0x08000000 - Ox09ffffff ASB Expansion

0x0a000000 - OxObffffff APB Reference Peripheral

0x0c000000 - OxOfffffff NISA Serial, Parallel and PC Card ports

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=pid
export ARCH_DIR=arm
export PLATFORM_DIR=pid

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7 Atmel AT91 Evaluation Board (EB40)

Overview

RedBoot supports both serial ports. The default serial port settings are 38400,8,N,1. RedBoot also supports
minimal flash management on the EB40. However, since the flash device (AT29LV1024) is so small (only the
upper 64K is available for general use), only the simple flash write command 'fis write’ is supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot RAM.ecm

RAM with RedBoot in the
flash boot sector.

ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Initial Installation Method

This development board comes with ARM'’s debug tool, Angel, installed in flash. At this time, Angel will not

89

Chapter 5. Installation and Testing

90

be replaced. Rather, RedBoot will be placed in the alternate half of flash. Switch SW1 is used which monitor
to boot. Selecting SW1 to "lower mem" will choose Angel. Select SW1 to "Upper mem" for RedBoot once it
has been installed.

Set SW1 to "lower mem" and connect serial port A to a host computer. Using GDB from the host and Angel on
the board, download the RAM mode image of RedBoot to the board. SW1 should then be set to "upper mem"
just before starting RedBoot using the 'cont’ command. Once RedBoot is started, the Angel session must be
interrupted (on Linux this can be done using ~Z). Follow this by connecting to the board using minicom at
38400-8N1. At this point, RedBoot will be running on the board in RAM. Now, download the ROMRAM
mode image and program it to flash.

arm-elf-gdb redboot_RAM .elf

(gdb) tar rdi s=/dev/ttySO

Angel Debug Monitor (serial) 1.04 (Advanced RISC Machines SDT 2.5) for
AT91EB40 (2.00)

Angel Debug Monitor rebuilt on Apr 07 2000 at 12:40:31
Serial Rate: 9600

Connected to ARM RDI target.

(gdb) set $cpsr=0xd3

(gdb) load

Loading section .rom_vectors, size 0x40 Ima 0x2020000
Loading section .text, size 0x7fd8 Ima 0x2020040
Loading section .rodata, size 0x15a0 Ima 0x2028018
Loading section .data, size Ox2e4 Ima 0x20295b8

Start address 0x2020040 , load size 39068

Transfer rate: 6250 bits/sec, 500 bytes/write.

At this point, set SW1 to "upper mem".

(gdb) cont
Continuing.

At this point, suspend the GDB session (use Ctrl-Z) and start a terminal emulator:
RedBoot> version

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 14:09:27, Jul 20 2001

Platform: Atmel AT91/EB40 (ARM7TDMI)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x02000000-0x02080000, 0x020116d8-0x0207fd00 available
FLASH: 0x01010000 - 0x01020000, 256 blocks of 0x00000100 bytes each.

RedBoot> load -m ymodem -b %{FREEMEMLO}

Use minicom to send the file redboot. ROMRAM.srec via YModem.

RedBoot> fi wr -f 0x01010000 -b %{FREEMEMLO} -I 0xel00

Press the "reset" pushbutton and RedBoot should come up on the board.

Special RedBoot Commands

None.

Chapter 5. Installation and Testing

Memory Maps

This processor has no MMU, so the only memory map is for physical addresses.

Physical Address Range Description

0x00000000 - 0x00000fff On-chip SRAM
0x01000000 - Ox01O0x1ffff Flash
0x02000000 - 0x0207ffff RAM
0xffe00000 - Oxffffffff I/O registers

The flash based RedBoot image occupies virtual addresses 0x01010000 - 0x0101dfff

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=eb40
export ARCH_DIR=arm
export PLATFORM_DIR=at91

The names of configuration files are listed above with the description of the associated modes.

ARM/ARMY Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)

Overview

RedBoot supports both serial ports on the board and the ethernet port. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the EDB7xxx for the NOR flash only.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot_ RAM.ecm

RAM with RedBoot in the
flash boot sector.
ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector
(EDB7312 only).

91

Chapter 5. Installation and Testing

Initial Installation Method

A Windows or Linux utility is used to program flash using serial port #1 via on-chip programming firmware.
See board documentation for details on in situ flash programming.

Special RedBoot Commands

None.

Memory Maps
The MMU page tables and LCD display buffer, if enabled, are located at the end of DRAM.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO1ffffff NOR Flash (EDB7211, EDB7212)
0x00000000 - OxOOffffff NOR Flash (EDB7312)
0x10000000 - Ox1affffff NAND Flash

0x20000000 - Ox2fffffff Expansion 2

0x30000000 - Ox3fffffff Expansion 3

0x40000000 - OxAfffffff PCMCIA 0

0x50000000 - Ox5fffffff PCMCIA 1

0x60000000 - 0x600007ff On-chip SRAM
0x80000000 - Ox8fffffff I/O registers

0xc0000000 - Oxc1ffffff DRAM (EDB7211, EDB7212)
0xc0000000 - OxcOffffff DRAM (EDB7312)

Virtual Address Range C B Description

0x00000000 - OxO1ffffff Y Y DRAM
0x00000000 - OxOofcffff Y Y DRAM (EDB7312)
0x20000000 - Ox2fffffff N N Expansion 2
0x30000000 - Ox3fffffff N N Expansion 3
0x40000000 - Oxafffffff N N PCMCIA 0
0x50000000 - Ox5fffffff N N PCMCIA 1

0x60000000 - 0x600007ff Y Y On-chip SRAM

0x80000000 - Ox8fffffff N N 1/O registers

0xc0000000 - OxcOO0iffff N Y LCD buffer (if configured)
0xe0000000 - Oxelffffff Y Y NOR Flash (EDB7211, EDB7212)
0xe0000000 - OxeOffffff Y Y NOR Flash (EDB7312)
0xf0000000 - Oxfiffffff Y Y NAND Flash

The flash based RedBoot image occupies virtual addresses 0xe0000000 - OxeOO03ffff.

Platform Resource Usage

The EP7xxx timer #2 is used as a polled timer to provide timeout support for network and XModem file
transfers.

92

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=edb7211

export TARGET=edb7212

export TARGET=edb7312

export ARCH_DIR=arm

export PLATFORM_DIR=edb7xxx

Use one of the TARGET settings only.

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM9 Agilent AAED2000

Overview

RedBoot supports the serial and ethernet ports on the board. The default serial port settings are 38400,8,N,1.
RedBoot also supports flash management on the AAED2000.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from |redboot_primary ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.
RAM [RAM] RedBoot running from [redboot_primary RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

It is possible to install RedBoot in one of two ways. Either as the primary bootmonitor on the board (installed
to blocks 0-1 of the flash) or as the secondary bootmonitor on the board (installed to blocks 1-2 of the flash).

Presently, only the former method is supported.

RedBoot as Primary Bootmonitor
RedBoot is installed in flash using the on-board ARM Boot Monitor.
Boot the board while pressing SPACE. This should bring up the Boot Monitor:

ARM bootPROM [Version 1.3] Rebuilt on Jul 16 2001 at 16:21:36
Running on a P920 board Evaluation Board

Board Revision V1.0, ARM920T processor Processor

Memory Size is 32MBytes, Flash Size is 32MBytes

Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Board designed by ARM Limited

Hardware support provided at http://www.arm.com/

93

Chapter 5. Installation and Testing

94

For help on the available commands type ? or h
boot Monitor >

Download the RAM mode image of RedBoot configured as a primary bootmonitor using the ARM bootmoni-

tor's SREC-download command:

boot Monitor > m

Load Motorola S-Record image into memory and execute it

The S-Record loader only accepts input on the serial port.
Record addresses must be between 0x00008000 and O0x01EOF510.
Type Ctrl/C to exit loader.

Use the terminal emulator's ASCII upload command, or (on Linux) simply cat the file to the serial port:

$ cat redboot_primary_RAM/redboot.srec >/dev/ttyS1

You should see RedBoot start up:

FLASH configuration checksum error or invalid key
Ethernet ethO: MAC address 00:30:d3:03:04:99
IP: 192.168.42.111, Default server: 192.168.42.3

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 13:15:40, Nov 9 2001

Platform: AAED2000 system (ARM9) [Primary]
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x01f80000, 0x0006f208-0x01f51000 available
FLASH: 0x60000000 - 0x62000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

As can be seen from the output above, the network has been configured to give the board an IP address and
information about the default server. If things are not set up on your network, you can still continue, but use
the Y-modem download method when loading the RedBoot ROMRAM mode image. Now initialize RedBoot'’s

FIS:
RedBoot > fis init
About to initialize [format] FLASH image system - continue (y/n)?
*** |nitialize FLASH Image System
Warning: device contents not erased, some blocks may not be usable

. Erase from 0x61fe0000-0x62000000: .
. Program from 0x01f5f000-0x01f5f300 at Ox61fe0000: .

Download the ROMRAM mode image of RedBoot via ethernet:

RedBoot > load -b %{FREEMEMLO} redboot_primary_ROMRAM/redboot.srec

or using serial Y-modem protocol:

RedBoot > load -mode ymodem -b %{FREEMEMLO}

(Use the terminal emulators Y-modem wupload command

to send the fita-

boot_primary_ROMRAM/redboot.srec .) When the image has been downloaded, program it into

flash:

Address offset = 0x00ff8000

Entry point: 0x00008040, address range: 0x00008000-0x0002da80
RedBoot > fi cr RedBoot

An image named 'RedBoot’ exists - continue (y/n)? y

Chapter 5. Installation and Testing

* CAUTION * about to program 'RedBoot’
at 0x60000000..0x6003ffff from 0x00100000 - continue (y/n)? y
... Erase from 0x60000000-0x60040000: ..
... Program from 0x00100000-0x00140000 at 0x60000000: ..
... Erase from 0x61fe0000-0x62000000: .
. Program from 0x01f5f000-0x01f7f000 at Ox61fe0000: .

Now reset the board. You should see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this board
(seethe Section calledExecuting Programs from RedBoiot Chapter 2. The execparameters used for the

AAED2000 are:

-b <addr>

Location Linux kernel was loaded to
-l <len>

Length of kernel
-c "params"

Parameters passed to kernel
-r <addr>

‘initrd’ ramdisk location
-s<len>

Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one way of
starting the kernel would be:

RedBoot > load -r -b 0x100000 zImage

Raw file loaded 0x00100000-0x001a3d6c

RedBoot > exec -c "console=ttyAC0,38400"

Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....

An image could also be put in flash and started directly:

RedBoot > exec -b 0x60040000 -l 0xcO000 -c "console=ttyAC0,38400"
Uncompressing Linux.....

Memory Maps
The MMU page tables are located at 0x4000.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

95

Chapter 5. Installation and Testing

Physical Address Range Description

0x00000000 - OxO1ffffff Flash

0x10000000 - Ox1O0O0fffff Ethernet

0x30000000 - 0x300fffff Board registers
0x40000000 - OxAfffffff PCMCIA Slot (0)
0x50000000 - Ox5fffffff Compact Flash Slot (1)
0x80000000 - 0x800037ff /0 registers
0xb0060000 - OxbOOfffff On-chip SRAM
0xf0000000 - Oxfd3fffff SDRAM

Virtual Address Range C B Description
0x00000000 - Ox01f7ffff Y Y SDRAM

0x01f80000 - OxO1ffffff Y Y SDRAM (used for LCD frame buffer)
0x10000000 - Ox100fffff N N Ethernet

0x30000000 - Ox300fffff N N Board registers

0x40000000 - Ox4fffffff N N PCMCIA Slot (0)

0x50000000 - Ox5fffffff N N Compact Flash Slot (1)

0x60000000 - Ox61ffffff N N Flash

0x80000000 - 0x800037ff N N /O registers

0xf0000000 - Oxffffffff N N SDRAM (uncached)

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=aaed
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/aaed2000

The names of configuration files are listed above with the description of the associated modes.

ARM/ARMO9 Altera Excalibur

Overview

RedBoot supports the serial port labelled P2 on the board. The default serial port settings are 57600,8,N,1.
RedBoot also supports flash management on the Excalibur.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

96

-b <addr>

-l <len>

Chapter 5. Installation and Testing

Configuration Mode Description File

RAM [RAM] RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

REDBOOT [ROMRAM] RedBoot running from topedboot REDBOQOT.ecm
of RAM, but contained in
the board'’s flash boot

sector.

NOTE: RedBoot is currently hardwired to use a 128MB SDRAM SIMM module.

Initial Installation Method

A Windows utility (exc_flash_programmer.exe) is used to program flash using the ByteBlasterMV JTAG unit.
See board documentation for details on in situ flash programming.

For ethernet to work (under Linux) the following jumper settings should be used on a REV 2 board:
SW2-9 :OFF

ui79 :2-3

JP14-18 : OPEN

JP40-41 : 2-3

JP51-55 : 2-3

Flash management

The ROMRAM and REDBOOT configurations supported on this platform differ only in the memory lay-
out (ROMRAM configuration runs RedBoot from 0x00008000 while REDBOOT configuration runs Red-
Boot from 0x07f80000). The REDBOOQT configuration allows applications to be loaded and run from address
0x00008000.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this board (see
the Section calle@xecuting Programs from RedBadntChapter 2. Theexecparameters used for the Excalibur
are:

Location Linux kernel was loaded to

Length of kernel

97

Chapter 5. Installation and Testing

-Cc "params”

Parameters passed to kernel
-r <addr>

initrd’ ramdisk location
-s <len>

Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one way of
starting the kernel would be:

RedBoot > load -r -b 0x100000 zIimage

Raw file loaded 0x00100000-0x001a3d6c

RedBoot > exec -c "console=ttyUA0,57600"

Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....

An image could also be put in flash and started directly:

RedBoot > exec -b 0x40400000 -l OxcO000 -c “"console=ttyUA0,57600"
Uncompressing Linux.....

Memory Maps
The MMU page tables are located at 0x4000.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO7ffffff SDRAM
0x08000000 - 0x0805ffff On-chip SRAM
0x40000000 - Ox4O0ffffff Flash
0x7fffc000 - OxTfffffff I/O registers
0x80000000 - 0x8001ffff PLD

Virtual Address Range C B Description
0x00000000 - OxO7ffffff Y Y SDRAM
0x08000000 - 0x0805ffff Y Y On-chip SRAM
0x40000000 - O0x403fffff N Y Flash
0x7fffc000 - Ox7fffffff N N 1/O registers
0x80000000 - 0x8001ffff N N PLD

98

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=excalibur_arm9
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/excalibur

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA110) Intel EBSA 285

Overview

RedBoot uses the single EBSA-285 serial port. The default serial port settings are 38400,8,N,1. If the EBSA-
285 is used as a host on a PCI backplane, ethernet is supported using an Intel PRO/100+ ethernet adapter.
Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A linux application is used to program the flash over the PCI bus. Sources and build instructions for this utility
are located in the RedBoot sourcesgackages/hal/arm/ebsa285/current/support/linux/safl_util

Communication Channels
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.

Special RedBoot Commands

None.

Memory Maps

Physical and virtual mapping are mapped one to one on the EBSA-285 using a first level page table located at

99

Chapter 5. Installation and Testing

address 0x4000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Address Range C B Description

0x00000000 - Ox01
0x40000000 - 0x400fffff 21285 Registers
0x41000000 - Ox413fffff flash

Y Y SDRAM

N N

Y N
0x42000000 - Ox420fffff N N 21285 CSR Space

YY

N N

N N

0x50000000 - Ox5O0ffffff Cache Clean
0x78000000 - Ox78ffffff QOutbound Write Flush
0x79000000 - Ox7cOfffff PCI IACK/Config/lO
0x80000000 - Oxffffffff N Y PCI Memory

Platform Resource Usage

Timer3 is used as a polled timer to provide timeout support for networking and XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=ebsa285
export ARCH_DIR=arm
export PLATFORM_DIR=ebsa285

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1100) Intel Brutus

Overview

RedBoot supports both board serial ports on the Brutus board. The default serial port settings are 38400,8,N,1.
flash management is not currently supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

100

Initial Installation Method

Device programmer is used to program socketed flash parts.

Special RedBoot Commands

None.

Memory Maps

Chapter 5. Installation and Testing

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
0x00000000 - OxOO0Offfff Boot ROM
0x08000000 - 0x083fffff Application flash
0x10000000 - Ox1OO0fffff SRAM
0x18000000 - 0x180fffff Chip Select 3
0x20000000 - Ox3fffffff PCMCIA
0x80000000 - Oxbfffffff SA-1100 Internal Registers
0xc0000000 - Oxc7ffffff DRAM Bank 0
0xc8000000 - Oxcfffffff DRAM Bank 1
0xd0000000 - Oxd7ffffff DRAM Bank 2
0xd8000000 - Oxdfffffff DRAM Bank 3
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range

0x00000000
0x00400000
0x00800000
0x00c00000
0x08000000
0x10000000
0x20000000
0x40000000
0x80000000
0xe0000000

0x003fffff
0x007fffff
0x00bfffff
O0xOOffffff
0x083fffff
0x100fffff
Ox3fffffff
0x400fffff

Oxbfffffff N N SA-1100 Internal Registers

Oxe7ffffff

C B Description

Y Y DRAM Bank 0
Y Y DRAM Bank 1
Y Y DRAM Bank 2
Y Y DRAM Bank 3

Y Y Application flash
Y N SRAM

N N PCMCIA

Y Y Boot ROM

Y Y Cache Clean

Platform Resource Usage

The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file transfers.

101

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=brutus
export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/brutus

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board

Overview

RedBoot supports both board serial ports. The default serial port settings are 38400,8,N,1. flash management
is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A device programmer is used to program socketed flash parts.

Special RedBoot Commands

None.

Memory Maps
The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - Ox00O0fffff Boot flash

102

Chapter 5. Installation and Testing

0x08000000 - Ox083fffff Application flash
0x10000000 - Ox1O7fffff SA-1101 Board Registers
0x18000000 - 0x18O0fffff Ct8020 DSP
0x18400000 - Ox184fffff XBusReg

0x18800000 - 0Ox188fffff SysRegA

0x18c00000 - Ox18cfffff SysRegB

0x19000000 - Ox193fffff Spare CPLD A
0x19400000 - Ox197fffff Spare CPLD B
0x20000000 - Ox3fffffff PCMCIA

0x80000000 - Oxbfffffff SA1100 Internal Registers
0xc0000000 - OxcO7fffff DRAM Bank 0
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description

0x00000000 - Ox007fffff

0x19000000 - Ox193fffff Spare CPLD A
0x19400000 - Ox197fffff Spare CPLD B
0x20000000 - Ox3fffffff N N PCMCIA

0x50000000 - Ox500fffff Y Y Boot flash

0x80000000 - Oxbfffffff N N SA1100 Internal Registers
0xc0000000 - OxcO7fffff N Y DRAM Bank O
0xe0000000 - Oxe7ffffff Y Y Cache Clean

Y Y DRAM Bank 0
0x08000000 - Ox083fffff Y Y Application flash
0x10000000 - Ox100fffff N N SA-1101 Registers
0x18000000 - 0x180fffff N N Ct8020 DSP
0x18400000 - Ox184fffff N N XBusReg
0x18800000 - Ox188fffff N N SysRegA
0x18c00000 - Ox18cfffff N N SysRegB

N N

N N

Platform Resource Usage

The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=sal1l00mm
export ARCH_DIR=arm
export PLATFORM_DIR=sal11x0/sa1100mm

The names of configuration files are listed above with the description of the associated modes.

103

Chapter 5. Installation and Testing

ARM/StrongARM(SA1110) Intel SA1110 (Assabet)

Overview

RedBoot supports the board serial port and the compact flash ethernet port. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the Assabet.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from the@edboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A Windows or Linux utility is used to program flash over parallel port driven JTAG interface. See board
documentation for details on in situ flash programming.

The flash parts are also socketed and may be programmed in a suitable device programmer.

Special RedBoot Commands

None.

Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO7ffffff flash

0x08000000 - OxOfffffff SA-1111 Board flash
0x10000000 - Ox1T7ffffff Board Registers
0x18000000 - OxIfffffff Ethernet

0x20000000 - Ox2fffffff SA-1111 Board PCMCIA
0x30000000 - Ox3fffffff Compact Flash
0x40000000 - Ox47ffffff SA-1111 Board
0x48000000 - Ox4bffffff GFX

0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - Oxc7ffffff DRAM Bank 0
0xc8000000 - Oxcfffffff DRAM Bank 1
0xd0000000 - Oxd7ffffff DRAM Bank 2
0xd8000000 - Oxdfffffff DRAM Bank 3
0xe0000000 - OxeTffffff Cache Clean

104

Chapter 5. Installation and Testing

Virtual Address Range C B Description

0x00000000 - OxO1ffffff
0x08000000 - OxOfffffff
0x10000000 - Ox17ffffff
0x18000000 - OxIfffffff
0x20000000 - Ox2fffffff SA-1111 Board PCMCIA
0x30000000 - Ox3fffffff Compact Flash

Y Y DRAM Bank 0

YY

N N

N N

N N

N N
0x40000000 - Ox47ffffff N N SA-1111 Board

N N

YY

N N

NY

YY

SA-1111 Board flash
Board Registers
Ethernet

0x48000000 - Ox4bffffff GFX

0x50000000 - Ox5Tffffff flash

0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - Oxc1ffffff DRAM Bank 0
0xe0000000 - OxeTffffff Cache Clean

Platform Resource Usage

The SA11x0 OS timer is used as a polled timer to provide timeout support for network and XModem file
transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=assabet
export ARCH_DIR=arm
export PLATFORM_DIR=sallx0/assabet

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and
nanoEngine

Overview

RedBoot supports a serial port and the built in ethernet port for communication and downloads. The default
serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the system flash
region.

The following RedBoot configurations are supported:

Configuration Mode Description File

POST [ROM] RedBoot running from thgedboot_ ROM.ecm
first free flash block at
0x40000.

105

Chapter 5. Installation and Testing

106

Configuration Mode Description File

RAM [RAM] RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

Unlike other targets, the nanoEngine comes equipped with boot firmware which you cannot modify. See chap-
ter 5, "nanoEngine Firmware" of ttmnoEngine Hardware Reference Man(ak refer to "July 17, 2000 Rev
0.6") from Bright Star Engineering.

Because of this, eCos, and therefore Redboot, only supports a special configuration of the ROM mode, starting
at offset 0x40000 in the flash.

Briefly, the POST-configuration RedBoot image lives in flash following the BSE firmware. The BSE firmware
is configured, using its standabdotcmd command, to run RedBoot at startup.

Download Instructions

You can perform the initial load of the POST-configuration RedBoot image into flash using the BSE firmware’s
load command. This will load a binary file, using TFTP, and program it into flash in one operation. Because no
memory management is used in the BSE firmware, flash is mapped from address zero upwards, so the address
for the RedBoot POST image is 0x40000. You must use the binary version of RedBoot foedbis;-

post.bin

This assumes you have set up the other BSE firmware config parameters such that it can communicate over
your network to your TFTP server.

>load redboot-post.bin 40000
loading ... erasing blk at 00040000
erasing blk at 00050000

94168 bytes loaded cksum 00008579
done

>

> set bootcmd "go 40000"

> get

myip = 10.16.19.198

netmask = 255.255.255.0

eth =0

gateway = 10.16.19.66

serverip = 10.16.19.66

bootcmd = go 40000

>

NOTE: the BSE firmware runs its serial 10 at 9600 Baud; RedBoot runs instead at 38400 Baud. You must
select the right baud rate in your terminal program to be able to set up the BSE firmware.

After a reset, the BSE firmware will print

Boot: BSE 2000 Sep 12 2000 14:00:30
autoboot: "go 40000" [hit ESC to abort]

and then RedBoot starts, switching to 38400 Baud.

Chapter 5. Installation and Testing

Once you have installed a bootable RedBoot in the system in this manner, we advise re-installing using the
generic method described@hapter 4n order that the Flash Image System contains an appropriate description
of the flash entries.

Cohabiting with POST in Flash

The configuration file nameekdboot_POST.ecm configures RedBoot to build for execution at address
0x50040000 (or, during bootup, 0x00040000). This is to allow power-on self-test (POST) code or immutable
firmware to live in the lower addresses of the flash and to run before RedBoot gets control. The assumption is
that RedBoot will be entered at its base address in physical memory, that is 0x00040000.

Alternatively, for testing, you can call it in an already running system by ugingddx50040040 at another
RedBoot prompt, or a branch to that address. The address is where the reset vector points. It is reported by
RedBoot'sload command and listed by tHes list command, amongst other places.

Using the POST configuration enables a normal config option which causes linking and initialization against
memory layout files called "...post..." rather than "...rom..." or "...ram..." inridiede/pkgconf directory.
Specifically:

include/pkgconf/mlt_arm_sal1x0_nano_post.h
include/pkgconf/mlt_arm_sal1x0_nano_post.Idi
include/pkgconf/mlt_arm_sal1x0_nano_post.mit

It is these you should edit if you wish to move the execution address from 0x50040000 in the POST configu-
ration. Startup mode naturally remains ROM in this configuration.

Because the nanoEngine contains immutable boot firmware at the start of flash, RedBoot for this target is
configured to reserve that area in the Flash Image System, and to create by default an entry for the POST mode
RedBoot.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
(reserved) 0x50000000 0x50000000 0x00040000 0x00000000
RedBoot[post] 0x50040000 0x00100000 0x00020000 0x50040040
RedBoot config 0x503E0000 0x503E0000 0x00010000 0x00000000
FIS directory 0x503F0000 0x503F0000 0x00010000 0x00000000
RedBoot>

The entry "(reserved)" ensures that the FIS cannot attempt to overwrite the BSE firmware, thus ensuring that
the board remains bootable and recoverable even after installing a broken RedBoot image.

Special RedBoot Commands

The nanoEngine/commEngine has one or two Intel i82559 Ethernet controllers installed, but these have no
associated serial EEPROM in which to record their Ethernet Station Address (ESA, or MAC address). The
BSE firmware records an ESA for the device it uses, but this information is not available to RedBoot; we
cannot share it.

To keep the ESAs for the two ethernet interfaces, two new items of RedBoot configuration data are introduced.
You can list them with the RedBoot commafudnfig - thus:

RedBoot> fconfig -l

Run script at boot: false

Use BOOTP for network configuration: false
Local IP address: 10.16.19.91

Default server IP address: 10.16.19.66

107

Chapter 5. Installation and Testing

108

Network hardware address [MAC] for ethO: 0x00:0xB5:0xE0:0xB5:0xE0:0x99
Network hardware address [MAC] for ethl: 0x00:0xB5:0xE0:0xB5:0xE0:0x9A
GDB connection port: 9000

Network debug at boot time: false

RedBoot>

You should set them before running RedBoot or eCos applications with the board connected to a network. The
fconfig command can be used as for any configuration data item; the entire ESA is entered in one line.

Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - Ox003fffff 4Mb FLASH (nCSO0)

0x18000000 - Ox18ffffff Internal PCIl bus - 2 x i82559 ethernet
0x40000000 - OxA4fffffff External 10 or PCI bus

0x80000000 - Oxbfffffff SA-1110 Internal Registers

0xc0000000 - OxcT7ffffff DRAM Bank 0 - 32Mb SDRAM
0xc8000000 - Oxcfffffff DRAM Bank 1 - empty

0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description
0x00000000 - OxOQO0ifffff Y 'Y DRAM - 8Mb to 32Mb

0x18000000 - Ox180fffff N N Internal PCl bus - 2 x i82559 ethernet
0x40000000 - OxA4fffffff External IO or PCI bus

0x50000000 - Ox51ffffff Up to 32Mb FLASH (nCS0)
0x80000000 - Oxbfffffff SA-1110 Internal Registers

0xc0000000 - OxcOffffff DRAM Bank 0: 8 or 16Mb

0xc8000000 - Oxc8ffffff DRAM Bank 1: 8 or 16Mb or absent
0xe0000000 - OxeTffffff Cache Clean

<zzZ2<?Z2
<=<x=<2Z<Z

The ethernet devices use a "PCI window" to communicate with the CPU. This is 1Mb of SDRAM which is
shared with the ethernet devices that are on the PCI bus. It is neither cached nor buffered, to ensure that CPU
and PCI accesses see correct data in the correct order. By default it is configured to be megabyte number 30,
at addresses 0x01e00000-0x01efffff. This can be modified, and indeed must be, if less than 32Mb of SDRAM
is installed, via the memory layout tool, or by moving the sectiopci window referred to by symbols
CYGMEM_SECTION_pci_window* in the linker script.

Though the nanoEngine ships with 32Mb of SDRAM all attached to DRAM bank 0, the code can cope with
any of these combinations also; "2 x " in this context means one device in each DRAM Bank.

1x8Mb=8Mb 2x8Mb=16Mb
1x16Mb=16Mb 2 x 16Mb = 32Mb

All are programmed the same in the memory controller.

Startup code detects which is fitted and programs the memory map accordingly. If the device(s) is 8Mb, then
there are gaps in the physical memory map, because a high order address bit is not connected. The gaps are the
higher 2Mb out of every 4Mb.

Chapter 5. Installation and Testing

The SA11x0 OS timer is used as a polled timer to provide timeout support within RedBoot.

Nano Platform Port
The nano is in the set of SA11X0-based platforms. It uses the arm architectural HAL, the sal11x0 variant HAL,
plus the nano platform hal. These are components

CYGPKG_HAL_ARM hal/arm/arch/
CYGPKG_HAL_ARM_SA11X0 hal/arm/sal1x0/var
CYGPKG_HAL_ARM_SA11X0 NANO hal/arm/sallx0/nano
respectively.

The target name is "nano" which includes all these, plus the ethernet driver packages, flash driver, and so on.

Ethernet Driver

The ethernet driver is in two parts:

A generic ether driver for Intel i8255x series devices, specifically the i82508ydgth/intel/i82559 s
package name iBYGPKG_DEVS_ETH_INTEL_I82559

The platform-specific ether driver ivs/eth/arm/nano . ItS package i€YGPKG_DEVS_ETH_ARM_NAN®is

tells the generic driver the address in IO memory of the chip, for example, and other configuration details. This
driver picks up the ESA from RedBoot’s configuration data - unless configured to use a static ESA in the usual
manner.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=nano
export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/nano

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC

Overview

RedBoot supports the serial port via cradle or cable, and Compact Flash ethernet cards if fitted for communi-
cation and downloads. The LCD touchscreen may also be used for the console, although by default RedBoot
will switch exclusively to one channel once input arrives.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the
system flash region.

The following RedBoot configurations are supported:

109

Chapter 5. Installation and Testing

110

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot_RAM.ecm

RAM with RedBoot in the
flash boot sector.

WIinCE [RAM] RedBoot running from |[redboot_WIinCE.ecm
RAM, started from
OSloader.

Initial Installation

RedBoot ROM and WIinCE mode images are needed by the installation process.

Installing RedBoot on the iPAQ using Windows/CE

The Windows/CE environment originally shipped with the iPAQ contains a hidden mini-loader, sometimes
referred to as the "Parrot” loader. This loader can be started by holding down the action button (the joypad)
while resetting the unit or when powering on. At this point, a blue bird will appear on the LCD screen. Also at
this point, a simple loader can be accessed over the serial port at 115200/8N1. Using this loader, the contents
of the iPAQ flash memory can be saved to a Compact Flash memory card.

NOTE: We have only tested this operation with a 32Mbyte CF memory card. Given that the backup will
take 16MBytes + 1KByte, something more than a 16MByte card will be required.

Use the "r2c" command to dump Flash contents to the CF memory card. Once this completes, RedBoot can be
installed with no fear since the Parrot loader can be used to restore the Flash contents at a later time.

If you expect to completely recover the state of the iPAQ Win/CE environment, then HotSync should be run to
backup all "RAM" files as well before installing RedBoot.

The next step in installing RedBoot on the iPAQ actually involves Windows/CE, which is the native envi-
ronment on the unit. Using WIinCE, you need to install an application which will run a RAM based version
of RedBoot. Once this is installed and running, RedBoot can be used to update the flash with a native/ROM
version of RedBoot.

« Using ActiveSync, copy the file OSloader to your iPAQ.

+ Using ActiveSync, copy the file redboot_WinCE.bin to the iPAQ as bootldr in its root directory. Note: this is
not the top level folder displayed by Windows (Mobile Device), but rather the "My Pocket PC’ folder within
it.

« Execute OSloader. If you didn’t create a shortcut, then you will have to poke around for it using the WinCE
file explorer.

» Choose thd8ools->BootLdr->Run after loading from file menu item.

At this point, the RAM based version of RedBoot should be running. You should be able to return to this point
by just executing the last two steps of the previous process if necessary.

Chapter 5. Installation and Testing

Installing RedBoot on the iPAQ - using the Compaq boot loader

This method of installation is no longer supported. If you have previously installed either the Compaq boot
loader or older versions of RedBoot, restore the Win/CE environment and proceed as outlined above.

Setting up and testing RedBoot

When RedBoot first comes up, it will want to initialize its LCD touch screen parameters. It does this by
displaying a keyboard graphic and asks you to press certain keys. Using the stylus, press and hold until the
prompt is withdrawn. When you lift the stylus, RedBoot will continue with the next calibration.

Once the LCD touchscreen has been calibrated, RedBoot will start. The calibration step can be skipped by
pressing theeturn/abort button on the unit (right most button with a curved arrow icon). Additionally, the
unit will assume default values if the screen is not touched within about 15 seconds.

Once RedBoot has started, you should get information similar to this on the LCD screen. It will also appear on
the serial port at 38400,8,N,1.

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 06:17:41, Mar 19 2001
Platform: Compaq iPAQ Pocket PC (StrongARM 1110)

Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x01fc0000, 0x0001f200-0x01f70000 available
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes
each.

Since the LCD touchscreen is only 30 characters wide, some of this data will be off the right hand side of the
display. The joypad may be used to pan left and right in order to see the full lines.

If you have a Compact Flash ethernet card, RedBoot should find it. You'll need to have BOOTP enabled for
this unit (see your sysadmin for details). If it does, it will print a message like:

.. Waiting for network card: .Ready!

Socket Communications Inc: CF+ LPE Revision E 08/04/99
IP: 192.168.1.34, Default server: 192.168.1.101

Installing RedBoot permanently

Once you are satisfied with the setup and that RedBoot is operating properly in your environment, you can set

111

Chapter 5. Installation and Testing

up your iPAQ unit to have RedBoot be the bootstrap application.

CAUTION

This step will destroy your Windows/CE environment.

Before you take this step, it is strongly recommended you save your WinCE FLASH
contents as outlined above using the "parrot" loader, or by using the Compaq OSloader:

« Using OSloader on the iPAQ, select the Tools->Flash->Save to
files.... menu item.

« Four (4) files, 4MB each in size will be created.

- After each file is created, copy the file to your computer, then delete
the file from the iPAQ to make room in the WinCE ramdisk for the
next file.

You will need to download the version of RedBoot designed as the ROM bootstrap. Then install it permanently
using these commands:

RedBoot> lo -r -b 0x100000 redboot_ROM.bin
RedBoot> fi loc -f 0x50000000 -I 0x40000
RedBoot> fis init

RedBoot> fi unl -f 0x50040000 -I 0x40000
RedBoot> fi cr RedBoot -b 0x100000
RedBoot> fi loc -f 0x50040000 -I 0x40000
RedBoot> reset

WARNING

You must type these commands exactly! Failure to do so may render your iPAQ totally
useless. Once you've done this, RedBoot should come up every time you reset.

Restoring Windows/CE

To restore Windows/CE from the backup takentlie Section callednstalling RedBoot permanenlyisit
http://mww.handhelds.org/projects/wincerestoration.html for directions.

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this board (see
the Section calledExecuting Programs from RedBoiot Chapter 2. The execparameters used for the iPAQ
are:

-b <addr>

Location Linux kernel was loaded to

-l <len>

Length of kernel

112

Chapter 5. Installation and Testing

-Cc "params”

-r <addr>

-s<len>

Parameters passed to kernel

‘initrd’ ramdisk location

Length of initrd ramdisk

Linux kernels may be run on the iPAQ using the sources from the anonymous CVS repository at the
Handhelds project (http://www.handhelds.org/) with thinux.patch patch file applied. This file

can be found in themisc/ subdirectory of the iPAQ platform HAL in the RedBoot sources, normally
hal/arm/sal1x0/ipaqg/ VERSIONmisc/

On the iIPAQ (and indeed all SA11x0 platforms), Linux expects to be loaded at address OxC0008000 and the
entry point is also at 0xC0008000.

Memory Maps

RedBoot sets up the following memory map on the iPAQ: The first level page table is located at physical
address 0xC0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOXLffffff 16Mb to 32Mb FLASH (nCSO0) [organized as below]

0x000000 - Ox0003ffff Parrot Loader
0x040000 - 0x0007ffff RedBoot
0xf80000 - OxO0O0fbffff Fconfig data
0xfc0000 - OxOOffffff FIS directory

0x30000000 - Ox3fffffff Compact Flash

0x48000000 - OxA4bffffff iPAQ internal registers
0x80000000 - OxDbfffffff SA-1110 Internal Registers
0xc0000000 - OxcIffffff DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description

0x00000000 - OxOiffffff Y Y DRAM - 32Mb

0x30000000 - Ox3fffffff N N Compact Flash

0x48000000 - Ox4bffffff N N iPAQ internal registers
0x50000000 - Ox51ffffff Y Y Up to 32Mb FLASH (nCSO0)
0x80000000 - Oxbfffffff N N SA-1110 Internal Registers
0xc0000000 - Oxciffffff N Y DRAM Bank 0: 32Mb
0xe0000000 - Oxe7ffffff Y Y Cache Clean

113

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=ipaq
export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/ipaq

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11XO0) Intrinsyc CerfCube

114

Overview
RedBoot supports the serial port and the builtin ethernet connection for communication and downloads.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the
system flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from th@edboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

The original boot loader supplied with the CerfCube can be used to install RedBoot. Connect to the device
using a serial port at 38400/8N1. Copy the binary RedBoot ROM mode image to an available TFTP server.
Issue these commands to the Instrinsyc loader:

download tftp: X XXX redboot_ROM.bin 0xc0000000
flashloader 0x00000000 0xc0000000 0x20000

wherex.x.x.x is the IP address of the TFTP server.

NOTE: Other installation methods may be available via the Intrinsyc loader. Contact Intrinsyc for details.

Chapter 5. Installation and Testing

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this board (see
the Section calle&xecuting Programs from RedBadntChapter 2. Theexecparameters used for the CerfCube

are:
-b <addr>

Location Linux kernel was loaded to
-l <len>

Length of kernel
-c "params”

Parameters passed to kernel
-r <addr>

'initrd’ ramdisk location
-s<len>

Length of initrd ramdisk

Memory Maps

RedBoot sets up the following memory map on the CerfCube: The first level page table is located at physical
address 0xC0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOXLffffff 16Mb to 32Mb FLASH (nCSO0) [organized as below]

0x000000 - 0x0001ffff RedBoot

0x020000 - 0x0003ffff RedBoot [RAM version]
0xfc0000 - 0x0O0fdffff Fconfig data

0xfe0000 - OxOOffffff FIS directory

0x0f000000 - OxOfffffff Onboard ethernet

0x10000000 - Ox1Tffffff CerfCube internal registers
0x20000000 - Ox3fffffff PCMCIA / Compact Flash
0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - OxcAffffff DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description
0x00000000 - OxOXLffffff
0x08000000 - OxOfffffff
0x10000000 - Ox17ffffff
0x20000000 - Ox3fffffff
0x50000000 - Ox51ffffff
0x80000000 - Oxbfffffff
0xc0000000 - Oxcaffffff

DRAM - 32Mb

Onboard ethernet controller
CerfCube internal registers
PCMCIA / Compact Flash
Up to 32Mb FLASH (nCSO0)
SA-1110 Internal Registers
DRAM Bank 0: 32Mb

z2Z2<xZ=z2 <
<Z<Zz2Z<

115

Chapter 5. Installation and Testing

0xe0000000 - OxeTffffff Y Y Cache Clean

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=cerf

export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/cerf

The names of configuration files are listed above with the description of the associated modes.

ARM/Xscale Cyclone 1Q80310

Overview

RedBoot supports both serial ports and the built-in ethernet port for communication and downloads. The default
serial port settings are 115200,8,N,1. RedBoot also supports flash management for the onboard 8MB flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot_ RAM.ecm

RAM with RedBoot in the
flash boot sector.

ROMA [ROM] RedBoot running from redboot ROMA.ecm
flash address 0x40000,
with ARM bootloader in
flash boot sector.
RAMA [RAM] RedBoot running from |[redboot RAMA.ecm
RAM with ARM
bootloader in flash boot
sector.

Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash over the PCI
bus, and this is required for initial installations of RedBoot. Please see the board manual for information on
using this utility. In general, the process involves programming one of the two flash based RedBoot images to
flash. The ROM mode RedBoot (which runs from the flash boot sector) should be programmed to flash address

116

Chapter 5. Installation and Testing

0x00000000. The ROMA RedBoot mode (which is started by the ARM bootloader) should be programmed to
flash address 0x00004000.

To install RedBoot to run from the flash boot sector, use the manufacturer’s flash utility to install the ROM
mode image at address zero.

To install RedBoot to run from address 0x40000 with the ARM bootloader in the flash boot sector, use the
manufacturer’s flash utility to install the ROMA mode image at address 0x40000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the above message
is not printed, it may be a good idea to reinitialize the flash anyway. Do this witlisthemmand:

RedBoot> fis init
About to initialize [format] flash image system - continue (y/n)? y
*** |nitialize flash Image System
Warning: device contents not erased, some blocks may not be usable
. Unlock from 0x007e0000-0x00800000: .
. Erase from 0x007e0000-0x00800000: .
. Program from 0xalfd0000-Oxalfd0400 at 0x007e0000: .
. Lock from 0x007e0000-0x00800000: .
Followed by the fconfig command:
RedBoot> fconfig

Run script at boot: false

Use BOOTP for network configuration: false

Local IP address: 192.168.1.153

Default server IP address: 192.168.1.10

GDB connection port: 1000

Network debug at boot time: false

Update RedBoot non-volatile configuration - continue (y/n)? y

. Unlock from 0x007c0000-0x007e0000: .

. Erase from 0x007c0000-0x007e0000: .

. Program from 0xa0013018-0xa0013418 at 0x007c0000: .
. Lock from 0x007c0000-0x007e0000: .

Note: When later updating RedBoot in situ, it is important to use a matching ROM and RAM mode pair of
images. So use either RAM/ROM or RAMA/ROMA images. Do not mix them.

Error codes

RedBoot uses the two digit LED display to indicate errors during board initialization. Possible error codes are:
88 - Unknown Error
55 -12C Error

FF - SDRAM Error
01 - No Error

117

Chapter 5. Installation and Testing

Using RedBoot with ARM Bootloader

RedBoot can coexist with ARM tools in flash on the 1Q80310 board. In this configuration, the ARM bootloader
will occupy the flash boot sector while RedBoot is located at flash address 0x40000. The sixteen position rotary
switch is used to tell the ARM bootloader to jump to the RedBoot image located at address 0x40000. RedBoot
is selected by switch position 0 or 1. Other switch positions are used by the ARM firmware and RedBoot will
not be started.

Special RedBoot Commands

A special RedBoot commandijag, is used to access a set of hardware diagnostics provided by the board
manufacturer. To access the diagnostic menu, enter diag at the RedBoot prompt:

RedBoot> diag

Entering Hardware Diagnostics - Disabling Data Cache!
1 - Memory Tests

2 - Repeating Memory Tests

- 16C552 DUART Serial Port Tests

- Rotary Switch S1 Test for positions 0-3

- seven Segment LED Tests

Backplane Detection Test

- Battery Status Test

- External Timer Test

- 182559 Ethernet Configuration

10 - i82559 Ethernet Test

11 - Secondary PCI Bus Test

12 - Primary PCl Bus Test

13 - i960Rx/303 PCI Interrupt Test

14 - Internal Timer Test

15 - GPIO Test

0 - quit Enter the menu item number (0 to quit):

© 0o ~NOO O~ W
'

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

1Q80310 Hardware Tests

- Memory Tests

- Repeating Memory Tests

- 16C552 DUART Serial Port Tests

- Rotary Switch S1 Test for positions 0-3
7 Segment LED Tests

- Backplane Detection Test

- Battery Status Test

- External Timer Test

- 182559 Ethernet Configuration

10 - i82559 Ethernet Test

11 - i960Rx/303 PCI Interrupt Test

12 - Internal Timer Test

13 - Secondary PCIl Bus Test

14 - Primary PCl Bus Test

15 - Battery Backup SDRAM Memory Test
16 - GPIO Test

17 - Repeat-On-Fail Memory Test

18 - Coyonosa Cache Loop (No return)

19 - Show Software and Hardware Revision
0 - quit

© 00O ~NO 0TS WNPE
'

118

Chapter 5. Installation and Testing

Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=ig80310
export ARCH_DIR=arm
export PLATFORM_DIR=iq80310

The names of configuration files are listed above with the description of the associated modes.

Interrupts

RedBoot uses an interrupt vector table which is located at address OXAOOOAQ04. Entries in this table are
pointers to functions with this protoype::

int irq_handler(unsigned vector, unsigned data)

On an 1Q80310 board, the vector argument is one of 49 interrupts defined in
hal/arm/ig80310/current/include/hal_platform_ints.h: .

/I *** 80200 CPU ***

#define CYGNUM_HAL_INTERRUPT_reserved0 0

#define CYGNUM_HAL_INTERRUPT_PMU_PMNO_OVFL 1 // See Ch.12 - Performance Mon.
#define CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL 2 // PMU counter 0/1 overflow
#define CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL 3 // PMU clock overflow

#define CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT 4 // See Ch.11 - Bus Control Unit
#define CYGNUM_HAL_INTERRUPT_NIRQ 5 /I external IRQ

#define CYGNUM_HAL_INTERRUPT_NFIQ 6 /I external FIQ

/I ** XINT6 interrupts ***

#define CYGNUM_HAL_INTERRUPT_DMA_O 7

#define CYGNUM_HAL_INTERRUPT_DMA_1 8

#define CYGNUM_HAL_INTERRUPT_DMA_2 9

#define CYGNUM_HAL_INTERRUPT_GTSC 10 // Global Time Stamp Counter
#define CYGNUM_HAL_INTERRUPT_PEC 11 /I Performance Event Counter
#define CYGNUM_HAL_INTERRUPT_AAIP 12 // application accelerator unit

/I ** XINT7 interrupts ***

/I 12C interrupts

#define CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY 13
#define CYGNUM_HAL_INTERRUPT_I2C_RX_FULL 14
#define CYGNUM_HAL_INTERRUPT_I2C_BUS_ERR 15
#define CYGNUM_HAL_INTERRUPT_I2C_STOP 16
#define CYGNUM_HAL_INTERRUPT_I2C_LOSS 17
#define CYGNUM_HAL_INTERRUPT_I2C_ADDRESS 18

119

Chapter 5. Installation and Testing

/I Messaging Unit interrupts

#define CYGNUM_HAL_INTERRUPT_MESSAGE_0 19
#define CYGNUM_HAL_INTERRUPT_MESSAGE_1 20
#define CYGNUM_HAL_INTERRUPT_DOORBELL 21
#define CYGNUM_HAL_INTERRUPT_NMI_DOORBELL 22
#define CYGNUM_HAL_INTERRUPT_QUEUE_POST 23
#define CYGNUM_HAL_INTERRUPT_OUTBOUND_QUEUE_FULL 24
#define CYGNUM_HAL_INTERRUPT_INDEX_ REGISTER 25
/I PCl Address Translation Unit

#define CYGNUM_HAL_INTERRUPT_BIST 26

/I *** External board interrupts (XINT3) ***

#define CYGNUM_HAL_INTERRUPT_TIMER 27 Il external timer
#define CYGNUM_HAL_INTERRUPT_ETHERNET 28 /I onboard enet
#define CYGNUM_HAL_INTERRUPT_SERIAL_A 29 // 16x50 uart A
#define CYGNUM_HAL_INTERRUPT_SERIAL_B 30 // 16x50 uart B

#define CYGNUM_HAL_INTERRUPT_PCI_S INTD 31 // secondary PCl INTD
/I The hardware doesn't (yet?) provide masking or status for these

/I even though they can trigger cpu interrupts. ISRs will need to

/I poll the device to see if the device actually triggered the

/I interrupt.

#define CYGNUM_HAL_INTERRUPT_PCI_S INTC 32 // secondary PCI INTC
#define CYGNUM_HAL_INTERRUPT_PCI_S _INTB 33 // secondary PCI INTB
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTA 34 // secondary PCI INTA

/I *** NMI Interrupts go to FIQ ***

#define CYGNUM_HAL_INTERRUPT_MCU_ERR 35
#define CYGNUM_HAL_INTERRUPT_PATU_ERR 36
#define CYGNUM_HAL_INTERRUPT_SATU_ERR 37
#define CYGNUM_HAL_INTERRUPT_PBDG_ERR 38
#define CYGNUM_HAL_INTERRUPT_SBDG_ERR 39
#define CYGNUM_HAL_INTERRUPT_DMAOQO_ERR 40
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR 41
#define CYGNUM_HAL_INTERRUPT_DMA2_ERR 42
#define CYGNUM_HAL_INTERRUPT_MU_ERR 43
#define CYGNUM_HAL_INTERRUPT _reserved52 44

#define CYGNUM_HAL_INTERRUPT_AAU_ERR 45
#define CYGNUM_HAL_INTERRUPT_BIU_ERR 46

/I *=** ATU FIQ sources ***

#define CYGNUM_HAL_INTERRUPT_P_SERR 47
#define CYGNUM_HAL_INTERRUPT_S_SERR 48
The data passed to the ISR is pulled from a data tahleinterrupt_data) which immediately follows the

interrupt vector table. With 49 interrupts, the data table starts at address OxAOO0AOCS.

An application may create a hormal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

120

Chapter 5. Installation and Testing

Memory Maps

The first level page table is located at 0xa0004000. Two second level tables are also used. One second level
table is located at 0xa0008000 and maps the first LMB of flash. The other second level table is at 0xa0008400,
and maps the first 1IMB of SDRAM.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - 0x00000fff flash Memory

0x00001000 - 0x00001fff 80312 Internal Registers
0x00002000 - Ox0O07fffff flash Memory

0x00800000 - OxTfffffff PCl ATU Outbound Direct Window
0x80000000 - Ox83ffffff Primary PCIl 32-bit Memory
0x84000000 - Ox87ffffff Primary PCl 64-bit Memory
0x88000000 - Ox8bffffff Secondary PCIl 32-bit Memory
0x8c000000 - Ox8fffffff Secondary PCI 64-bit Memory
0x90000000 - 0x9000ffff Primary PCI IO Space
0x90010000 - 0x9001ffff Secondary PCI IO Space
0x90020000 - Oxfffffff Unused

0xa0000000 - Oxbfffffff SDRAM

0xc0000000 - Oxefffffff Unused

0xf0000000 - Oxffffffff 80200 Internal Registers

Virtual Address Range C B Description
0x00000000 - 0x00000fff Y Y SDRAM

0x00001000 - 0x00001fff N N 80312 Internal Registers
0x00002000 - Ox007fffff Y N flash Memory

0x00800000 - Ox7fffffff N N PCI ATU Outbound Direct Window
0x80000000 - Ox83ffffff N N Primary PCl 32-bit Memory
0x84000000 - Ox87ffffff N N Primary PCl 64-bit Memory
0x88000000 - Ox8bffffff N N Secondary PCI 32-bit Memory
0x8c000000 - Ox8fffffff N N Secondary PCIl 64-bit Memory
0x90000000 - 0x9000ffff N N Primary PCI 10 Space
0x90010000 - 0x9001ffff N N Secondary PCl 10 Space
0xa0000000 - Oxbfffffff Y Y SDRAM

0xc0000000 - Oxcfffffff Y Y Cache Flush Region

0xd0000000 - 0OxdOO0O0offf Y N first 4k page of flash
0xf0000000 - Oxffffffff N N 80200 Internal Registers

Platform Resource Usage

The external timer is used as a polled timer to provide timeout support for networking and XModem file
transfers.

121

Chapter 5. Installation and Testing

ARM/Xscale Intel IQ80321

122

Overview

RedBoot supports the serial port and the built-in ethernet port for communication and downloads. The default
serial port settings are 115200,8,N,1. RedBoot also supports flash management for the onboard 8MB flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from the@edboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash over the PCI
bus, and this is required for initial installations of RedBoot. Please see the board manual for information
on using this utility. In general, the process involves programming the ROM mode RedBoot image to flash.
RedBoot should be programmed to flash address 0x00000000 using the DOS utility.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the above message
is not printed, it may be a good idea to reinitialize the flash anyway. Do this witfisthemmand:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** |nitialize FLASH Image System

Warning: device contents not erased, some blocks may not be usable

. Unlock from 0xf07e0000-0xf0800000: .

. Erase from 0xf07e0000-0xf0800000: .

. Program from 0x01ddf000-0x01ddf400 at 0xf07e0000: .

. Lock from 0xf07e0000-0xf0800000: .

Switch Settings

The 80321 board is highly configurable through a number of switches and jumpers. RedBoot makes some
assumptions about board configuration and attention must be paid to these assumptions for reliable RedBoot
operation:

« The onboard ethernet and the secondary slot may be placed in a private space so that they are not seen by
a PC BIOS. If the board is to be used in a PC with BIOS, then the ethernet should be placed in this private
space so that RedBoot and the BIOS do not conflict.

Chapter 5. Installation and Testing

- RedBoot assumes that the board is plugged into a PC with BIOS. This requires RedBoot to detect when the
BIOS has configured the PCI-X secondary bus. If the board is placed in a backplane, RedBoot will never see
the BIOS configure the secondary bus. To prevent this wait, set switch S7E1-3 to ON when using the board
in a backplane.

- For the remaining switch settings, the following is a known good configuration:

S1D1 All OFF
S7EL 7 is ON, all others OFF
S8E1 2,3,5,6 are ON, all others OFF
S8E2 2,3 are ON, all others OFF
SOE1 3 is ON, all others OFF
S4D1 1,3 are ON, all others OFF
JOE1 2,3 jumpered
JOF1 2,3 jumpered
J3F1 Nothing jumpered
J3G1 2,3 jumpered
J1G2 2,3 jumpered

LED Codes

RedBoot uses the two digit LED display to indicate status during board initialization. Possible codes are:

LED Actions

Power-On/Reset
88
Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup PBIU chip selects
Al
Enable the Icache
A2
Move FLASH chip select from 0x0 to 0xFO000000
Jump to new FLASH location
A3
Setup and enable the MMU
A4
12C interface initialization
90
Wait for 12C initialization to complete
91
Send address (via 12C) to the DIMM
92
Wait for transmit complete
93
Read SDRAM PD data from DIMM

123

Chapter 5. Installation and Testing

94
Read remainder of EEPROM data.
An error will result in one of the following
error codes on the LEDs:
77 BAD EEPROM checksum
55 12C protocol error
FF bank size error
A5
Setup DDR memory interface
A6
Enable branch target buffer
Drain the write & fill buffers
Flush Icache, Dcache and BTB
Flush instuction and data TLBs
Drain the write & fill buffers
SL
ECC Scrub Loop
SE
A7
Clean, drain, flush the main Dcache
A8
Clean, drain, flush the mini Dcache
Flush Dcache
Drain the write & fill buffers
A9
Enable ECC

Save SDRAM size

Move MMU tables into RAM
AB

Clean, drain, flush the main Dcache

Clean, drain, flush the mini Dcache

Drain the write & fill buffers
AC

Set the TTB register to DRAM mmu_table
AD

Set mode to IRQ mode
A7

Move SWI & Undefined "vectors" to RAM (at 0x0)
A6

Switch to supervisor mode
A5

Move remaining "vectors” to RAM (at 0x0)
A4

Copy DATA to RAM

Initialize interrupt exception environment

Initialize stack

Clear BSS section
A3

Call platform specific hardware initialization
A2

Run through static constructors

124

Chapter 5. Installation and Testing

Al
Start up the eCos kernel or RedBoot

Special RedBoot Commands

A special RedBoot commandjag, is used to access a set of hardware diagnostics. To access the diagnostic
menu, entediag at the RedBoot prompt:

RedBoot> diag
Entering Hardware Diagnostics - Disabling Data Cache!

1Q80321 Hardware Tests

- Memory Tests

- Repeating Memory Tests

- Repeat-On-Fail Memory Tests

- Rotary Switch S1 Test

7 Segment LED Tests

- 182544 Ethernet Configuration

- Baterry Status Test

- Battery Backup SDRAM Memory Test
- Timer Test

PCl Bus test

11 - CPU Cache Loop (No Return)

0 - quit

Enter the menu item number (0 to quit):

© 0O ~NOOOTh WN P
'

=
o
'

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

Memory Tests

This test is used to test installed DDR SDRAM memory. Five different tests are run over the given address
ranges. If errors are encountered, the test is aborted and information about the failure is printed. When selected,
the user will be prompted to enter the base address of the test range and its size. The numbers must be in hex
with no leading “Ox”

Enter the menu item number (0 to quit): 1
Base address of memory to test (in hex): 100000
Size of memory to test (in hex): 200000

Testing memory from 0x00100000 to OxO002fffff.

Walking 1's test:
0000000100000002000000040000000800000010000000200000004000000080
0000010000000200000004000000080000001000000020000000400000008000
0001000000020000000400000008000000100000002000000040000000800000
0100000002000000040000000800000010000000200000004000000080000000
passed

32-bit address test: passed

32-bit address bar test: passed

8-bit address test: passed

Byte address bar test: passed

Memory test done.

125

Chapter 5. Installation and Testing

126

Repeating Memory Tests

The repeating memory tests are exactly the same as the above memory tests, except that the tests are automat-
ically rerun after completion. The only way out of this test is to reset the board.

Repeat-On-Fail Memory Tests

This is similar to the repeating memory tests except that when an error is found, the failing test continuously
retries on the failing address.

Rotary Switch S1 Test

This tests the operation of the sixteen position rotary switch. When run, this test will display the current position
of the rotary switch on the LED display. Slowly dial through each position and confirm reading on LED.

7 Segment LED Tests

This tests the operation of the seven segment displays. When run, each LED cycles through 0 through F and a
decimal point.

182544 Ethernet Configuration

This test initializes the ethernet controller’s serial EEPROM if the current contents are invalid. In any case, this
test will also allow the user to enter a six byte ethernet MAC address into the serial EEPROM.

Enter the menu item number (0 to quit): 6

Current MAC address: 00:80:4d:46:00:02
Enter desired MAC address: 00:80:4d:46:00:01
Writing to the Serial EEPROM... Done

wixkiikk Reset The Board To Have Changes Take Effect ***

Battery Status Test

This tests the current status of the battery. First, the test checks to see if the battery is installed and reports that
finding. If the battery is installed, the test further determines whether the battery status is one or more of the
following:

- Battery is charging.
- Battery is fully discharged.

- Battery voltage measures within normal operating range.

Battery Backup SDRAM Memory Test
This tests the battery backup of SDRAM memory. This test is a three step process:

1. Select Battery backup test from main diag menu, then write data to SDRAM.

Chapter 5. Installation and Testing

2. Turn off power for 60 seconds, then repower the board.

3. Select Battery backup test from main diag menu, then check data that was written in step 1.

Timer Test

This tests the internal timer by printing a number of dots at one second intervals.

PCIl Bus Test

This tests the secondary PCI-X bus and socket. This test requires that an 1Q80310 board be plugged into the
secondary slot of the IOP80321 board. The test assumes at least 32MB of installed memory on the 1Q80310.
That memory is mapped into the IOP80321 address space and the memory tests are run on that memory.

CPU Cache Loop

This test puts the CPU into a tight loop run entirely from the ICache. This should prevent all external bus
accesses.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=iq80321
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/iq80321

The names of configuration files are listed above with the description of the associated modes.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are pointers to
functions with this protoype::

int irg_handler(unsigned vector, unsigned data)

On an 1Q80321 board, the vector argument is one of 32 interrupts defined in
hal/arm/xscale/verde/current/include/hal_var_ints.h: :

Il ** 80200 CPU ***

#define CYGNUM_HAL_INTERRUPT_DMAO_EOT
#define CYGNUM_HAL_INTERRUPT_DMAO_EOC
#define CYGNUM_HAL_INTERRUPT_DMA1_EOT
#define CYGNUM_HAL_INTERRUPT_DMA1_EOC
#define CYGNUM_HAL_INTERRUPT _RSVD_4
#define CYGNUM_HAL_INTERRUPT _RSVD 5
#define CYGNUM_HAL_INTERRUPT_AA _EOT
#define CYGNUM_HAL_INTERRUPT_AA_EOC
#define CYGNUM_HAL_INTERRUPT_CORE_PMON 8
#define CYGNUM_HAL_INTERRUPT_TIMERO 9
#define CYGNUM_HAL_INTERRUPT_TIMER1 10

\lmmhw,\,'_‘o

127

Chapter 5. Installation and Testing

128

#define CYGNUM_HAL_INTERRUPT_I2C 0 11
#define CYGNUM_HAL_INTERRUPT_I2C_1 12
#define CYGNUM_HAL_INTERRUPT_MESSAGING 13
#define CYGNUM_HAL_INTERRUPT_ATU_BIST 14
#define CYGNUM_HAL_INTERRUPT_PERFMON 15
#define CYGNUM_HAL_INTERRUPT_CORE_PMU 16
#define CYGNUM_HAL_INTERRUPT_BIU_ERR 17
#define CYGNUM_HAL_INTERRUPT_ATU_ERR 18
#define CYGNUM_HAL_INTERRUPT_MCU_ERR 19
#define CYGNUM_HAL_INTERRUPT_DMAO_ERR 20
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR 22
#define CYGNUM_HAL_INTERRUPT_AA_ERR 23
#define CYGNUM_HAL_INTERRUPT_MSG_ERR 24
#define CYGNUM_HAL_INTERRUPT_SSP 25
#define CYGNUM_HAL_INTERRUPT_RSVD_26 26
#define CYGNUM_HAL_INTERRUPT_XINTO 27
#define CYGNUM_HAL_INTERRUPT_XINT1 28
#define CYGNUM_HAL_INTERRUPT_XINT2 29
#define CYGNUM_HAL_INTERRUPT_XINT3 30
#define CYGNUM_HAL_INTERRUPT_HPI 31
The data passed to the ISR is pulled from a data t@hbleinterrupt_data) which immediately follows the

interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps

The RAM based page table is located at RAM start + 0x4000. RedBoot may be configured for one of two mem-
ory maps. The difference between them is the location of RAM and the PCI outbound windows. The alternative
memory map may be used when building RedBoot or eCos by usirRpineALTMARNAROM_ALTMABtartup

types in the configuration.

NOTE: The virtual memory maps in this section use a C, B, and X column to indicate the caching policy
for the region..

X C B Description

0 0 0 Uncached/Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
100 Invalid -- not used

1 0 1 Uncached/Buffered No write buffer coalescing
110 Mini DCache - Policy set by Aux Ctl Register
111 Cached/Buffered Write Back, Read/Write Allocate
Physical Address Range Description

0x00000000 - OxT7fffffff ATU Outbound Direct Window
0x80000000 - Ox900fffff ATU Outbound Translate Windows
0xa0000000 - Oxbfffffff SDRAM

0xf0000000 - 0xf0800000 FLASH (PBIU CSO0)

Chapter 5. Installation and Testing

0xfe800000 - Oxfe800fff UART (PBIU CS1)
0xfe840000 - 0xfe840fff Left 7-segment LED (PBIU CS3)
0xfe850000 - Oxfe850fff Right 7-segment LED (PBIU CS2)
0xfe8d0000 - Oxfe8dOfff Rotary Switch (PBIU CS4)
0xfe8f0000 - Oxfe8fOfff Baterry Status (PBIU CS5)
0xfff00000 - Oxffffffff Verde Memory mapped Registers

Default Virtual Map X C B Description

0x00000000 - Oxifffffff 1 1 1 SDRAM

0x20000000 - Oxofffffff O O O ATU Outbound Direct Window
0xa0000000 - OxbooOfffff 0 0 O ATU Outbound Translate Windows
0xc0000000 - Oxdfffffff O O O Uncached alias for SDRAM
0xe0000000 - OxeOOfffff 1 1 1 Cache flush region (ho phys mem)
0xf0000000 - 0xf0O800000 O 1 O FLASH (PBIU CSO0)
0xfe800000 - Oxfe800fff 0 0 O UART (PBIU CS1)
0xfe840000 - Oxfe840fff 0 O O Left 7-segment LED (PBIU CS3)
0xfe850000 - Oxfe850fff O O O Right 7-segment LED (PBIU CS2)
0xfe8d0000 - Oxfe8dOfff 0O O O Rotary Switch (PBIU CS4)
0xfe8f0000 - Oxfe8fOfff O O O Baterry Status (PBIU CS5)
0xfff00000 - Oxffffffff O O O Verde Memory mapped Registers

Alternate Virtual Map X C B Description
0x00000000 - Ox000fffff 1 1 1 Alias for 1st MB of SDRAM
0x00100000 - OxT7fffffff O O O ATU Outbound Direct Window
0x80000000 - 0x900fffff 0 0 0 ATU Outbound Translate Windows
0xa0000000 - Oxbfffffff 1 1 1 SDRAM

0xc0000000 - Oxdfffffff 0 O O Uncached alias for SDRAM

0xe0000000 - OxeOOfffff 1 1 1 Cache flush region (no phys mem)
0xf0000000 - Oxf0800000 0O 1 O FLASH (PBIU CSO0)
0xfe800000 - Oxfe800fff 0 0 O UART (PBIU CS1)
0xfe840000 - Oxfe840fff 0 O O Left 7-segment LED (PBIU CS3)
0xfe850000 - Oxfe850fff 0 O O Right 7-segment LED (PBIU CS2)
0xfe8d0000 - Oxfe8dOfff 0O O O Rotary Switch (PBIU CS4)
0xfe8f0000 - Oxfe8fOfff O O O Baterry Status (PBIU CS5)
O0xfff00000 - Oxffffffff O O O Verde Memory mapped Registers

Platform Resource Usage

The Verde programmable timer0 is used for timeout support for networking and XModem file transfers.

CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board

Overview

The Samsung CalmRISC16 evaluation platform consists of two boards connected by a ribbon cable. One
board contains the CPU core and memory. The other board is called the MDSChip board and provides the
host interface. The calmRISC16 is a harvard architecture with separate 22-bit program and data addresses.
The instruction set provides no instruction for writing to program memory. The MDSChip board firmware
(called CalmBreaker) provides a pseudo register interface so that code running on the core has access to a
serial channel and a mechanism to write to program memory. The serial channel is fixed at 57600-8-N-1 by

129

Chapter 5. Installation and Testing

130

the firmware. The CalmBreaker firmware also provides a serial protocol which allows a host to download a
program and to start or stop the core board.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running via the redboot ROM.ecm
MDSChip board.

Initial Installation Method

The CalmRISC16 core is controlled through the MDSChip board. There is no non-volatile storage available
for RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small utility program is
used to download S-record files to the eval board. Sources and build instructions for this utility are located in
the RedBoot sources ipackages/hal/calmrisc16/ceb/current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green 'Run’ LED on
the core board should go off. Now, use the utility to download the RedBoot image with:

$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf

Note that the ’-p /dev/term/b’ specifies the serial port to use and will vary from system to system. The download
will take about two minutes. After it finishes, start RedBoot with:

$ calmbreaker -p /dev/term/b --run

The 'Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and typing enter
should result in RedBoot reprinting the command prompt.

Special RedBoot Commands

None.

Special Note on Serial Channel

The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface to the core
board. This pseudo-register interface provides access to the serial channel and write access to program memory.
Those interfaces are slow and the serial channel is easily overrun by a fast host. For this reason, GDB must be
told to limit the size of code download packets to avoid serial overrun. This is done with the following GDB
command:

(gdb) set download-write-size 25

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=calm16_ceb
export ARCH_DIR=calmrisc16
export PLATFORM_DIR=ceb

The names of configuration files are listed above with the description of the associated modes.

CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board

Overview

The Samsung CalmRISC32 evaluation platform consists of two boards connected by a ribbon cable. One
board contains the CPU core and memory. The other board is called the MDSChip board and provides the
host interface. The calmRISC32 is a harvard architecture with separate 32-bit program and data addresses.
The instruction set provides no instruction for writing to program memory. The MDSChip board firmware
(called CalmBreaker) provides a pseudo register interface so that code running on the core has access to a
serial channel and a mechanism to write to program memory. The serial channel is fixed at 57600-8-N-1 by
the firmware. The CalmBreaker firmware also provides a serial protocol which allows a host to download a
program and to start or stop the core board.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running via the redboot_ ROM.ecm
MDSChip board.

Initial Installation Method

The calmRISC32 core is controlled through the MDSChip board. There is no non-volatile storage available for
RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small utility program is used
to download S-record files to the eval board. Sources and build instructions for this utility are located in the
RedBoot sources imackages/hal/calmrisc32/ceb/current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green 'Run’ LED on
the core board should go off. Now, use the utility to download the RedBoot image with:

$ calmbreaker -p /devi/term/b --reset --srec-code -f redboot.elf

Note that the "-p /dev/term/b’ specifies the serial port to use and will vary from system to syetm. The download
will take about two minutes. After it finishes, start RedBoot with:

$ calmbreaker -p /dev/term/b --run

The 'Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and typing enter
should result in RedBoot reprinting the command prompt.

131

Chapter 5. Installation and Testing

Special RedBoot Commands

None.

Special Note on Serial Channel

The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface to the core
board. This pseudo-register interface provides access to the serial channel and write access to program memory.
Those interfaces are slow and the serial channel is easily overrun by a fast host. For this reason, GDB must be
told to limit the size of code download packets to avoid serial overrun. This is done with the following GDB
command:

(gdb) set download-write-size 25

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=calm32_ceb
export ARCH_DIR=calmrisc32
export PLATFORM_DIR=ceb

The names of configuration files are listed above with the description of the associated modes.

FRV/FRV400 Fujitsu FR-V 400 (MB-93091)

132

Overview

RedBoot supports both serial ports, which are available via the stacked serial connectors on the mother board.
The topmost port is the default and is considered to be port 0 by RedBoot. The bottommost port is serial port
1. The default serial port settings are 38400,8,N,1.

FLASH management is also supported, but only for the FLASH device in IC7. This arrangement allows for
IC8 to retain either the original Fujitsu board firmware, or some application specific contents.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from |[redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.
RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Chapter 5. Installation and Testing

Initial Installation Method

RedBoot can be installed by directly programming the FLASH device in IC7 or by using the Fujitsu pro-
vided software to download and install a version into the FLASH device. Complete instructions are provided
separately.

Special RedBoot Commands

None.

Memory Maps

The memory map of this platform is fixed by the hardware (cannot be changed by software). The only attributes
which can be modified are control over cacheability, as noted below.

Address Cache? Resource
00000000-03EFFFFF Yes SDRAM (via plugin DIMM)
03F00000-03FFFFFF No SDRAM (used for PCI window)
10000000-1FFFFFFF No MB86943 PCI bridge
20000000-201FFFFF No SRAM
21000000-23FFFFFF No Motherboard resources
24000000-25FFFFFF No PCI 1/0 space
26000000-2FFFFFFF No PCI Memory space
30000000-FDFFFFFF ?? Unused
FEO00000-FEFFFFFF No I/O devices
FF000000-FF1FFFFF No IC7 - RedBoot FLASH
FF200000-FF3FFFFF No IC8 - unused FLASH
FF400000-FFFFFFFF No Misc other 1/0

NOTE: The only configuration currently suppored requires a 64MB SDRAM DIMM to be present on the
CPU card. No other memory configuration is supported at this time.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=frv400
export ARCH_DIR=frv
export PLATFORM_DIR=frv400

The names of configuration files are listed above with the description of the associated modes.

133

Chapter 5. Installation and Testing

IA32/x86 x86-Based PC

134

Overview

RedBoot supports two serial ports and an Intel i82559 based ethernet card (for example an Intel EtherExpress
Pro 10/100) for communication and downloads. The default serial port settings are 38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

Floppy [Floppy] RedBoot running from a [redboot_ ROM.ecm
boot floppy disk installed
in the A: drive of the PC.

Initial Installation

RedBoot takes the form of a self-booting image that must be written onto a formatted floppy disk. The process
will erase any file system or data that already exists on that disk, so proceed with caution.

For Red Hat Linux users, this can be done by:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fdOH1440

For NT Cygwin users, this can be done by first ensuring that the raw floppy device is mourntedfas
To check if this is the case, type the commamolunt at the Cygwin bash prompt. If the floppy drive is already
mounted, it will be listed as something similar to the following line:

\.\a: /dev/fd0 user binmode
If this line is not listed, then mount the floppy drive using the command:
$ mount -f -b //./a: /dev/fdO
To actually install the boot image on the floppy, use the command:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot
from A: by default. On reset, the PC will boot from the floppy and be ready to be debugged via either serial
line, or via the ethernet interface if it is installed.

NOTE: Unreliable floppy media may cause the write to silently fail. This can be determined if the RedBoot
image does not correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the
fdformat command on Linux, or format a: /Ju on DOS/Windows.

Flash management
PC RedBoot does not support any FLASH commands.

Chapter 5. Installation and Testing

Special RedBoot Commands

None.

Memory Maps

All selectors are initialized to map the entire 32-bit address space in the familiar protected mode flat model.
Page translation is not used. RAM up to 640K is mapped to 0x0 to 0xa0000. RAM above 640K is mapped
from address 0x100000 upwards. Space is reserved between 0xa0000 and 0x100000 for option ROMs and the
BIOS.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=pc
export ARCH_DIR=i386
export PLATFORM_DIR=pc

The names of configuration files are listed above with the description of the associated modes.

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelLV 5Kc) Atlas Board

Overview

RedBoot supports the DgbSer serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 115200,8,N,1. RedBoot runs from and supports flash management for the system
flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

RedBoot is installed using the code download facility built into the Atlas board. See the Atlas User manual for
details, and also the Atlas download formattie Section calledtlas download format

135

Chapter 5. Installation and Testing

136

Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directoryeleteall.dl andredboot.dl

2. Make sure switch S1-1 is OFF and switch S5-1 is ON. Reset the board and verify that the LED display
readsFlash DL .

3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.

4. Send thedeleteall.dl file to the parallel port to erase previous images:
$ cat deleteall.dl >/dev/Ip0O

When this is complete, the LED display should reatbted .

5. Send the ROM mode RedBoot image to the board:
$ cat redboot.dl >/dev/Ip0

When this is complete, the LED display should show the last address programmed. This will be something
like: 1fc17000 .

6. Change switch S5-1 to OFF and reset the board. The LED display shouleeeBabt .

7.Run the RedBooatis init andfconfig commands to initialize the flash. S#e Section called\dditional
config optionsthe Section calle&lash Image System (FI8) Chapter 2andthe Section calle®ersistent
State Flash-based Configuration and ConirolChapter Zor details.

Atlas download format

In order to download RedBoot to the Atlas board, it must be converted to the Atlas download format. There
are different ways of doing this depending on which version of the developer’s kit is shipped with the board.

The Atlas Developer’s KitCD contains an srec2flash utility. The source code for this utility is part of
the yamon/yamon-src-01.01.tar.gz tarball on the Dev Kit CD. The path in the expanded tarball is
yamon/bin/tools . To use srec2flash to convert the S-record file:

$ srec2flash -EL -S29 redboot.srec >redboot.dl

The Atlas/Malta Developer’'s KitCD contains an srecconv.pl utility which requires Perl. This utilty is part
of the yamon/yamon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarbajhis
mon/bin/tools . To use srecconv to convert the S-record file:

$ cp redboot ROM.srec redboot ROM.rec
$ srecconv.pl -ES L -A 29 redboot_ROM

The resulting file is name@dboot_ROM i

Flash management

Additional config options

The ethernet MAC address is stored in flash manually usinfcthefig command. You can use the YAMON
setenv ethaddrcommand to print out the board ethernet address. Typically, it is:

00:0d:a0:00: xx:xx

Chapter 5. Installation and Testing

wherexx.xx is the hex representation of the board serial number.

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture
(seethe Section calleéExecuting Programs from RedBadatChapter 2. Theexecparameters used for MIPS

boards are:

-b <addr>

Location to store command line and environment passed to kernel
-w <time>

Wait time in seconds before starting kernel
-c "params”

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent
to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified bytthparameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is
0x80000750.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0x80000400. Entries in this table are pointers
to functions with this protoype:

int irg_handler(unsigned vector, unsigned data)

On an atlas board, the vector argument is one of 25 interrupts defined in
hal/mips/atlas/ VERSION:include/plf_intr.h :

#define CYGNUM_HAL_INTERRUPT_SER 0
#define CYGNUM_HAL_INTERRUPT_TIMO 1
#define CYGNUM_HAL_INTERRUPT_2 2
#define CYGNUM_HAL_INTERRUPT_3 3
#define CYGNUM_HAL_INTERRUPT_RTC 4
#define CYGNUM_HAL_INTERRUPT_COREHI 5
#define CYGNUM_HAL_INTERRUPT_CORELO 6
#define CYGNUM_HAL_INTERRUPT_7 7
#define CYGNUM_HAL_INTERRUPT_PCIA 8
#define CYGNUM_HAL_INTERRUPT_PCIB 9
#define CYGNUM_HAL_INTERRUPT_PCIC 10

137

Chapter 5. Installation and Testing

138

#define CYGNUM_HAL_INTERRUPT_PCID 11
#define CYGNUM_HAL_INTERRUPT_ENUM 12
#define CYGNUM_HAL_INTERRUPT_DEG 13
#define CYGNUM_HAL_INTERRUPT_ATXFAIL 14
#define CYGNUM_HAL_INTERRUPT_INTA 15
#define CYGNUM_HAL_INTERRUPT_INTB 16
#define CYGNUM_HAL_INTERRUPT_INTC 17
#define CYGNUM_HAL_INTERRUPT_INTD 18
#define CYGNUM_HAL_INTERRUPT_SERR 19
#define CYGNUM_HAL_INTERRUPT_HW1 20
#define CYGNUM_HAL_INTERRUPT_HW2 21
#define CYGNUM_HAL_INTERRUPT_HWS3 22
#define CYGNUM_HAL_INTERRUPT_HW4 23
#define CYGNUM_HAL_INTERRUPT_HWS5 24
The data passed to the ISR is pulled from a data taaleifterrupt_data) which immediately follows the

interrupt vector table. With 25 interrupts, the data table starts at address 0x80000464 on atlas.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps

Memory Maps RedBoot sets up the following memory map on the Atlas board.

Physical Address Range Description

0x00000000 - OxO7ffffff SDRAM
0x08000000 - Ox17ffffff PClI Memory Space
0x18000000 - Ox1bdfffff PCI 1/O Space
0x1be00000 - Ox1bffffff System Controller
0x1c000000 - Ox1dffffff System flash
0x1e000000 - Ox1le3fffff Monitor flash
0x1f000000 - Ox1fbfffff FPGA

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=atlas_mips32_4kc
export TARGET=atlas_mips64_5kc
export ARCH_DIR=mips

export PLATFORM_DIR=atlas

Use one of the TARGET settings only.

The names of configuration files are listed above with the description of the associated modes.

Chapter 5. Installation and Testing

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelLV 5Kc) Malta Board

Overview

RedBoot supports both front facing serial ports and the built in ethernet port for communication and downloads.
The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the
system flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from the@edboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot_ RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

RedBoot is installed using the code download facility built into the Malta board. See the Malta User manual
for details, and also the Malta download formathie Section calletalta download format

Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directorygleteall.fl andredboot_ROM.l
2. Make sure switch S5-1 is ON. Reset the board and verify that the LED displayread<DL .
3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.

4. Send thedeleteall.fl file to the parallel port to erase previous images:
$ cat deleteall.fl >/dev/lp0

When this is complete, the LED display should restbted .

5. Send the RedBoot image to the board:
$ cat redboot_ROM.fl >/dev/Ip0O

When this is complete, the LED display should show the last address programmed. This will be something
like: 1fc17000 .

6. Change switch S5-1 to OFF and reset the board. The LED display shoulgeesagbt .

7. Run the RedBodiis init andfconfig commands to initialize the flash. S Section calleélash Image
System (FISh Chapter 2andthe Section calle®ersistent State Flash-based Configuration and Control
in Chapter Zor details.

Malta download format

In order to download RedBoot to the Malta board, it must be converted to the Malta download format.

139

Chapter 5. Installation and Testing

The Atlas/Malta Developer’s KitCD contains an srecconv.pl utility which requires Perl. This utility is part
of the yamon/yamon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarbajhis
mon/bin/tools . To use srecconv to convert the S-record file:

$ cp redboot_ROM.srec redboot_ROM.rec
$ srecconv.pl -ES L -A 29 redboot_ROM

The resulting file is name@dboot_ROM.f

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture
(seethe Section calle@xecuting Programs from RedBadatChapter 2. Theexecparameters used for MIPS
boards are:

-b <addr>

Location to store command line and environment passed to kernel

-w <time>

Wait time in seconds before starting kernel
-c "params”

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent
to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified bytthparameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is
0x80000750.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0x80000200. Entries in this table are pointers
to functions with this protoype:

int irg_handler(unsigned vector, unsigned data)

On the malta board, the vector argument is one of 22 interrupts defined in
hal/mips/malta/ VERSIONinclude/plf_intr.h

#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_INTR 0
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_SMI 1
#define CYGNUM_HAL_INTERRUPT_CBUS_UART 2

140

#define CYGNUM_HAL_INTERRUPT_COREHI

#define CYGNUM_HAL_INTERRUPT_CORELO

#define CYGNUM_HAL_INTERRUPT_COMPARE
#define CYGNUM_HAL_INTERRUPT_TIMER

#define CYGNUM_HAL_INTERRUPT_KEYBOARD
#define CYGNUM_HAL_INTERRUPT_CASCADE
#define CYGNUM_HAL_INTERRUPT_TTY1

#define CYGNUM_HAL_INTERRUPT_TTYO

#define CYGNUM_HAL_INTERRUPT 11

#define CYGNUM_HAL_INTERRUPT_FLOPPY

#define CYGNUM_HAL_INTERRUPT_PARALLEL
#define CYGNUM_HAL_INTERRUPT_REAL_TIME_CLOCK
#define CYGNUM_HAL_INTERRUPT _I2C

#define CYGNUM_HAL_INTERRUPT_PCI_AB

#define CYGNUM_HAL_INTERRUPT_PCI_CD

#define CYGNUM_HAL_INTERRUPT_MOUSE

#define CYGNUM_HAL_INTERRUPT 19

#define CYGNUM_HAL_INTERRUPT_IDE_PRIMARY
#define CYGNUM_HAL_INTERRUPT_IDE_SECONDARY

The data passed to the ISR is pulled from a data taaleifterrupt_data

21

Chapter 5. Installation and Testing

) which immediately follows the

interrupt vector table. With 22 interrupts, the data table starts at address 0x80000258.

An application may create a hormal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored

by RedBoot.

Memory Maps

Memory Maps RedBoot sets up the following memory map on the Malta board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region

is cached (C) or buffered (B).

Physical Address Range C B Description

0x80000000 - Ox8iffffff Y Y SDRAM

0x9e000000 - Ox9e3fffff Y N System flash (cached)
0x9fc00000 - OxOfffffff Y N System flash (mirrored)
0xa8000000 - Oxb7fffffft N N PCI Memory Space
0xb4000000 - Oxb40fffff N N Galileo System Controller
0xb8000000 - Oxb80fffff N N Southbridge / ISA
0xb8100000 - Oxbbdfffff N N PCI /O Space
0xbe000000 - Oxbe3fffff N N System flash (noncached)
0xbf000000 - Oxbfffffff N N Board logic FPGA

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the

procedure described @hapter 3

export TARGET=malta_mips32_4kc
export ARCH_DIR=mips
export PLATFORM_DIR=malta

141

Chapter 5. Installation and Testing

The names of configuration files are listed above with the description of the associated modes.

MIPS/RM7000 PMC-Sierra Ocelot

Overview

RedBoot uses the front facing serial port. The default serial port settings are 38400,8,N,1. RedBoot also sup-
ports ethernet. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot_ RAM.ecm
RAM with RedBoot in the
flash boot sector.

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture
(seethe Section calle@&xecuting Programs from RedBadatChapter 2. Theexecparameters used for MIPS
boards are:

-b <addr>

Location to store command line and environment passed to kernel

-w <time>

Wait time in seconds before starting kernel
-c "params”

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent
to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified bybthparameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

142

Chapter 5. Installation and Testing

The default entry point, if no image with explicit entry point has been loaded and none is specified, is
0x80000750.

Memory Maps

RedBoot sets up the following memory map on the Ocelot board.

Note that these addresses are accessed through ksegO/1 and thus translate to the actual address range
0x80000000-0xbfffffff, depending on the need for caching/non-caching access to the bus.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOfffffff SDRAM

0x10000000 - Ox1offffff PCI I/O space
0x12000000 - Ox13ffffff PClI Memory space
0x14000000 - 0x1400ffff Galileo system controller
0x1c000000 - 0x1c0000ff PLD (board logic)
0x1fc00000 - Ox1fc7ffff flash

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=ocelot

export ARCH_DIR=mips
export PLATFORM_DIR=rm7000/ocelot

The names of configuration files are listed above with the description of the associated modes.

MIPS/VR4375 NEC DDB-VRC4375

Overview

RedBoot supports only serial port 1, which is connected to the upper of the stacked serial connectors on the
board. The default serial port settings are 38400,8,N,1. FLASH management is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from |[redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

143

Chapter 5. Installation and Testing

Mode
[RAM]

Configuration
RAM

Description File

RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A device programmer should be used to program a socketed FLASH part (AMD 29F040). The board as de-
livered is configured for a 512K EPROM. To install a FLASH ROM, Jumpers J30, J31 and J36 need to be
changed as described in the board’s User Manual.

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the memory map primarily as described in the board’s User Manual. There are some minor

differences, noted in the following table:

Physical

Addresses
00000000-01FFFFFF
00000000-01FFFFFF
0C000000-0COBFFFF
0F000000-0F0001FF
1C000000-1COFFFFF
1C100000-1DFFFFFF
1FC00000-1FC7FFFF
80000000-8000000D
8000000E-80007FFF
81000000-81FFFFFF
82000000-82FFFFFF
83000000-83FFFFFF
87000000-87FFFFFF

Virtual

Addresses
80000000-81FFFFFF
A0000000-A1FFFFFF
AC000000-AC0OB0000
AF000000-AF0001FF
BC000000-BCOFFFFF
BC100000-BDFFFFFF
BFC00000-BFC7FFFF
C0000000-C000000D
CO00000E-C0007FFF
C1000000-C1FFFFFF
C2000000-C2FFFFFF
C3000000-C3FFFFFF
C7000000-C7FFFFFF

Resource

Base SDRAM (cached)

Base SDRAM (uncached)

PCI 10 space

VRC4375 Registers
VRC4372 Registers
PCI Memory space
FLASH ROM

RTC

NVRAM

Z85C30 DUART
78536 Timer

8255 Parallel port
Seven segment display

NOTE: By default the VRC4375 SIMM control registers are not programmed since the values used must
depend on the SIMMs installed. If SIMMs are to be used, correct values must be placed in these registers
before accessing the SIMM address range.

NOTE: The allocation of address ranges to devices in the PCI IO and memory spaces is handled by the
eCos PCI support library. They do not correspond to those described in the board User Manual.

NOTE: The MMU has been set up to relocate the VRC4372 supported devices mapped at physical ad-
dresses Ox8xxxxxxx to virtual addresses OXCXXXXXXX.

144

Chapter 5. Installation and Testing

Ethernet Driver
The ethernet driver is in two parts:

A generic ether driver for the Intel i21143 device is locateddvs/eth/intel/i21143 . Its package name is
CYGPKG_DEVS_ETH_INTEL_I21143

The platform-specific ether driver is devs/eth/mips/vrc4375 . Its package is
CYGPKG_DEVS_ETH_MIPS_VRC437T his tells the generic driver the address in IO memory of the chip, for
example, and other configuration details. The ESA (MAC address) is by default collected from on-board
serial EEPROM, unless configured statically within this package.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=vrc4373

export ARCH_DIR=mips
export PLATFORM_DIR=vrc4373

The names of configuration files are listed above with the description of the associated modes.

PowerPC/MPC860T Analogue & Micro PowerPC 860T

Overview

RedBoot uses the SMC1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also supported
using the RJ-45 connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from [redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Initial Installation Method
RedBoot must be installed at the A & M factory.

Special RedBoot Commands

None.

145

Chapter 5. Installation and Testing

Memory Maps

Memory Maps RedBoot sets up the following memory map on the MBX board.

Physical Address Range Description

0x00000000 - 0x007fffff DRAM
0xfe000000 - OxfeOfffff flash (AMD29LV8008B)
0xff000000 - OxffOfffff MPC registers

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=viper
export ARCH_DIR=powerpc
export PLATFORM_DIR=viper

The names of configuration files are listed above with the description of the associated modes.

PowerPC/MPC8XX Motorola MBX

Overview

RedBoot uses the SMC1/COML1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also
supported using the 10-base T connector.

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from th@edboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

Device programmer is used to program the XU1 socketed flash part (AM29F040B) with the ROM mode image
of RedBoot. Use the on-board EPPC-Bug monitor to update RedBoot.

This assumes that you have EPPC-Bug in the on-board flash. This can be determined by setting up the board
according to the following instructions and powering up the board.

146

Chapter 5. Installation and Testing

The EPPC-Bug prompt should appear on the SMC1 connector at 9600 baud, 8N1.

1. Set jumper 3 to 2-3 [allow XU1 flash to be programmed]
2. Set jumper 4 to 2-3 [boot EPPC-Bug]

If it is available, program the flash by following these steps:

1. Prepare EPPC-Bug for download:
EPPC-Bug>lo 0
At this point the monitor is ready for input. It will not return the prompt until the file has been downloaded.

2. Use the terminal emulator’'s ASCIl download feature (or a simple clipboard copy/paste operation) to down-
load theredboot.ppcbug file.

Note that on Linux, Minicom’s ASCII download feature seems to be broken. A workaround is to load
the file into emacs (or another editor) and copy the full contents to the clipboard. Then press the mouse
paste-button (usually the middle one) over the Minicom window.

3. Program the flash with the downloaded data:
EPPC-Bug>pflash 40000 60000 fc000000

4. Switch off the power, and change jumper 4 to 1-2. Turn on the power again. The board should now boot
using the newly programmed RedBoot.

Special RedBoot Commands

None.

Memory Maps

Memory Maps RedBoot sets up the following memory map on the MBX board.

Physical Address Range Description

0x00000000 - 0x003fffff DRAM

0xfal00000 - 0xfal00003 LEDs

0xfe000000 - OxfeQT7ffff flash (AMD29F040B)
0xff000000 - OxffOfffff MPC registers

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=mbx
export ARCH_DIR=powerpc
export PLATFORM_DIR=mbx

The names of configuration files are listed above with the description of the associated modes.

147

Chapter 5. Installation and Testing

SuperH/SH3(SH7708) Hitachi EDK7708

Overview
RedBoot uses the serial port. The default serial port settings are 38400,8,N,1.
Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

Program the ROM RedBoot image into flash using an eprom programmer.

Memory Maps
RedBoot sets up the following memory map on the EDK7708 board.

Physical Address Range Description

0x80000000 - 0x8001ffff Flash (AT29LV1024)
0x88000000 - 0x881fffff DRAM

0xa4000000 - 0xa40000ff LED ON
0xb8000000 - 0xb8000Off LED ON

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=edk7708
export ARCH_DIR=sh
export PLATFORM_DIR=edk7708

The names of configuration files are listed above with the description of the associated modes.

148

Chapter 5. Installation and Testing

SuperH/SH3(SH7709) Hitachi Solution Engine 7709

Overview

This description covers the MS7709SEQL1 variant. theeSection calleGuperH/SH3(SH77X9) Hitachi Solu-
tion Engine 77X9or instructions for the MS7729SEQO1 and MS7709SSE0101 variants.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1. Ethernet is
also supported using the 10-base T connector.

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switch SW4-1 to ON [boot from EPROM]
2.Connect a serial cable to CN1 (SCI) and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot_SE7709RP_ROM.eprom.srec > [dev/ttySO
Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALxxxxxx
Transfer complete

from the monitor.
5. Set switch SW4-1 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

149

Chapter 5. Installation and Testing

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this board (see
the Section calle@xecuting Programs from RedBdatChapter 2. Theexecparameters used for the SE77x9

are:
-b <addr>
Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000
-i <addr>
Start address of initrd image
-] <size>
Size of initrd image
-c "args"
Kernel arguments string
-m <flags>
Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>
Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

For the the SE77x9, Linux by default expects to be loaded at 0x8c001000 which conflicts with the data space
used by RedBoot. To work around this, either change the CONFIG_MEMORY_START kernel option to a
higher address, or use the compressed kernel image and load it at a higher address. For example, setting
CONFIG_MEMORY_START to 0x8c100000, the kernel expects to be loaded at address 0x8c101000 with the
entry point at 0x8¢c102000.

Memory Maps

RedBoot sets up the following memory map on the SE77x9 board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8dffffff DRAM

0xb0000000 - OxbO3fffff Ethernet (DP83902A)
0xb0800000 - OxbO8fffff 16C552A
0xb1000000 - Oxb100ffff Switches
0xb1800000 - Oxbi8fffff LEDs

0xb8000000 - Oxbbffffff PCMCIA (MaruBun)

150

Chapter 5. Installation and Testing

Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=se77x9
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH7729) Hitachi HS7729PCI

Overview

RedBoot uses the COM1 and COM2 serial ports (and the debug port on the motherboard). The default se-
rial port settings are 38400,8,N,1. Ethernet is also supported using a D-Link DFE-530TX PCI plugin card.
Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A ROM mode RedBoot image must be programmed into the two EPROMSs. Two files with a split version of the
ROM mode image is provided: it is also possible to recreate these froradiwt.bin file, but requires the
split_word.c program ital/sh/hs7729pci/ VERSIONmisc to be built and executed with thedboot.bin

filename as sole argument.

After doing this it is advised that another ROM mode image of RedBoot is programmed into the on-board
flash, and that copy be used for booting the board. This allows for software programmed updates of RedBoot
instead of having to reprogram the EPROMSs.

151

Chapter 5.

-b <addr>

-i <addr>

-] <size>

-c"args"

-m <flags>

-f <flags>

-r <device

-l <type>

152

Installation and Testing
1. Program the EPROMSs with RedBoot. The .lo image should go in socket M1 and the .hi image in socket
M2.
2. Set switch SW1-6 to ON [boot from EPROM]

3. Follow the instructions under Flash management for updating the flash copy of RedBoot, but force the
flash destination address with

-f 0x80400000
due to setting of the SW1-6 switch.

4. Set switch SW1-6 to OFF [boot from flash] and reboot the board. You should now see the RedBoot
banner. At this time you may want to issue the commésadnit to initialize the flash table with the
correct addresses.

Special RedBoot Commands

Theexeccommand which allows the loading and execution of Linux kernels is supported for this boattu(see
Section calledExecuting Programs from RedBdatChapter 2. Theexecparameters used for the HS7729PCI
are:

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8¢c101000

Start address of initrd image

Size of initrd image

Kernel arguments string

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.

RAM disk flags. Should normally be 0x4000

number>

Root device specification. /dev/ram is 0x0101

Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

On the HS7729PCl, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8¢102000.
This is configurable in the kernel using the CONFIG_MEMORY_START option.

Chapter 5. Installation and Testing

Memory Maps
RedBoot sets up the following memory map on the HS7729PCI board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80400000 - 0x807fffff EPROM (M27C800)
0x82000000 - 0x82ffffff SRAM

0x89000000 - Ox89ffffff SRAM

0x8c000000 - Oxsfffffff SDRAM

0xa8000000 - 0xa800ffff SuperlO (FDC37C935A)
0xa8400000 - Oxa87fffff USB function (ML60851C)
0xa8800000 - Oxa8bfffff USB host (SL11HT)
0xa8c00000 - Oxa8c3ffff Switches

0xa8c40000 - Oxa8c7ffff LEDs

0xa8c80000 - Oxa8cfffff Interrupt controller
0xb0000000 - Oxb3ffffff PCI (SD0O001)
0xb8000000 - Oxbbffffff PCMCIA (MaruBun)

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=hs7729pci

export ARCH_DIR=sh
export PLATFORM_DIR=hs7729pci

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9

Overview

This description covers the MS7729SEO01 and MS7709SSE0101 variants.thBe&ection called
SuperH/SH3(SH7709) Hitachi Solution Engine 7T@9instructions for the MS7709SEO01 variant.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1. Ethernet is
also supported using the 10-base T connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thgedboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from |[redboot_ RAM.ecm
RAM with RedBoot in the
flash boot sector.

153

Chapter 5.

Installation and Testing

Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switches SW4-3 and SW4-4 to ON [boot from EPROM]
2. Connect a serial cable to COM2 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot_ ROM.eprom.srec > [dev/ttySO

Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALxxXxxxx
Transfer complete

from the monitor.

5. Set switch SW4-3 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this board (see
the Section calle@&xecuting Programs from RedBdatChapter 2. Theexecparameters used for the SE77x9
are:

-b <addr>
Parameter block address. This is normally the first page of the kernel image and defaults to 0x8¢101000
-i <addr>
Start address of initrd image
-j <size>
Size of initrd image
-c "args"
Kernel arguments string
-m <flags>

154

Mount rdonly flags. If set to a hon-zero value the root partition will be mounted read-only.

Chapter 5. Installation and Testing

-f <flags>
RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101
-l <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

On the SE77x9, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8¢102000. This
is configurable in the kernel using the CONFIG_MEMORY_START option.

Memory Maps

RedBoot sets up the following memory map on the SE77x9 board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8dffffff SDRAM

0xb0000000 - OxbO3fffff Ethernet (DP83902A)
0xb0400000 - OxbO7fffff SuperlO (FDC37C935A)
0xb0800000 - OxbObfffff Switches

0xb0c00000 - Oxbfffffff LEDs

0xb1800000 - Oxb1lbfffff PCMCIA (MaruBun)

Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=se77x9
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9

The names of configuration files are listed above with the description of the associated modes.

155

Chapter 5. Installation and Testing

SuperH/SH4(SH7751) Hitachi Solution Engine 7751

Overview

RedBoot uses the COML1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also supported
using the 10-base T connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from the@edboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switches SW5-3 and SW5-4 to ON [boot from EPROM]
2. Connect a serial cable to COM1 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot ROM.eprom.srec > [dev/ttySO

Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALXXXXXX
Transfer complete

from the monitor.

5. Set switch SW5-3 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this board (see
the Section calle@&xecuting Programs from RedBdatChapter 2. Theexecparameters used for the SE7751
are:

156

Chapter 5. Installation and Testing

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000
-i <addr>

Start address of initrd image
-j <size>

Size of initrd image
-c "args"

Kernel arguments string
-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>
Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

On the SE7751, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8¢c102000. This
is configurable in the kernel using the CONFIG_MEMORY_START option.

Memory Maps
RedBoot sets up the following memory map on the SE7751 board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8fffffff SDRAM

0xb8000000 - Oxbsffffff PCMCIA (MaruBun)
0xb9000000 - Oxb9ffffff Switches

0xba000000 - Oxbaffffff LEDs

0xbd000000 - Oxbdffffff PCI MEM space
0xbe200000 - Oxbe23ffff PCI Ctrl space
0xbe240000 - Oxbe27ffff PCI 10 space

Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

157

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=se7751
export ARCH_DIR=sh
export PLATFORM_DIR=se7751

The names of configuration files are listed above with the description of the associated modes.

158

l1l. The eCos Hardware Abstraction
Layer (HAL)

Chapter 6. Introduction

This is an initial specification of theCosHardware Abstraction Layer (HAL). The HAL abstracts the under-
lying hardware of a processor architecture and/or the platform to a level sufficient for the eCos kernel to be
ported onto that platform.

Caveat: This document is an informal description of the HAL capabilities and is not intended to be full
documentation, although it may be used as a source for such. It also describes the HAL as it is currently
implemented for the architectures targeted in this release. It most closely describes the HALs for the MIPS,
1386 and PowerPC HALs. Other architectures are similar but may not be organized precisely as described
here.

161

Chapter 6. Introduction

162

Chapter 7. Architecture, Variant and Platform

We have identified three levels at which the HAL must operate.

- Thearchitecture HALabstracts the basic CPU architecture and includes things like interrupt delivery, con-
text switching, CPU startup etc.

« Thevariant HAL encapsulates features of the CPU variant such as caches, MMU and FPU features. It also
deals with any on-chip peripherals such as memory and interrupt controllers. For architectural variations,
the actual implementation of the variation is often in the architectural HAL, and the variant HAL simply
provides the correct configuration definitions.

+ Theplatform HALabstracts the properties of the current platform and includes things like platform startup,
timer devices, I/O register access and interrupt controllers.

The boundaries between these three HAL levels are necessarily blurred since functionality shifts between levels
on a target-by-target basis. For example caches and MMU may be either an architecture feature or a variant
feature. Similarly, memory and interrupt controllers may be on-chip and in the variant HAL, or off-chip and in
the platform HAL.

Generally there is a separate package for each of the architecture, variant and package HALSs for a target. For
some of the older targets, or where it would be essentially empty, the variant HAL is omitted.

163

Chapter 7. Architecture, Variant and Platform

164

Chapter 8. General principles

The HAL has been implemented according to the following general principles:

1. The HAL is implemented in C and assembler, although the eCos kernel is largely implemented-in C
This is to permit the HAL the widest possible applicability.

2. All interfaces to the HAL are implemented by CPP macros. This allows them to be implemented as inline
C code, inline assembler or function calls to external C or assembler code. This allows the most efficient
implementation to be selected without affecting the interface. It also allows them to be redefined if the
platform or variant HAL needs to replace or enhance a definition from the architecture HAL.

3. The HAL provides simple, portable mechanisms for dealing with the hardware of a wide range of archi-
tectures and platforms. It is always possible to bypass the HAL and program the hardware directly, but
this may lead to a loss of portability.

165

Chapter 8. General principles

166

Chapter 9. HAL Interfaces

This section describes the main HAL interfaces.

Base Definitions

These are definitions that characterize the properties of the base architecture that are used to compile the
portable parts of the kernel. They are concerned with such things a portable type definitions, endianness, and
labeling.

These definitions are supplied by thgy/hal/basetype.h header file which is supplied by the architecture
HAL. Itis included automatically byyg/infra/cyg_type.h

Byte order

CYG_BYTEORDER

This defines the byte order of the target and must be set to @#een SBFIRSTOr CYG_MSBFIRST

Label Translation

CYG_LABEL_NAME(name)

This is a wrapper used in some C angt-€ files which use labels defined in assembly code or the linker
script. It need only be defined if the default implementatiotyiinfra/cyg_type.h , which passes the
name argument unaltered, is inadequate. It should be pairedcWihLABEL_DEFN().

CYG_LABEL_DEFN(name)

This is a wrapper used in assembler sources and linker scripts which define labels. It need only be defined
if the default implementation inyg/infra/cyg_type.h , Which passes the name argument unaltered, is
inadequate. The most usual alternative definition of this macro prepends an underscore to the label name.

Base types

cyg_halint8
cyg_halint1l6
cyg_halint32
cyg_halint64
cyg_halcount8
cyg_halcount16
cyg_halcount32
cyg_halcount64
cyg_halbool

167

Chapter 9. HAL Interfaces

These macros define the C base types that should be used to define variables of the given size. They only need
to be defined if the default types specifiedyn/infra/cyg_type.h cannot be used. Note that these are only
the base types, they will be composed wihthed andunsigned to form full type specifications.

Atomic types

cyg_halatomic CYG_ATOMIC

These types are guaranteed to be read or written in a single uninterruptible operation. It is architecture defined
what size this type is, but it will be at least a byte.

Architecture Characterization

These are definition that are related to the basic architecture of the CPU. These include the CPU context save
format, context switching, bit twiddling, breakpoints, stack sizes and address translation.

Most of these definition are found ityg/hal/hal_arch.h . This file is supplied by the architecture HAL.
If there are variant or platform specific definitions then these will be foundygrhal/var_arch.h or
cyg/hal/plf_arch.h . These files are include automatically by this header, so need not be included explicitly.

Register Save Format

typedef struct HAL_SavedRegisters
{

/* architecture-dependent list of registers to be saved */
} HAL_SavedRegisters;

This structure describes the layout of a saved machine state on the stack. Such states are saved during thread
context switches, interrupts and exceptions. Different quantities of state may be saved during each of these, but
usually a thread context state is a subset of the interrupt state which is itself a subset of an exception state. For
debugging purposes, the same structure is used for all three purposes, but where these states are significantly
different, this structure may contain a union of the three states.

Thread Context Initialization

sp

arg

168

HAL_THREAD_INIT_CONTEXT(sp, arg, entry, id)

This macro initializes a thread’s context so that it may be switched teAly THREAD_SWITCH_CONTEXT.()
The arguments are:

A location containing the current value of the thread’s stack pointer. This should be a variable or a
structure field. The SP value will be read out of here and an adjusted value written back.

A value that is passed as the first argument to the entry point function.

entry

Chapter 9. HAL Interfaces

The address of an entry point function. This will be called according the C calling conventions, and the
value ofarg will be passed as the first argument. This function should have the following type signature
void entry(CYG_ADDRWORD arg) .

A thread id value. This is only used for debugging purposes, it is ORed into the initialization pattern for
unused registers and may be used to help identify the thread from its register dump. The least significant
16 bits of this value should be zero to allow space for a register identifier.

Thread Context Switching

from

to

HAL_THREAD_LOAD_CONTEXT(to)
HAL_THREAD_SWITCH_CONTEXT(from, to)

These macros implement the thread switch code. The arguments are:

A pointer to a location where the stack pointer of the current thread will be stored.

A pointer to a location from where the stack pointer of the next thread will be read.

ForHAL_THREAD_LOAD_CONTEXTthe current CPU state is discarded and the state of the destination thread is
loaded. This is only used once, to load the first thread when the scheduler is started.

For HAL_THREAD_SWITCH_CONTEXT¢he state of the current thread is saved onto its stack, using the current
value of the stack pointer, and the address of the saved state platfeahin . The value irtto is then read
and the state of the new thread is loaded from it.

While these two operations may be implemented with inline assembler, they are normally implemented as calls
to ass