
SnoopDos

SnoopDos ii

COLLABORATORS

TITLE :

SnoopDos

ACTION NAME DATE SIGNATURE

WRITTEN BY July 8, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

SnoopDos iii

Contents

1 SnoopDos 1

1.1 main . 1

1.2 quickstart . 2

1.3 introduction . 4

1.4 whatsnew . 5

1.5 workbench . 7

1.6 cli . 8

1.7 arexx . 9

1.8 settingsfiles . 10

1.9 distribution . 12

1.10 history . 13

1.11 credits . 14

1.12 author . 15

1.13 mainwindow . 16

1.14 eventheadings . 17

1.15 eventoutput . 18

1.16 statusline . 20

1.17 mainopenlog . 20

1.18 mainkeys . 21

1.19 settingswindow . 22

1.20 settingscopy . 23

1.21 settingsbuttons . 24

1.22 functionwindow . 25

1.23 selectgadgets . 27

1.24 functionbuttons . 27

1.25 formateditor . 28

1.26 Format width gadget . 29

1.27 formatbuttons . 30

1.28 Action output field . 30

1.29 Call Address output field . 31

SnoopDos iv

1.30 Date output field . 32

1.31 Hunk:Offset output field . 32

1.32 TaskID output field . 33

1.33 TargetName output field . 33

1.34 Options output field . 33

1.35 ProcessName output field . 34

1.36 Result output field . 34

1.37 Segment Name output field . 35

1.38 Time output field . 37

1.39 Count output field . 37

1.40 SegTracker and FindHit . 37

1.41 commandindex . 38

1.42 commandsyntax . 42

1.43 addlog . 43

1.44 appendlog . 44

1.45 autoopen . 45

1.46 bufferfont . 45

1.47 buffersize . 45

1.48 changedir . 46

1.49 clearbuffer . 47

1.50 closeformat . 47

1.51 closefunction . 47

1.52 closelog . 48

1.53 closesetup . 48

1.54 copybuffer . 49

1.55 copywindow . 49

1.56 createicons . 50

1.57 cx_popkey . 50

1.58 cx_popup . 51

1.59 cx_priority . 52

1.60 delete . 52

1.61 disable . 52

1.62 disablewhenhidden . 53

1.63 enable . 54

1.64 execute . 54

1.65 fileiotype . 55

1.66 findport . 56

1.67 findresident . 56

1.68 findsemaphore . 57

SnoopDos v

1.69 findtask . 57

1.70 flushlog . 58

1.71 format . 59

1.72 formatwindowpos . 60

1.73 functions . 60

1.74 functionwindowpos . 61

1.75 getvar . 61

1.76 gotoline . 62

1.77 help . 62

1.78 hide . 63

1.79 hidegadgets . 64

1.80 hidemethod . 64

1.81 hidestatus . 65

1.82 hotkey . 66

1.83 iconpos . 67

1.84 ignoreshell . 67

1.85 language . 68

1.86 leftaligned . 69

1.87 loaddefsettings . 69

1.88 loadseg . 70

1.89 loadsettings . 71

1.90 lock . 71

1.91 lockscreen . 72

1.92 logformat . 73

1.93 logmode . 74

1.94 logname . 75

1.95 mainwindowpos . 76

1.96 mainwindowsize . 76

1.97 makedir . 77

1.98 makelink . 77

1.99 matchname . 78

1.100monitorpackets . 78

1.101monitorromcalls . 80

1.102onlyshowfails . 81

1.103open . 81

1.104opendevice . 82

1.105openfont . 83

1.106openformat . 84

1.107openfunction . 84

SnoopDos vi

1.108openlibrary . 85

1.109openlog . 85

1.110openresource . 87

1.111openseriallog . 87

1.112opensetup . 88

1.113packetdebugger . 88

1.114patchramlib . 90

1.115pause . 91

1.116quit . 92

1.117readtooltypes . 93

1.118rename . 94

1.119rightaligned . 94

1.120rowqualifier . 95

1.121runcommand . 96

1.122savebuffer . 97

1.123savedefsettings . 97

1.124savesettings . 98

1.125savewindow . 98

1.126screenname . 99

1.127screentype . 99

1.128scrolldown . 100

1.129scrollup . 100

1.130sendrexx . 101

1.131settings . 101

1.132setupwindowpos . 102

1.133setvar . 103

1.134show . 103

1.135showcli . 104

1.136showfullpaths . 104

1.137showgadgets . 105

1.138showstatus . 106

1.139simplerefresh . 107

1.140singlestep . 107

1.141smartrefresh . 108

1.142stacklimit . 108

1.143system . 109

1.144taskpri . 110

1.145textspacing . 110

1.146unpause . 111

SnoopDos vii

1.147usedevicenames . 111

1.148windowfont . 112

1.149windowwidth . 113

1.150menu_index . 113

1.151SnoopDos Project menu . 115

1.152Project menu/Open log... 116

1.153Project menu/Close log . 117

1.154Project menu/Pause . 117

1.155Project menu/Disable . 118

1.156Project menu/Single step . 118

1.157Project menu/Task priority . 118

1.158Project menu/Help . 119

1.159Project menu/About . 119

1.160Project menu/Hide . 120

1.161Project menu/Quit . 120

1.162SnoopDos Windows menu . 120

1.163Windows menu/Show setup... 121

1.164Windows menu/Show functions... 122

1.165Windows menu/Show format... 122

1.166Windows menu/Change window width . 123

1.167Windows menu/Text spacing . 123

1.168Windows menu/Window type . 124

1.169Windows menu/Target name . 124

1.170Windows menu/Row selection key . 125

1.171Windows menu/Show status line? . 126

1.172Windows menu/Show gadgets? . 126

1.173Windows menu/Auto-open on output? . 127

1.174Windows menu/Disable when hidden? . 127

1.175SnoopDos Settings menu . 128

1.176Settings menu/Load... 129

1.177Settings menu/Save . 129

1.178Settings menu/Save as... 129

1.179Settings menu/Reset to defaults . 130

1.180Settings menu/Last saved . 130

1.181Settings menu/Restore . 131

1.182Settings menu/Create icons? . 131

1.183SnoopDos Buffer menu . 132

1.184Buffer menu/Copy window to clip . 132

1.185Buffer menu/Copy buffer to clip . 133

1.186Buffer menu/Save window... 133

1.187Buffer menu/Save buffer... 134

1.188Buffer menu/Clear buffer . 134

1.189index . 135

SnoopDos 1 / 137

Chapter 1

SnoopDos

1.1 main

SnoopDos 3.0 -- System and application monitor

Copyright © Eddy Carroll, September 1994. Freely distributable.

SnoopDos is a utility that allows you to monitor a variety of system
operations carried out by programs on your Amiga. This includes what
files a program is trying to open, what fonts, libraries, devices and
environment variables it is looking for, and so on.

Click on one of the following topics for more detailed information:

Quick start
For people who hate reading documentation

Introduction
An overview of how to use SnoopDos

What’s new in 3.0
For users upgrading from SnoopDos 1.7

Main window
A guide to the main SnoopDos window

Settings window
How to alter SnoopDos’s global settings

Function window
How to select what functions SnoopDos will monitor

Format editor
How to customise the layout of the event output

Menu options
A guide to the main window’s menu options

SnoopDos 2 / 137

Command index
A comprehensive guide to all supported commands

Workbench startup
How to start SnoopDos from Workbench

CLI startup
How to start SnoopDos from the CLI

ARexx support
How to control SnoopDos using ARexx

Settings files
How to make best use of settings files

Distribution
Conditions for redistribution of SnoopDos

History
Information about past and present versions

Credits
Bouquets to everyone who helped

Author
How to get in touch with the author

Click on the CONTENTS button at the top to return here at any time.

1.2 quickstart

A QUICK GUIDE TO USING SNOOPDOS

To start SnoopDos, just double-click on the SnoopDos icon from Workbench
or type "Run SnoopDos" from the CLI.

The default options have been chosen to suit most configurations. You can
click on the Functions button to choose what functions are being monitored,
or the Setup button to change most other settings. Also check out the menus
associated with the main window.

Here are the main things you need to know:

· Press HELP from inside SnoopDos to access this help file.

· The headings displayed in the main window can be dragged left and
right using the mouse. Holding down shift moves all items to the
right of the current item as well.

· Double-click on the header line in the main window to quickly call
up the format editor. Use this editor to change the display layout
by picking up a field with the left mouse button, dragging it to a
new position, and releasing it.

SnoopDos 3 / 137

· Changes made in the Function, Setup and Format Editor windows always
take effect immediately. Click Use to make the change permament, or
Undo or Cancel to restore the previous settings. You can have all three
configuration windows open simultaneously.

· When you select Save Settings, SnoopDos saves the current configuration
to ENVARC:SnoopDos.prefs (the SETTINGS tooltype and CLI option allows
you to choose a different name). Type this file to see a partial list
of supported ARexx commands, tooltypes, and CLI options. If you move
this file to S:, SnoopDos will automatically use that copy instead
(this saves memory in ENV:).

· If you want to monitor file operations performed by programs compiled
using Gnu C (i.e those using ixemul.library) then ensure that the
Monitor Packets option is turned on in the function window. This may
slow down your system a little, however.

· The "Buffer->Copy Window to Clip" menu option lets you quickly copy
SnoopDos output into your favourite editor using the clipboard.

· You can exclude any tasks you don’t want to monitor by entering an
AmigaDOS pattern like "~(task1|task2|task3)" into the Match Name
gadget in the function window.

· The Pause button in the main window lets you see what an application
is trying to do before it actually does it. Any task that tries to
execute a monitored function will be listed with a result of WAIT.
Click on the down-arrow scroll gadget or press Space to allow the
task to execute the function call.

· For DOS device writers, the Packet Debugger option in the function
window lets you view all packets sent to a device. You’ll probably
want to also turn on Monitor ROM Calls to view packets sent internally
by dos.library. You should also make the Action and Res. fields wider
to ensure you can see all pertinent information.

· If you want SnoopDos to run automatically when you boot your system,
simply drag the icon to your WBStartup drawer. Ensure the icon
contains the tooltype HIDE=YES if you want SnoopDos to start up hidden
in the background.

· If you want to access online help from within SnoopDos, make sure the
file SnoopDos.guide is in the same directory as SnoopDos itself, or
else copy it to the directory HELP:English.

See also:
Contents

Introduction

What’s New

Main window

SnoopDos 4 / 137

1.3 introduction

INTRODUCTION TO SNOOPDOS

How many times have you tried to install some big application program, only
to find out when you run it that it doesn’t seem to work properly? Often,
it’s looking for some configuration file, library, environment variable, or
font which you’ve forgotten to install.

Version 1 of SnoopDos provided a simple no-frills approach to spying on a
program’s activities. Since its release, other programs have appeared which
perform a similar task, including DosTrace by Peter Stuer, Snoopy by Gerson
Kurz, and Woodward by Tomas Rokiki.

However, good as these programs are, I felt that they made it unnecessarily
difficult for the user to view the information of interest. SnoopDos 3.0
aims to bring the original SnoopDos into the 90’s by adding a full style
guide compliant GUI and a host of powerful new features, whilst retaining
the simplicity of its ancestor.

To get going with SnoopDos, simply double-click on the SnoopDos icon or
type "Run SnoopDos" in a Shell window.

The first thing you’ll see is the main SnoopDos window, which features a
variety of buttons. At this point, SnoopDos is active, and monitoring a
range of system operations. If you now run another application, you should
see some lines of output displayed in the SnoopDos window. When there are
too many lines to fit in the window, some will scroll off the top; you can
use the scroll bar to bring them back into view.

In most cases, this is all you need to do to identify a problem. The
SnoopDos window will list any files that can’t be opened, fonts that can’t
be found, and so on, as well as all those operations that were successful.

However, you can customise SnoopDos to better suit your Amiga environment.
By clicking on the Setup and Function gadgets in the main window, you can
open two additional windows. The

Settings
window lets you change various

preferences settings, such as the fonts used for the SnoopDos window, while
the

Function
window lets you choose which events you want SnoopDos to

display in the main window. If you’re unsure of the meaning of any of the
buttons, check out the Function window help for more details.

An important feature of SnoopDos is that you can choose exactly how much or
how little information about events you want to see. Select "Show Format"
from the Windows menu to open up the format editor. This contains the
current event format which controls how the information in the main window
is displayed. To change this, simply pick up fields using the left mouse
button and drag them to a new position.

For example, if you want to see what time each event occurred at, simply
drag the Time field from the "Available" box into the "Current Format" box.
As soon as you release it, the main window updates to show the time

SnoopDos 5 / 137

associated with each event in the window. SnoopDos always records all
possible information about an event, even if it isn’t all being displayed
at the moment.

You can also modify the format directly in the main window, by clicking on
a column title with the mouse and dragging it to a new position. Usually,
dragging a title repositions it independently of those on either side; if
you hold down shift as you drag, then all the columns to the right will
move as well.

If you make any changes to the default SnoopDos configuration, you may wish
to save the changes so that they will take effect the next time you run it.
Simply click on the Save Settings button in the main window, and they will
be saved to a text file called ENVARC:SnoopDos.prefs. You can view this
file with any text reader.

Now go and play with SnoopDos a bit. At any time within SnoopDos, you can
press the HELP key to call up context-sensitive help from this document.
After this, you might like to return and read the help pages dealing with
the main window, function window, and settings window.

See also:
Contents

Quick Start

What’s New

Main Window

1.4 whatsnew

WHAT’S NEW IN SNOOPDOS 3.0

If you are one of the many users of SnoopDos 1.7, you will be pleased to
see that SnoopDos 3.0 has a host of new features designed to make it more
useful.

Alas, nothing is for free in this world. SnoopDos has grown from a lean and
mean CLI-only utility into a rather large GUI-based application. Since most
serious Amiga users these days have an accelerated system with plenty of
memory and hard drive space, this seems like a reasonable trade off. If
your Amiga has more modest capabilities, you may find one of the other
SnoopDos-like utilities more suited to your system.

Now, without further ado, here’s a list of the major new features in this
version of SnoopDos:

· A fully font-sensitive GUI lets you control all options using the
mouse or keyboard. The main window gadgets can be selectively
disabled to allow as many lines of text as possible to be displayed.

· A memory buffer stores details of all function calls that scroll off
the top of the window. These can then be reviewed using the scroll bar.

SnoopDos 6 / 137

· Many new functions can be monitored, including Workbench tooltypes,
ARexx messages sent by any ARexx script, and a variety of new 2.04 DOS
functions.

· Programs compiled with GNU C, which bypass dos.library and talk
directly to DOS devices using packet i/o, can now be monitored.

· Additional information is available for each function monitored,
including the time the function was called, what program module made
the call (if

SegTracker
is loaded), the process ID, and much more.

· You can choose exactly which programs to monitor or ignore, using
a standard AmigaDOS pattern string.

· For DOS device programmers, a packet debugger allows you to monitor
every packet sent to any currently mounted filesystem device.

· A convenient "drag & drop" format editor allows you to easily select
exactly how much or little information you wish to see about each
event. For even greater control, you can directly adjust the width
of each column of output in the main window using the mouse.

· All of the sub windows used to control various settings are modeless.
You can leave them open all the time if you like, and any changes you
make take effect immediately.

· SnoopDos can now run as a commodity, continuing to monitor activity
while hidden in the background.

· A new Pause option allows you to freeze any tasks being monitored by
SnoopDos, or single step through the calls they make, one at a time.

· A comprehensive command language with over 100 commands lets you
control SnoopDos from the CLI, Workbench, ARexx, or script files.

· SnoopDos can read an external language catalog file to allow it to
be localised for any country.

· Context-sensitive AmigaGuide help is available from within the
program, both for windows and menu options.

· The clipboard is fully supported, allowing you to quickly copy
SnoopDos output into your favourite editor or wordprocessor.

· Function calls can now be simultaneously written to a disk file while
being displayed in the SnoopDos window.

So what are you waiting for? Go and give it a try!

See also:
Contents

Quick Start

Introduction

SnoopDos 7 / 137

Main Window

1.5 workbench

STARTING SNOOPDOS FROM WORKBENCH

SnoopDos can be easily started from Workbench by double-clicking on its
icon, or on the icon of any settings file saved earlier. You can store any
SnoopDos command as a tooltype in the icon and each command will be
executed by SnoopDos when it loads.

For example, this allows you to automatically open a log file on disk each
time you run SnoopDos (using the

OpenLog
or
AppendLog
commands). You

could also automatically open the function window using the
OpenFunction

command, or arrange that the main window always opens in a ←↩
particular

position using the
MainWindowPos
command.

SnoopDos carries out the following actions when started from Workbench:

· Checks icon tooltypes for
Language

,
PatchRamLib
and
Settings

commands

· Loads the default settings file, as defined by the Settings command.
If no name has been set, then checks PROGDIR:, ENVARC: and S: for
a file called SnoopDos.prefs and reads that instead if it exists.

· Reads any settings files that were passed in as project icons when
SnoopDos was loaded. These files can contain any SnoopDos command,
not just settings commands.

· Scans the tooltypes of all selected icons, starting with the program
icon, and executes any recognised commands contained therein.

After all of this, the main window is automatically opened, unless a

Hide
or
CX_Popup=No
command was encountered.

If SnoopDos was already running when the icon is loaded, then the commands

SnoopDos 8 / 137

in the settings files and tooltypes will be executed by the running version
instead. In this case, the Hide and CX_Popup keywords will be ignored, and
the SnoopDos window will be automatically re-opened if it was hidden. This
allows you to always show the SnoopDos window by clicking on a SnoopDos
icon, even if that icon contains a Hide command in its tooltypes.

See also:
Command Index

Command syntax

Settings files

CLI usage

ARexx support

1.6 cli

STARTING SNOOPDOS FROM THE CLI

When you run SnoopDos from the CLI, it carries out the following actions:

· Checks the command line for
Language

,
PatchRamLib
and
Settings

options

· Loads the default settings file, as defined by the Settings command.
If no name has been set, then checks PROGDIR:, ENVARC: and S: for
a file called SnoopDos.prefs and reads that instead if it exists.

· Executes all other SnoopDos commands on the command line.

If SnoopDos was already running, then any commands on the command line will
be executed by that version instead. For example, you could use the command
SNOOPDOS OPENLOG "ram:SnoopDos.log" to make the current copy of SnoopDos
open a new log file.

Typing SNOOPDOS HELP will display a summary of all the commands recognised
by SnoopDos. Commands that need a parameter will be marked with an ’*’.

If you intend to control SnoopDos from the CLI like this, you may want to
investigate its

ARexx
capabilities. Using the RX command to send a

command to SnoopDos will usually be much quicker than waiting for the
SnoopDos executable to load a second time. An alias such as the following
can be useful:

ALIAS SNOOPTELL "RX *"ADDRESS SNOOPDOS ’[]’*""

SnoopDos 9 / 137

This allows you to issue SnoopDos commands by simply typing SnoopTell <cmd>.
If you do this, you’ll need to double-up any quotes that might appear on
the command line, so that SnoopTell OpenLog "ram:test file" would become
SnoopTell OpenLog ""ram:testfile"".

If you accidentally forget to type "RUN SNOOPDOS" the first time you
load the program, that CLI will be unavailable until SnoopDos exits. If
this happens, you can tell SnoopDos to quit by typing CTRL-C inside the
CLI window. This is particularly useful if you are running SnoopDos
remotely via modem or over a network.

See also:
Command Index

Command syntax

Settings files

Workbench usage

ARexx support

1.7 arexx

SNOOPDOS AREXX SUPPORT

When SnoopDos is running, it creates an ARexx port called (predictably)
SNOOPDOS. This allows you to control almost every aspect of the program
from within ARexx scripts.

Here’s an example of a simple ARexx script that configures SnoopDos to
monitor one particular function, and then captures all calls to that
function in a log file.

/* Sample ARexx script to log all calls to LoadSeg */

/* Check if SnoopDos is running; if not, then start it */
if ~show(’P’, ’SNOOPDOS’) then do

address command "run >nil: SnoopDos"
address command "waitforport SNOOPDOS"
end

address SNOOPDOS /* Commands now go to SnoopDos */
logformat "%t %15p %6a %37n %6o %r" /* Install a custom log format */
functions none /* Disable all functions */
loadseg on /* Re-enable LoadSeg function */
appendlog "ram:SnoopDos.txt" /* Open log file */
addlog "(Monitoring only LoadSeg)" /* Add info message to log file */
logformat none /* Remove our custom format */

(Even though we remove the custom log format at the end of the script, it
will remain in use until the log file is closed. The next time a log file
is opened, it will use the main window format instead.)

If this code is stored in a file called LoadSeg.Rexx, you can execute it

SnoopDos 10 / 137

by typing RX LOADSEG.

You can tell if a particular SnoopDos command succeeded or not by checking
the RC variable afterwards. This will be set as follows:

RC = 0 Command completed successfully
RC = 10 Command requires a parameter
RC = 20 Command could not be completed (parameter may be invalid)
RC = 30 Command was not recognised by SnoopDos

You can use the ARexx command SIGNAL ON ERROR to cause ARexx to stop if it
encounters a SnoopDos error (usually, it will quietly ignore all errors).

If you want to get a feel for using SnoopDos commands, you can use the

LoadSettings
command with a filename of "CON:////SnoopDos/CLOSE" to open

a command window that lets you interactively enter commands and see
their effect.

See also:
Command Index

Command syntax

Settings files

Workbench usage

CLI usage

1.8 settingsfiles

SNOOPDOS SETTINGS FILES

A SnoopDos settings file is any text file which begins with the line
"<SnoopDos Settings>" and contains SnoopDos commands. While settings files
are usually generated automatically using the

SaveDefSettings
command,

they can also be created using any standard text editor.

In fact, the term "settings file" is slightly misleading, since such a file
can contain any SnoopDos command, not just those that control program
settings. For example, a settings file can carry out actions like opening a
new log file, opening a particular arrangement of windows, or adding custom
output to an existing log file.

The format of the file is fairly free form. There should be one command per
line, and anything following a semicolon is treated as a comment. See the
section on

Command syntax
for more details.

When you run SnoopDos, it looks for a default settings file and executes

SnoopDos 11 / 137

all the commands it contains. You can specify the name of this file
explicitly using the

Settings
command.

If you don’t specify a default filename, then SnoopDos will look in the
PROGDIR:, ENVARC: and S: directories for a file called SnoopDos.prefs. If
it can’t find a file in any of those three directories, then it will use
the name ENVARC:SnoopDos.prefs when you ask it to save default settings.

Note that this gives you some flexibility as to where you store your
default settings. If you don’t like the idea of the SnoopDos settings file
wasting RAM by being stored in ENVARC: (and thus ENV:) then you can simply
move the file to S: or the program directory instead, and SnoopDos will
always use the new directory with no additional work needed on your part.

Since SnoopDos erases the old defaults file whenever you save default
settings, it’s not a good idea to include commands other than those written
by SnoopDos itself in the defaults file -- they would get overwritten the
next time you saved your settings. Instead, you could consider adding such
commands as tooltypes in the SnoopDos icon.

However, there is another slightly more convoluted way to execute additional
commands while SnoopDos is initialising. You can create a default settings
file (e.g. ENVARC:SnoopDos.prefs) which contains something like the
following:

<SnoopDos Settings>
;
Settings "S:SnoopDos.set" ; This is where the defaults will be stored
LoadDefSettings ; Now load in the defaults
;
; Additional commands go below here
;
OpenLog "ram:SnoopDos.log" ; Let’s start a new log file
FormatWindowPos=400,300 ; Ensure window position is always the same
OpenFormat ; Open the format window for easy access
; etc.

As you can see, the first thing this command file does is to change the
name of the default settings file. This ensures that if you click on Save
Settings from within SnoopDos, the new file will be overwritten rather than
this file.

Next, those settings are loaded in. (SnoopDos won’t automatically load the
settings unless you tell it to.)

After this, any additional commands can appear. For example, you could make
SnoopDos always start up Paused or Disabled. If there are certain settings
that you always want set to a particular value, overriding any changes made
via Save Settings, then this is a good place to put them.

Note that while it is perfectly valid for one settings file to execute
another (using the

LoadSettings
or
LoadDefSettings

SnoopDos 12 / 137

commands) this oly
works up to three levels of nesting. This prevents an infinite loop from
occurring if you accidentally try and load a file from within itself.

There is one final trick you can do with settings files. If you load a
settings file with a filename that corresponds to a valid console window,
such as "CON:////SnoopDos/CLOSE", then SnoopDos will allow you to type in
commands interactively and see their effect. See the

LoadSettings
command

for more information.

See also:
Command Index

Command syntax

ARexx support

Workbench usage

CLI usage

1.9 distribution

SNOOPDOS DISTRIBUTION

My distribution policy for SnoopDos is simple: it may be freely distributed
for non-commercial purposes, as long as all the files in the original
archive are present and have not been modified in any way.

No charge for SnoopDos may be made, other than a reasonable cost to cover
the media and copying time.

If you wish to include SnoopDos on a magazine cover disk, you may do so as
long as you send a complimentary copy of the magazine issue in which it
appears to my home address. The entire package must be included on the
disk, not just the executable. Please

contact
me in advance to ensure

you have the latest version.

If you wish to supply SnoopDos as part of a commercial product, please
contact me to discuss it -- I’m easy to please.

If you wish to supply SnoopDos as part of a CD-ROM compilation of freeware,
you may do so as long as the disc contains at least 20 Mb of other
freeware. Otherwise, contact me first please. Explicit permission is
granted to distribute SnoopDos on any CD-ROM produced by Fred Fish / Amiga
Library Services, and on any officially supported Aminet compilation CD-ROM.

I reserve the right to publically poke fun at anyone who fails to abide by
these distribution rules, along with more severe action if appropriate.

Note: The source code for SnoopDos is available in a separate archive. You

SnoopDos 13 / 137

should be able to find it on Aminet in the util/moni directory, along with
the main SnoopDos archive.

See also:
Contents

History

Credits

Author

1.10 history

SNOOPDOS HISTORY

The very first version of SnoopDos was written back in May 1990 at the
suggestion of a friend. It proved popular, and was officially released
to the world as Version 1.0 in September 1990.

Over the next few years, SnoopDos received a number of minor upgrades,
with the final public release being V1.7 in December 1992. A further
upgrade, V1.7a in May 1993, had limited circulation.

In Autumn of 1993, work began on a complete rewrite of SnoopDos. A closed
user group was set up on the UK conferencing system, Cix, and an initial
prototype of the GUI was constructed using Commodore’s ToolMaker. This was
used to obtain early feedback on the interface from my testers, and acted
as the basis for the first real version.

In January 1994, I found myself unexpectedly transferred to St Paul,
Minnesota as part of my job. After acquiring a second-hand A3000 (thanks
Scott!), I was able to resume work on the project. During these three
months, SnoopDos gained most of its functionality, along with a few neat
features like the drag & drop format editor.

I returned to Ireland at the end of April, and work continued throughout
the summer. Many bugs were squashed, the command language was fleshed out,
refinements were made, and documentation was written. In July, the feature
set was locked down, and August was spent finetuning. After almost a year,
SnoopDos 3.0 was ready for release.

When you consider that the very first version of SnoopDos took less than a
week to write, you have to wonder why it took so long to produce this new
version. Either I’ve slowed down a lot, or it’s a much more sophisticated
program -- you’ll have to decide for yourself.

A NOTE ABOUT PIRATE VERSIONS OF SNOOPDOS

You may have noticed the jump in version numbering from SnoopDos 1.7
to 3.0. This is partly to co-incide with the current version of Kickstart
and partly to avoid confusion with pirate copies of SnoopDos.

For reasons best known to themselves, various individuals have seen fit to
take the source code for SnoopDos (always freely available) and use it to

SnoopDos 14 / 137

generate new, unauthorised versions which are then released as official
upgrades. At least one of these versions has been found to contain a trojan
horse. Two particularly widespread hacks were numbered 1.6 and 2.0; if you
have either version on your system, you should delete it immediately.

One way for me to reduce the chance of this happening in future is to stop
distributing source code for SnoopDos. I have no particular wish to do
this; I learnt many of my programming skills from studying other people’s
code, on Fish disks and elsewhere, and it’s nice to be able to contribute
something back to the programming community. Instead, I would ask anyone
out there considering such an action to put their creative talents to
better use by writing their own software.

In the meantime, I recommend that you try and ensure you obtain your copy
of SnoopDos from a reputable source such as Aminet or Fred Fish’s regular
CD-ROM. If you run a BBS, please feel free to check with me first before
putting a new version online, if you have reason to suspect it may be an
unauthorised copy.

All versions of SnoopDos 3.0 and above are signed using my PGP public key
(see

Author
for information on how to obtain this.) If you have PGP,

you can use this digital signature to ensure that your copy has not been
tampered with. Even if you don’t have PGP, a missing signature is a good
sign that something is wrong.

See also:
Contents

Distribution

Credits

Author

1.11 credits

SNOOPDOS CREDITS

A project like SnoopDos 3.0 would not be possible without the input of
many people. A big thank you to all the users of SnoopDos 1.x who sent in
helpful suggestions -- these were a big incentive to write Version 3.0.

Writing this version of SnoopDos provided a good opportunity for me to
learn about the new Kickstart 2.0 and 3.0 features. Along the way, I ran
into many problems, and I’d like to thank the following programmers for
their useful coding advice and suggestions:

Ralph Babel, Christopher Feck, Mike Froggett, Ed Mackey,
Udo K Schuermann and Mike Sinz.

While any project of this size is unlikely to be completely bug free, there
would be a great many more bugs without the help of my army of beta testers.
Not only did they suffer through every variety of crash, they also made

SnoopDos 15 / 137

many useful suggestions for improvements:

Dean Ashton Derek Holdon Charles O’Reilly
Timothy Aston Leon Hurst Jolyon Ralph
Dan Barrett Paul Kelly (Ireland) Geoffrey Reeves
Fred Botton Paul Kelly (England) Tommy Rolfs
Charlie Chuck David Malone Toby Simpson
Rick Costas Barry McConnell Paul Wakeford
Jonathan Evans Markus Moenig Richard Waspe
Tommy Gibbons Ian Moran Ian Wellock
Jim Hawkins Niall Murphy Michael Witbrock

Sincere thanks to one and all.

See also:
Contents

History

Distribution

Author

1.12 author

HOW TO CONTACT THE AUTHOR

I can be contacted via Internet at:

ecarroll@maths.tcd.ie
ecarroll@cix.compulink.co.uk

If you have any bug reports, suggestions or just general comments about
SnoopDos, I would like to hear from you. If you think you could do a
better job designing an icon for SnoopDos than I did (which wouldn’t be
hard!) then I would also like to hear from you.

You can obtain my PGP public key by sending mail to ecarroll@maths.tcd.ie
with the subject line "PGPKEY". If you have an account on Bix or Cix, you
can check my online resume instead (user name ecarroll).

I can also be reached by snail mail at this address:

Eddy Carroll
The Old Rectory
Delgany
Co. Wicklow
Ireland

I regret that due to the volume of mail received, I cannot always reply
to every letter. This is further compounded by the fact that I travel
quite frequently. Please use email if possible.

See also:
Contents

SnoopDos 16 / 137

History

Distribution

Credits

1.13 mainwindow

The main window looks like this. Click on any item for a more ←↩
detailed

description of its purpose.

+-+---+
|X| SnoopDos 3.0 © Eddy Carroll, August 1994.

Hotkey=<xxx>
|

+-+---+
|

Event headings
#

|---#
| #
|

Event output
#

| #
|---#
|

Status
[Monitoring system activity.................] #

|
Pause

Disable

Open Log...

Setup
A

|
Hide

Quit

Save Settings

Functions
V

+===<>+

The gadgets shown need not be displayed in the window -- you can turn them
off via the Windows menu, or by using the

HideGadgets
and

SnoopDos 17 / 137

HideStatus
commands. Even when hidden, the gadgets can still be accessed via ←↩

keyboard
shortcuts. All gadgets also have menu equivalents for convenience.

In addition to the underlined characters in the gadget labels, a range of
other keystrokes are also recognised. See the

Keyboard Shortcuts
section

for more details.

See also:
Function window

Settings window

Format editor

Menu options

Show

Hide

1.14 eventheadings

EVENT HEADINGS

This line at the top of the main window displays the headings for each
of the current output fields.

While the
Format editor
and
Format
command allow you to change the

current headings, you can also use the mouse to make small adjustments
directly in the main window. This is useful if you want to see a bit more
of a particular field, such as the

Target name
field.

If you click on any heading, it is highlighted in white, and two vertical
markers show the current boundaries of the output field. In addition, a
short vertical line indicates the rightmost position in the current format
(this is useful if you are trying to adjust the total width to fit neatly
inside the current window).

While the mouse button is held down, you can move the heading left or right
to adjust the position and width of the column. As you drag, you will see
the other headings adjust accordingly. When you release the mouse button,
the rest of the event output will be updated to reflect the new format.

If you click to the blank area at the right of a heading, then you can
adjust the width of that heading, while leaving its position unchanged. If

SnoopDos 18 / 137

the heading title fills the whole width of the column, then you can click
on the rightmost character of the title instead to achieve the same effect.

Usually, as you adjust a column, the headings to the right of the selected
column remain in the same position. This keeps the overall width of the
format the same, and is achieved by making one of the other columns narrower
or wider, to compensate for the changes made in the selected column.

Sometimes it’s convenient to be able to increase the overall width of a
format -- for example, if you’ve just resized the main window to be wider.
You can do this by holding down the SHIFT key while moving a heading. All
the headings to the right of the selected heading will then move in
synchronisation with it.

At any time while dragging a column, you can press the SPACE key to update
the event text to match the new format. This is a little quicker than
releasing the column and then clicking on it again, since it allows you to
make fine adjustments while still keeping the mouse button pressed.

If you change your mind while dragging a column, you can restore the
previous setting by pressing the ESC key or clicking the right mouse
button. Once you release the left mouse button, the change becomes
permanent. (You may find the

Last Saved
option on the settings menu

useful in this case.)

See also:
Main window

Event output

Format editor

Format

1.15 eventoutput

EVENT OUTPUT

A large part of the main window is given over to event output. This is
where the information about each function being monitored is displayed.

The exact details displayed for each function depend on the current event

Format
, but will usually include at least the target name, action, ←↩

option
and result output fields.

Because of the way SnoopDos works, it is possible for several programs to
start executing monitored functions simultaneously. When this occurs, you
may see several events listed without any text in the

Result
field. This

SnoopDos 19 / 137

is perfectly normal. As each call completes, its result field will be
filled in accordingly.

Some functions which are expected to take a long time display "----" in the
result field instead, to indicate that they are currently executing. These
include the

Execute
,
RunCommand
and
System
functions.

You can use the cursor keys to move around the event output. Cursor up
and down will move backwards and forwards through the event buffer, while
cursor left and right will scroll the window horizontally. You can only
scroll horizontally if the current event format is too wide to fit
completely inside the window. To move in jumps greater than one character,
hold down SHIFT or ALT while pressing the cursor key.

You can highlight any line in the event buffer by clicking on it with the
mouse. The line will remain highlighted until you release the mouse button.
This provides an easy way to match text in the Options and Result columns
with the corresponding text in the Process Name and Target Name columns.

While the highlight is displayed, you can move the mouse up and down to
select different lines. If you try and move off the top or bottom of the
window, the buffer will scroll in the appropriate direction.

Note that no new output will be displayed while a line is highlighted. If
you keep a line highlighted for a long time, you may find that the event
information currently displayed has vanished from the buffer, and new
events will start to be printed instead -- if this happens, the entire
window will be automatically refreshed when you release the button.

If you use a click-to-front window utility, you may find the brief flash
of a row being highlighted when you click the SnoopDos window to the front
distracting. You can avoid this by configuring SnoopDos to only allow
highlighting of rows when a qualifier key like SHIFT, ALT or CTRL is held
down. See the

RowQualifier
command for more details.

See also:
Main window

Event headings

Format editor

Format

RowQualifier

ShowGadgets

ShowStatus

SnoopDos 20 / 137

TextSpacing

1.16 statusline

MAIN WINDOW / STATUS LINE

The SnoopDos status line can display a variety of messages, depending on
what SnoopDos is currently doing. Here’s a summary of the information that
will appear on the status line:

· when disabled, the time that Disable was selected
· when paused, the time that Pause was selected
· when logging to a disk file, the name of the file
· when logging to a device, the name of the device
· when loading a settings file, the name of the file
· when saving a settings file, the name of the file

If none of these is currently in progress, then SnoopDos will simply say
it is monitoring system activity.

The information displayed in the status line is sufficient to allow you to
remove the gadgets in the main window if you choose. This provides more
room for event text to be displayed.

See also:
HideGadgets

HideStatus

Main window

ShowGadgets

ShowStatus

1.17 mainopenlog

MAIN WINDOW / OPEN LOG

The "Open Log..." gadget in the main window is used to start a new log file.
The actual gadget label will vary depending on the current

LogMode
setting. You can change this in the
Setup
window. The four possible

settings are:

Open Log...
Prompt for the new log file using the ASL file requester

SnoopDos 21 / 137

Start Log
Open a new log file using the current

LogName

Append Log
Add to an existing log file as defined by

LogName

Serial Log
Send log file output to a terminal on the serial port

When a log file is open, the gadget label is changed to
Close Log

.

You can always open a new log file via the ASL file requester by choosing
the

Open log
option on the Project menu, regardless of the current label

on the gadget.

See also:
Main window

AppendLog

OpenLog

OpenSerialLog

1.18 mainkeys

MAIN WINDOW / KEYBOARD COMMANDS

The following keyboard shortcuts are recognised in the main window:

Cursor Left Scrolls left one or more columns in the window
Cursor Right Scrolls right one or more columns in the window

Cursor Up Scrolls back one or more lines in the event buffer
Cursor Down Scrolls forward one or more lines in the event buffer

RETURN Scrolls forward one line in the event buffer
TAB Performs a

Pause
(if necessary) and a
SingleStep

SPACE Performs a
SingleStep
while paused

SHIFT-TAB Unconditionally cancels
Pause
or
Disable

M Opens the
Format editor

SnoopDos 22 / 137

(like the menu shortcut)
SPACE Redraws event text while adjusting

Event headings
ESC Cancels any column drag currently in progress

CTRL-C Selects the
Quit
gadget

CTRL-D Activates the
Disable
gadget

CTRL-E De-activates the
Disable
gadget

CTRL-F Brings the main window to the front

Most gadgets also have a keyboard shortcut, indicated by an underlined
letter in the gadget title.

If you press the keyboard shortcut for a button gadget, it will not take
effect until you release the key. If you change your mind after pressing
it, you can press ESC (with the original key still held down) and the
gadget selection will then be ignored.

For many gadgets, holding down SHIFT while you type the shortcut key will
produce slightly different behaviour. For example, holding down SHIFT while
you type the shortcut key for the Setup gadget in the main window will
close the Setup window instead of opening it.

See also:
Main window

1.19 settingswindow

The settings window lets you control overall settings which govern ←↩
how

SnoopDos operates. Click on any item for a more detailed description.

+-------------------------------------+
| SnoopDos Settings...................|
+-------------------------------------+
|

Hide method

Hotkey
|

|
Screen type

Screen name
|

|
Log mode

Log file

SnoopDos 23 / 137

|
|

File I/O

Window font
|

|
Buffer size

Buffer font
|

| |
|

Buffer format

Edit
|

|
Logfile format

Copy
|

| |
|

Use

Undo

Cancel
|

+-------------------------------------+

See also:
Main window

Function window

Format editor

OpenSetup

SetupWindowPos

1.20 settingscopy

SETUP WINDOW / COPY GADGET

This gadget copies the current
Format
string into the
LogFormat

.
Usually, the format used when sending event information to a log file
is the same as that used to display the information in the main window.
However, you can choose a separate format if you wish.

SnoopDos 24 / 137

This allows you to design your log file format using the format editor and
the main window. Once you are happy with it, you can Copy it into the
LogFormat gadget, and then restore the original window format by clicking
Undo in the format editor.

If you hold down the shift key while selecting the gadget, then instead of
copying the current buffer format, it will clear the log format. When
the log format is clear, it indicates that the current buffer format
should be used when logging to a file.

See also:
Setup window

Format editor

Format

LogFormat

WindowWidth

1.21 settingsbuttons

SETUP WINDOW / GADGETS

The USE, UNDO and CANCEL gadgets in the
Setup
window are used to control

whether or not the current window settings are made permanent.

When you change a gadget in the Setup window, the change takes effect
immediately. For example, if you choose a new

HotKey
, you will see

the main window titlebar updating to reflect the change. Selecting Use
will close the Setup window and make all such changes permanent. If you
want to close the window while maintaining the current settings, then
choose this option.

Selecting Undo will restore all the settings in use when you first opened
the Setup window. This allows you to recover from any accidental changes
you might have made.

Selecting Cancel will restore the original settings, and then close the
Setup window. This will cause any changes that have been made to the
settings since the window was opened to be discarded.

There are two exceptions to the earlier statement that all changes made
in the Setup window take effect immediately. The first is the

BufferSize
gadget, which controls the size of the event buffer. Since ←↩

changing the
buffer size causes the current buffer contents to be lost, the change
doesn’t take effect until you select Use. This allows you to change your

SnoopDos 25 / 137

mind if you alter it by mistake.

The second exception is the
LogFormat
gadget. If a log file is

currently open when you alter it, the change will not take effect until
after the log file is closed. This avoids producing a confusing log file
with a variety of different formats.

See also:
Setup window

1.22 functionwindow

The SnoopDos function window allows you to choose which events are
monitored. Click on any item for a more detailed description.

+--+
| SnoopDos Functions...|
+--+
| System Functions DOS Functions |
| |
|

System Select

FindPort

ChangeDir
|

|
AmigaDOS Select

FindResident

Delete
|

|
FindSemaphore

Execute
|

|
Only show fails

FindTask

GetVar
|

|
Show CLI number

LockScreen

LoadSeg
|

SnoopDos 26 / 137

|
Show full paths

OpenDevice

Lock
|

|
Use device names

OpenFont

MakeDir
|

|
Monitor packets

OpenLibrary

MakeLink
|

|
Packet debugger

OpenResource

Open
|

|
Monitor ROM calls

ReadToolTypes

Rename
|

|
Ignore WBench/Shell

SendRexx

RunCommand
|

|
SetVar

|
|

Match name
[......................]

System
|

| |
|

Use

Undo

Cancel

SnoopDos 27 / 137

|
+--+

See also:
Main window

Settings window

Format editor

OpenFunction

FunctionWindowPos

1.23 selectgadgets

FUNCTION WINDOW / SYSTEM AND DOS SELECTORS

These gadgets allows you to quickly select or deselect all the functions
listed in the System or AmigaDOS column of the

Function
window.

There are three possible settings. SELECTED is the usual setting, and
indicates that a mixture of functions are currently being monitored.

ALL and NONE indicate respectively that all or none of the functions in
each column are currently being monitored. The function checkbox gadgets
will reflect this.

As long as you don’t click on any of the function checkboxes, SnoopDos will
remember the last SELECTED configuration, and you can then restore that
configuration by changing the selection back to SELECTED again. However,
if you change any checkbox gadget while in the ALL or NONE state, then
the state changes back to SELECTED, and SnoopDos will no longer be able
to restore the original settings.

This is more difficult to explain than to understand. Play with all the
gadgets and everything should become clear.

You can use the
Functions
command to enable or disable groups of

functions from within a script.

See also:
Function window

Functions

1.24 functionbuttons

SnoopDos 28 / 137

FUNCTION WINDOW / GADGETS

The USE, UNDO and CANCEL gadgets in the
Function
window are used to

control whether or not the current function settings are made permanent.

When you change a function gadget in the window, the change takes effect
immediately. Selecting Use will close the window and make all such changes
permanent. If you want to close the Function window while maintaining the
current function settings, then choose this option.

Selecting Undo will restore all the function settings in use when you first
opened the window. This allows you to recover from any accidental changes
you might have made.

Selecting Cancel will restore the original function settings, and then
close the window. This will cause any changes that have been made to the
settings since the window was opened to be discarded.

See also:
Function window

1.25 formateditor

The format editor lets you choose what information is displayed in ←↩
the

main window for each monitored event. Click on any item for a more
detailed description.

+--+
| SnoopDos Format Editor.........................|
+--+
| Available fields Current format |
| +--------------------+ +---------------------+ |
| |

CallAddr %c
| |

Count %05u
| |

| |
Date %d
| |

Proc Name %18p
| |

| |
Hunk:Offset %h
| |

Action %10a
| |

| |
Task ID %i
| |

Target Name %27n

SnoopDos 29 / 137

| |
| |

Segment Name %s
| |

Options %07o
| |

| |
Time %t
| |

Res. %04r
| |

| | | | | |
| +--------------------+ +---------------------+ |
| |
|

Field width
[====[]===================] 7 |

| |
|

Use

Undo

Cancel
|

+--+

The current format is listed in the righthand box while other fields not
currently in use are listed in the lefthand box. You can use the mouse
to drag fields from their current position to a new position. As you do
this, you will see the main window updating to reflect your change.

You can also use the cursor keys to edit the format. Cursor Up and Down
select a field to edit in the current format, and Cursor Left and Right
adjust the field width.

See also:
Main window

Settings window

Function window

Format

OpenFormat

FormatWindowPos

1.26 Format width gadget

FORMAT EDITOR / FIELD WIDTH SLIDER

The format width slider gadget allows you to adjust the width of the
currently selected format output field. As soon as you release the slider,

SnoopDos 30 / 137

the main window will be updated to reflect the new width of the selected
field. The width of each event in the current format is displayed to the
right of the event name (between the ’%’ and the format identifying letter).

Only fields in the current format can have their widths adjusted. If there
is no currently selected field, then the slider is disabled.

See also:
Format editor

Main window

Format

1.27 formatbuttons

FORMAT EDITOR / GADGETS

The USE, UNDO and CANCEL gadgets in the
Format
editor are used to control

whether or not the current format is installed permanently.

When you make changes in the format editor, you can immediately see the
effect of those changes in the main window. Selecting Use will close the
format editor and make those changes permanent. If you want to close the
format editor while maintaining the current settings, this is the option
to choose.

Selecting Undo will restore the format in use when you first opened the
format editor. This allows you to recover from any accidental changes
you might have made.

Selecting Cancel will restore the original format, and then close the format
editor. This will cause any changes that have been made to the format since
the editor was opened (including any changes made in the main window) to be
discarded.

See also:
Format editor

Format

Event heading

1.28 Action output field

%A -- ACTION

The action output field is one of the most important parts of any event.
It shows what action a program is trying to carry out. The possible
actions correspond roughly to the functions listed in the

SnoopDos 31 / 137

Function
window, but you may also see other actions listed occasionally.

In particular, if you have the
PacketDebugger
turned on, you will

see many actions of the form #XXXXXX (such as #FINDOUTPUT and #COPY_DIR).
These are raw AmigaDOS packets, and of interest only to programmers.

Any actions prefixed with an asterisk correspond to operations carried out
using direct packet i/o, rather than dos.library function calls. You will
only see these if you have enabled the

MonitorPackets
option. Typically,

such calls are only made by programs compiled using GNU C.

See also:
Format editor

Main window

Format

1.29 Call Address output field

%C -- CALL ADDRESS

This output field displays the memory address from which a monitored
function was called. On its own, this is fairly meaningless. However, if
you are a programmer, you can use this information to locate the piece of
code that made the call, and see what it tries to do next.

The address is displayed as a 7 digit hex number since very few, if any,
Amigas have memory above $0FFFFFFF. If your Amiga happens to be the
exception, then ensure that you make this field at least 8 characters wide
to catch any wider addresses.

Also note that the value actually represents the address of the first
instruction after the call to the monitored function. If you want to
see the instruction that made the call, subtract 6 from this value.

If another program has patched a function after SnoopDos, then SnoopDos
will usually be unable to determine the correct return address -- instead,
the address of the second program’s patch code will be displayed. If this
causes a problem, then you should not enable SnoopDos’s monitoring of the
function in question until after the second program has been loaded.

See also:
Format editor

Main window

Format

SnoopDos 32 / 137

1.30 Date output field

%D -- DATE

This output field displays the date an event took place on, in the standard
AmigaDOS format DD-MMM-YY. You are unlikely to find this useful unless you
intend running SnoopDos for several days at a time.

See also:
Format editor

Main window

Format

Time field

1.31 Hunk:Offset output field

%H -- HUNK:OFFSET

This output field is only of use to programmers, and then only when

SegTracker
is loaded. It displays the hunk and offset from where

the current function was called, in the format HH:OOOOOO. (Both the
hunk and the offset are given in hex).

You can use this information in conjunction with the
Segment Name

output field and the
FindHit
utility to identify which line in a

program’s source code was responsible for making the function call.
This can be invaluable when you are debugging your code.

If SegTracker is not loaded, or if it cannot identify which module
the function was called from, then this field will usually be blank.
However, if the function was called from ROM, then the offset from
the beginning of the ROM module will be displayed instead.

The same caveat discussed for the
Call Address
field regarding programs

that patch functions after SnoopDos has been installed also applies here.

See also:
Format editor

Main window

Format

SnoopDos 33 / 137

1.32 TaskID output field

%I -- TASK ID

This output field displays the task address of the program that called the
current function. The address is displayed as a 7 digit hex number. If your
Amiga happens to have memory above $0FFFFFFF, you will need to widen this
field to allow all 8 digits to be displayed.

This field can be useful in identifying the process that called a function
if there are several processes running on your system with the same name.
You can use a tool such as ARTM or XOper to find out more information about
the process based on its address.

See also:
Format editor

Main window

Format

1.33 TargetName output field

%N -- TARGET NAME

This output field displays the most vital piece of information associated
with the monitored function. This will vary from function to function, but
is typically the name of the requested system resource or disk file.

This field is unusual in that it can be displayed aligned on the left
or the right -- all the other fields are always displayed left aligned.
See the

LeftAligned
and
RightAligned
commands for more details.

See also:
Format editor

Main window

Format

1.34 Options output field

%O -- OPTIONS

This output field displays any secondary options associated with the
item displayed in the

TargetName
output field. This will vary from

SnoopDos 34 / 137

function to function.

For example, with the Open() function, this will show whether the file is
being opened for reading or writing. With the RunCommand() function, it
will show the stack size of the command being run.

If a particular function has no secondary options, then this field will
remain blank.

See also:
Format editor

Main window

Format

1.35 ProcessName output field

%P -- PROCESS NAME

This output field displays the name of the process that called the function
being monitored.

Note that while this indicates the program that was responsible for the
call, the program displayed may not have made the call directly. For
example, it may have called a function in an external library, and that
library may be making the call on the program’s behalf. If this distinction
is important, you can use the

Segment Name
output field to get more

precise information.

Sometimes you may find you have several processes running which all have
the same name. In this case, you can use the

Task ID
output field to

distinguish between them. Alternatively, if they were all run from the CLI
instead of Workbench, you can use the

ShowCLI
command to display the CLI

number of each process in brackets at the start of the name.

See also:
Format editor

Main window

Format

1.36 Result output field

SnoopDos 35 / 137

%R -- RESULT

This output field displays the result of each function call. This will
usually be either OK or Fail, depending on the outcome.

Some functions behave slightly differently. In the case of the
Execute

,

RunCommand
and
System
functions, this field will still display Fail

if the function failed, but will return the numeric program return code if
the function succeeded. Since these functions typically take some time to
execute, the result will be shown as "----" while the command is executing.

If you
Pause
SnoopDos, then each task that calls a monitored function

will be put to sleep. When this occurs, the result field displays "WAIT"
to indicate the task is no longer active. This will be replaced by the
appropriate return code when execution is resumed.

If you have enabled the
PacketDebugger

, then this field will not only
contain OK or Fail, it will also contain the value or values returned by
the DOS device being monitored. To see this additional information, you
will need to make the field wider than its normal 4 character width.

If you have been using the Packet debugger or the
MonitorPackets
option,

you may occasionally see a result code of "Missed". This simply indicates
that SnoopDos couldn’t determine the result code of a particular packet
operation, most likely because you disabled packet monitoring while the
operation was still in progress.

See also:
Format editor

Main window

Format

1.37 Segment Name output field

%S -- SEGMENT NAME

This output field is only of use when
SegTracker
is loaded. It displays

the name of the module that called the current function. It is usually

SnoopDos 36 / 137

used in conjunction with the
Hunk:Offset
field.

The Segment Name will often, but not always, be the same as the process
name. They can differ if a program calls a module outside its own code,
such as a ROM function or a function in an external disk library. If that
function then calls any functions monitored by SnoopDos, it will be
identified independently of the original process. This is useful if you are
trying to find out what part of the system is responsible for a particular
operation.

If SegTracker is not loaded, SnoopDos can still identify calls made from
within resident ROM modules. In this case, the ROM module name will be
displayed.

Since calculating the calling module is a relatively time consuming
process, SnoopDos only actually performs the calculation when it needs
to display the segment name on the screen or output it to the log file.
This means that if you don’t have any interest in the segment name, then
SnoopDos isn’t slowed down unnecessarily.

However, this has a side effect which can trip up the unwary. If the
module that made a function call is unloaded from memory before SnoopDos
has a chance to print the details about the functions it called, then the
module name and hunk:offset can’t be calculated; a "Module not found"
message will be displayed instead. This is most likely to happen if
SnoopDos is hidden (since it won’t display anything until the window is
re-opened) but it can also happen if a program exits quickly while it is
being monitored.

To guard against this, you can take a few simple precautions. Make sure
you add the Segment Name field to your output format before you start
monitoring.

Raise the priority of SnoopDos using the
Task priority
menu option so

that it’s higher than the priority of the processes you will be monitoring.
This lets SnoopDos call SegTracker before the module has a chance to unload
itself.

Finally, if you plan on running SnoopDos hidden in the background, keep a
log file open, even if it’s only to NIL:. This will make sure that SnoopDos
always resolves segment names as soon as possible. If you have the main
window open, then this won’t be necessary.

See also:
Format editor

Main window

Format

SnoopDos 37 / 137

1.38 Time output field

%T -- TIME

This output field provides a simple way to timestamp each function that
SnoopDos monitors. It is particularly useful if you will be running
SnoopDos unattended for long periods of time.

The time is displayed in the format HH:MM:SS. If you are only interested
in the hours and minutes, you can narrow the field width from 8 to 5
characters wide.

If SnoopDos will be running for several days, you may also want to consider
using the

Date
output field.

See also:
Format editor

Main window

Format

1.39 Count output field

%U -- COUNT

This output field simply provides a unique sequence number that identifies
the position of an event in the buffer. Events are numbered starting from
one and each new event increments the count accordingly.

If you are logging events to a file, this field is particularly useful
because it provides an easy way of matching up partially completed events
with the completed version which appears later on in the file. See the

OpenLog
command for more information.

See also:
Format editor

Main window

Format

1.40 SegTracker and FindHit

SEGTRACKER AND FINDHIT

SegTracker and FindHit are two useful utilities by Mike Sinz that form
part of the Enforcer package. SegTracker keeps track of the memory

SnoopDos 38 / 137

occupied by any module loaded from disk, while FindHit allows a hunk and
offset within a module to be mapped back to a line number in source code.

For best results, SegTracker should be run immediately after SetPatch in
your startup-sequence. This lets it keep track of as many programs as
possible. Running SegTracker after SnoopDos has loaded will still work,
but it will not be able to identify programs which were already running
at that time.

You can usually find the latest version of Enforcer on Aminet in the
/pub/aminet/dev/debug directory.

See also:
Hunk:Offset

Segment name

1.41 commandindex

SnoopDos supports over 100 commands which can be accessed via ←↩
command

line arguments, Workbench tooltypes, settings files, or ARexx. See the

Command syntax
section for general information, or click on any

command in the list below for detailed information about that command.

AddLog

HideGadgets

Pause

AppendLog

HideMethod

Quit

AutoOpen

HideStatus

ReadToolTypes

BufferFont

HotKey

Rename

BufferSize

IconPos

SnoopDos 39 / 137

RightAligned

ChangeDir

IgnoreShell

RowQualifier

ClearBuffer

Language

RunCommand

CloseFormat

LeftAligned

SaveBuffer

CloseFunction

LoadDefSettings

SaveDefSettings

CloseLog

LoadSeg

SaveSettings

CloseSetup

LoadSettings

SaveWindow

CopyBuffer

Lock

ScreenName

CopyWindow

LockScreen

ScreenType

CreateIcons

LogFormat

ScrollDown

SnoopDos 40 / 137

CX_PopKey

LogMode

ScrollUp

CX_Popup

LogName

SendRexx

CX_Priority

MainWindowPos

Settings

Delete

MainWindowSize

SetupWindowPos

Disable

MakeDir

SetVar

DisableWhenHidden

MakeLink

Show

Enable

MatchName

ShowCLI

Execute

MonitorPackets

ShowFullPaths

FlushLog

MonitorROMCalls

ShowGadgets

FileIOType

OnlyShowFails

SnoopDos 41 / 137

ShowStatus

FindPort

Open

SingleStep

FindResident

OpenDevice

SimpleRefresh

FindSemaphore

OpenFont

SmartRefresh

FindTask

OpenFormat

StackLimit

Format

OpenFunction

System

FormatWindowPos

OpenLibrary

TaskPri

Functions

OpenLog

TextSpacing

FunctionWindowPos

OpenResource

Unpause

GetVar

OpenSerialLog

UseDeviceNames

SnoopDos 42 / 137

GotoLine

OpenSetup

WindowFont

Help

PacketDebugger

WindowWidth

Hide

PatchRamLib

1.42 commandsyntax

SNOOPDOS COMMAND SYNTAX

SnoopDos understands over 100 individual commands. These commands can be
executed from the CLI, as Workbench icon tooltypes, as ARexx commands, or
in SnoopDos settings files. In each case, the syntax is the same.

There are two broad categories of commands: those that take a parameter
and those that don’t. You can get a quick summary of commands by typing
SNOOPDOS HELP in a CLI window -- this will list all the supported commands,
and those that require a parameter will be marked with an ’*’.

If a command takes a parameter, you can specify the parameter in the
following ways. Let’s use the HideMethod command as an example (note
that all commands and parameters are case insensitive):

HideMethod=Iconify
HideMethod="Iconify"
HideMethod Iconify
HideMethod "Iconify"

Which of these four variants you use will depend on personal preference,
and on whether you are executing the command from ARexx, the CLI or an
icon tooltype. However, if a command parameter contains spaces, it must
be enclosed in quotation marks.

Most of the commands that don’t need a parameter are used to control
various program settings, such as what functions to monitor. There are
several ways to select whether you want each setting on or off. For example,
let’s look at the Lock command, which controls whether or not SnoopDos
monitors the Lock() function in dos.library. All of the following will
turn on Lock monitoring:

Lock
Lock=Yes
Lock=On
Lock=1

SnoopDos 43 / 137

To turn off lock monitoring, you can say:

NoLock
Lock=No
Lock=Off
Lock=0

The ’=’ is optional in most cases, but is required if you are executing the
command from the CLI. If you are executing the command via ARexx, it’s a
good idea to leave out the ’=’ to prevent it confusing the ARexx command
interpreter.

In general, most commands have both a positive and negative version. For
example, Disable=No, NoDisable, and Enable are all equivalent. Similarly,
you can say HideGadgets=Yes or ShowGadgets=No -- they both have the same
effect.

If SnoopDos doesn’t understand a particular command, it will usually inform
you -- exactly how depends on the method used to invoke the command.
Commands executed from the CLI produce an error message in the CLI window,
while those executed from ARexx return a result code in the RC variable.
Unrecognised commands in icon tooltypes and settings files are silently
ignored.

If you want to experiment with SnoopDos commands, you can use the

LoadSettings
command with a filename of "CON:////SnoopDos/CLOSE" to

create a window where you can type commands interactively.

See also:
Command Index

CLI usage

Workbench usage

ARexx usage

1.43 addlog

Command: ADDLOG "text"

Example: ADDLOG "Loading BBS..."

This command lets you output a custom message to the current SnoopDos
log file. It can be useful if SnoopDos is monitoring a DOS or ARexx
script which generates large amounts of output, and you want to
indicate when certain parts of the script were executed in relation to
the SnoopDos output.

See also:
Command Index

AppendLog

SnoopDos 44 / 137

CloseLog

FlushLog

LogFormat

OpenLog

1.44 appendlog

Command: APPENDLOG "filename"

Example: APPENDLOG "ram:SnoopDos.log"

This command opens a log file. Any output displayed in the SnoopDos
window will also be written to this file. If the file already exists,
SnoopDos will append its output to the existing contents of the file;
otherwise, a new file is created.

Files opened using AppendLog have an advantage over those opened with
OpenLog, in that it is possible to access the contents of the file from
another program while SnoopDos is still writing to it. This is useful if
you want to quickly review the events that have been logged so far -- you
can simply TYPE the file in a CLI window.

If you are doing this, you can ensure that the file contents are up to date
by selecting then unselecting the

Pause
gadget. This will write any

information that might still be in the file buffer to the file.

See the
OpenLog
documentation for more information about how SnoopDos

outputs information to a log file.

See also:
Command Index

AddLog

CloseLog

FlushLog

LogFormat

OpenLog

OpenSerialLog

SnoopDos 45 / 137

1.45 autoopen

Command: AUTOOPEN
NOAUTOOPEN

This command enables or disables SnoopDos’s AutoOpen setting. This
setting can also be controlled via an option on the Windows menu.

When AutoOpen is enabled, SnoopDos will automatically open its window
whenever something happens which proces output in the window. This is
useful if you have configured SnoopDos to only show one or two event
types, since it lets you run SnoopDos in the background and have it pop
up as soon as those events happen.

This command is automatically written to the settings file when you
save settings.

See also:
Command Index

MatchName

1.46 bufferfont

Command: BUFFERFONT "fontname.size"

Example: BUFFERFONT "courier.13"

This command selects the font used by SnoopDos when displaying events in
the main window. You can also change the font by using the font requester
accessible through the

Settings
window.

The font selected must be a non-proportional font, and you must give a size.

This command is automatically written to the settings file when you
save settings.

See also:
Command Index

WindowFont

1.47 buffersize

Command: BUFFERSIZE <size>

Example: BUFFERSIZE 32

This command changes the size of the buffer SnoopDos uses to record
information about events. You can also change the buffer size using

SnoopDos 46 / 137

the Buffer Size gadget in the
Settings
window.

The buffer size is given in kilobytes. As a very rough guide, each
event occupies about 100 bytes of memory, so you can store about 10
events per kilobyte. The actual size of each event varies depending on
the length of the file and process names, and several other factors.

Note that changing this setting in the
Settings
window only takes

effect when you select Use; this is in contrast to most of the other
gadgets which take effect as soon as you change them. This is because
the SnoopDos buffer is cleared when you change its size, and so the
action is left until the last possible moment.

If there is not enough memory available for the buffer size you request,
SnoopDos will allocate as large a buffer as possible using the available
memory. Note that SnoopDos requires contiguous memory for its buffer,
so if you have been running many applications before loading SnoopDos,
you may find less memory is available then expected.

This command is automatically written to the settings file when you
save settings.

See also:
Command Index

ClearBuffer

1.48 changedir

Command: CHANGEDIR
NOCHANGEDIR

This command enables or disables monitoring of the CurrentDir()
dos.library function. It is also available as a gadget in the

Function
window.

Programs call the CurrentDir() function when they want to change their
working directory to somewhere else. Files opened by the program are
then assumed to be in this directory if a pathname isn’t explicitly
specified. This can sometimes show you where a program expects to
find certain files.

This command is automatically written to the settings file when you
save settings.

See also:
Command Index

SnoopDos 47 / 137

1.49 clearbuffer

Command: CLEARBUFFER

This command erases the contents of SnoopDos’s event buffer. All events
which occur from this point on are numbered starting from one again. If
you are about to start monitoring a new program, this is a convenient
way to ensure that you don’t get the new output mixed up with output
from earlier programs.

This option is also available as an item on the
Buffer
menu.

See also:
Command Index

BufferSize

1.50 closeformat

Command: CLOSEFORMAT

This command closes the
Format editor
if it happened to be open. The

current position of the window on the screen is remembered so that it can
re-open in the same position next time.

You can also close the format window by holding down the shift key while
selecting the

Show format
item on the Windows menu, or while double-

clicking on the header line in the main window.

Yet another way to close the format window is to hold down the shift key
while selecting the "Edit..." gadget in the

Setup
window.

See also:
Command Index

OpenFormat

FormatWindowPos

1.51 closefunction

Command: CLOSEFUNCTION

This command closes the

SnoopDos 48 / 137

Function window
if it happened to be open. The

current position of the window on the screen is remembered so that it can
re-open in the same position next time.

You can also close the function window by holding down the shift key while
selecting the

Show functions
item on the Windows menu, or while clicking

on the Function gadget in the main window.

See also:
Command Index

OpenFunction

FunctionWindowPos

1.52 closelog

Command: CLOSELOG

This command closes any currently open log file. It is available as an
option on the Project menu, and also as a gadget in the main window (it
replaces the

Open Log
button while a log file is open).

See also:
Command Index

AddLog

AppendLog

FlushLog

LogFormat

OpenLog

1.53 closesetup

Command: CLOSESETUP

This command closes the
Setup window
if it happened to be open. The

current position of the window on the screen is remembered so that it can
re-open in the same position next time.

You can also close the setup window by holding down the shift key while

SnoopDos 49 / 137

selecting the
Show setup.
item on the Windows menu, or while clicking

on the Setup gadget in the main window.

See also:
Command Index

OpenSetup

SetupWindowPos

1.54 copybuffer

Command: COPYBUFFER

This command copies the entire contents of the SnoopDos event buffer to
the system clipboard, allowing you to easily paste it into another
application such as a word processor or text editor. It can also be
accessed as an item on the Buffer menu.

The data will be formatted according to the current buffer format. Since
this can potentially generate a large amount of text, you may prefer to
use the CopyWindow command instead, which only copies that data currently
displayed in the main window.

See also:
Command Index

CopyWindow

SaveBuffer

SaveWindow

1.55 copywindow

Command: COPYWINDOW

This command copies the contents of the main window to the system
clipboard, allowing you to easily paste it into another application
such as a text editor or word processor. It is also available as an
item on tbe Buffer menu.

If the current buffer format is too wide to fit completely in the main
window, only that portion which is currently displayed will be copied.
If this doesn’t include enough information, you can use the CopyBuffer
command instead and then delete any extra lines that you don’t need.

See also:
Command Index

SnoopDos 50 / 137

CopyBuffer

SaveBuffer

SaveWindow

1.56 createicons

Command: CREATEICONS
NOCREATEICONS

This command controls whether or not SnoopDos should create an icon when
it saves a settings file. You can find a corresponding menu option to
control this on the Settings menu.

Note that no icon is saved for default settings files, only for settings
files that are saved using the

SaveSettings
command. If an icon

is created for a settings file, then the settings in that file can be
loaded at any time by double-clicking the icon.

When SnoopDos writes out icons, it tries to use the same image as that
used by the SnoopDos program icon. If it couldn’t locate a program icon,
it uses a simple built-in icon instead.

This command is automatically written to the settings file when you
save settings.

See also:
Command Index

SaveDefSettings

SaveSettings

1.57 cx_popkey

Command: CX_POPKEY "key description"

Example: CX_POPKEY "ctrl alt d"

This command allows you to select what key sequence is used to open the
SnoopDos main window when it is hidden. This corresponds to the Hotkey
gadget in the

Settings
window. It is a synonym for the
HotKey
command.

Any standard commodities key description can be given. You can always
tell which key sequence is currently in use by looking at the titlebar

SnoopDos 51 / 137

of the main window. If you enter an incorrect description, then the
titlebar will display "<invalid>".

When you have defined a hotkey, SnoopDos can be called up at any time by
pressing that key sequence. If the main window was already open, it will
be brought to the front and activated. If it was open, but on a different
screen, it will be re-opened on the current screen (as selected using the

ScreenType
command).

See also:
Command Index

CX_Popup

CX_Priority

HotKey

1.58 cx_popup

Command: CX_POPUP=YES
CX_POPUP=NO

This command controls whether or not SnoopDos should open its window when
you run it. If you give the command while SnoopDos is already running, then
the window will be opened or closed accordingly.

As a special case, if you run SnoopDos from an icon which contains the
tooltype CX_POPUP=NO, it will only have an effect the first time SnoopDos
is run. If you run it again while SnoopDos is hidden the background, then
the main window will be automatically opened, overriding this tooltype.

This ensures that a hidden SnoopDos window can always be re-opened by
double-clicking on an icon, even if the icon contains a tooltype of
CX_POPUP=NO.

This command is identical to the
Show
and
Hide
commands. It is

included for compatibility with other commodities.

See also:
Command Index

CX_PopKey

CX_Priority

SnoopDos 52 / 137

1.59 cx_priority

Command: CX_PRIORITY=n

Example: CX_PRIORITY=5

This command is used to control the priority of the hotkey used to call
up the SnoopDos window when SnoopDos is running as a commodity.

Most people will never need to change this from its default value
of zero. However, occasionally you may find that another commodity
is intercepting several keystrokes, one of which is the SnoopDos key.
By increasing the value of CX_Priority, you can ensure that SnoopDos
gets precedence.

Alternatively, by setting CX_Priority to a negative value, you could
ensure that the other application gets priority.

See also:
Command Index

CX_PopKey

CX_Popup

1.60 delete

Command: DELETE
NODELETE

This command enables or disables monitoring of the DeleteFile()
dos.library function. It is also available as a gadget in the

Function
window.

The DeleteFile() function is used to delete a file from disk. Programs
often delete temporary files when they no longer need them. If a file
seems to constantly vanish, and you can’t figure out why, monitoring
DeleteFile() may show you which program is responsible.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.61 disable

Command: DISABLE

This command provides a simple way to completely disable SnoopDos

SnoopDos 53 / 137

while still leaving it ready for action in the future. It corresponds
to the Disable gadget in the main window and the Disable option on
the Project menu. In addition, CTRL-D is recognised as a keyboard
shortcut for Disable, for SnoopDos 1.x compatibility. This works even
when sent via an external log device such as CON: or AUX:.

When SnoopDos is disabled, it removes all its system patches and enters a
dormant state where it has no effect on system performance. If a log file
is open, then any outstanding buffered output is written to the file, along
with a message indicating what time SnoopDos was disabled at. (If flushing
the output file is all you want to do, the

FlushLog
command is an

easier way to achieve this.)

See also:
Command Index

DisableWhenHidden

Enable

Pause

1.62 disablewhenhidden

Command: DISABLEWHENHIDDEN
NODISABLEWHENHIDDEN

This command controls whether or not SnoopDos continues to monitor system
activity when it is running in the background as a commodity. There is a
corresponding menu option in the Windows menu.

If DisableWhenHidden is set, then SnoopDos automatically disables monitoring
when it is hidden (using the

Hide
command). When the SnoopDos window is

re-opened, the previous monitoring state is restored, unless monitoring was
re-enabled using the

Enable
command while SnoopDos was hidden -- in that

case, no change is made.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Disable

Enable

Pause

SnoopDos 54 / 137

1.63 enable

Command: ENABLE

This command is the counterpart to the
Disable
command. It undoes the

effect of an earlier Disable and allows SnoopDos to resume monitoring
functions. This corresponds to the Disable gadget in the main window, and
the Disable menu option in the Project menu.

For compatibility with SnoopDos 1.x, CTRL-E will also select Enable. This
works even when sent via an external log device such as AUX: or CON:. Yet
another keyboard shortcut is SHIFT-TAB, which will also perform an
unconditional

Unpause
.

If a log file is open, the time at which monitoring was enabled is written
to the file.

See also:
Command Index

Disable

DisableWhenHidden

Pause

1.64 execute

Command: EXECUTE
NOEXECUTE

This command enables or disables monitoring of the Execute() dos.library
function. It is also available as a gadget in the

Function
window.

Older applications call Execute() to run an external command from inside
the main program. For example, a program might try to run Commodore’s
Colors utility to provide a simple way of editing the screen colours. Most
modern software will call

RunCommand
or
System
instead.

The
Target name
output field shows the command line being executed by

the application. Usually, only a single command is being executed; in this
case, the

SnoopDos 55 / 137

Options
output field will show "Single". If the application

has provided additional commands to execute afterwards, then "Batch" will
be displayed instead.

Batch mode is most commonly used to create a new CLI or Shell; the
additional commands are then read from a console window rather than
passed directly by the application.

The
Result
output field will show whether or not the command line was

loaded successfully. Note that this doesn’t indicate that the command
itself completed successfully, only that AmigaDOS was able to locate the
command on disk and load it into memory.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

RunCommand

System

1.65 fileiotype

Command: FILEIOTYPE=AUTOMATIC | IMMEDIATE | BUFFERED

Example: FILEIOTYPE=IMMEDIATE

This command determines what method of buffering SnoopDos uses when
capturing information to a log file. It is also available as a gadget
in the

Settings
window

SnoopDos distinguishes between logging to a disk file, and logging to a
device such as PRT:, AUX:, or CON:. If you select AUTOMATIC then SnoopDos
will automatically use buffered output for disk files and disable
buffering when logging to devices.

If you select IMMEDIATE, then SnoopDos will never use buffered output.
This ensures that the information written to the log file (whether it’s
on disk or on a physical device such as a printer) will always be
completely up to date. However, this can slow things down a little since
one file operation needs to be carried out for every single event that
SnoopDos monitors.

If you select BUFFERED, then SnoopDos will always buffer output, even
if logging to a device. The buffering works by waiting until up to 8K
of event data has been collected, and then outputting all the data in
one operation. This is quicker than IMMEDIATE, but has the disadvantage
that the log output may not always be up to date. In the case of a

SnoopDos 56 / 137

printer, for example, you would see no output for a while, and then
suddenly 100 lines would all be printed at once.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

FlushLog

1.66 findport

Command: FINDPORT
NOFINDPORT

This command enables or disables monitoring of the FindPort() exec.library
function. It is also available as a gadget in the

Function
window.

Programs call FindPort to rendezvous with other applications on the system.
It is most commonly called to locate another application’s ARexx port, but
can also be used to allow several products from the same company to work
together.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SendRexx

1.67 findresident

Command: FINDRESIDENT
NOFINDRESIDENT

This command enables or disables monitoring of the FindResident()
exec.library function. It is also available as a gadget in the

Function
window.

The Kickstart ROM on all Amigas contains a number of resident modules --
libraries, devices, resources, and so on. The FindResident() function
searches the list of all ROM modules for a particular name.

Most programs have no need to call FindResident() directly, but you will
sometimes see ROM libraries calling it if your current format string
includes the

SnoopDos 57 / 137

Segment name
field. In normal use, you probably won’t

find it a useful function to monitor.

SnoopDos automatically writes this command to the settings file when
you save settings.

Note for OS experts: The background ramlib process calls FindResident
frequently when searching for libraries and devices. SnoopDos deliberately
ignores these calls to keep the amount of information displayed down to a
reasonable level.

See also:
Command Index

PatchRamLib

1.68 findsemaphore

Command: FINDSEMAPHORE
NOFINDSEMAPHORE

This command enables or disables monitoring of the FindSemaphore()
exec.library function. It is also available as a gadget in the

Function
window.

This is similar to
FindPort
but not as commonly used. It allows access

to a piece of data to be arbitrated so that only one task at a time can
access it.

It is often used to allow several copies of a single program to run at
once, with all copies sharing access to a single set of data. The main
reason you might want to monitor it is if you are writing a program
yourself that makes use of it.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.69 findtask

Command: FINDTASK
NOFINDTASK

This command enables or disables monitoring of the FindTask() exec.library
function. It is also available as a gadget in the

SnoopDos 58 / 137

Function
window.

The FindTask() function allows a program to locate another task on the
system by name. Having located the task, the program can then proceed to
signal that task or communicate with it in some other way, or even try
and kill it off. Generally, this function is used by utilities to locate
system tasks, rather than by applications.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.70 flushlog

Command: FLUSHLOG

When SnoopDos is logging output to a disk file, it usually buffers up
output in memory and only writes it to disk when the buffer is full
(about every 100 lines or so). This is much more efficient than writing
every line of output to disk separately, but it has the disadvantage
that if the system crashes, you may lose the most recent lines of output.

This command instructs SnoopDos to flush any outstanding output in the
buffer to the log file, thus bringing it up to date. It has no effect if
no log file is open.

A quick way to do this interactively is to
Pause
and then
Unpause

SnoopDos using the Pause gadget.

Note that you can use the
FileIOType
command to control whether or not

SnoopDos uses buffering when writing to the log file.

See also:
Command Index

AddLog

AppendLog

CloseLog

LogFormat

OpenLog

SnoopDos 59 / 137

1.71 format

Command: FORMAT "formatstring"

Example: FORMAT "%u %p %a %n %o %r"

This command defines how SnoopDos should format the output detailing each
event it monitors. It is also available as a gadget in the

Settings
window. You can edit the format string using the
Format
editor, or by

manipulating columns in the main window using the mouse.

The format string is similar to that used by printf in the C programming
language. It contains a list of format fields, with each field corresponding
to one piece of information about a monitored event. The fields are as
follows:

Action %a
The name of the function being called

CallAddr %c
The address the function was called from

Date %d
The date the function was called

Hunk:Offset %h
The module hunk and offset the call was made from

Task ID %i
The address of the task making the call

Target Name %n
The name of the item the function call is accessing

Options %o
Any additional options required by the function

Proc Name %p
The name of the process making the call

Res. %r
The result returned by the function

Segment Name %s
The name of the module making the call

Time %t
The time the function was called at

Count %u
The sequence number of this event

SnoopDos 60 / 137

Each field may appear only once in a format string, but need not appear
at all. Several of the fields are really only of use to programmers and
can be ignored by most people.

The % characters listed are used in the format string to represent each
field. Between the % and the field identifier, a number may appear; this
defines the number of characters available to display that field. If no
number is given, then a sensible default is used instead.

Here are some example formats:

"%21p %5a %39n %4o %r" -- Classic SnoopDos 1.7 format
"%16p %r %6a %6o %80n" -- Maximizes space for target name
"%u %7i %p %h %s %7a %39n %o %r" -- For programmers with big screens

Normally, SnoopDos will use the currently defined format string when
logging information to disk. However, you can change this by supplying
a special

LogFormat
string instead.

If your format string includes some unrecognised or duplicate fields,
SnoopDos will silently remove them and simply use what remains.

See also:
Command Index

Format editor

LogFormat

1.72 formatwindowpos

Command: FORMATWINDOWPOS=<left>,<top>

Example: FORMATWINDOWPOS=0,20

This command is used to change the position of the format editor window
on the current screen. If the format window is open, then it is moved
immediately, else it will appear in the new position the next time it
is opened. <left> and <top> are the pixel co-ordinates of the upper
left corner of the window.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Format editor

1.73 functions

SnoopDos 61 / 137

Command: FUNCTIONS=ALL | NONE | ALLDOS | NODOS | ALLSYSTEM | ←↩
NOSYSTEM

Example: FUNCTIONS=ALLDOS

This command provides a convenient way for an ARexx script to quickly
enable or disable monitoring of a group of functions.

The ALL and NONE option apply to the entire group of functions that
SnoopDos can monitor. ALLDOS and NODOS affect only those functions
listed under "DOS Functions" in the function window. ALLSYSTEM and
NOSYSTEM affect only those functions listed under "System Functions"
in the function window.

See also:
Command Index

Function window

1.74 functionwindowpos

Command: FUNCTIONWINDOWPOS=<left>,<top>

Example: FUNCTIONWINDOWPOS=0,20

This command is used to change the position of the function window on
the current screen. If the function window is open, then it is moved
immediately, else it will appear in the new position the next time it
is opened. <left> and <top> are the pixel co-ordinates of the upper
left corner of the window.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Function window

1.75 getvar

Command: GETVAR
NOGETVAR

This command enables or disables monitoring of the GetVar() and FindVar()
dos.library functions. It is also available as a gadget in the

Function
window.

AmigaDOS has three types of environment variables: Local, Global and Alias.
These functions allow access to all three types. Local variables are

SnoopDos 62 / 137

associated directly with a single CLI or Shell, and can’t be accessed by
any other part of the system. Global variables reside in the ENV: directory
and can be accessed by all programs. Alias variables are manipulated using
the AmigaDOS Alias command, and aren’t usually accessed by application
programs.

The
Options
output field displays which of the three types of variable

a program is asking for. If the variable type is followed by an * (for
example, "Local*") then this indicates that the program is expecting a
binary variable which may contain non-printable characters and which was
probably created by the program itself, rather than the AmigaDOS SetEnv
command.

GetVar() and FindVar() are very similar in operation. GetVar() is typically
used by application programs that are only interested in the current value
of a variable, while FindVar() is used by Commodore commands that want to
directly alter a variable’s current value.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SetVar

1.76 gotoline

Command: GOTOLINE <n>

Example: GOTOLINE 100

This command is used to reposition the buffer display in the main window
at a particular line. The line numbers correspond to those displayed in
the

Count
output field.

A quick way to move to the top or bottom of the buffer is to give the
command GOTOLINE 0 or GOTOLINE 99999.

See also:
Command Index

ScrollDown

ScrollUp

1.77 help

SnoopDos 63 / 137

Command: HELP <topic>

Example: HELP MainWindow

You can call up help from within SnoopDos itself via the Help menu
option on the Project menu, by pressing the Help key while any menu
option is highlighted, or by pressing the Help key inside any
SnoopDos window.

The HELP command is mainly of use from the CLI. If you give it with
no parameters, then it will display a list of all the currently
recognised SnoopDos commands. If you give a topic, then help on that
topic will be loaded into AmigaGuide for you to read.

If in doubt, HELP MAIN will always bring you to the main
Contents

page, from where you can find any information you require.

See also:
Command Index

1.78 hide

Command: HIDE

This command closes all the SnoopDos windows, but leaves SnoopDos monitoring
system activity in the background. It is available as a gadget in the

Main
window, and as a menu option on the Project menu. You can also ←↩

hide
SnoopDos by clicking on the Close gadget in the main window. If the current

HideMethod
is set to None, then this option is not available.

When SnoopDos is hidden, the main window can be re-opened by pressing the
currently defined

HotKey
. Depending on the hide method, you may also be

able to open the SnoopDos AppIcon, or select the Show SnoopDos menu item
on the Workbench Tools menu.

See also:
Command Index

CX_Popup

HideMethod

Show

SnoopDos 64 / 137

1.79 hidegadgets

Command: HIDEGADGETS

This command disables the display of the panel of button gadgets in the

Main
window. It is also available as a menu option on the Windows menu ←↩

.

Removing the gadgets allows more information about events to be displayed
in the SnoopDos window. Even though the gadgets are no longer visible,
you can still use the gadget keyboard shortcuts to activate the various
functions.

To maximise the amount of room available for displaying event output, you
might also like to turn off the

Status line
gadget.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

HideStatus

ShowGadgets

ShowStatus

TextSpacing

1.80 hidemethod

Command: HIDEMETHOD=NONE | INVISIBLE | ICONIFY | TOOLSMENU

Example: HIDEMETHOD=ICONIFY

This command controls the mechanism SnoopDos uses to run in the background
when you select the

Hide
command. It is also available as a gadget in

the
Settings
window.

Setting the hide method to NONE stops SnoopDos from running in the
background at all. The Hide menu and gadget options will be disabled,
and when you click on the main window’s Close gadget, SnoopDos will
exit completely, rather than just hiding itself.

The INVISIBLE hide method completely removes all traces of SnoopDos from

SnoopDos 65 / 137

the screen. The only way to re-activate it is to use the currently defined
commodity

HotKey
, use the Show Interface option in the commodities

exchange, or send a
Show
command to SnoopDos (double-clicking on the

SnoopDos program icon will do this).

The ICONIFY hide method is similar to INVISIBLE, but creates an AppIcon on
the Workbench desktop whenever SnoopDos is hidden. SnoopDos can then be
re-activated by double-clicking on the AppIcon. The image used for the
AppIcon will be the same as the SnoopDos program icon if possible; if no
icon was found, a simple built-in image is used instead. The icon position
will be automatically selected by Workbench; if you prefer, you can select
a fixed position using the

IconPos
command.

The TOOLSMENU hide method creates an entry on the Workbench Tools menu
entitled "Show SnoopDos". Selecting this menu item will automatically
re-open the SnoopDos window.

Note that the SnoopDos hot key can be used to re-activate the main window
at all times, even if SnoopDos is not currently hidden.

See also:
Command Index

Hide

HotKey

Show

1.81 hidestatus

Command: HIDESTATUS

This command tells SnoopDos to disable the display of the
Status line

gadget in the
Main
window. It is also available as a menu option on

the Windows menu.

The status line is not strictly necessary, but it provides a useful
"at-a-glance" summary of whether or not a log file is currently open,
and whether SnoopDos is currently

paused
or
disabled

.

Some people prefer to sacrifice the status line to allow more lines of

SnoopDos 66 / 137

event output to be displayed in the main window. If you are doing this,
you may like to also hide the

button
gadgets, which will allow the

maximum number of lines of text to be displayed.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

HideGadgets

ShowGadgets

ShowStatus

TextSpacing

1.82 hotkey

Command: HOTKEY "key description"

Example: HOTKEY "ctrl alt d"

This command allows you to select what key sequence is used to open the
SnoopDos main window when it is hidden. This corresponds to the Hotkey
gadget in the

Settings
window. It is a synonym for the
CX_PopKey

command.

Any standard commodities key description can be given. You can always
tell which key sequence is currently in use by looking at the titlebar
of the

Main
window. If you enter an incorrect description, then the

titlebar will display "<invalid>".

When you have defined a hotkey, SnoopDos can be called up at any time by
pressing that key sequence. If the main window was already open, it will
be brought to the front and activated. If it was open, but on a different
screen, it will be re-opened on the current screen (as selected using the

ScreenType
command).

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SnoopDos 67 / 137

CX_PopKey

CX_Popup

CX_Priority

1.83 iconpos

Command: ICONPOS=<left>,<top>

Example: ICONPOS=500,300

This command defines the position of the AppIcon created by SnoopDos
when it is running in an Iconified state. Normally, the AppIcon will
be automatically positioned in an appropriate position on the screen,
but you may sometimes want to override this with your own preferred
co-ordinates. Setting the position to -1,-1 allows Workbench to choose
the best position once again.

Note that there is no way to set this option from within SnoopDos; you
must change it by editing the SnoopDos

default settings
file directly,

or by adding it as a tooltype to the SnoopDos icon.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

HideMethod

1.84 ignoreshell

Command: IGNORESHELL
NOIGNORESHELL

This command enables or disables SnoopDos’s Ignore Workbench/Shell
setting. This setting can also be controlled via a gadget in the

Function
window.

When this is enabled, SnoopDos will ignore all system calls made by
Workbench, or by any shell processes or background CLI’s that don’t
currently have a command loaded. This can reduce the amount of
output substantially.

If you have the
MonitorROMCalls
option enabled, then most Workbench and

SnoopDos 68 / 137

Shell activity will be automatically ignored anyway. In that case, you mays
prefer to leave this option disabled, since it will speed up SnoopDos’s
monitoring a little.

Note: if you enable MonitorROMCalls and disable IgnoreShell, then you can
see which tooltypes Workbench looks for by default whenever it starts a
program from an icon.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

MatchName

MonitorROMCalls

1.85 language

Command: LANGUAGE "languagename"

Example: LANGUAGE "english"

This command is used to define the language used by SnoopDos to display
all menus, windows, and requesters. SnoopDos has built-in support for
English, but can also support other languages via external language
catalog files.

At this time, SnoopDos only supports English. However, I expect to release
localised versions over the next few months. If you track down the SnoopDos
source code archive on AmiNet, you will find it contains a catalog
description file that will enable you to create your own language catalog.
If you would like to create a catalog for your native language, please

email
me first in case someone has already performed the translation.

Unlike most other commands, the LANGUAGE command only makes sense when
specified as either an icon ToolType or a CLI command line option. This
is because SnoopDos needs to read the language file very early on during
its startup initialisation, in order to allow it to display error
messages in the correct language.

Normally, you should never need to use this command -- SnoopDos will
automatically try and use one of the languages defined in the system
Locale preferences, only falling back to English if an appropriate
catalog file can’t be located.

However, if you are developing a new catalog file for SnoopDos, then this
command can be useful since it allows you to tell SnoopDos to use your new
catalog file during testing.

SnoopDos will look for the language you specify in two separate places.
The first is "PROGDIR:Catalogs/<language>/SnoopDos.catalog" and the second

SnoopDos 69 / 137

is "LOCALE:Catalogs/<language>/SnoopDos.catalog". You can override these
defaults by including a full path name to the directory containing the
SnoopDos.catalog file.

For example, setting LANGUAGE="ram:" will look for the catalog file
"ram:SnoopDos.catalog". If you do this, you will need to temporarily alter
the name given in the ##language line of your translation (.CT) file to
read "##language ram:" as well, or locale.library will not recognise the
generated catalog as valid. Also remember to AVAIL FLUSH after quitting
SnoopDos, since otherwise locale.library will keep a copy of the first
catalog file loaded into memory and ignore the new version on disk.

See also:
Command Index

1.86 leftaligned

Command: LEFTALIGNED

This command controls how the
Target name
output field is displayed in

the main window. It is also available as a sub option to the Target Name
menu option on the Windows menu.

Left aligned is the normal state of the Target Name field; in this mode, it
behaves just like all the other output event columns. See the discussion
under

RightAligned
for more information.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

RightAligned

ShowFullPaths

1.87 loaddefsettings

Command: LOADDEFSETTINGS

This command reads in the default settings file, as defined by the

Settings
command. The
Last Saved
option on the Settings menu

will usually do the same thing.

SnoopDos 70 / 137

If no file has been explicitly defined, then the file that was loaded
during startup will be reloaded. If no such file could be found, then
it will attempt to load ENVARC:SnoopDos.prefs.

See also:
Command Index

LoadSettings

SaveDefSettings

SaveSettings

Settings

1.88 loadseg

Command: LOADSEG
NOLOADSEG

This command enables or disables monitoring of the LoadSeg() and
NewLoadSeg() dos.library functions. It is also available as a gadget
in the

Function
window.

These functions are called to load an executable module from disk into
memory, where it can be executed. You are mostly likely to see these
functions being called by the

ramlib
process, which is responsible

for loading in libraries and devices from disk.

You may also see these being used to load in fonts and keymaps. Sometimes,
an application will call LoadSeg() directly to load a sub-component of the
program which has not yet been needed. If you see LoadSeg() being called
with no apparent name, this indicates that an application is loading an
overlay -- a part of the application which has remained on disk until
it was needed, to help conserve memory.

Functionally, both LoadSeg() and NewLoadSeg() are identical. The main
difference is that NewLoadSeg() was not introduced until Kickstart 2.04,
and may in the future gain some additional options that are not available
with LoadSeg().

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SnoopDos 71 / 137

1.89 loadsettings

Command: LOADSETTINGS "settingsfile"
LOADSETTINGS "con:////SnoopDos Command Window/CLOSE"

Example: LOADSETTINGS "ram:SnoopDos.prefs"

This command reads in a SnoopDos settings file. It is also available
as a menu item on the Settings menu.

A settings file is any ascii text file which contains valid SnoopDos
commands, one per line. The file must contain the following text on
the first line to be recognised as a settings file:

<SnoopDos Settings>

Anything between a semicolon and the end of a line will be treated
as a comment and ignored.

Settings files are usually used to store a particular combination of
SnoopDos settings that define what functions will be monitored etc.
However, they can also contain other commands which perform actions
like opening or closing windows or log files.

If the filename you specify is an interactive file (i.e. a CON: window)
then LoadSettings behaves slightly differently. It prints a command prompt
in the window, and allows you to type in commands directly at the keyboard.
This lets you try out any SnoopDos command interactively and see the
effect it has. Note however that as long as the console window is open,
other SnoopDos operations will be suspended.

See also:
Command Index

LoadDefSettings

SaveDefSettings

SaveSettings

Settings

1.90 lock

Command: LOCK
NOLOCK

This command enables or disables monitoring of the Lock() dos.library
function. It is also available as a gadget in the

Function
window.

A program usually calls Lock() to check whether or not a file actually
exists. It can also use Lock() to locate a directory so that it can access

SnoopDos 72 / 137

the files within that directory.

A file or directory can be locked for Read access, where several programs
are free to access it at the same time, or Write access, where the program
requires exclusive control with no interruptions. The

Options
output

field displays which access mode a program asked for.

You may occasionally see an access mode of "Read???" -- this indicates that
a program has forgotten to specify which access mode was required. Most
AmigaDOS disk devices will assume that Read was intended, but some may be
confused, causing the program to work incorrectly on those devices.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

ChangeDir

Open

1.91 lockscreen

Command: LOCKSCREEN
NOLOCKSCREEN

This command enables or disables monitoring of the LockPubScreen()
intuition.library function. It is also available as a gadget in the

Function
window.

Many modern programs support Intuition public screens -- screens similar
to the Workbench screen, but possibly with a different resolution and
number of colours. Monitoring this function allows you to see if a program
expects to find a public screen with a particular name.

If it finds such a screen, it may choose to open there rather than
on the Workbench. You can use one of the many public screen manager
utilities to create a screen with a particular name. In fact, SnoopDos
itself has the ability to open on a named public screen -- for more
information, see the

ScreenType
command.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SnoopDos 73 / 137

1.92 logformat

Command: LOGFORMAT "formatstring"
LOGFORMAT NONE

Example: LOGFORMAT "%t %p %a %n %o %r"

This command is similar to the
Format
command, but instead of controlling

the format of the events displayed in the
Main
window, it controls the

format of events written to the log file. It is also available as a gadget
in the

Settings
window.

Normally, you won’t need to use this. If no log format has been defined,
then SnoopDos will use the current main window format instead. However,
occasionally you may prefer to use a custom format. For example, you may
have a large Workbench screen which can display 130 columns of text in the
main window, but you would like your log files to fit on an 80 column
display.

The format string specified is identical to that used for the Format
command. Usually, the quickest way to design a new log format is to set the
main window to 79 columns using the

Change window width
menu option and

then use the
Format editor
to choose what items you want displayed.

Once you are happy with the format in the main window, you can quickly
copy it to the log format by using the

Copy
gadget in the Settings

window.

The special keyword NONE is used to tell SnoopDos to stop using a custom
log format and just use whatever format is installed in the main window
instead. This is equivalent to just giving an empty format string, but is
often more convenient to use from within an ARexx script.

Note that when SnoopDos is writing to a log file, it automatically leaves
the first character on each line blank (see

OpenLog
for more details).

As a result, a log format that’s 79 characters wide produces lines of 80
characters in the log file.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:

SnoopDos 74 / 137

Command Index

Format

Format editor

OpenLog

1.93 logmode

Command: LOGMODE=PROMPT | APPEND | OVERWRITE | SERIALPORT

Example: LOGMODE=PROMPT

This command determines the precise operation of the
Open Log
gadget in

the main window. It is also available as a gadget in the
Settings

window.

When the log mode is set to PROMPT (the most common choice), then the main
window gadget will be titled "Open Log...", and selecting it will produce
an ASL file requester allowing a log file to be chosen. If the chosen file
already exists, SnoopDos will display a requester allowing you to overwrite
or append to it.

When a file requester is displayed, you are not limited to entering only
filenames -- you can also enter device names such as PRT:, CON:////, or
AUX:.

When the log mode is set to APPEND, the main window gadget will be titled
"Append Log" and selecting it will automatically open the log file defined
using the

LogName
command in append mode. This is convenient if you like

all logging information to be captured into a single file, and prefer not
to have to deal with the ASL file requester.

The OVERWRITE log mode is similar to APPEND, but the main window gadget now
reads "Start Log". When that gadget is selected, the filename defined with
the

LogName
command is overwritten with the new log information. This

is most appropriate if you frequently log to a device, such as the printer
(PRT:) or perhaps a console window -- you can set the log name accordingly
and then easily turn on or off logging to that device with a single click
of the mouse.

If you are logging to a console window, note that the old SnoopDos 1.x
control keys still operate. CTRL-D and CTRL-E can be used to disable and
enable logging, and in addition, CTRL-F will bring the main SnoopDos window
back to the foreground again. CTRL-C will quit SnoopDos entirely, so be
careful not to press it by mistake.

SnoopDos 75 / 137

The SERIAL PORT log mode will send the log output directly to a serial
debugging terminal connected to the internal serial port. This is mainly
intended for programmers. It is particularly useful if you use Carolyn
Scheppner’s useful Sushi utility to redirect debugging output to a window
or file, since it allows SnoopDos output to be interleaved with output
from other tools like

Enforcer
and Mungwall. When this option is

chosen, the main window gadget is titled "Serial Log".

Note that even when the log mode is APPEND, OVERWRITE or SERIAL PORT,
you can still open a log file via the ASL file requester by choosing the

Open Log
menu item on the Project menu.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

AppendLog

OpenLog

OpenSerialLog

1.94 logname

Command: LOGNAME "logfile"

Example: LOGNAME "PRT:"

This command defines the default log filename to be used when the current

LogMode
is set to either APPEND or OVERWRITE. It is also available as a

gadget in the
Settings
window.

The APPEND and OVERWRITE log modes allow the ASL file requester to be
bypassed when opening a log file; this is convenient if you frequently log
output to a single file or device.

If you are using a log mode of PROMPT, where an ASL file requester is
displayed to let you choose a log file, then the first default filename
supplied to the ASL requester will match the currently defined LogName.
This is useful if you usually log to the same file, but prefer to be able
to easily change to a different filename if you want to.

SnoopDos automatically writes this command to the settings file when
you save settings.

SnoopDos 76 / 137

See also:
Command Index

LogMode

1.95 mainwindowpos

Command: MAINWINDOWPOS=<left>,<top>

Example: MAINWINDOWPOS=0,20

This command is used to change the position of the main window on
the current screen. If the function window is open, then it is moved
immediately, else it will appear in the new position the next time it
is opened. <left> and <top> are the pixel co-ordinates of the upper
left corner of the window.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Main window

1.96 mainwindowsize

Command: MAINWINDOWSIZE=<width>,<height>

Example: MAINWINDOWSIZE=640,150

This command is used to change the current dimensions of the main window.
If the main window is open, then it is resized immediately, else it will
appear with the new size the next time it is opened. <width> and <height>
are the new dimensions of the window in pixels.

In addition to using this command, or manually resizing the window with the
mouse, you can also use the

WindowWidth
command to define the width of

the window in text columns rather than pixels.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Main window

SnoopDos 77 / 137

1.97 makedir

Command: MAKEDIR
NOMAKEDIR

This command enables or disables monitoring of the CreateDir() dos.library
function. It is also available as a gadget in the

Function
window. (The

command name has been chosen to match the CLI command of the same name,
which is more familiar to most users than CreateDir).

Programs call this function to create a new directory on disk. This is most
commonly done during installation, where an application creates a special
directory to hold data or project files.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.98 makelink

Command: MAKELINK
NOMAKELINK

This command enables or disables monitoring of the MakeLink() dos.library
function. It is also available as a gadget in the

Function
window.

This function is called to create a file link on disk, which provides a
new name for an existing file, while retaining the original name as well.
Unlike the Copy command, this approach does not require a second copy of
the file to be stored, which saves disk space.

There are two types of Link: Hard and Soft. Hard links can only reside
on the same partition as the original file. Once created, they become
indistinguishable from the original; if the original file is deleted,
then the hard link automatically takes its place.

Soft links can be created on any disk or partition, not just that which
contained the original file. However, if the original file is deleted,
then the soft link becomes useless.

The
Target name
output field will show the link information in the form

"Newlink --> original_file". The
Options
output field will show "Soft"

or "Hard" according to the link type.

SnoopDos 78 / 137

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.99 matchname

Command: MATCHNAME "pattern"

Example: MATCHNAME "~(Yak|TurboText)"

This command lets you define what programs SnoopDos should or should not
monitor. It is also available as a gadget in the

Function
window.

The pattern you give is a standard case-insensitive AmigaDOS pattern. This
will be compared with the name of each process that calls any of the
functions currently being monitored; only those processes with names that
match the pattern will be displayed.

Typically, you will use the MatchName to ensure that certain programs are
automatically ignored by SnoopDos. For example, the TurboText text editor
has the annoying feature of calling CurrentDir() every time you type a key.
Similarly, the Yak commodity calls OpenDevice() every time you type a key
when you have key-click enabled. You can use the MatchName pattern shown
in the example above to prevent the event buffer from being quickly filled
with useless events.

In general, you can make SnoopDos ignore several different programs by
using a pattern of the form "~(prog1|prog2|prog3|prog4|...)", repeating
for as many program names as required.

Another less common use for MatchName is to monitor only those events
generated by one particular program. For example, a MatchName of
"Multiview" would ignore any function calls by programs other than
Multiview. A MatchName of "Multiview|AmigaGuide" would monitor calls
by either Multiview or AmigaGuide. If a program you’re trying to monitor
may be run from a Shell rather than Workbench, you may wish to prefix
its name with "#?" in the pattern, to ensure that any preceding pathname
is ignored. For example: "#?Multiview|#?AmigaGuide".

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.100 monitorpackets

SnoopDos 79 / 137

Command: MONITORPACKETS
NOMONITORPACKETS

This command enables or disables SnoopDos’s MonitorPackets setting. This
setting can also be controlled via a gadget in the

Function
window.

Some programs, particularly those written using GNU C and linked with
ixemul.library, bypass the normal dos.library functions and communicate
directly with DOS devices using packet I/O.

Normally, SnoopDos can’t detect such activity. However, if you enable this
option, then SnoopDos will monitor the PutMsg() exec.library function. This
allows packets to be detected, and displayed in the SnoopDos window just
like normal function calls.

When a packet is spotted that corresponds to one of the currently monitored
DOS functions, the

Action
output field will display the packet type

(e.g. Open, Lock, MakeDir, etc.) but it will be prefixed by ’*’ to indicate
that direct packet i/o was involved. Thus, in the examples given, you will
see *Open, *Lock, *MakeDir, etc.

SnoopDos can monitor packet versions of the following functions:

Delete

Lock

MakeDir

MakeLink

Open

Rename
Enabling MonitorPackets can potentially slow down your system, ←↩

since
PutMsg() is one of the most frequently called system functions. Thus,
it should only be enabled if you encounter a program that appears to
be opening files but which doesn’t show up under normal monitoring.

Packet operations carried out by AmigaDOS on behalf of an application will
not usually be reported by SnoopDos -- this is because there is no need;
the corresponding AmigaDOS function will be reported instead. However, if
you enable

MonitorROMCalls
at the same time as MonitorPackets, then

you may find some events being listed twice: once as a DOS function, and
once as a packet operation.

Sometimes SnoopDos is unable to determine the result code of a packet
operation. This can happen if you stop monitoring packets while that

SnoopDos 80 / 137

operation is incomplete, or occasionally when there is heavy packet
activity (SnoopDos can keep track of about 5 outstanding packets at any
one time). When this happens, the Result field will display "Missed"
to indicate it has given up.

If you need more information than that provided by MonitorPackets, you
can use the

PacketDebugger
option. This lets you monitor every single

packet sent by an application to a DOS device, though since it generates
vast quantities of raw output, it is really only intended for device driver
programmers.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

MonitorROMCalls

PacketDebugger

1.101 monitorromcalls

Command: MONITORROMCALLS
NOMONITORROMCALLS

This command enables or disables SnoopDos’s MonitorROMCalls setting. This
setting can also be controlled via a gadget in the

Function
window.

When a program calls a system function, that function may in turn trigger
internal calls to other system functions. For example, calling OpenLibrary()
may result in calls being made to FindResident() and Open() as well.
Usually, these additional calls just add to the clutter and aren’t needed,
so by default SnoopDos doesn’t display any calls made by the operating
system (i.e. from within the ROM).

However, sometimes it can be useful to see these, especially if all else
fails. Turning on this option tells SnoopDos to go ahead and print function
calls made from within the ROM, along with all the calls made by user
applications.

Be warned though: this can often double the amount of output produced! If
you enable MonitorROMCalls, then you will probably want to ensure that

IgnoreShell
is also enabled, to make SnoopDos ignore output generated by

Workbench or the Shell.

One thing to be aware of is that SnoopDos can only check if a function call
has been from ROM by looking at the return address on the stack. If another
program has patched a function call after SnoopDos, then SnoopDos will see

SnoopDos 81 / 137

all calls to the function as coming from that program rather than from the
original caller, and so won’t ignore them. One such example is the
OpenLibrary() call, which is patched by the CodeProbe debugger.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

MonitorPackets

PacketDebugger

1.102 onlyshowfails

Command: ONLYSHOWFAILS
NOONLYSHOWFAILS

This command enables or disables SnoopDos’s OnlyShowFails setting. This
setting can also be controlled via a gadget in the

Function
window.

Depending on the functions you have enabled, SnoopDos can provide vast
quantities of output. Enabling OnlyShowFails provides an easy way to
reduce the amount of output you see, while still retaining information
that is likely to be of interest.

This is achieved, as the name implies, by only showing those functions
which failed -- any function call which is successful is not listed.

You need to be a little wary when using this option, since it is possible
to be misled if you are not careful. Often, a program may search for files
or other information in several places. If the first two attempts fail, but
the third succeeds, you will only see information about the two failed
attempts and may incorrectly surmise that the program is in trouble.

Thus, while OnlyShowFails is useful for identifying potential problems
early on (and saving valuable space in the event buffer), it’s best to
turn it off when you are diagnosing an actual program failure.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.103 open

Command: OPEN
NOOPEN

SnoopDos 82 / 137

This command enables or disables monitoring of the Open() dos.library
function. It is also available as a gadget in the

Function
window.

If you only choose to monitor one function, the Open() function will
usually provide the most useful information, since missing configuration
files are one of the most common reasons an application will not run.

Note however that an application may do other checks to determine if a file
actually exists, before trying to open it. The most common method is to use
the

Lock
function to try and locate the file.

Another alternative, and one which SnoopDos can’t easily monitor, is to
scan a directory looking at all files in that directory. If you suspect
this is happening, you can use SnoopDos’s

PacketDebugger
option to watch

out for this, but be prepared to sift through a lot of superfluous output.)

Files may be opened in one of three modes: Read, Write or Modify. Read
implies that the file will only be read, not modified. Write implies that
a new file should be created, overwriting any file that already exists.
Modify is used to write to an already existing file (or to create a new
file if none exists). The

Options
output field indicates the mode used

to open the file.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Lock

1.104 opendevice

Command: OPENDEVICE
NOOPENDEVICE

This command enables or disables monitoring of the OpenDevice() exec.library
function. It is also available as a gadget in the

Function
window.

Almost every non-trivial program needs to use devices, and this is the
function called to provide access to each device.

Monitoring of OpenDevice() can result in quite a lot of output, most of
which isn’t very useful. If you’re only interested in the devices that a

SnoopDos 83 / 137

program needs to open but can’t, they will show up under the output from

LoadSeg
since the Amiga automatically tries to load any device it can’t

find in memory from the DEVS: directory.

When this function is being monitored, the
Options
output field will show

the unit number of the device the program is trying to open.

Note to OS experts: All OpenDevice() calls made by CON processes are
ignored by SnoopDos. This is because CON frequently opens timer.device,
sometimes many times a second, and reporting all these events would
quickly fill up the event buffer with useless output.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

OpenLibrary

1.105 openfont

Command: OPENFONT
NOOPENFONT

This command enables or disables monitoring of the OpenFont()
graphics.library function. It is also available as a gadget in the

Function
window.

OpenFont() is called to locate a particular font for display on the
screen. The

Options
output field shows the size of the font that’s being

requested.

Usually, there is no need to monitor this function -- if a program can’t
locate a font in memory, AmigaDOS will automatically try and load it from
the FONTS: directory on disk, and it will be displayed under

LoadSeg
.

If you want to see every font used by a program, however, then this is
the function to use.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SnoopDos 84 / 137

1.106 openformat

Command: OPENFORMAT

This command opens the
Format editor
window. You can also open the format

editor by selecting the
Show format
menu item on the Windows menu, or by

double-clicking on the header line in the
Main
window.

Yet another way to open the format editor is using the "Edit..." gadget
in the

Setup
window.

See also:
Command Index

CloseFormat

FormatWindowPos

1.107 openfunction

Command: OPENFUNCTION

This command opens the
Function
window. You can also open the function

window by selecting the
Show functions
item on the Windows menu, or by

selecting the "Functions..." gadget in the main window.

If your Amiga only has a 68000, you may find that the function window takes
a long time to open the first time you access it. This is due to the large
number of gadgets it contains. SnoopDos only needs to create the gadgets
the first time the window is opened; on the second and subsequent openings,
you should find it much quicker.

See also:
Command Index

CloseFunction

FunctionWindowPos

SnoopDos 85 / 137

1.108 openlibrary

Command: OPENLIBRARY
NOOPENLIBRARY

This command enables or disables monitoring of the OpenLibrary()
exec.library function. It is also available as a gadget in the

Function
window.

It’s impossible to write a useful program on the Amiga that doesn’t call
OpenLibrary() at least once. It provides access to the Amiga’s multitude
of shared libraries.

In general, a program will fail to run if it can’t find a particular
library. However, normally such failed attempts will show up as

LoadSeg
events, because if AmigaDOS can’t find a library in memory, it ←↩

will try
and load it from the LIBS: directory instead.

A program won’t necessarily stop working if it can’t find a particular
library; it may just disable some of its features. For example, SnoopDos
itself can run without the Commodities or ASL libraries being present,
but if they’re not around, you won’t be able to Hide the main window or
call up file and font requesters.

The
Options
output field gives the version number of the library being

opened. This is useful information, because if a program can’t open a
library, you can then see the minimum version of the library you must
install.

Note that SnoopDos automatically ignores all attempts to open dos.library.
This is necessary to avoid a few subtle problems that can otherwise occur.
Since dos.library must exist to even load the program in the first place,
you won’t miss out on anything important by not seeing these events.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

OpenDevice

1.109 openlog

Command: OPENLOG "filename"

Example: OPENLOG "ram:snoopdos.log"

SnoopDos 86 / 137

This command opens a new log file. Any new output displayed in the main
SnoopDos window will be written to this file. If the file already exists,
it will be overwritten. You can also open a new log file from within
SnoopDos by choosing the

Open log
menu option on the Project menu, or

by using the
Open Log
button in the
Main
window.

When SnoopDos displays events in the main window, it can easily handle
several different events taking place simultaneously. For example, one
program might call RunCommand() to start a command executing, and that
command may itself open several files. SnoopDos can display information
about those open actions even though the previous RunCommand() call has
not yet completed. When the RunCommand() does complete, SnoopDos goes
back and fills in the result code accordingly.

When outputting events to a log file, it’s not so easy to go back and fill
in the result field after several additional events have occurred. For
example, the log file may actually be a printer or some other device that
doesn’t allow backtracking.

To avoid this problem, SnoopDos behaves slightly differently when printing
events to a log file. It will usually wait until an event is fully completed
before it tries to output it to the file. However, if a new event arrives
before the current event is complete, SnoopDos will output as much of the
current event as possible. To show that the event is incomplete, it outputs
a ’/’ character in the first column of the line.

Later on, when that event finally completes, SnoopDos will output the entire
line a second time, but this time with the result filled in. To indicate
that this is the completion of an earlier event, the first column will
contain a ’\’, to match the ’/’ used earlier.

If you anticipate this happening a lot, it’s a good idea to include the

Count
output field in your log format. This will include a sequence

number on each line, and you can then easily match each incomplete event
with the final completed version since both lines of output will have
the same number.

See also:
Command Index

AddLog

AppendLog

CloseLog

FlushLog

LogFormat

SnoopDos 87 / 137

OpenSerialLog

1.110 openresource

Command: OPENRESOURCE
NOOPENRESOURCE

This command enables or disables monitoring of the OpenResource()
exec.library function. It is also available as a gadget in the

Function
window.

Resources are typically used to provide very low-level access to standard
Amiga hardware, such as the gameport, CIA chips, battery-backed clock,
floppy disk, etc. You can monitor OpenResource() to see if a program is
trying to access the hardware directly in a system-legal manner.

Of course, programs that break the rules and don’t allocate hardware
properly before using it won’t show up (but your system will probably
have crashed by then anyway).

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.111 openseriallog

Command: OPENSERIALLOG

This command opens a new log file. Unlike normal log files, the output from
this will be directed to a debugging terminal connected to the internal
serial port. You can configure the "Open Log" button in the

Main
window

to perform this command by setting the
LogMode
to SERIALPORT.

This is mainly intended for programmers. It is particularly useful if you
use Carolyn Scheppner’s useful Sushi utility to redirect debugging output
to a window or file, since it allows SnoopDos output to be interleaved with
output from other tools like

Enforcer
and Mungwall.

See the
OpenLog
documentation for more information about how SnoopDos

SnoopDos 88 / 137

outputs information to a log file.

See also:
Command Index

AddLog

AppendLog

CloseLog

FlushLog

LogFormat

OpenLog

1.112 opensetup

Command: OPENSETUP

This command opens the
Setup
window. You can also open the setup

window by selecting the
Show setup
menu item on the Windows menu, or

by selecting the "Setup..." gadget in the main window.

See also:
Command Index

CloseSetup

SetupWindowPos

1.113 packetdebugger

Command: PACKETDEBUGGER
NOPACKETDEBUGGER

This command enables or disables SnoopDos’s Packet debugger. This setting
can also be controlled via a gadget in the

Function
window.

The packet debugger provides a way to snoop on packets sent to any mounted
filesystem device. This is mainly of use to device driver writers, but
can also occasionally be useful if you want to monitor DOS operations not
directly supported by SnoopDos, such as Examine()/ExNext().

When the packet debugger is first enabled, SnoopDos makes a list of

SnoopDos 89 / 137

currently mounted devices. Only packets sent to those devices are
monitored.

If a new device is mounted while the debugger is running, SnoopDos will
usually automatically add it to this list. However, if the device has
been mounted using a third-party mount command, you may need to disable
and re-enable the packet debugger to get SnoopDos to recognise packets
destined for the new device.

The first time you enable the packet debugger, you may find that it
doesn’t seem to have much effect. This is because almost all packets to
DOS devices are generated by dos.library, and dos.library is in ROM. By
default, SnoopDos ignores any packet activity generated by ROM calls.
Enable the

MonitorROMCalls
setting to change this.

SnoopDos can identify all of Commodore’s officially defined packets, as of
Kickstart 3.0, and can also recognise a few third party packets, as listed
in Ralph Babel’s excellent book, The Amiga Guru Guide. The name of each
packet is displayed in the

Action
output field. Each name is shown in

capitals and is prefixed with ’#’, to help distinguish the output from
normal monitored functions.

If SnoopDos doesn’t recognise a packet, then the packet type will be shown
in the form "#(nnn)" where nnn is the packet type code in decimal.

Most packets take one or more parameters (dp_Arg1, dp_Arg2, etc). These
parameters are listed in the

Target name
field as 32-bit hex numbers.

The interpretation of each number depends on the packet; see Ralph’s book
for a comprehensive explanation.

The
Options
field shows the name of the device to which the packet is

being sent.

Finally, the
Result
field shows the return value from the packet. Most

packets return a single 32-bit value for success, or a fail code and a
secondary error code for failure. SnoopDos will display "OK" or "Fail"
for each packet, and will also show the actual value returned.

For successful packets, this value matches dp_Res1; for failed packets, it
matches dp_Res2. (SnoopDos knows that some packets return -1 for failure,
while others return 0). Some packets return two values -- in this case,
SnoopDos will display both values.

Since the default width of the Result field is only four characters, you
may need to widen it to view this additional information. This is easily
done by simply dragging the right edge of the Result event heading in the
main window with the mouse, or by using the

SnoopDos 90 / 137

Format editor
.

Sometimes SnoopDos is unable to determine the result code of a packet
operation. This can happen if you disable the packet debugger while a
packet operation is still in progress, or occasionally if there is heavy
packet activity (SnoopDos can remember up to 5 outstanding packets at a
time). When this happens, the Result field will displayed "Missed" to
indicate SnoopDos has given up waiting for a result.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

MonitorPackets

MonitorROMCalls

1.114 patchramlib

Command: PATCHRAMLIB
NOPATCHRAMLIB

This command controls whether or not SnoopDos should apply a patch to the
ramlib background process (ramlib is responsible for loading libraries and
devices from disk, whenever they are needed by a program). This command is
slightly unusual in that it must be given on the CLI command line or as an
icon tooltype the first time SnoopDos is started, or it will have no effect.
If it is not present, the default action is PATCHRAMLIB.

Normally, you should never need to use this command. However, if you like
to know exactly what’s happening to your Amiga, you may want to read on.

The reason for this command is because the ramlib process contains a bug
in all versions of Kickstart from 2.0 through 3.1. This bug does not show
up during normal use, but when SnoopDos is running, the bug can cause a
crash during heavy system activity.

For those interested, the bug is that ramlib uses SIGB_SINGLE as the signal
bit for its message port, which means that system calls made by ramlib
cannot safely use this signal for any purpose -- after all, you never
know when a new message might arrive at ramlib’s message port, causing a
SIGB_SINGLE signal. The most critical use of SIGB_SINGLE in the operating
system is to synchronise sempahore operations when two tasks are trying
to access a single piece of data simultaneously.

The reason this doesn’t cause a problem in normal use is because ramlib
calls very few system functions that depend on SIGB_SINGLE, and those
that do (mainly LoadSeg, which locks the device list) usually don’t do
anything too terrible if it should fail.

SnoopDos makes heavy use of semaphores in its patches. This means that any
calls from ramlib that it monitors are potentially at risk. Even then,

SnoopDos 91 / 137

problems only occur when several programs all ask ramlib to load a library
or device at the same time. However, when a problem occurs, it causes an
instant crash as SnoopDos metaphorically gets its knickers in a twist.

To avoid this problem, SnoopDos patches the ramlib process to use a
different signal bit (SIGBREAKB_CTRL_E in fact). This patching is performed
in a safe way, so that if a future SetPatch ever corrects the bug, it won’t
cause any conflicts. If you have the SnoopDos source code from Aminet, you
can review the patch code in patches.c:InitRamLibPatch().

Despite the efforts to make the patch safe and upwards compatible, it’s
possible that it may cause problems with some future revision of the
operating system. It’s also possible that you may not like the idea of
a third party utility altering an internal system structure like this.

Thus, NOPATCHRAMLIB provides a way to stop SnoopDos from making this change.
A side effect of using NOPATCHRAMLIB is that SnoopDos will automatically
ignore all calls made by the ramlib process. This obscures some useful
information about what libraries and devices are being loaded loaded, but
for the most part, you can simply turn on monitoring of

OpenLibrary
and

OpenDevice
and get the same information.

Note that any calls made to the
FindResident
function by ramlib

are automatically ignored by SnoopDos; this helps keep the amount of
information displayed in the window to manageable levels.

See also:
Command Index

StackLimit

1.115 pause

Command: PAUSE

This command is used to temporarily pause any programs calling functions
monitored by SnoopDos, so that you have a chance to see exactly what each
program is trying to do. It is also available as an item on the Project
menu, and as a gadget in the

Main
window. You can use the TAB key to

unconditionally select Pause (this is sometimes more convenient than
pressing the Pause gadget’s keyboard shortcut, since that toggles Pause
on and off).

Pause is particularly useful if you have a program that crashes during
startup, because it allows you to step through the program’s initial
actions as quickly or as slowly as you like. It is also useful if a program
is carrying out many actions, too fast for you to read -- you can pause the

SnoopDos 92 / 137

output temporarily to give you a chance to catch up. While a program is
paused, it goes to sleep.

At each step, SnoopDos will display the function the program is about to
execute, before the call is actually made. To indicate that the program is
currently paused, the result field will read "WAIT".

When a task is in a WAIT state, you can tell it to execute the current
function but immediately pause again the next time it calls a monitored
function. This lets you step through a program’s function calls one step
at a time. The easiest way to do this is to simply press Space on the
keyboard, or click the down arrow scroll gadget using the mouse. See the

SingleStep
command for more details.

Note that SnoopDos pauses individual tasks, rather than the main SnoopDos
program itself. Thus, if three separate programs try to call a monitored
function, you will see all three tasks listed in the main window, with
three WAITs in the result column. If you select single step, then all
three programs are allowed to execute the current call and advance to
the next one.

If you execute certain file operations while SnoopDos is paused, such as
opening a new log file or selecting a new font from the font requester,
then SnoopDos will temporarily unpause itself for the duration of the
operation. Any tasks which were WAITing when the action began will remain
in the WAIT state, but any new calls made during the file activity will be
executed as normal (they will still appear in the event buffer of course).

This is to prevent deadlocks occurring -- sometimes accessing a file may
involve additional operations by an external program.

When SnoopDos is paused, system activity can quite literally come to a
halt. To prevent you getting into a situation where you cannot select
unpause, SnoopDos will automatically unpause itself if you select the

Hide
command.

See also:
Command Index

SingleStep

Unpause

1.116 quit

Command: QUIT

This command tells SnoopDos to remove all its patches and unload itself
from memory. Usually, SnoopDos can quit immediately -- even though it
patches many system functions, it uses a technique that allows those
patches to be safely removed.

SnoopDos 93 / 137

However, sometimes when you try to quit, another program will still be
executing one of the functions patched by SnoopDos. A typical example
is when a program tries to open a file on a disk not currently in any
drive, causing a "Please insert volume..." requester to be displayed.

Until that requester is acknowledged, SnoopDos won’t be able to unload
itself from memory. In a situation like this, SnoopDos will check every
two seconds to see if it is safe to quit; if not, it goes back to sleep
again. After 10 seconds, it displays a warning requester displaying the
name of the function that is currently being executed -- this may give
you a clue as to what is going on.

It is safe to rerun SnoopDos after quitting, even if the first copy is
still not finished cleaning up. However, you can quickly use up all your
available memory if you do this too many times.

See also:
Command Index

Hide

1.117 readtooltypes

Command: READTOOLTYPES
NOREADTOOLTYPES

This command enables or disables monitoring of two separate functions in
icon.library, FindToolType() and MatchToolValue(). It is also available
as a gadget in the

Function
window.

Both these functions are used by programs that can be started from an icon.
FindToolType() is used to search the icon for a particular tooltype, and
MatchToolValue() is used to check if a recognised tooltype is set to a
particular value.

This can be very useful for identifying what tooltypes a program looks
for in its icon, and what values those tooltypes can take, as programmers
often forget to fully document them. Not all programs use these functions,
but most do.

For MatchToolValue(), the
Target name
output field shows the various

possible values for the tooltype, with each option separated by a ’|’
character. The

Options
output field shows the actual contents of the

tooltype being checked.

SnoopDos automatically writes this command to the settings file when
you save settings.

SnoopDos 94 / 137

See also:
Command Index

1.118 rename

Command: RENAME
NORENAME

This command enables or disables monitoring of the Rename() dos.library
function. It is also available as a gadget in the

Function
window.

Rename() is called by an application to change the name of a disk file.
Both the old and new file must be on the same partition, but need not be
in the same directory.

Rename is slightly unusual in that it produces two lines of output in the
SnoopDos window; the first line shows the original name of the file, while
the second line gives the new name.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.119 rightaligned

Command: RIGHTALIGNED

This command controls how the
Target name
output field is displayed in

the main window. It is also available as a sub option to the Target Name
menu option on the Windows menu.

Normally, there is enough room to fully display the target name associated
with each event, so this command isn’t needed. However, if you have a
narrow target name column, or if you have enabled the

ShowFullPaths
option, resulting in a lot of long target names, then you may find ←↩

that
the names are too wide to fit in the allocated space.

When RightAligned is enabled, the rightmost portion of each name will be
displayed, instead of the left portion as with all other output fields.
This is often more useful, since if there is not enough room to display
the entire filename, the rightmost portion includes the actual filename
which would otherwise be truncated or discarded.

When a target name is too long to display completely, the symbol ’«’ will

SnoopDos 95 / 137

appear in the first column of output. This indicates that there are more
characters to the left of the displayed information.

Many people find it useful to leave the target name display set to

LeftAligned
most of the time and only switch to right aligned if a

particularly long target name appears. Since both modes have associated
menu hotkeys (Amiga-[and Amiga-]), the switch can be made very quickly
using the keyboard.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

LeftAligned

ShowFullPaths

1.120 rowqualifier

Command: ROWQUALIFIER=IGNORE | NONE | SHIFT | ALT | CTRL | ALL

Example: ROWQUALIFIER=ALL

This command selects what qualifier key (if any) must be pressed before
SnoopDos will allow you to highlight a row in the main window by clicking
on it with the mouse. The

Row selection key
menu option lets you

change this from within the program.

SnoopDos allows you to highlight lines in the main window by clicking on
them. This provides a convenient way to quickly identify all the components
on a single line of output by providing a horizontal guide for your eye
to follow.

However, if you use a "click to front" commodity such as that supplied with
Workbench, you may notice that clicking the SnoopDos window to the front
causes a row highlight to be flashed briefly. This can be distracting.

Modifying the row qualifier key allows you to avoid this situation. If your
system is configured to bring windows to the front when you perform a shift-
double-click, then you can set the row qualifier to NONE -- this indicates
that rows will only be highlighted when no qualifier key is pressed.

Alternatively, if your system is configured to bring windows to the front
when you do a double-click without holding shift (or any other qualifier),
you can set the row qualifier to SHIFT, ALT or CTRL. This indicates that the
named key must be held down in order to highlight a row -- clicking on the
row with no key pressed will no longer be sufficient.

The ALL option allows rows to be highlighted as long as at least one of the

SnoopDos 96 / 137

SHIFT, ALT or CTRL keys is pressed (it doesn’t matter which one). This is
usually more convenient than choosing any single qualifier.

Finally, the default setting is IGNORE. When this is selected, SnoopDos
doesn’t care whether or not a qualifier key is pressed. If you don’t use
a click-to-front utility, then this is probably the best option to choose.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command index

Event output

1.121 runcommand

Command: RUNCOMMAND
NORUNCOMMAND

This command enables or disables monitoring of the RunCommand() dos.library
function. It is also available as a gadget in the

Function
window.

Applications call RunCommand() to execute a single disk command with a
particular set of parameters. The event output produced for this function
is a little unusual, because the name shown in the

Process name
output

field is usually the name of the command being executed, and not the
process making the call. The

Target name
field lists only the command

line parameters for the command, and not the command name itself.

The
Options
field shows the stack size provided for the command; if this

is too small, some commands may not run properly. Finally, the
Result

field is displayed as "----" while the command is executing, and ←↩
is

replaced with the return code from the command after execution completes
(usually 0 for a successful execution). A result of "Fail" indicates that
the command couldn’t be executed at all.

Since the executed command will probably produce some SnoopDos output of
its own, you may need to scroll back in the SnoopDos buffer to retrieve the
final return code from the RunCommand line if you need to find it for some
reason.

SnoopDos automatically writes this command to the settings file when
you save settings.

SnoopDos 97 / 137

See also:
Command Index

Execute

System

1.122 savebuffer

Command: SAVEBUFFER "filename"

Example: SAVEBUFFER "ram:SnoopDos.txt"

This command saves the entire contents of the SnoopDos event buffer to
the named file. This is useful if you want to preserve the output from
SnoopDos for later analysis, but forgot to open a log file first.

This function is also available as a menu item on the Buffer menu.

See also:
Command Index

CopyBuffer

CopyWindow

SaveWindow

1.123 savedefsettings

Command: SAVEDEFSETTINGS

This command saves the current SnoopDos settings to the default settings
file, as defined by the

Settings
command. It is also available as a

gadget in the
Main
window, and as a menu option on the Settings menu.

If no file has been explicitly defined, then the settings will be written
to the file that was loaded during startup. If no such file could be found,
then they will be written to ENVARC:SnoopDos.prefs instead.

The next time you load SnoopDos, these settings will automatically be used.
The settings saved include the current values of all the gadgets in the
Setup and Function windows, and the current value of most boolean menu
items, as well as the position and size of each window.

See also:
Command Index

SnoopDos 98 / 137

LoadDefSettings

LoadSettings

SaveSettings

Settings

1.124 savesettings

Command: SAVESETTINGS "settingsfile"

Example: SAVESETTINGS "ram:SnoopDos.prefs"

This command writes the current values of all gadgets and menu items to the
named file. This file can then be reloaded at a later time to reconfigure
SnoopDos with those settings.

The settings file generated is plain text and can be edited by hand
if required.

See also:
Command Index

LoadDefSettings

LoadSettings

SaveDefSettings

Settings

1.125 savewindow

Command: SAVEWINDOW "filename"

Example: SAVEWINDOW "ram:SnoopDos.txt"

This command saves the contents of the main window to the named file.
It is also available as a menu option on the Buffer menu.

If the current buffer format is too wide to fit completely in the main
window, only that portion which is currently displayed will be saved.
If this doesn’t include enough information, you can use the

SaveBuffer
command instead and then delete any extra lines that you don’t ←↩

need.

See also:
Command Index

CopyBuffer

SnoopDos 99 / 137

CopyWindow

SaveBuffer

1.126 screenname

Command: SCREENNAME "Screen Name"

Example: SCREENNAME "Workbench"

This command works in conjunction with the NAMED option of the
ScreenType

command to allow SnoopDos to open its windows on a particular ←↩
public screen.

It is also available as a gadget in the
Settings
window.

If the screen name can’t be found, then SnoopDos will use the default
screen instead. If the current screen type is set to FRONT or DEFAULT,
then the screen name defined here will be ignored.

SnoopDos automatically writes this command to the settings file when you
save settings.

See also:
Command Index

HotKey

ScreenType

1.127 screentype

Command: SCREENTYPE=DEFAULT | FRONT | NAMED

Example: SCREENTYPE=FRONT

This command determines what screen SnoopDos will use for its windows.
It is also available as a gadget in the

Settings
window.

If the screen type is DEFAULT, then SnoopDos will open on the default
public screen. This is usually the Workbench screen.

If the screen type is FRONT, then SnoopDos will try and open on the
frontmost public screen. Many modern application programs automatically
make their screens public, and you can use third party utilities to
create other public screens. This mode of operation is convenient,
because it allows you to call up SnoopDos on your current screen at

SnoopDos 100 / 137

any time by just pressing the currently defined
Hotkey

.

If the screen type is NAMED, then SnoopDos will try and open on a public
screen with a name that matches the currently defined

ScreenName
. Note

that SnoopDos won’t create a screen of this name itself -- the screen
must already exist. If no such screen is found, then SnoopDos will open
on the default screen instead.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

HotKey

ScreenName

1.128 scrolldown

Command: SCROLLDOWN <n>

Example: SCROLLDOWN 10

This command moves the SnoopDos event buffer down by <n> lines. It is
equivalent to using the down arrow gadget in the

Main
window, or

pressing the down arrow cursor key.

See also:
Command Index

GotoLine

ScrollUp

1.129 scrollup

Command: SCROLLUP <n>

Example: SCROLLUP 10

This command moves the SnoopDos event buffer up by <n> lines. It is
equivalent to using the up arrow scroll gadget in the

Main
window

or pressing the up arrow cursor key.

SnoopDos 101 / 137

See also:
Command Index

GotoLine

ScrollDown

1.130 sendrexx

Command: SENDREXX
NOSENDREXX

This command enables or disables monitoring of ARexx messages sent by
ARexx scripts or applications. It is also available as a gadget in the

Function
window.

This can be useful if you want to see how a script is performing its magic,
or if you’re trying to figure out why an application isn’t responding as
you expect.

The
Target Name
output field shows the command being sent to the

application, and the
Options
output field shows the application’s

port name.

When this function is enabled, SnoopDos monitors every single message sent
by the system, in order to identify which ones are ARexx messages. Thus,
you may find that your system runs a little slower.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

FindPort

MonitorPackets

PacketDebugger

1.131 settings

Command: SETTINGS="name"

Example: SETTINGS="ENVARC:SnoopDos.prefs"

SnoopDos 102 / 137

This command defines the name of the default settings file that SnoopDos
tries to load at startup. Normally, this is something that you would
include in the SnoopDos icon’s tooltypes, or as a CLI command line option.

If you don’t define an explicit settings file, SnoopDos will look in
the PROGDIR:, ENVARC: and S: directories at startup for a file called
SnoopDos.prefs. If it can’t find such a file in any of those three
directories, it will use the name ENVARC:SnoopDos.prefs for future saves.

Note that this command doesn’t actually cause the settings file to be
loaded; it only shows where the settings file might be found. When you
use the Save Settings gadget in the

Main
window, this is the filename

that will be used.

You can also use this command from within a settings file. For example,
suppose you wanted to carry out a certain set of actions each time
SnoopDos started -- open a new log file, open the format editor, etc.

Normally, if you included those commands in a settings file, they would
be overwritten the first time you saved settings. However, by using the
SETTINGS command to change the name of the settings file from within the
settings file itself, you can avoid this. For example:

<SnoopDos Settings>
SETTINGS "ENVARC:SnoopDos.realprefs"
LOADDEFSETTINGS
OPENLOG "ram:SnoopDos.log"
OPENFORMAT

If this file was saved as ENVARC:SnoopDos.prefs, then SnoopDos would start
out by loading the real default settings from "ENVARC:SnoopDos.realprefs",
then open a log file, and finally open the format editor. Any future saving
of default settings would also be directed to ENVARC:SnoopDos.realprefs,
and so the command file would not be overwritten.

See also:
Command Index

LoadDefSettings

LoadSettings

SaveDefSettings

SaveSettings

1.132 setupwindowpos

Command: SETUPWINDOWPOS=<left>,<top>

Example: SETUPWINDOWPOS=0,20

SnoopDos 103 / 137

This command is used to change the position of the settings window on
the current screen. If the settings window is open, then it is moved
immediately, else it will appear in the new position the next time it
is opened. <left> and <top> are the pixel co-ordinates of the upper
left corner of the window.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Settings window

1.133 setvar

Command: SETVAR
NOSETVAR

This command enables or disables monitoring of the SetVar() and DeleteVar()
dos.library functions. It is also available as a gadget in the

Function
window.

SetVar() is the logical counterpart to the GetVar() function; it allows
a program to create or update an environment variable with a new value.
As with GetVar(), Global, Local and Alias variables are recognised, and a
trailing * after the type indicates that the program expects the variable
to contain binary information, rather than plain text. See the

GetVar
command for more information.

DeleteVar() is used to delete environment variables from memory. The same
three variable types described above are recognised.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.134 show

Command: SHOW

This command opens the SnoopDos main window on the currently selected
screen (as defined by the

ScreenType
command). If the window was already

open, then it is brought to the front. If the window was open, but on
different screen, then it is re-opened on the current screen.

SnoopDos 104 / 137

This command is automatically executed whenever you press the currently
defined

HotKey
. It is also automatically executed if you run SnoopDos

from the CLI with no command line options, or if you double-click on a
SnoopDos icon while SnoopDos is already running.

See also:
Command Index

CX_Popup

Hide

HotKey

Main window

1.135 showcli

Command: SHOWCLI
NOSHOWCLI

This command enables or disables SnoopDos’s ShowCLI setting. It can also
be controlled via a gadget in the

Function
window.

The ShowCLI setting determines how the
Process name
field displays the

name of the CLI command that called a monitored function. When enabled,
the command name is prefixed with the number of the CLI in which it is
running (e.g. "[4] Multiview"). If disabled, then only the name of the
command is displayed. Background processes and programs started from
Workbench are not affected.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

1.136 showfullpaths

Command: SHOWFULLPATHS
NOSHOWFULLPATHS

This command enables or disables SnoopDos’s ShowFullPaths setting. This
setting can also be controlled via a gadget in the

Function
window.

SnoopDos 105 / 137

Whenever a program passes a filename to an AmigaDOS function, the filename
is interpreted as being relative to the program’s current directory, unless
an absolute pathname is specified with the filename.

If the program being monitored changes directory often, it can become
difficult to keep track of which directory it is in at any given time.
Selecting this option makes SnoopDos always prefix filenames with a full
path before displaying them in the window.

This can produce rather long filenames which occupy a lot of space in the
SnoopDos window, so you should only use this option if you have a specific
need for it, rather than leaving it on all the time.

If you have many long filenames displayed, you can use the menu shortcut
keys for

LeftAligned
and
RightAligned

, Amiga-[and Amiga-], to
quickly switch between viewing the start and end of the filename.

Note that if a program tries to access a file on a volume that is not
currently mounted, SnoopDos will be unable to resolve the full directory
path to that file. In this case, only the volume name will be shown,
followed by ellipses and the filename, to indicate that the directory
information is unavailable. For example, "Work:.../filename".

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

UseDeviceNames

1.137 showgadgets

Command: SHOWGADGETS

This command enables the display of the panel of button gadgets in the

Main
window. It is also available as a menu option on the Windows menu ←↩

.

Having the gadgets easily available is convenient, but some people prefer
to have an extra line or two of event output instead. Even when the gadgets
are disabled, the keyboard shortcuts for each gadget still operate. The
gadgets all have equivalent menu options which can be selected as well.

To maximise the amount of room available for displaying event output, you
may also like to turn off the

Status line
gadget.

SnoopDos 106 / 137

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

HideGadgets

HideStatus

ShowStatus

TextSpacing

1.138 showstatus

Command: SHOWSTATUS

This command enables the display of the
status line
gadget in the
Main

window. It is also available as an option on the Windows menu.

The status line is not strictly necessary, but it provides a useful
"at-a-glance" summary of whether or not a log file is currently open,
and whether SnoopDos is currently

Paused
or
Disabled

.

Some people prefer to sacrifice the status line to allow more lines of
event output to be displayed in the main window. If you are doing this,
you may like to also disable the

Button
gadgets, which will allow the

maximum number of lines of text to be displayed.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

HideGadgets

HideStatus

ShowGadgets

TextSpacing

SnoopDos 107 / 137

1.139 simplerefresh

Command: SIMPLEREFRESH

This command sets the refresh method used for all SnoopDos windows to
Simple refresh. It is also available as a sub option to the "Window Type"
menu option on the Windows menu.

Simple refresh windows help conserve memory. When a window is partially
obscured, the obscured portion is discarded, and is then redrawn by
SnoopDos when the window is later uncovered. Redrawing the window can
take some time on slower Amigas, where

Smart refresh
windows may be

more appropriate.

However, some third party graphics cards actually perform better with
simple refresh windows than with smart refresh. The best advice is to
try both methods and choose whichever you like best.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SmartRefresh

1.140 singlestep

Command: SINGLESTEP

This command is used when SnoopDos is paused. It allows each of the
currently waiting tasks to execute the current function and advance
to the next one. See the

Pause
command for more information.

SingleStep is also available as a menu option on the Projects menu. As
an alternative, you can click the down arrow scroll gadget in the main
window when the scroll bar is positioned at the end. You can also press
Space or Return on the keyboard for convenience. The TAB key will also
single step, but has the additional advantage of putting SnoopDos into
Pause mode if it wasn’t already paused.

If you have a buffered
log file
open, then SnoopDos will flush the buffer

to disk each time you single step. This allows the most information to be
retained in the event of a crash. However, it also means that your disk
may become corrupt if a crash should occur in the middle of a disk write.

Thus, if you suspect that a particular program is likely to crash, you
should probably experiment without a log file first, or log to a safe

SnoopDos 108 / 137

device like PRT: or RAD:.

See also:
Command Index

Pause

Unpause

1.141 smartrefresh

Command: SMARTREFRESH

This command sets the refresh method used for all SnoopDos windows to
Smart refresh. It is also available as a sub option to the "Window Type"
menu option on the Windows menu.

Smart refresh windows are popular, because they allow a partially
obscured window to be instantly redrawn when it is uncovered, with
no obvious delay.

However, they take up more memory than
Simple refresh
windows. They can

also be slower on some third party graphics cards, such as the Picasso,
especially when running with 256 colours.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

SimpleRefresh

1.142 stacklimit

Command: STACKLIMIT=<minstacksize>

Example: STACKLIMIT=1000

This command defines how much free stack space a task or process must have
before SnoopDos will monitor one of its function calls. This is needed
because some tasks installed by devices have very small stacks and the
additional stack space used by SnoopDos would cause a crash if it tried
to monitor the function. (CrossDOS is one such example.)

<minstacksize> is the required amount of free stack space in bytes. Note
that this does not necessarily correspond to the total stack size for
the task, but to the free stack at the time the function call is made.

For example, a task with a 20K stack could use up 19.5K of space before

SnoopDos 109 / 137

entering a SnoopDos patch (and so would be ignored if StackLimit was 500
or above) whereas a task with a 2K stack might only use 0.5K, leaving 1.5K
free for SnoopDos to use.

SnoopDos defaults to a stack limit of 1000 bytes. This should be more than
sufficient for most purposes, but if need be, this can be reduced to about
600 bytes. You should only need to do this if you are trying to monitor
a particular task known to have a very small stack.

To determine the current stack size, SnoopDos uses the tc_SPLower and
tc_SPUpper values in the task structure. If a task or process has
allocated its own stack, then these may not be correct -- if this is
the case, SnoopDos will go ahead and monitor the function call anyway,
on the assumption that the application will have allocated a stack big
enough to handle SnoopDos’s requirements.

Note that there is no way to set this option from within SnoopDos; you
must change it by editing the SnoopDos default settings file directly,
or by adding it as a tooltype to the SnoopDos icon.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

PatchRamLib

1.143 system

Command: SYSTEM
NOSYSTEM

This command enables or disables monitoring of the System() dos.library
function. It is also available as a gadget in the

Function
window.

System() is one of the most powerful functions in AmigaDOS. It allows
an arbitary command line to be executed, exactly as if it was typed at
a Shell prompt.

As with
RunCommand
the
Options
field shows the stack size allocated

for the command. The
Result
field shows the return code from the command

(usually 0), or "Fail" if the command could not be executed.

SnoopDos automatically writes this command to the settings file when
you save settings.

SnoopDos 110 / 137

See also:
Command Index

Execute

RunCommand

1.144 taskpri

Command: TASKPRI <n>

Example: TASKPRI 5

This command is used to change the priority of the main SnoopDos process.
A selection of common priorities is available via the similarly named
menu item on the Project menu.

Normally, SnoopDos defaults to running at priority 0. However, you may
prefer to run at a higher or lower priority.

If SnoopDos runs at a priority above 0, then it can always keep up to
date when monitoring events. This is particularly true if you are using

SegTracker
to determine the calling module for each event, since

otherwise, a module can sometimes unload itself before SnoopDos has a
chance to ask SegTracker to locate it. However, running at a higher
priority can result in an increase in the number of task switches, which
can slow down your machine a little.

If SnoopDos runs at a priority lower than 0, then it will have very little
impact on system performance, even when its window is open. However, the
output will only be updated when no other programs are waiting to run, so
it may appear in sudden bursts, rather than evenly. Even at a low priority,
SnoopDos will not miss any events.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

Pause

1.145 textspacing

Command: TEXTSPACING <n>

Example: TEXTSPACING 1

This command sets the number of extra pixels of space between adjacent
lines of output in the

SnoopDos 111 / 137

Main
window. You can also change the text

spacing using the menu option on the Windows menu.

If you are using a small font, increasing the spacing can make the output
easier to read. The valid values for <n> are 0, 1 or 2.

When the spacing is changed, the buffer contents will be immediately
redrawn using the new spacing. However, the position of the window gadgets
will not be adjusted until the next time the window is resized. Thus, you
may find that if you resize the window slighly, you can fit an extra line
of text as the gadgets reposition themselves to accomodate the change.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

ShowGadgets

ShowStatus

1.146 unpause

Command: UNPAUSE

This command undoes the effect of the
Pause
command. It can be accessed

by deselecting the Pause menu option in the Project menu or the Pause gadget
in the main window. You can also press SHIFT-TAB to unconditionally cancel
any Pause or

Disable
currently in effect.

Deselecting Pause allows any tasks that were previously in WAIT state to
resume operations. To allow such tasks to execute a single function call
and then go back into WAIT mode again, see the

SingleStep
command.

See also:
Command Index

Pause

SingleStep

1.147 usedevicenames

SnoopDos 112 / 137

Command: USEDEVICENAMES
NOUSEDEVICENAMES

This command enables or disables SnoopDos’s UseDeviceNames setting. This
setting can also be controlled via a gadget in the

Function
window.

UseDeviceNames works together with the
ShowFullPaths
setting. If

UseDeviceNames is enabled, then any filenames that are expanded to full
paths will be displayed using the disk device name. If disabled, then
the disk volume name is used instead.

For example, when UseDeviceNames is enabled, an expanded name might appear
as "HD0:Files/Data". The same name shown with UseDeviceNames disabled would
then appear as "System3.0:Files/Data".

Using the device name is often preferred, since device names are typically
only three characters in length, and so take up less space. They are also
normally unique, which can sometimes help to prevent confusion.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

ShowFullPaths

1.148 windowfont

Command: WINDOWFONT "fontname.size"

Example: WINDOWFONT "helvetica.11"

This command selects the font used by SnoopDos for all window gadgets.
You can also change the font by using the font requester accessible
through the

Settings
window.

Any font can be selected, and you must specify a size. If the font is too
large for a particular window, then SnoopDos automatically switches to a
smaller font for that window only.

SnoopDos automatically writes this command to the settings file when
you save settings.

See also:
Command Index

BufferFont

SnoopDos 113 / 137

1.149 windowwidth

Command: WINDOWWIDTH <size>

Example: WINDOWWIDTH 80

This command adjusts the width of the SnoopDos main window so that exactly
<size> number of characters can be displayed horizontally. If the main
window isn’t open, then this command has no effect. If obtaining the
requested width would make the window too small or too large, SnoopDos
will get as close as possible to the width you asked for.

Zero is a special value which will make the width just wide enough to
fully display the current format string.

The main reason you might want to use this command is so that you can more
easily create a custom format suitable for outputting to a file or printer.
This is particularly true if you run Workbench at a high resolution like
1024 x 768, where the SnoopDos window might be much wider than the usual
80 characters.

Keep in mind that when SnoopDos is printing to a log file, it adds one
additional character at the start of each line. Usually that character is
a space, but it can sometimes be ’\’ or ’/’ -- see the

OpenLog
command

for more details. In any case, this extra character needs to be taken into
account when you set the window width. For example, a 79 character window
width will result in 80-character lines in the log file.

For convenience, the SnoopDos Windows menu offers several common window
widths via the "Change window width" submenu.

See also:
Command Index

Format editor

1.150 menu_index

SnoopDos provides the following menus in the
Main
window.

Click on any item for additional information.

PROJECT

WINDOWS
+----------------------+ +---------------------------+

|
Open log...
| |

Show setup...

SnoopDos 114 / 137

|
|

Close log
| |

Show functions...
|

| -------------------- | |
Show format...
|

|
· Pause
| | ------------------------- |

|
· Disable
| |

Change window width
|

| -------------------- | | ------------------------- |
|

Single step
| |

Text spacing
|

| -------------------- | |
Window type
|

|
Task priority
| |

Target name
|

| -------------------- | |
Row selection key
|

|
Help...
| | ------------------------- |

|
About...
| |

· Show status line?
|

| -------------------- | |
· Show gadgets?
|

|
Hide
| | ------------------------- |

|
Quit
| |

· Auto-open on output?
|

+----------------------+ |
· Disable when hidden?
|

+---------------------------+

SnoopDos 115 / 137

SETTINGS

BUFFER
+----------------------+ +---------------------------+

|
Load...
| |

Copy window to clip
|

|
Save
| |

Copy buffer to clip
|

|
Save as...
| | ------------------------- |

| -------------------- | |
Save window...
|

|
Reset to defaults
| |

Save buffer...
|

|
Last saved
| | ------------------------- |

|
Restore
| |

Clear buffer
|

| -------------------- | +---------------------------+
|

· Create icons?
|

+----------------------+

1.151 SnoopDos Project menu

The SnoopDos project menu contains the following program options.
Click on any option for additional information.

PROJECT MENU
+------------------+
|

Open log...
| Start logging output to a new file

|
Close log
| Stop logging to current log file

| ---------------- |

SnoopDos 116 / 137

|
· Pause
| Pause all tasks calling monitored functions

|
· Disable
| Disable monitoring of all functions

| ---------------- |
|

Single step
| Advanced all paused processes by one step

| ---------------- |
|

Task priority
| Change task priority of SnoopDos

| ---------------- |
|

Help...
| Call up contents page of Help file

|
About...
| Display version and author information

| ---------------- |
|

Hide
| Close window and run in background

|
Quit
| Remove SnoopDos from memory

+------------------+

See also:
Main window

Windows menu

Settings menu

Buffer menu

1.152 Project menu/Open log...

PROJECT MENU / OPEN LOG...

This menu option lets you open a new log file. An ASL file requester will be
displayed to let you choose the name of the log file. If you choose a file
which already exists, SnoopDos will give you the option of overwriting the
existing file, or appending new output to the end of the file.

If you want to log to a device rather than a disk file, type the device
name in the Directory gadget of the ASL requester (e.g. PRT:). In this
case, the filename should be left empty, unless you are logging to a CON:
window, when the filename should contain the last window option (which is
usually the window name or CLOSE).

When a log file is open, SnoopDos copies all output displayed in the main

SnoopDos 117 / 137

window to that file, allowing a permanent record to be kept. Usually, the
format of the log file is the same as that displayed in the main window,
but you can change this using the

LogFormat
option.

Note that unlike the
Open log
button in the main window, this option will

always display a file requester. When a log file is open, this menu option
is disabled. Selecting the

Close log
menu option enables it again.

See also:
Project menu

Main window

OpenLog

1.153 Project menu/Close log

PROJECT MENU / CLOSE LOG

This option is the counterpart of the
Open log
menu option. It closes

any currently open log file. If no log file is open, then this option is
disabled.

See also:
Project menu

Main window

CloseLog

1.154 Project menu/Pause

PROJECT MENU / PAUSE

Selecting this option causes any tasks that call a function monitored
by SnoopDos to pause before executing the function call. This allows you
to see the function parameters before the call is actually carried out.
You can then use the

Single step
menu option to execute the call and

advance to the next one.

Deselecting this menu option will allow the tasks to run as normal again.
For a more comprehensive description, see the

SnoopDos 118 / 137

Pause
command.

See also:
Project menu

Main window

Pause

1.155 Project menu/Disable

PROJECT MENU / DISABLE

Selecting this option disables monitoring of all functions. It corresponds
to the

Disable
command.

This provides a convenient way to turn off SnoopDos without having to
quit, or individually deselect each function. To re-enable monitoring,
simply deselect the menu option.

See also:
Project menu

Main window

Disable

1.156 Project menu/Single step

PROJECT MENU / SINGLE STEP

This option works in conjunction with the
Pause
menu option. Selecting

single step allows all currently paused tasks to execute the function they
are paused at. Each task will be automatically paused again the next time
it calls a function monitored by SnoopDos.

See also:
Project menu

Main window

SingleStep

1.157 Project menu/Task priority

SnoopDos 119 / 137

PROJECT MENU / TASK PRIORITY

This menu option allows you to change the priority of the main SnoopDos
task. The submenu contains several common task priorities.

For more details about the benefits and tradeoffs of changing the task
priority, see the

TaskPri
command.

See also:
Project menu

Main window

TaskPri

1.158 Project menu/Help

PROJECT MENU / HELP

This option loads the SnoopDos help file into AmigaGuide, positioned
at the contents page. From there, you can access help on any aspect
of SnoopDos.

If you get an error requester saying "Can’t open database", it means
that AmigaGuide cannot locate the SnoopDos.guide file. If you copy
the file into the SnoopDos program directory, or into HELP:English,
it should work properly.

See also:
Project menu

Main window

Help

1.159 Project menu/About

PROJECT MENU / ABOUT

This option displays a requester with information about the author of
SnoopDos, the current version number, the distribution conditions, and
the ARexx port name.

See also:
Project menu

Main window

SnoopDos 120 / 137

1.160 Project menu/Hide

PROJECT MENU / HIDE

This option closes all the SnoopDos windows, but leaves SnoopDos monitoring
system activity in the background. It corresponds to the

Hide
command.

If the
HideMethod
is set to None, then this option is not available.

When SnoopDos is hidden, the main window can be re-opened by pressing the
currently defined

HotKey
. Depending on the hide method, you may also be

able to open the SnoopDos AppIcon, or select the Show SnoopDos menu item
on the Workbench Tools menu.

See also:
Project menu

Main window

Hide

1.161 Project menu/Quit

PROJECT MENU / QUIT

This option is used to unload SnoopDos from memory. It corresponds to the

Quit
command.

Note that if a call to one of the monitored functions is still in progress,
SnoopDos may not be able to exit immediately. See the documentation on the
Quit command for more details.

See also:
Project menu

Main window

Quit

1.162 SnoopDos Windows menu

The SnoopDos windows menu contains the following options which ←↩
control the

four windows used by SnoopDos. Click on any option for more information.

SnoopDos 121 / 137

WINDOWS MENU
+---------------------------+
|

Show setup...
| Open the SnoopDos setup window

|
Show functions...
| Open the SnoopDos function window

|
Show format...
| Open the SnoopDos format editor window

| ------------------------- |
|

Change window width
| Change the number of text columns

| ------------------------- |
|

Text spacing
| Adjust the spacing between text lines

|
Window type
| Select simple or smart refresh windows

|
Target name
| Align target name field on left or right

|
Row selection key
| Choose qualifier key for row selection

| ------------------------- |
|

· Show status line?
| Turn on or off the SnoopDos status line

|
· Show gadgets?
| Turn on or off the main window gadgets

| ------------------------- |
|

· Auto-open on output?
| If set, automatically open for new output

|
· Disable when hidden?
| If set, only monitor when window is open

+---------------------------+

See also:
Main window

Project menu

Settings menu

Buffer menu

1.163 Windows menu/Show setup...

SnoopDos 122 / 137

WINDOWS MENU / SHOW SETUP...

This menu option opens the SnoopDos
Setup
window. It corresponds to the

OpenSetup
command.

If the window was already open, then it is brought to the front. If you
hold down SHIFT while selecting this option, then the window will be closed
instead.

See also:
Windows menu

Main window

OpenSetup

1.164 Windows menu/Show functions...

WINDOWS MENU / SHOW FUNCTIONS...

This menu option opens the SnoopDos
Function
window. It corresponds to the

OpenFunction
command.

If the window was already open, then it is brought to the front. If you
hold down SHIFT while selecting this option, then the window will be closed
instead.

See also:
Windows menu

Main window

OpenFunction

1.165 Windows menu/Show format...

WINDOWS MENU / SHOW FORMAT...

This menu option opens the SnoopDos
Format editor

. It corresponds to the

OpenFormat

SnoopDos 123 / 137

command.

If the editor was already open, then it is brought to the front. If you
hold down SHIFT while selecting this option, then the editor will be closed
instead.

See also:
Windows menu

Main window

OpenFormat

1.166 Windows menu/Change window width

WINDOWS MENU / CHANGE WINDOW WIDTH

This menu option allows you to adjust the width of the main window, so
that a given number of text columns can be displayed. It corresponds to
the

WindowWidth
command.

The sub menu provides several useful window widths. If you are designing
a format intended for output to a log file, you can set the window width
to 78 or 79 to ensure your format will fit neatly on a printed page or on
an 80 column screen.

Remember that information output to a log file requires one extra column
of space; see the

OpenLog
command for more information.

In addition to the preset sizes, you can also select "Best Fit". This will
size the window so that it is exactly wide enough to fully display the
current format. If you have been resizing the SnoopDos window using the
mouse, this provides a convenient way to ensure you are not wasting any
horizontal space.

See also:
Windows menu

Main window

WindowWidth

1.167 Windows menu/Text spacing

WINDOWS MENU / TEXT SPACING

This menu option allows you to alter the spacing between adjacent lines of
text in the main window. It corresponds to the

SnoopDos 124 / 137

TextSpacing
command.

You can choose 0, 1 or 2 pixels of extra spacing from the sub menu.
Different people prefer different settings; try all three, and choose
the one you like best.

See also:
Windows menu

Main window

TextSpacing

1.168 Windows menu/Window type

WINDOWS MENU / WINDOW TYPE

This menu item allows you to select which type of refresh method you want
SnoopDos to use for each window. The two sub menu options correspond to
the

SimpleRefresh
and
SmartRefresh
commands.

Simple refresh windows take up less memory, and can operate faster on some
Amigas with third-party graphics cards. However, they are often slower,
since the Amiga has to recreate the contents of each window whenever it
is uncovered.

Smart refresh windows take up more memory but operate much more quickly
on unaccelerated Amigas.

Try both settings, and decide which you like best.

See also:
Windows menu

Main window

SimpleRefresh

SmartRefresh

1.169 Windows menu/Target name

WINDOWS MENU / TARGET NAME

This menu option allows you to choose which way you want the
Target name

field displayed in the main window. It corresponds to the

SnoopDos 125 / 137

LeftAligned
and
RightAligned
commands.

If the target name is left aligned, it looks just like any other output
column. If it is right aligned, then when a name is too long to be fully
displayed in the column, the rightmost portion of the name is displayed
instead of the leftmost portion. This is indicated by a ’«’ symbol in
the first column of the name.

Right aligned is particularly useful if you are using the
ShowFullPaths

option, since it allows you to see the filename at the end of a ←↩
long path,

instead of the device or volume name at the start.

The menu shortcut key for the two options are set to RAmiga-[and RAmiga-]
(for left and right aligned respectively); this makes it easy to switch to
right aligned mode if you see a long target name, and immediately switch
back to left aligned once you have seen the ending.

See also:
Windows menu

Main window

LeftAligned

RightAligned

1.170 Windows menu/Row selection key

WINDOWS MENU / ROW SELECTION KEY

SnoopDos allows you to highlight lines of output in the main window by
clicking on them. This allows you to quickly identify all the components
of an event by providing a horizontal guide for your eyes to follow.

Normally, a click on its own is sufficient. However, if you use a click-
to-front window utility, then the "ghost" flash of a line being briefly
highlighted when you click the SnoopDos window to the front can become
distracting.

This menu option allows you to choose a qualifier key (SHIFT, ALT or CTRL)
which must be held down before you can highlight lines of output. By using
a qualifier which is different to the qualifier used for your click-to-
front utility, you can avoid this annoying effect.

A range of qualifier types are listed in the sub menu. The "Ignore" option
should be selected if you don’t use a click-to-front utility -- it tells
SnoopDos not to pay any attention to what key is pressed when you click
the mouse.

The "None" option makes SnoopDos explicitly check that no qualifier keys

SnoopDos 126 / 137

are pressed while the row is being selected. Select this if your click-to-
front utility uses a keyboard qualifier itself such as SHIFT.

The SHIFT, ALT and CTRL options indicate that the appropriate key must
be held down for row highlighting to work. The "All" option is similar,
but allows any of the thee qualifier keys to be held down, rather than
a specific one. If your click-to-front utility doesn’t use a qualifier
key itself, then "All" is the best option to choose.

See also:
Windows menu

Main window

Event output

RowQualifier

1.171 Windows menu/Show status line?

WINDOWS MENU / SHOW STATUS LINE?

This menu option allows you to control whether or not the status line
should be displayed in the main window. It corresponds to the

ShowStatus
and
HideStatus
commands.

Hiding the status line allows more room for event output. However, leaving
it visible allows you to ascertain SnoopDos’s current state at a glance.
Try both settings and see which you prefer.

See also:
Windows menu

Main window

ShowStatus

HideStatus

1.172 Windows menu/Show gadgets?

WINDOWS MENU / SHOW GADGETS?

This menu option allows you to control whether or not the button gadgets
should be displayed in the main window. It corresponds to the

ShowGadgets
and
HideGadgets
commands.

SnoopDos 127 / 137

Hiding the gadgets allows more room for event output. However, leaving
them visible allows you to carry out common actions quickly using the
mouse. All the gadgets have equivalent menu items which you can use when
the gadgets are hidden. You can also continue to use the gadget keyboard
shortcuts when they are hidden.

See also:
Windows menu

Main window

ShowGadgets

HideGadgets

1.173 Windows menu/Auto-open on output?

WINDOWS MENU / AUTO-OPEN ON OUTPUT?

This menu option controls whether or not SnoopDos should automatically
open if an event occurs while it is hidden. It corresponds to the

AutoOpen
command.

Normally, you will want to leave this option disabled, since otherwise,
SnoopDos would rarely run in the background for very long before being
automatically opened again, defeating the purpose.

However, occasionally, you are waiting for a task to carry out one specific
action. In these circumstances, it can be convenient to be able to close
the SnoopDos window, confident that you will not miss the vital event when
it happens.

See also:
Windows menu

Main window

AutoOpen

1.174 Windows menu/Disable when hidden?

WINDOWS MENU / DISABLE WHEN HIDDEN?

This menu option controls whether or not SnoopDos should automatically
stop monitoring all functions when it is running in the background. It
corresponds to the

DisableWhenHidden
command.

SnoopDos 128 / 137

Usually, you will want to leave this option disabled. However, if you
only use SnoopDos occasionally, but still like the convenience of having
it always available at the press of a hotkey, enabling this option will
allow you to keep SnoopDos loaded and ready, without slowing down your
system.

See also:
Windows menu

Main window

DisableWhenHidden

1.175 SnoopDos Settings menu

The SnoopDos settings menu contains options that control the ←↩
saving and

restoring of program settings. Click on any option for more information.

SETTINGS MENU
+----------------------+
|

Load...
| Load in a new settings file

|
Save
| Save the current settings as defaults

|
Save as...
| Save the current settings to a new file

| -------------------- |
|

Reset to defaults
| Install the standard SnoopDos settings

|
Last saved
| Install the most recently saved settings

|
Restore
| Restore the settings loaded at the start

| -------------------- |
|

· Create icons?
| If set, save icons with settings files

+----------------------+

See also:
Main window

Project menu

Windows menu

Buffer menu

SnoopDos 129 / 137

1.176 Settings menu/Load...

SETTINGS MENU / LOAD...

This menu option allows you to load in a SnoopDos settings file. It
corresponds to the

LoadSettings
command.

A settings file is simply a standard text file which contains a list
of SnoopDos commands to execute. Usually this will have been created
by SnoopDos itself as a result of an earlier

SaveSettings
command,

but it can also be created by the user.

The first line must read "<SnoopDos Settings>" or the file won’t be
recognised as a valid settings file.

See also:
Settings menu

Main window

LoadSettings

1.177 Settings menu/Save

SETTINGS MENU / SAVE

This menu option saves the current SnoopDos settings to the default
settings file, as defined by the

Settings
command. It corresponds

to the
SaveDefSettings
command. You can achieve the same effect

by selecting the Save Settings gadget in the main window.

The next time you start SnoopDos, these settings will be automatically
loaded. This allows you to maintain your favourite configuration from
session to session.

See also:
Settings menu

Main window

SaveDefSettings

1.178 Settings menu/Save as...

SnoopDos 130 / 137

SETTINGS MENU / SAVE AS...

This menu option allows you to save the current settings to a file of
your choice. It corresponds to the

SaveSettings
command.

This can be useful as a starting point for generating a custom settings
file. It can also be a convenient way to produce a printed list of your
current settings for future reference -- simply enter PRT: in the drawer
field of the ASL file requester.

See also:
Settings menu

Main window

SaveSettings

1.179 Settings menu/Reset to defaults

SETTINGS MENU / RESET TO DEFAULTS

This menu option provides a convenient way to install the default settings
that SnoopDos uses when you start it with no configuration file. This is
useful if you’ve managed to change the settings so much that you just
want to start again.

See also:
Settings menu

Main window

LoadSettings

1.180 Settings menu/Last saved

SETTINGS MENU / LAST SAVED

This menu option allows you to reload the last set of settings that were
saved to disk. Usually, this will be the set that SnoopDos loaded during
initialisation, but if you have saved settings since starting, then the
more recent set is used instead.

The file is actually read back in from disk as if you used
LoadSettings

so if you have been editing the disk copy by hand, your changes ←↩
will take

effect.

You might find this option useful if you make a change to the settings

SnoopDos 131 / 137

(especially the display format) and then change your mind -- by selecting
this option, you can quickly undo the change.

See also:
Settings menu

Main window

LoadSettings

1.181 Settings menu/Restore

SETTINGS MENU / RESTORE

This option restores the settings that SnoopDos loaded during its
initialisation.

This is useful if you are playing with the settings and then accidentally
press Save Settings, which makes your changes permanent. By selecting
Restore, you can get back the original settings and then resave them again.

See also:
Settings menu

Main window

LoadSettings

1.182 Settings menu/Create icons?

SETTINGS MENU / CREATE ICONS?

This menu option controls whether or not SnoopDos creates icons for any
settings files it saves. It corresponds to the

CreateIcons
command.

Creating icons is convenient, because it allows you to manipulate settings
files from Workbench. You can double-click on a settings file to load the
settings into SnoopDos (assuming SnoopDos is in the same directory or in
your AmigaDOS path) and you can also add additional commands to the tool
types for that icon to perform actions like opening a log file. See the

Settings files
section for more information.

Note that no icon is saved for the defaults file -- if you want it to
have an icon, use the

Save as
Settings menu option.

See also:

SnoopDos 132 / 137

Settings menu

Main window

CreateIcons

1.183 SnoopDos Buffer menu

The SnoopDos buffer menu contains options that control the saving ←↩
and

clearing of the event buffer. Click on any option for more information.

BUFFER MENU
+------------------------+
|

Copy window to clip
| Copy window contents to clipboard

|
Copy buffer to clip
| Copy buffer contents to clipboard

| ---------------------- |
|

Save window...
| Save window contents to a file

|
Save buffer...
| Save buffer contents to a file

| ---------------------- |
|

Clear buffer
| Clear all events from event buffer

+------------------------+

See also:
Main window

Project menu

Windows menu

Settings menu

1.184 Buffer menu/Copy window to clip

BUFFER MENU / COPY WINDOW TO CLIP

This menu option copies the current contents of the main window to the
clipboard. It corresponds to the

CopyWindow
command.

This is convenient if you want to copy a portion of the SnoopDos event

SnoopDos 133 / 137

output into a word processor or text editor -- you can simply position the
window to display the portion you’re interested in, select Copy Window,
and then select Paste in your editor.

If the window width is too narrow to display a full line of event output,
only the portion displayed inside the window will be copied. You can use
the

Copy buffer
menu option to copy the entire buffer to the clipboard.

See also:
Buffer menu

Main window

CopyWindow

1.185 Buffer menu/Copy buffer to clip

BUFFER MENU / COPY BUFFER TO CLIP

This menu option copies the entire contents of the event buffer to the
clipboard. It corresponds to the

CopyBuffer
command.

This is convenient if you want to copy the SnoopDos event output into a
word processor or text editor -- you can simply select Copy Buffer, and
then select Paste in your editor.

Since the entire buffer contents are copied, you should think carefully
before using this option, especially if there has been a lot of output.
You may find it more useful to use the

Copy window
menu option, which

only copies the text displayed in the main window, rather than the entire
buffer.

See also:
Buffer menu

Main window

CopyBuffer

1.186 Buffer menu/Save window...

BUFFER MENU / SAVE WINDOW...

This menu option allows you to save the current contents of the main
window to a file. It corresponds to the

SaveWindow

SnoopDos 134 / 137

command.

If the window width is too narrow to display a full line of event output,
only the portion displayed in the window will be saved.

See also:
Buffer menu

Main window

SaveWindow

1.187 Buffer menu/Save buffer...

BUFFER MENU / SAVE BUFFER...

This menu option allows you to save the entire contents of the event
buffer to a file. It corresponds to the

SaveBuffer
command.

This is very convenient if you have been monitoring a program’s activities
and decide too late that you should have opened a log file; you can use
this option to save a permanent record of the program’s actions.

See also:
Buffer menu

Main window

SaveBuffer

1.188 Buffer menu/Clear buffer

BUFFER MENU / CLEAR BUFFER

This menu option erases all the output currently stored in the event
buffer. It corresponds to the

ClearBuffer
command.

Clearing the buffer is always a good idea before you start monitoring
the activities of a new program, because it avoids confusing output from
that program with the output of programs that were run earlier.

In addition, the event sequence numbers start counting from one again,
which makes it easier to keep track of new events.

See also:
Buffer menu

Main window

SnoopDos 135 / 137

ClearBuffer

1.189 index

-- SNOOPDOS INDEX --

Action field

Keyboard support

ARexx monitoring

ARexx support

Language support

Author

Log files

Call addr field

Main window

CLI usage

Menu options

Clipboard support

Command index

Options field

Command syntax

Contents

Packet debugging

Count field

Pause

Credits

Process name

Custom log output

Quickstart

Date field

SnoopDos 136 / 137

Quitting SnoopDos

Disable

Distribution

Ramlib Patch

Result field

Event headings

ROM monitoring

Event output

Segment name

Font support

Settings files

Format editor

Setup window

Format fields

Single step

Function window

Stack limit

Status line

GNU C support

Target name field

History

TaskID field

Hotkey support

Time field

Hunk:Offset field

What’s new

Icon support

Workbench usage

SnoopDos 137 / 137

Iconify

Ignoring tasks

Introduction

	SnoopDos
	main
	quickstart
	introduction
	whatsnew
	workbench
	cli
	arexx
	settingsfiles
	distribution
	history
	credits
	author
	mainwindow
	eventheadings
	eventoutput
	statusline
	mainopenlog
	mainkeys
	settingswindow
	settingscopy
	settingsbuttons
	functionwindow
	selectgadgets
	functionbuttons
	formateditor
	Format width gadget
	formatbuttons
	Action output field
	Call Address output field
	Date output field
	Hunk:Offset output field
	TaskID output field
	TargetName output field
	Options output field
	ProcessName output field
	Result output field
	Segment Name output field
	Time output field
	Count output field
	SegTracker and FindHit
	commandindex
	commandsyntax
	addlog
	appendlog
	autoopen
	bufferfont
	buffersize
	changedir
	clearbuffer
	closeformat
	closefunction
	closelog
	closesetup
	copybuffer
	copywindow
	createicons
	cx_popkey
	cx_popup
	cx_priority
	delete
	disable
	disablewhenhidden
	enable
	execute
	fileiotype
	findport
	findresident
	findsemaphore
	findtask
	flushlog
	format
	formatwindowpos
	functions
	functionwindowpos
	getvar
	gotoline
	help
	hide
	hidegadgets
	hidemethod
	hidestatus
	hotkey
	iconpos
	ignoreshell
	language
	leftaligned
	loaddefsettings
	loadseg
	loadsettings
	lock
	lockscreen
	logformat
	logmode
	logname
	mainwindowpos
	mainwindowsize
	makedir
	makelink
	matchname
	monitorpackets
	monitorromcalls
	onlyshowfails
	open
	opendevice
	openfont
	openformat
	openfunction
	openlibrary
	openlog
	openresource
	openseriallog
	opensetup
	packetdebugger
	patchramlib
	pause
	quit
	readtooltypes
	rename
	rightaligned
	rowqualifier
	runcommand
	savebuffer
	savedefsettings
	savesettings
	savewindow
	screenname
	screentype
	scrolldown
	scrollup
	sendrexx
	settings
	setupwindowpos
	setvar
	show
	showcli
	showfullpaths
	showgadgets
	showstatus
	simplerefresh
	singlestep
	smartrefresh
	stacklimit
	system
	taskpri
	textspacing
	unpause
	usedevicenames
	windowfont
	windowwidth
	menu_index
	SnoopDos Project menu
	Project menu/Open log...
	Project menu/Close log
	Project menu/Pause
	Project menu/Disable
	Project menu/Single step
	Project menu/Task priority
	Project menu/Help
	Project menu/About
	Project menu/Hide
	Project menu/Quit
	SnoopDos Windows menu
	Windows menu/Show setup...
	Windows menu/Show functions...
	Windows menu/Show format...
	Windows menu/Change window width
	Windows menu/Text spacing
	Windows menu/Window type
	Windows menu/Target name
	Windows menu/Row selection key
	Windows menu/Show status line?
	Windows menu/Show gadgets?
	Windows menu/Auto-open on output?
	Windows menu/Disable when hidden?
	SnoopDos Settings menu
	Settings menu/Load...
	Settings menu/Save
	Settings menu/Save as...
	Settings menu/Reset to defaults
	Settings menu/Last saved
	Settings menu/Restore
	Settings menu/Create icons?
	SnoopDos Buffer menu
	Buffer menu/Copy window to clip
	Buffer menu/Copy buffer to clip
	Buffer menu/Save window...
	Buffer menu/Save buffer...
	Buffer menu/Clear buffer
	index

