
ANSI X3H2-96-502r2

I S O

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

October 22, 1996

Subject: SQL/Temporal

Status: Change Proposal

Title: Adding Transaction Time to SQL/Temporal

Source: ANSI Expert's Contribution

Authors: Richard T. Snodgrass, Michael H. B�ohlen, Christian S. Jensen and Andreas Steiner

Abstract: Transaction time identi�es when data was asserted in the database. If transaction

time is supported, the states of the database at all previous points of time are re-

tained. This change proposal speci�es the addition of transaction time, in a fashion

consistent with that already proposed for valid time. In particular, constructs to

create tables with valid-time and transaction-time support and query such tables

with temporal upward compatibility, sequenced semantics, and nonsequenced se-

mantics, orthogonally for valid and transaction time, is de�ned. These constructs

also can be used in modi�cations, assertions, cursors, and views.

2 DBL:? and X3H2-96-502r2

References

[1] Melton, J. (ed.) SQL/Foundation. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-007.)

[2] Melton, J. (ed.) SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-012.)

[3] Snodgrass, R. T., M. H. B�ohlen, C. S. Jensen and A. Steiner Adding Valid Time to SQL/Temporal,

ANSI X3H2-96-501r2, October, 1996.

[4] Steiner, A. and M. H. B�ohlen. The TimeDB Temporal Database

Prototype, September, 1995. Available at ftp://www.iesd.auc.dk/general/DBS/tdb/TimeCenter or

at ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz.

DBL:? and X3H2-96-502r2 3

1 Introduction

Transaction time identi�es when data was asserted in the database. If transaction time is supported, the

states of the database at all previous points of time are retained and updates are append-only.

Unlike valid time, transaction time cannot be entirely simulated with tables with explicit timestamp

columns. The reason is that tables with transaction-time support are append-only: they grow monotonically.

While the query functionality can be simulated on table with no temporal support, in the same way that

valid-time query functionality can be translated into queries on table with no temporal support, there is

no way to restrict the user to modi�cations that ensure the table is append-only. While one can revoke

permission to use DELETE, it is still possible for the user to corrupt the transaction timestamp via database

updates and insertions. This means that the user can never be sure that what the table says was stored at

some time in the past was actually in the table at that time. The only way to ensure the consistency of the

data is to have the DBMS maintain the transaction timestamps automatically.

This change proposal adds transaction-time support to SQL/Temporal. These facilities augment the

valid-time support proposed earlier [3]. Transaction-time support provides the following features.

� Both valid-time and transaction-time support are optional.

� Tables with transaction-time support can be converted, via a view or within a query or cursor, to a

conventional table with an additional period column, if the user prefers to manipulate the data in that

fashion.

� Temporal upward compatible, sequenced, and nonsequenced queries can all be expressed on tables with

valid-time and transaction-time support, orthogonally.

2 The Problem

Many applications need to keep track of the past states of the database, often for auditing requirements.

Changes are not allowed on the past states; that would prevent secure auditing. Instead, compensating

transactions are used to correct errors.

When an error is encountered, often the analyst will look at the state of the database at a previous point

in time to determine where and how the error occurred.

However, SQL currently does not support such modi�cations or queries well. The following example will

illustrate the problems.

� Assume that we wish to keep track of the changes and deletions of the Employee table discussed in

the previous change proposal [3]. This table has four columns: Name, Manager, Dept, and When (a

PERIOD indicating when the row was valid). To know when rows are inserted and (logically) deleted,

we add two more columns, InsertTime and DeleteTime, both of the data type TIMESTAMP. Of course,

adding these two columns breaks the referential integrity constraint between Manager and Name (the

manager must also be an employee). The reader is invited to write this referential integrity constraint

to take into account the three time columns.

� We �nd out that the telephone bill for a department is unusually high, so we ask \How many employees

have been in each department" to get a start. This query is quite complex to formulate in SQL.

� It turns out that one of the departments shows an unreasonable number of current employees (more

than 25). When was the error introduced? Is this inconsistency in the database widespread? How long

has the database been incorrect? The query \When did we think that departments are overly large?"

provides an initial answer, but is also very di�cult to express in SQL.

These queries are very challenging, even for SQL experts, when time is involved.

Modi�cations are even more of a problem. A logical deletion must be implemented as an update and

an insertion, because we don't want to change the previously stored information. However, there is no way

of preventing an application from inadvertently corrupting past states (by incorrectly altering the values of

the InsertTime or DeleteTime columns), or a white-collar criminal from intentionally \changing history" to

cover up his tracks.

4 DBL:? and X3H2-96-502r2

3 Outline of the Solution

The solution is to have the DBMS maintain transaction time automatically, so that the integrity of the

previous states of the database is preserved. The query language can also help out, by making it easy to

write queries and modi�cations.

With the small syntactic additions proposed here, transaction time can be easily added.

ALTER TABLE Employee ADD TRANSACTIONTIME

Because the DBMS is maintaining transaction time for us, for this table, we don't have to worry about the

integrity of the previous states. The DBMS simply won't let us modify past states.

The previously speci�ed sequenced valid referential integrity still applies, always on the current state of

the database. No rephrasing of this integrity constraint is necessary.

The query \How many employees have been in each department?" asks for the history in valid time of

the current transaction-time state. Hence, it is particularly easy to specify, by exploiting transaction-time

upward compatibility.

VALIDTIME SELECT Dept, COUNT(*)

FROM Employee

GROUP BY Dept

To �nd where the error was made, we write the query \When did we think that departments are overly

large?" This uses the current time in valid time (the current departments), but looks at past states of the

database. This requires a sequenced transaction query, with valid-time upward compatibility.

TRANSACTIONTIME SELECT Dept, COUNT(*)

FROM Employee

GROUP BY Dept

HAVING COUNT(*) > 25

By having the DBMS maintain transaction time, applications that need to retain past states of tables

for auditing purposes can have these past states maintained automatically, correctly, and securely. As well,

the proposed language extensions enable queries to be written in minutes instead of hours.

4 Transaction Time

As we saw in the previous change proposal [3], valid time concerns the time when a fact is true in reality.

The valid time of a fact is the wall clock time at which the fact was true in the modeled reality, independent

of the recording of that fact in some database. Valid times can be in the future, if it is known that some

fact will become true at a speci�ed time in the future.

Orthogonally to valid time, transaction time can be associated with facts. The transaction time of a row,

which is a period, speci�es when that row was considered to be logically stored in the database. If the row

(Tony, 10000, LeeAnn) was stored in the database on March 15, 1992 (say, with an INSERT statement) and

removed from the database on June 1, 1992 (say, with a DELETE statement), then the transaction time of

that row would be the period from March 15, 1992 to June 1, 1992.

Since transaction time is orthogonal to valid time, a table can have no temporal support, only valid-time

support, only transaction-time support, and both valid- and transaction-time support.

Example 1: Consider a table with both valid-time and transaction-time support recording employee

information, such as \Jake works for the shipping department." We assume that the precision of the

timestamps is one day for both valid time and transaction time (though in reality the precision of transaction

time is probably a fraction of a second).

Figure 1 gives a sample table that illustrates Jake's interesting employment history. Jake was hired by

the company as temporary help in the Shipping department for the interval from June 10 to June 15, and

this fact became current in the database at June 5.

DBL:? and X3H2-96-502r2 5

Later, the Personnel department discovers that Jake had really been hired from June 5 to June 20, and the

database is corrected on June 10. Later, the Personnel department is informed that the correction was itself

incorrect; Jake really was hired for the original time interval, June 10 to June 15, and the correction took

e�ect in the database on June 15. Finally, on June 20, the Personnel department determines that, while the

period of validity was correct, Jake was not in the Shipping department, but in the Loading department (!).

Consequently, the fact (Jake, Shipping) is removed from the current state and the fact (Jake, Loading) is

inserted. In the table, we represent the current time in transaction time internally with a value of the end of

time. As we will see, users will never encounter transaction times greater than CURRENT TIMESTAMP.

Emp Dept Valid Transaction

Time Time

Jake Shipping [1995-06-10 - 1995-06-16) [1995-06-05 - 1995-06-10)

Jake Shipping [1995-06-05 - 1995-06-21) [1995-06-10 - 1995-06-15)

Jake Shipping [1995-06-10 - 1995-06-16) [1995-06-15 - 1995-06-20)

Jake Loading [1995-06-10 - 1995-06-16) [1995-06-20 - 9999-12-31)

Figure 1: A Table With Both Valid-Time and Transaction-Time Support

With this table with both valid-time and transaction-time support, we can ask many interesting queries.

Some queries take a vertical slice at a particular transaction time, determining what was recorded in the

database at that time.

� As best known, who worked in the various departments?

Jake worked in the Loading department.

� As recorded in the database on June 18, 1995 (perhaps erroneously), who worked in the various

departments?

Jake worked in the Shipping department.

� Rolling back the database to June 12, 1995, how long did we think Jake was scheduled to work?

Jake was scheduled to work 16 days, from June 5 to June 20.

Other queries take a horizontal slice at a particular valid time.

� Concerning June 12, 1995, who worked then, as best known now?

Jake worked in the Loading department then.

� What erroneous data was corrected concerning June 12, 1995?

We thought Jake was working in the Shipping department on June 12 (this data was stored on June 5),

but his department was corrected on June 20 to the Loading department.

ut

The concepts of temporal upward compatibility (TUC), sequenced (SEQ), and nonsequenced (NONSEQ)

semantics apply orthogonally to valid time and transaction time.

Example 2: Assume that we have an employee table with attributes Name, Salary, and Manager. We can

state queries that are di�erent combinations of TUC , SEQ , and NONSEQ in valid and transaction time. In

the following, we indicate valid time, then transaction time. Hence, \TUC/SEQ" means valid-time upward

compatible and sequenced transaction-time semantics.

TUC/TUC Who currently makes more than their manager, as best known?

A table with no temporal support results.

6 DBL:? and X3H2-96-502r2

SEQ/TUC Who at any time makes or made more than their manager did (at the same time, as best known)?

A table with valid-time support results.

TUC/SEQ Who did we think makes more than their manager today?

NONSEQ/TUC Who made more than their manager did (at any time), as best known?

A table with no temporal support results.

TUC/NONSEQ When was it recorded that someone currently makes more than their manager?

A table with no temporal support results.

SEQ/SEQ When did we think that someone, at some time, made more than their manager, at the same

time?

A table with both valid-time and transaction-time support results.

SEQ/NONSEQ When did we correct the information to record that someone, at some time, made more

than their manager, at the same time?

A table with valid-time support results. For each transaction time, we get a row with valid-time

support, indicating when the employee is now considered to make more than their manager.

NONSEQ/SEQ Who was recorded, perhaps erroneously, to have made more than their manager did at any

time?

Here we get a table with transaction-time support, indicating when the perhaps erroneous data was in

the table.

NONSEQ/NONSEQ When did we correct the information, to record that someone made more than their

manager did, at any time?

Here a table with no temporal support results.

TUC in valid time translates in English to \at now"; SEQ translates to \at the same time'; and NONSEQ

translates to \at any time." TUC in transaction time translates to \as best known"; SEQ translates to \when

did we think : : : at the same time"; and NONSEQ translates to \when was it recorded that."

This example illustrates that all combinations are meaningful. ut

While this example emphasized the orthogonally of valid and transaction time, that TUC , SEQ , and

NONSEQ can be applied equally to both, there are still some di�erences between the two types of time.

First, valid time can have a precision speci�ed by the user at table creation time. The transaction

timestamps have an implementation-dependent range and precision. Second, valid time extends into the

future, whereas transaction time always ends at now. Finally, during modi�cations the DBMS provides the

transaction time, in contrast with the valid time of facts, which are provided by the user. This derives from

the di�erent semantics of transaction time and valid time. Speci�cally, when a fact is (logically) deleted

from a table with transaction-time support, its transaction stop time is set automatically by the DBMS to

the current time. When a fact is inserted into the table, its transaction start time is set by the DBMS,

again to the current time. An update is treated, concerning the transaction-time timestamps, as a deletion

followed by an insertion. The transaction times that a set of modi�cation transactions give to the modi�ed

rows must be consistent with the serialization order of those transactions.

Example 3: We can alter the employee table discussed in [3] to be a table with both valid-time and

transaction-time support, by adding transaction-time support. ut

Temporal upward compatibility guarantees that conventional, nontemporal queries, updates, etc. work as

before, with the same semantics.

DBL:? and X3H2-96-502r2 7

Since the history of the database is recorded in tables with both valid-time and transaction-time support,

we can �nd out when corrections were made, using a nonsequenced transaction query.

Example 4: The query \When was the street corrected, and what were the old and new values?", com-

bines nonsequenced transaction semantics (since this involves two transaction states: before and after the

correction) with sequenced valid semantics.

ut

Example 5: To extract all the information from the employee table, we can use a sequenced valid/sequenced

transaction query. Such queries can have arbitrarily complex predicates. \When did we think that someone

lived somewhere for more than six months?" ut

Modi�cations take e�ect at the current transaction time. However, we can still specify the scope of the

change in valid time, both before and after now (retroactive and postactive changes, respectively).

Example 6: Lilian moved last June 1. ut

Finally, arbitrarily complex queries in transaction time can be expressed with nonsequenced transaction

queries.

Example 7: The query \When was an employee's address for 1995 corrected?" involves nonsequenced

transaction semantics and sequenced valid semantics, with a temporal scope of 1995. ut

As always, the concepts also apply to views, cursors, constraints, and assertions.

Example 8: The assertion \An entry in the security table can never be updated. It can only be deleted,

and a new entry, with another key value, inserted." can be expressed with a nonsequenced transaction

semantics, stating in e�ect that the key value is unique over all transaction time. ut

5 Supporting Transaction-Time in SQL3

This section informally introduces the new constructs of SQL/Temporal. We build upon the examples given

in the previous change proposal [3].

5.1 SQL3 Extensions

We employ a new reserved word, TRANSACTIONTIME, whose use parallels that of VALIDTIME. This reserved

word can appear in a number of locations.

Table creation The create table statement is extended to de�ne tables with either or both of valid-time

and transaction-time support, through the use of \AS TRANSACTIONTIME".

Temporal upward compatibility TUC is ensured through the semantics of the language; no new syn-

tax is needed. A transaction-time or table with both valid-time and transaction-time support is trans-

action timesliced to now to retrieve the data as best known.

Sequenced transaction semantics Sequenced transaction semantics is speci�ed by prepending the re-

served word TRANSACTIONTIME, as with sequenced valid semantics. This applies to queries, views,

cursors, assertions, and constraints.

Nonsequenced transaction semantics Nonsequenced transaction semantics is speci�ed by prepending

NONSEQUENCED TRANSACTIONTIME, as with valid time.

8 DBL:? and X3H2-96-502r2

Assertion de�nition A sequenced transaction applies individually to each state of the underlying ta-

ble(s). A nonsequenced transaction assertion applies simultaneously to all of the states of the underly-

ing table(s). This is in contrast to a snapshot assertion, which is evaluated only on the current state.

In both cases, the assertion is checked before a transaction is committed. The fact that tables with

transaction-time support are append-only presents an opportunity to optimize the checking of such

assertions.

Derived table in a from clause In the from clause, one can also specify TRANSACTIONTIME. This is the

means of converting a table with transaction-time support to a table with no temporal support, as will

be illustrated in the following quick tour.

Table and column constraints When speci�ed with NONSEQUENCED TRANSACTIONTIME, such constraints

must apply to all states in transaction time, together, of a table with transaction-time support.

Cursor expression Cursors can range over the result of a nonsequenced transaction select. Note however

that rows that are not current cannot be updated.

Optional period expression An optional period expression after TRANSACTIONTIME (without NONSEQUENCED)

speci�es that the transaction-time period of the result is intersected with the value of the expression.

This allows one to restrict the result of a select statement, assertion de�nition, table constraint, column

constraint, cursor expression, or view de�nition to a speci�ed period.

Value expression The value expression \TRANSACTIONTIME(<correlation name>)" evaluates to the trans-

action-time period of the row associated with the correlation or table name. This is required because

transaction-time periods of tables with transaction-time support are not explicit columns (the alterna-

tive violates temporal upward compatibility).

Fetch statement The transaction-time period associated with a row with transaction-time support can

be placed in a local variable in embedded SQL.

5.2 Overview of the Semantics

The semantics is dictated by three simple rules.

� The absence of VALIDTIME (respectively, TRANSACTIONTIME) indicates valid-time (resp., transaction-

time) upward compatibility. The result does not include valid-time (resp., transaction-time) support.

� VALIDTIME (respectively, TRANSACTIONTIME) indicates sequenced valid (resp., transaction) semantics.

An optional period expression temporally scopes the result. The result includes valid-time (resp.,

transaction-time) support.

� NONSEQUENCED denotes nonsequenced valid (resp., transaction) semantics. An optional period expres-

sion after NONSEQUENCED VALIDTIME provides a valid-time timestamp, yielding valid-time support in

the result.

The following quick tour provides examples of these constructs.

5.3 A Quick Tour

This quick tour starts with the database as it was when we last left it, at the end of the previous quick tour

[3]. The employee table has the following contents. Recall that closed-open periods are used here for the

valid-time and transaction-time periods.

ename eno street city birthday Valid

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01)

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31)

Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31)

The salary table has the following contents.

DBL:? and X3H2-96-502r2 9

eno amount Valid

6542 3200 [1995-02-01 - 1995-06-01)

6542 3360 [1995-06-01 - 1995-07-01)

6542 3360 [1996-01-01 - 9999-12-31)

3463 3400 [1995-02-02 - 1995-04-01)

3463 3570 [1995-04-01 - 9999-12-31)

We can alter the employee table to be a table with both valid-time and transaction-time support, by

adding transaction-time support. Assume that the current date is July 1, 1995.

ALTER TABLE employee ADD TRANSACTIONTIME;

COMMIT;

Since employee was a table with valid-time support, this statement converts it to the following table with

both valid-time and transaction-time support. Recall that an the ending bound of the transaction-time

period of the end of time in the representation simply indicates that the row still logically resides in the

table, i.e., has not been logically deleted.

ename eno street city birthday Valid Transaction

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-07-01 - 9999-12-31)

Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

We retain the salary table as a table with valid-time support.

Temporal upward compatibility guarantees that conventional, nontemporal queries, updates, etc. work

as before, with the same semantics. We can list those for which (currently, as best known) no one makes a

higher salary in a di�erent city.

SELECT ename

FROM employee AS e1, salary AS s1

WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename

FROM employee AS e2, salary AS s2

WHERE e2.eno = s2.eno AND s2.amount > s1.amount

AND e1.city <> e2.city)

This takes a timeslice in both valid time and transaction time at now, and returns the result: Lilian.

We can also ask, for all time, when this is true, by simply prepending \VALIDTIME".

VALIDTIME SELECT ename

FROM employee AS e1, salary AS s1

WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename

FROM employee AS e2, salary AS s2

WHERE e2.eno = s2.eno AND s2.amount > s1.amount

AND e1.city <> e2.city)

This returns a table with valid-time support, evaluated with sequenced valid semantics, after the current

transaction timeslice has been taken.

ename Valid

Franziska [1995-02-01 - 1995-02-02)

Lilian [1995-02-02 - 1995-04-01)

Lilian [1995-04-01 - 9999-12-31)

10 DBL:? and X3H2-96-502r2

There are two rows for Lilian, because two rows of salary participated in computing the result. Interestingly,

Franziska satis�ed the where condition for exactly one day, before Lilian was hired.

Temporally upward compatible modi�cations also work as before. Assume it is now August 1, 1995.

Franziska just moved.

UPDATE employee

SET street = 'Niederdorfstrasse 2'

WHERE ename = 'Franziska';

COMMIT;

This update yields the following employee table. Note that although Franziska is at the new address starting

on August 1, 1995, since she won't be an employee for the next �ve months, her new address is recorded

from January 1, 1996 onward.

ename eno street city birthday Valid Transaction

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)

Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)

Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

Since the history of the database is recorded in tables with both valid-time and transaction-time support,

we can �nd out when corrections were made, using a nonsequenced transaction query. Assume it is now

September 1, 1995.

The query \When was the street corrected, and what were the old and new values?" combines nonse-

quenced transaction semantics with sequenced valid semantics.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME

SELECT e1.ename, e1.street AS old_street, e2.street AS new_street,

BEGIN(TRANSACTIONTIME(e2)) AS trans_time

FROM employee AS e1, employee AS e2

WHERE e1.eno = e2.eno AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)

This yields the following table with valid-time support. The trans time column speci�es when the change

was made; the implicit timestamp indicates the valid-time period of the fact that was changed.

ename old street new street trans time Valid

Franziska Rennweg 683 Niederdorfstrasse 2 1995-08-01 [1996-01-01 - 9999-12-31)

To extract all the information from the employee table, we can use a sequenced valid/sequenced trans-

action query. \When did we think that someone lived somewhere for more than six months?".

VALIDTIME AND TRANSACTIONTIME SELECT ename, street

FROM employee

WHERE INTERVAL(VALIDTIME(employee) MONTH) > INTERVAL '6' MONTH

ename street Valid Transaction

Franziska Rennweg 683 [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)

Franziska Niederdorfstrasse 2 [1996-01-01 - 9999-12-31) [1995-08-01 - 1995-09-01)

Lilian 46 Speedway [1995-02-02 - 9999-12-31) [1995-07-01 - 1995-09-01)

Notice that in the result, the ending transaction time for data in the current state is always the current time,

rather than the end of time, reecting information currently known.

Modi�cations take e�ect at the current transaction time. However, we can still specify the scope of the

change in valid time, both before and after now (retroactive and postactive changes, respectively).

Assume it is now October 1, 1995. Lilian moved last June 1.

DBL:? and X3H2-96-502r2 11

VALIDTIME PERIOD '[1995-06-01 - 9999-12-31)' UPDATE employee

SET street = '124 Alberca'

WHERE ename = 'Lilian'

COMMIT;

This update yields the following employee table.

ename eno street city birthday Valid Transaction

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)

Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)

Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)

Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31) [1995-07-01 - 1996-10-01)

Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 1995-06-01) [1995-10-01 - 9999-12-31)

Lilian 3463 124 Alberca Tucson 1970-03-09 [1995-06-01 - 9999-12-31) [1995-10-01 - 9999-12-31)

Finally, arbitrarily complex queries in transaction time can be expressed with nonsequenced transaction

queries.

The query, \When was an employee's address for 1995 corrected?", involves nonsequenced transaction

semantics and sequenced valid semantics, with a temporal scope of 1995. Assume that it is November 1,

1995.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME PERIOD '[1995-01-01 - 1996-01-01)'

SELECT e1.ename, e1.street AS old_street, e2.street AS new_street,

BEGIN(TRANSACTIONTIME(e2)) AS trans_time

FROM employee AS e1, employee AS e2

WHERE e1.eno = e2.eno AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)

AND e1.street <> e2.street

This evaluates to the following result, which has an explicit column denoting the date the change was made,

and an implicit valid time indicating the time in reality in question.

ename old street new street trans time Valid

Lilian 46 Speedway 124 Alberca 1995-10-01 [1995-06-01 - 1996-01-01)

Note that the period from February through May is not included in the valid time, as the street didn't

change for that period.

As always, the concepts also apply to views, cursors, constraints, and assertions.

The assertion, \An entry in the security table can never be updated. It can only be deleted, and a

new entry, with another key value, inserted.", can be expressed with a nonsequenced transaction semantics,

stating in e�ect that the key value is unique over all transaction time.

CREATE TABLE security (

keyvalue NUMERIC(8) NONSEQUENCED TRANSACTIONTIME UNIQUE,

...

)

6 Formal Semantics of SQL/Temporal

We provide a denotational mapping of queries with these language extensions to temporal relational and

relational algebra expressions.

We use htjjV T i, htjjTT i, and htjjV T; TT i to denote a tuple variable ranging over a table with valid-time

support, with transaction-time support, and with both valid-time and transaction-time support, respectively.

The vertical double-bar \jj" is used to separate transaction and valid-time from explicit attributes.

Finally, we use four simple auxiliary functions: �

vt

; �

tt

; SN

vt

, and SN

tt

. The timeslice operation �

c

computes the timeslice of a table at time c, i.e., it selects all tuples with a timestamp that overlaps chronon

12 DBL:? and X3H2-96-502r2

c. SN turns an implicit time dimension into an explicit attribute. Both functions are de�ned for valid and

transaction time. Table 1 gives their semantics over all possible table types. Note that SN , which converts

an implicit dimension into an explicit attribute, is not needed at the implementation level, where a time

dimension is represented simply as an extra column.

snapshot valid time transaction time

�

vt

c

(r) fhti j hti 2 rg fhti j htjjV T i 2 r ^ V T overlaps cg fhtjjTT i j htjjTT i 2 rg

�

tt

c

(r) fhti j hti 2 rg fhtjjV T i j htjjV T i 2 rg fhti j htjjTT i 2 r ^ TT overlaps cg

SN

vt

(r) fhti j hti 2 rg fht; V T i j htjjV T i 2 rg fhtjjTT i j htjjTT i 2 rg

SN

tt

(r) fhti j hti 2 rg fhtjjV T i j htjjV T i 2 rg fht; TT i j htjjTT i 2 rg

valid and transaction time

�

vt

c

(r) fhtjjV T; TT i j htjjV T; TT i 2 r ^ V T overlaps cg

�

tt

c

(r) fhtjjV T; TT i j htjjV T; TT i 2 r ^ TT overlaps cg

SN

vt

(r) fht; V T jjTT i j htjjV T; TT i 2 rg

SN

tt

(r) fht; TT jjV T i j htjjV T; TT i 2 rg

Table 1: Snapshot Functions and Functions to Convert a Time Dimension into an Explicit Column

Table 2 gives the denotational semantics for the basic statements. [[<query expression>]]

standard

evaluates

to the standard relational algebra expression which corresponds to <query expression>.

[[<query expression>]]

X

, where X 2 fvt; tt; big, is equivalent to [[<query expression>]]

standard

except that

every nontemporal relational algebra operator (e.g., 1; �; �) is replaced by the corresponding temporal rela-

tional algebra operator (e.g., 1

X

; �

X

; �

X

). The semantics of these algebraic operators is a straightforward

extension of the semantics given for the valid-time temporal algebra in [3].

Table 2 does not show the semantics of temporal scoping in transaction time, so we provide this semantics

here. (We gave the semantics for temporal scoping in valid time in the previous change proposal [3].)

[[TRANSACTIONTIME p <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

fht jj TT i j ht jj TT

0

i 2 [[TRANSACTIONTIME <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

^ TT = TT

0

\ [[p]] ^ TT 6= ;g

Example 9: The �rst example is a nontemporal query, i.e., a query evaluated with standard semantics.

Assume that p and q are tables with both valid-time and transaction-time support. The query Q

1

NONSEQUENCED VALIDTIME

SELECT p.X

FROM p, q

WHERE p.X = q.X

is equivalent to the relational algebra expression

[[Q

1

]]

SQL=TEMPORAL

(p; q) = �

p:X

�

p:X=q:X

(SN

vt

(�

tt

now

(p)� SN

vt

(�

tt

now

(q)))) :

ut

Example 10: The second example is the query Q

2

evaluated with temporal semantics.

VALIDTIME AND TRANSACTIONTIME

SELECT p.X

FROM p, q

WHERE p.X = q.X

DBL:? and X3H2-96-502r2 13

[[<query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

standard

(�

tt

now

(�

vt

now

(r

1

)); : : : ; �

tt

now

(�

vt

now

(r

n

)))

[[VT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

vt

(�

tt

now

(r

1

); : : : ; �

tt

now

(r

n

))

[[NS VT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

standard

(�

tt

now

(SN

vt

(r

1

)); : : : ; �

tt

now

(SN

vt

(r

n

)))

[[TT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

tt

(�

vt

now

(r

1

); : : : ; �

vt

now

(r

n

)

[[NS TT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

standard

(�

vt

now

(SN

tt

(r

1

)); : : : ; �

vt

now

(SN

tt

(r

n

)))

[[VT AND TT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

bi

(r

1

; : : : ; r

n

)

[[VT AND NS TT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

vt

(SN

tt

(r

1

); : : : ; SN

tt

(r

n

))

[[NS VT AND TT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

tt

(SN

vt

(r

1

); : : : ; SN

vt

(r

n

))

[[NS VT AND NS TT <query expression>]]

SQL=T

(r

1

; : : : ; r

n

)

4

=

[[<query expression>]]

standard

(SN

tt

(SN

vt

(r

1

)); : : : ; SN

tt

(SN

vt

(r

n

)))

Table 2: Denotational Semantics

is equivalent to the temporal relational algebra expression

[[Q

2

]]

SQL=TEMPORAL

(p; q) = �

bi

p:X

(p 1

bi

p:X=q:X

q) :

Note that apart from the superscripts, which are added to relational algebra operators, the translation be-

tween SQL queries and relational algebra expressions has not changed at all. ut

7 Summary

This change proposal builds on the previous change proposal [3], introducing transaction time as well as

tables with transaction-time support, sequenced transaction semantics, nonsequenced transaction semantics,

scoping on transaction time via an optional period expression, and modi�cation semantics. The speci�c

syntactic additions were outlined and examples given to illustrate these constructs. We sketched a formal

semantics, in terms of the formal semantics of SQL3, for the new constructs.

We end by listing some of the advantages of the approach espoused here.

� Only one new reserved word is required to support transaction time.

� The extensions are compatible with, and orthogonal to, those for valid time.

� A simple period expression permits the transaction-time scope to be speci�ed.

� Nonsequenced transaction semantics permits tables with transaction-time support to be converted to

tables with no temporal support with an explicit timestamp column, even within a query.

� A public-domain prototype [4] demonstrates the practical viability of the proposed constructs. The

quick tour was validated on this prototype.

14 DBL:? and X3H2-96-502r2

8 Proposed Language Extensions

The syntax is given as extensions to \Database Language SQL | Part 7: Temporal," [2] as well as the

previous change proposal [3].

9 Clause 3 De�nitions, notations, and conventions

9.1 Subclause 3.1 De�nitions

1) Add the following terms.

n) row with transaction-time support: A row with transaction-time support is a row with an asso-

ciated transaction time, which is a value of a period data type, with elements of the transaction-time

precision, which is implementation-de�ned.

o) transaction time of a row with transaction-time support: The transaction time of a row with

transaction-time support is the period P such that BEGIN(P) denotes the time at which the row was

inserted and END(P) denotes the time when the row was updated or (logically) deleted.

Note to proposal reader: It follows that a proposition P , together with an associated valid time TV

and an associated transaction time TT , is equivalent to the proposition \ `P is true during TV ' was

asserted during TT".

p) table has transaction-time support: A table with transaction-time support is one in which each

row is a row with transaction-time support.

q) transaction-time state of a table with transaction-time support at a transaction time: The

transaction-time state of a table with transaction-time support, TT, at a speci�ed time, T, is the table

without transaction-time support comprising rows with identical values for the �elds of the rows of TT

associated with transaction times that overlap T.

r) current transaction-time state of a table with transaction-time support: The current trans-

action-time state of a table with transaction-time support is the transaction-time state of that table

at transaction time CURRENT TIMESTAMP.

DBL:? and X3H2-96-502r2 15

10 Clause 4 Concepts

10.1 Subclause 4.3 Tables

1) Add the following Item to the table descriptor:

{ An indication of whether the table has transaction-time support or does not have transaction-time

support.

10.2 Subclause 4.4 Integrity constraints

2) Add the following two Items to the constraint descriptor:

{ An indication of whether the constraint is speci�ed without TRANSACTIONTIME, with TRANSAC-

TIONTIME but without NONSEQUENCED, or with NONSEQUENCED TRANSACTIONTIME.

{ The transaction-time period, if any, associated with the constraint.

10.3 Subclass 4.5 Meaning of statements on tables with temporal support

3) Insert these two paragraphs at the end of this Subclause.

The meaning of queries on tables with transaction-time support is parallel to and orthogonal with those

queries on tables with valid-time support. The concepts of temporal upward compatibility, sequenced trans-

action, and nonsequenced transaction apply consistently to queries, integrity constraints, assertions, views,

and cursors.

Modi�cations on tables with transaction-time support are always performed on the current transaction-

time state of the table, with the resulting rows of the new state having a transaction-time period P such

that BEGIN(P) is CURRENT TIMESTAMP, thereby ensuring the append-only nature of transaction-time

support. For updates and deletions, the ending bound of the transaction times of the rows that are a�ected

are set to the value of CURRENT TIMESTAMP. For rows that have not been updated or deleted, the

ending bound is always CURRENT TIMESTAMP.

16 DBL:? and X3H2-96-502r2

11 Clause 5 Lexical elements

11.1 Subclause 5.1 <token> and <separator>

1) In the Format, add the following new alternative to <reserved word>:

�

�

TRANSACTIONTIME

Language opportunity: It might be reasonable to also allow TRANSTIME as a shorter synonym.

DBL:? and X3H2-96-502r2 17

12 Clause 6 Scalar expressions

13 Section 6.4 <period value function>

1) In the Format, add the following new alternative to <period primary>:

�

�

<transactiontime function>

2) In the Format, add the following two BNF productions:

<transactiontime function> ::=

TRANSACTIONTIME <left paren> <transactiontime argument> <right paren>

<transactiontime argument> ::=

<item quali�er>

�

�

<value expression>

3) Insert the following two Syntax Rules:

1. (Insert this SR) The data type of <transactiontime function> shall be <period type>, with an element

precision of the transaction-time precision.

2. (Insert this SR) The <value expression> of a <transactiontime function> shall be of row type RT. If

RT does not have transaction-time support, then it shall have a �eld named TRANSACTIONTIME

of a period data type, with an element precision of the transaction-time precision.

Note to proposal reader: The precision of a table with transaction-time support was speci�ed in Subclause

3.1, \De�nitions" as implementation-de�ned.

4) Insert the following General Rules:

1. (Insert this GR) Case:

a) If <transactiontime argument> is <item quali�er>, then let R be the row of T for which

<transactiontime function> VF is evaluated.

b) If <transactiontime argument> is <value expression>, then let R be the resulting row.

2. (Insert this GR) Case:

a) If R has transaction-time support, then the value of the <transactiontime function> is the

transaction-time period of R.

b) If R does not have transaction-time support, then the value of the <transactiontime function> is

the value of the �eld of R named TRANSACTIONTIME.

3. (Insert this GR) Let the value of the <transactiontime function> be T. If LAST(T) is the end of time,

then replace LAST(T) with CURRENT TIMESTAMP in the transaction-time precision.

Note to proposal reader: The end of time was speci�ed in Subclause 3.1, \De�nitions".

Language opportunity: It would be helpful if this function were also available in PSM.

18 DBL:? and X3H2-96-502r2

14 Clause 7 Query Processing

14.1 Subclause 7.4 <query expression>

1) In the Format, replace the <time option> BNF production with:

<time option> ::=

<validtime option> [AND <transactiontime option>]

�

�

<transactiontime option> [AND <validtime option>]

Note to proposal reader: This adds an optional<transaction option> either before or following the<validtime

option> to <time option>.

2) Add the following BNF production:

<transactiontime option> ::=

[NONSEQUENCED] TRANSACTIONTIME [<value expression>]

Note to proposal reader: This syntax is symmetric with that for <validtime option>.

3) Add the following Syntax Rules:

1. (Insert this SR) The data type of <value expression> of <transactiontime option> shall be <period

type>, with an element precision of the transaction-time precision.

NOTE 7 - Subclause 6.3, \<item reference>" restricts the scope of column names in<value expression>.

2. (Insert this SR) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the

<transactiontime option> that is contained in the <time option> that is simply contained in <query

expression>, then each exposed table, query, or correlation name that is contained in the <query

expression body> without an intervening <from clause> shall identify a table with transaction-time

support.

Note to proposal reader: This ensures that sequenced transaction queries are only evaluated \over"

tables with transaction-time support.

3. (Insert this SR) If TRANSACTIONTIME is speci�ed in the <time option> of a <query expression>

Q, then either Q shall be simply contained in a <from clause> or Q shall be the outermost <query

expression>.

Note to proposal reader: TRANSACTIONTIME is allowed in the same places that VALIDTIME is

permitted.

4. (Insert this SR) If NONSEQUENCED is speci�ed in a <transactiontime option> TO that is contained

in <time option>, then TO shall not contain a <value expression>.

5. (Insert this SR) Let T be the result of the <query expression>.

Case:

a) If TRANSACTIONTIME is speci�ed NONSEQUENCED is not speci�ed in the <transactiontime

option> that is contained in<time option>, then T shall be a table with transaction-time support.

b) Otherwise, T shall be a table without transaction-time support.

DBL:? and X3H2-96-502r2 19

4) Insert the following General Rules:

1. (Insert this GR) Case:

a) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the<transactiontime

option> that is contained in <time option>, then the result of <temporal query expression body>

TQEB during each transaction time granule T of the transaction-time precision is the result of the

<query expression body> of TQEB with each leaf generally underlying table with transaction-

time support with no intervening <from clause> replaced with its state at transaction time T. If

<value expression> VE is speci�ed in the <transactiontime option> that is contained in <time

option>, then for each row R resulting from the initial evaluation of TQEB,

Case:

i) If the value of VE and the transaction-time period VP of R overlap, then the resulting

transaction-time period of R is the result of

(VE P INTERSECT VP).

ii) Otherwise, R is not included in the �nal result of TQEB.

b) If NONSEQUENCED TRANSACTIONTIME is speci�ed in <time option>, then the result of

<temporal query expression body> TQEB is the result of the <query expression body> of TQEB

with each leaf generally underlying table with transaction-time support with no intervening <from

clause> replaced with a table with no transaction-time support with rows with identical values for

the columns. The descriptor of that table is the same as the description of the table DT from which

it is derived, with the inclusion of a column descriptor whose column name is TRANSACTION-

TIME, whose data type is a <period type> with an element precision of the transaction-time

precision, and whose ordinal position is one greater than the degree of DT. The value of this

additional column for each row is the original transaction-time period of the corresponding row in

DT. If <value expression> is speci�ed in the <transactiontime option> of <time option>, then

the transaction-time period of the row of the result of TQEB is the value of <value expression>.

c) Otherwise, the result of <temporal query expression body> TQEB is the result of the <query

expression body> of TQEB with each of its leaf generally underlying tables with transaction-time

support with no intervening <from clause> replaced with its current transaction-time state.

Note to proposal reader: This semantics is identical to that for valid-time.

Language opportunity: It would be nice if <value expression> that is contained in the <transactiontime

option> that is contained in <time option> also be allowed to be of a datetime data type, interpreted as a

period containing one granule. This would allow statements of the form

TRANSACTIONTIME DATE '1996-01-01' SELECT.

20 DBL:? and X3H2-96-502r2

14.2 Subclause 7.5 <query speci�cation>

1) Replace both SRs with the following.

1. (Replace SR4b) Otherwise, the <select list> "*" is equivalent to a <value expression> sequence in

which each <value expression> is a column reference that references a column of T and each column of

T, other than any column named VALIDTIME or TRANSACTIONTIME, is referenced exactly once.

The columns other than those named VALIDTIME or TRANSACTIONTIME are referenced in the

ascending sequence of their ordinal position within T.

2. (Replace SR 5) If the <select sublist>

<item quali�er>.*

is speci�ed, then let Q be the <item quali�er> of that <select sublist>. Q shall be a <table name> or

<correlation name> exposed by a <table reference> immediately contained in the <from clause> of

T. Let TQ be the table associated with Q. That <select sublist> is equivalent to a <value expression>

sequence in which each <value expression> is a column reference CR that references a column of

TQ that is not a common column of a <joined table> and does not have the name VALIDTIME

or TRANSACTIONTIME. Each column of TQ that is not a referenced common column shall be

referenced exactly once. The columns shall be referenced in the ascending sequence of their ordinal

positions within TQ.

Note to proposal reader: This adds the TRANSACTIONTIME column to the exceptions.

DBL:? and X3H2-96-502r2 21

15 Clause 10 Schema de�nition and manipulation

15.1 Subclause 10.2 <table de�nition>

1) In the Format, replace the <temporal de�nition> BNF production with:

<temporal de�nition> ::=

AS VALIDTIME [<period type>] [AND TRANSACTIONTIME]

�

�

AS TRANSACTIONTIME [AND VALIDTIME [<period type>]]

Note to proposal reader: This augments the production for the non-terminal <temporal de�nition> with an

additional, optional clause to specify that the new table is to be a table with transaction-time support. No

<table precision> for transaction time can be speci�ed, as that is supplied by the implementation.

2) Add the following General Rules:

1. (Add to GR3)

h) Whether the table has transaction-time support or does not have transaction-time support.

Note to proposal reader: This Item is added to the table descriptor.

2. (Insert this GR) If <temporal de�nition> is speci�ed, then the descriptor for the table indicates that

the table has transaction-time support.

Note to proposal reader: Otherwise, the table does not have transaction-time support.

22 DBL:? and X3H2-96-502r2

15.2 Subclause 10.3 <column de�nition>

Note to proposal reader: TRANSACTIONTIME is now allowed in <time option>.

1) Add the following Syntax Rules.

1. (Insert this SR) If TRANSACTIONTIME is speci�ed in <time option>, then T shall be a table with

transaction-time support.

2. (Insert this SR) The <value expression> that is contained in the <transactiontime option> that is

contained in <time option> shall be a <literal>.

3. (Insert this SR) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the

<transactiontime option> that is contained in <time option>,

Case:

a) If <column constraint> is <references speci�cation>, then the table identi�ed by <table name>

simply contained in the <referenced table and columns> of <references speci�cation> shall be a

table with transaction-time support.

b) If <column constraint> is <check constraint de�nition>, then each table associated with an

exposed <table name>, <query expression>, or <correlation name> contained in the <column

constraint> without an intervening <from clause> shall be a table with transaction-time support.

DBL:? and X3H2-96-502r2 23

15.3 Subclause 9.4 <table constraint de�nition>

Note to proposal reader: TRANSACTIONTIME is now allowed in <time option>.

For constraints and assertions, there are four cases:

1. CHECK

� works on anything

� only considers current state

2. TRANSACTIONTIME CHECK

� works only on tables with transaction-time support

� the assertion must be true for the state at every transaction time

3. TRANSACTIONTIME <period exp> CHECK

� like TRANSACTIONTIME CHECK, but only considers the times in <period exp> (a simple example

is TRANSACTIONTIME PERIOD '[1995-01-01 - 1995-12-31]' CHECK)

4. NONSEQUENCED TRANSACTIONTIME CHECK

� works on anything

� acts like tables with transaction-time support have an explicit (unnamed) timestamp column; all

rows are considered at once

NONSEQUENCED TRANSACTIONTIME <period exp> CHECK is not allowed.

End of note.

1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is speci�ed in <time option>, then T shall be a table with

transaction-time support.

2. (Insert this SR) The <value expression> that is contained in the <transactiontime option> that is

contained in <time option> shall be a literal.

3. (Insert this SR) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the

<transactiontime option> that is contained in the <time option> that is immediately contained in

<table constraint de�nition>, then each exposed table, query, or correlation name contained in the

<table constraint> without an intervening <from clause> shall identify a table with transaction-time

support.

4. (Insert this SR) If <transactiontime option> TO that is contained in <column constraint de�nition>

contains NONSEQUENCED, then TO shall not contain <value expression>.

2) Add the following General Rules:

1. (Append to GR2) The table constraint descriptor includes an indication of whether the constraint has

transaction-time support or does not have transaction-time support, as well as the transaction-time

period, if any, of the table constraint, if the table constraint has transaction-time support.

2. (Insert this GR) Case:

a) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the<transactiontime

option> that is contained in <time option>, then

Case:

24 DBL:? and X3H2-96-502r2

i) If <value expression> V is contained in the <transactiontime option> of <time option>,

then <temporal table constraint> is satis�ed if the contained <table constraint> is satis-

�ed for each time granule TG of the value of V, with each leaf generally underlying table

with transaction-time support with no intervening <from clause> replaced with its state at

transaction time TG.

ii) Otherwise, <temporal table constraint> is satis�ed if the contained <table constraint> is

satis�ed for each time granule TG in the transaction-time precision, with each leaf generally

underlying table with transaction-time support with no intervening <from clause> replaced

with its state at transaction time TG.

b) If NONSEQUENCED TRANSACTION is speci�ed in <time option>, then <temporal table

constraint> is satis�ed if the contained <table constraint> is satis�ed when each leaf generally

underlying table with transaction-time support with no intervening <from clause> is replaced

with a table with no transaction-time support with rows with identical values for the columns.

The descriptor of that table is the same as the description of the table DT from which it is derived,

with the inclusion of a column descriptor whose column name is TRANSACTIONTIME, whose

data type is a <period type> with an element precision of the transaction-time precision, and

whose ordinal position is one greater than the degree of DT. The value of this additional column

for each row is the original transaction-time period of the corresponding row in DT.

c) Otherwise, <temporal table constraint> is satis�ed if the contained <table constraint> is satis�ed

when each of its leaf generally underlying tables with transaction-time support with no intervening

<from clause> is replaced with its current transaction-time state.

DBL:? and X3H2-96-502r2 25

15.4 Subclause 10.5 <alter table statement>

1) In the Format, add the following two new alternatives to <alter table action>:

�

�

<add transaction de�nition>

�

�

<drop transaction de�nition>

2) Add the following Syntax Rule:

1. (Add this SR) If <add column de�nition>, <alter column de�nition>, <drop column de�nition>,

<add supertable clause>, <drop supertable clause>, <add table constraint de�nition>, or <drop

table constraint de�nition> is speci�ed, then T shall not be a table with transaction-time support.

Language opportunity: Schema modi�cations of tables with transaction-time support requires versioning

of the schema base tables, which will be addressed in a future change proposal.

26 DBL:? and X3H2-96-502r2

15.5 Subclause 10.9 <add valid de�nition>

1) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.8, \<convert valid

de�nition>".

Function

Add transaction-time support to a table.

Format

<add transaction de�nition> ::=

ADD TRANSACTIONTIME

Syntax Rules

1. (Insert this SR) Let T be the table identi�ed by the <table name> that is immediately contained in

the <alter table statement> that immediately contains <add transaction de�nition>.

2. (Insert this SR) T shall not have transaction-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Transaction-time support is added to each row R of T, by associating with R a

transaction time P such that BEGIN(P) is CURRENT TIMESTAMP and END(P) is the end of time

in the transaction-time precision. The descriptor of T is altered to indicate that T has transaction-time

support.

DBL:? and X3H2-96-502r2 27

15.6 Subclause 10.10 <drop transaction de�nition>

1) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.9, \<add transaction

de�nition>".

Function

Drop transaction-time support from a table.

Format

<drop valid de�nition> ::=

DROP TRANSACTIONTIME

Syntax Rules

1. (Insert this SR) Let T be the table identi�ed by the <table name> that is immediately contained in

the <alter table statement> that immediately contains <drop transaction de�nition>.

2. (Insert this SR) T shall be a table with transaction-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If T has valid-time support, then transaction-time support is removed from T by replacing T with

the result of

VALIDTIME SELECT * FROM T

b) Otherwise, transaction-time support is removed from T by replacing T with the result of

SELECT * FROM T

The descriptor of T is altered to indicate that T does not have transaction-time support.

Note to proposal reader: That is, only the current state is retained. Previously stored transaction-time

states are no longer accessible.

28 DBL:? and X3H2-96-502r2

15.7 Subclause 10.9 <assertion de�nition>

Note to proposal reader: TRANSACTIONTIME is now allowed in <time option>.

1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the

<transactiontime option> that is contained in <time option>, then each exposed table, query, or

correlation name contained in the <search condition> without an intervening <from clause> shall

identify a table with transaction-time support.

2. (Insert this SR) The <value expression> contained in the <transactiontime option> contained in

<time option> shall be a <literal>.

2) Append the following sentence to General Rule 4:

The assertion descriptor includes an indication of whether the assertion has transaction-time support or

does not have transaction-time support, as well as the transaction-time period, if any, of the assertion, if the

assertion has transaction-time support.

3) Add the following General Rule:

1. (Insert this GR) Case:

a) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the<transactiontime

option> that is contained in <time option>, then

Case:

i) If <value expression> V is contained in the <transactiontime option> that is contained in

<time option>, then <triggered assertion> is satis�ed if the contained <search condition> is

satis�ed for each time granule TG of the value of V, with each leaf generally underlying table

with transaction-time support with no intervening <from clause> replaced with its state at

transaction time TG.

ii) Otherwise, <triggered assertion> is satis�ed if the contained <search condition> is satis�ed

for each time granule TG of the transaction-time precision, with each leaf generally underlying

table with transaction-time support with no intervening<from clause> replaced with its state

at transaction time TG.

b) If NONSEQUENCED TRANSACTION is speci�ed in <time option>, then <triggered assertion>

is satis�ed if the contained <search condition> is satis�ed when each leaf generally underlying

table with transaction-time support with no intervening <from clause> is replaced with a table

with no transaction-time support with rows with identical values for the columns. The descriptor

of that table is the same as the description of the table DT from which it is derived, with the

inclusion of a column descriptor whose column name is TRANSACTIONTIME, whose data type

is a <period type> with an element precision of the transaction-time precision, and whose ordinal

position is one greater than the degree of DT. The value of this additional column for each row is

the original transaction-time period of the corresponding row in DT.

c) Otherwise, <triggered assertion> is satis�ed if the contained <search condition> is satis�ed when

each of its leaf generally underlying tables with transaction-time support with no intervening

<from clause> is replaced with its current transaction-time state.

DBL:? and X3H2-96-502r2 29

16 Clause 12 Data manipulation

16.1 Subclause 12.2 <select statement: single row>

Note to proposal reader: TRANSACTIONTIME is now allowed in <time option>.

1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the

<transactiontime option> that is contained in <time option>, then each exposed <table name>,

<query expression>, or <correlation name> contained in the <table expression> without an inter-

vening <from clause> shall identify a table with transaction-time support.

2. (Insert this SR) If TRANSACTIONTIME is speci�ed in a <time option> of a <query expression> Q

that is contained in the <table expression> of <select statement: single row>, then Q shall be simply

contained in a <from clause>.

3. (Insert this SR) Case:

a) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the<transactiontime

option> that is contained in<time option>, then T shall be a table with transaction-time support.

b) If NONSEQUENCED TRANSACTIONTIME is speci�ed in <time option>, then

Case:

i) If <value expression> is speci�ed in the <transactiontime option> of <time option>, then

T shall be a table with transaction-time support.

ii) Otherwise, T shall be a table without transaction-time support.

c) Otherwise, T shall be a table without transaction-time support.

Note to proposal reader: Subclause 6.1 \<item reference>" restricts the scope of column names in the

<value expression> that is contained in the <transactiontime option> that is contained in the <time

option>.

2) Add the following General Rule:

1. (Insert this GR) Case:

a) If TRANSACTIONTIME is speci�ed and NONSEQUENCED is not speci�ed in the<transactiontime

option> that is contained in <time option>, then the result of <table expression> TE during

each transaction time granule TG of the transaction-time precision is the result of TE, in ac-

cordance with General Rule 6 of this Subclause, with each leaf generally underlying table with

transaction-time support with no intervening <from clause> replaced with its state at transaction

time TG. If <value expression> VE is speci�ed in the <transactiontime option> that is contained

in <time option>, then for each row R resulting from the initial evaluation of TE,

Case:

i) If the value of VE and the transaction-time period VP of R overlap, then the resulting

transaction-time period of R is the result of

(VE P INTERSECT VP).

ii) Otherwise, R is not included in the �nal result of TE.

b) If NONSEQUENCED TRANSACTIONTIME is speci�ed in <time option>, then the the re-

sult of <table expression> TE is the result of TE, in accordance with General Rule 6 of this

Subclause, with each leaf generally underlying table with transaction-time support with no in-

tervening <from clause> replaced with a table with no transaction-time support with rows with

identical values for the columns. The descriptor of that table is the same as the description of

30 DBL:? and X3H2-96-502r2

the table DT from which it is derived, with the inclusion of a column descriptor whose column

name is TRANSACTIONTIME, whose data type is a <period type> with an element precision of

the transaction-time precision, and whose ordinal position is one greater than the degree of DT.

The value of this additional column for each row is the original transaction-time period of the

corresponding row in DT. If <value expression> is speci�ed in the <transactiontime option> of

<time option>, then the transaction-time period of the row of the result has the value of <value

expression>.

c) Otherwise, the result of <table expression> TE is the result of TE, in accordance with General

Rule 6 of this Subclause, with each of its leaf generally underlying tables with transaction-time

support with no intervening <from clause> replaced with its current transaction-time state.

DBL:? and X3H2-96-502r2 31

16.2 Subclause 12.3 <delete statement: positioned>

1) Add the following Syntax Rule:

1. (Insert this SR) TRANSACTIONTIME shall not be speci�ed in <time option>.

2) Add the following General Rule:

1. (Insert this GR) If T is a table with transaction-time support, then to logically delete a row, the ending

bound of the transaction time of the row is set to CURRENT TIMESTAMP in the transaction-time

precision.

32 DBL:? and X3H2-96-502r2

16.3 Subclause 12.4 <delete statement: searched>

Note to proposal reader: TRANSACTIONTIME is now allowed in <time option>.

1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is speci�ed in <time option>, then T shall be a table with

transaction-time support.

2. (Insert this SR) If TRANSACTIONTIME is speci�ed in a <time option> of a <query expression> Q

that is contained in the <search condition> of <delete statement: searched>, then Q shall be simply

contained in a <from clause>.

3. (Insert this SR) A <value expression> shall not be contained in the <transactiontime option> of

<time option>.

2) Add the following General Rules at the end of the General Rules:

1. (Insert this GR) Case:

a) If NONSEQUENCED TRANSACTIONTIME is speci�ed in <time option>, then the <search

condition> SC is satis�ed if SC is satis�ed, in accordance with General Rule 13 of this Subclause,

when each leaf generally underlying table with transaction-time support with no intervening

<from clause> is replaced with a table with no transaction-time support with rows with identical

values for the columns. The descriptor of that table is the same as the description of the table

DT from which it is derived, with the inclusion of a column descriptor whose column name is

TRANSACTIONTIME, whose data type is a <period type> with an element precision of the

transaction-time precision, and whose ordinal position is one greater than the degree of DT.

The value of this additional column for each row is the original transaction-time period of the

corresponding row in DT. If the <search condition> is satis�ed, then the row is marked for

deletion.

b) Otherwise, the <search condition> SC is satis�ed if SC is satis�ed, in accordance with General

Rule 13 of this Subclause, when each of its leaf generally underlying tables with transaction-time

support with no intervening <from clause> is replaced with its current transaction-time state. If

the <search condition> is satis�ed for the relevant row, then the row is marked for deletion.

2. (Insert this GR) If T is a table with transaction-time support, then to logically delete a row, the ending

bound of the transaction time of the row is set to CURRENT TIMESTAMP in the transaction-time

precision.

DBL:? and X3H2-96-502r2 33

16.4 Subclause 12.5 <insert statement>

1) Add the following Syntax Rule:

1. (Insert this SR) The result of <insert columns and source> shall be a table without transaction-time

support.

2) Add the following General Rule:

1. (Insert this GR) If T is a table with transaction-time support, then each row of the result of <insert

columns and source> shall be associated with a transaction time P such that BEGIN(P) is CUR-

RENT TIMESTAMP and END(P) is the end of time in the transaction-time precision.

34 DBL:? and X3H2-96-502r2

16.5 Subclause 12.6 <update statement: positioned>

1) Add the following Syntax Rule:

1. (Insert this SR) TRANSACTIONTIME shall not be speci�ed in <time option>.

2) Add the following General Rule:

1. (Insert this GR) If T is a table with transaction-time support, the ending bound of the transaction

time of the current row is set to CURRENT TIMESTAMP in the transaction-time precision. Let NR

be a row with column values identical to the current row, with an associated transaction time P such

that BEGIN(P) is CURRENT TIMESTAMP and END(P) is the end of time in the transaction-time

precision. Perform the update on NR, then insert NR into T.

DBL:? and X3H2-96-502r2 35

16.6 Subclause 12.7 <update statement: searched>

Note to proposal reader: TRANSACTIONTIME is now allowed in <time option>.

1) Add the following Syntax Rules

1. (Insert this SR) If TRANSACTIONTIME is speci�ed in <time option>, then T shall be a table with

transaction-time support.

2. (Insert this SR) If TRANSACTIONTIME is speci�ed in a <time option> of a <query expression> Q

that is contained in the <search condition> of <update statement: searched>, then Q shall be simply

contained in a <from clause>.

3. (Insert this SR) A <value expression> shall not be contained in the <transactiontime option> of

<time option>.

2) Add the following General Rules:

1. (Insert this GR) Case:

a) If NONSEQUENCED TRANSACTIONTIME is speci�ed in <time option>, then the <search

condition> SC is satis�ed if SC is satis�ed, in accordance with General Rule 23 of this Subclause,

when each leaf generally underlying table with transaction-time support with no intervening

<from clause> is replaced with a table with no transaction-time support with rows with identical

values for the columns. The descriptor of that table is the same as the description of the table

DT from which it is derived, with the inclusion of a column descriptor whose column name is

TRANSACTIONTIME, whose data type is a <period type> with an element precision of the

transaction-time precision, and whose ordinal position is one greater than the degree of DT.

The value of this additional column for each row is the original transaction-time period of the

corresponding row in DT.

b) Otherwise, the <search condition> SC is satis�ed if SC is satis�ed, in accordance with General

Rule 23 of this Subclause, when each of its leaf generally underlying tables with transaction-time

support with no intervening <from clause> is replaced with its current transaction-time state.

2. (Insert this GR) If T is a table with transaction-time support, the ending bound of the transaction

time of the current row is set to CURRENT TIMESTAMP in the transaction-time precision. Let NR

be a row with column values identical to the current row, with an associated transaction time P such

that BEGIN(P) is CURRENT TIMESTAMP and END(P) is the end of time in the transaction-time

precision. Perform the update on NR, then insert NR into T.

36 DBL:? and X3H2-96-502r2

17 Clause 12 Information Schema and De�nition Schema

17.1 Subclause 12 Information Schema

17.1.1 Subclause 12.1.1 TABLES view

1) Replace the TABLES view with the following.

CREATE VIEW TABLES

AS SELECT

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE,

VALIDTIME_SUPPORT, VALIDTIME_PRECISION, TRANSACTIONTIME_SUPPORT

FROM DEFINITION_SCHEMA.TABLES

WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES

WHERE GRANTEE IN ('PUBLIC', CURRENT_USER)

UNION

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES

WHERE GRANTEE IN ('PUBLIC', CURRENT_USER))

AND TABLE_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds one column: TRANSACTIONTIME SUPPORT.

DBL:? and X3H2-96-502r2 37

17.1.2 Subclause 12.1.2 VIEWS view

1) Replace the VIEWS view with the following.

CREATE VIEW VIEWS

AS SELECT

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CASE WHEN (TABLE_CATALOG, TABLE_SCHEMA, CURRENT_USER)

IN (SELECT CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER

FROM DEFINITION_SCHEMA.SCHEMATA)

THEN VIEW_DEFINITION

ELSE NULL

END AS VIEW_DEFINITION,

CHECK_OPTION, IS_UPDATABLE,

VALIDTIME_SUPPORT, VALIDTIME_PRECISION, TRANSACTIONTIME_SUPPORT

FROM DEFINITION_SCHEMA.VIEWS

WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES)

AND TABLE_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds one column: TRANSACTIONTIME SUPPORT.

38 DBL:? and X3H2-96-502r2

17.1.3 Subclause 12.1.3 TABLE CONSTRAINTS view

1) Replace the TABLE CONSTRAINTS view with the following.

CREATE VIEW TABLE_CONSTRAINTS

AS SELECT

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CONSTRAINT_TYPE, IS_DEFERRABLE, INITIALLY_DEFERRED,

VALIDTIME_SUPPORT, VALIDTIME_PERIOD,

TRANSACTIONTIME_SUPPORT, TRANSACTIONTIME_PERIOD

FROM DEFINITION_SCHEMA.TABLE_CONSTRAINTS

JOIN

DEFINITION_SCHEMA.SCHEMATA S

ON

((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: TRANSACTIONTIME SUPPORT and TRANSACTION-

TIME PERIOD.

DBL:? and X3H2-96-502r2 39

17.1.4 Subclause 12.1.4 ASSERTIONS view

1) Replace the ASSERTIONS view with the following.

CREATE VIEW ASSERTIONS

AS SELECT

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

IS_DEFERRABLE, INITIALLY_DEFERRED,

VALIDTIME_SUPPORT, VALIDTIME_PERIOD,

TRANSACTIONTIME_SUPPORT, TRANSACTIONTIME_PERIOD

FROM DEFINITION_SCHEMA.ASSERTIONS

JOIN

DEFINITION_SCHEMA.SCHEMATA S

ON

((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: TRANSACTIONTIME SUPPORT and TRANSACTION-

TIME PERIOD.

40 DBL:? and X3H2-96-502r2

17.2 Subclause 12.2 De�nition Schema

17.2.1 Subclause 12.2.2 TABLES base table

1) Replace the TABLES table with the following.

CREATE TABLE TABLES

(

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_TYPE_NOT_NULL NOT NULL,

CONSTRAINT TABLE_TYPE_CHECK CHECK (TABLE_TYPE IN

('BASE TABLE', 'VIEW', 'GLOBAL TEMPORARY',

'LOCAL TEMPORARY')),

CONSTRAINT CHECK_TABLE_IN_COLUMNS

CHECK ((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM COLUMNS)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('STATE','NONE')),

VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,

TRANSACTIONTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN ('STATE','NONE')),

CONSTRAINT TABLES_PRIMARY_KEY

PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT TABLES_FOREIGN_KEY_SCHEMATA

FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA) REFERENCES SCHEMATA,

CONSTRAINT TABLES_CHECK_NOT_VIEW CHECK (NOT EXISTS

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES

WHERE TABLE_TYPE = 'VIEW'

EXCEPT

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM VIEWS))

)

Note to proposal reader: This adds one column: TRANSACTIONTIME SUPPORT.

2) Add the following Item to the Description:

1. The values of TRANSACTIONTIME SUPPORT have the following meanings:

STATE The table being described has transaction-time support.

NONE The table being described does not have transaction-time support.

DBL:? and X3H2-96-502r2 41

17.2.2 Subclause 12.2.3 VIEWS base table

1) Replace the VIEWS table with the following.

CREATE TABLE VIEWS

(

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

VIEW_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,

CHECK_OPTION INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CHECK_OPTION_NOT_NULL NOT NULL

CONSTRAINT CHECK_OPTION_CHECK

CHECK (CHECK_OPTION IN ('CASCADED', 'LOCAL', 'NONE')),

IS_UPDATABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT IS_UPDATABLE_NOT_NULL NOT NULL

CONSTRAINT IS_UPDATABLE_CHECK CHECK (IS_UPDATABLE IN ('YES', 'NO')),

VALIDTIME_SUPPORT INFORMATION_SCHEMA. CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('STATE','NONE')),

VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,

TRANSACTIONTIME_SUPPORT INFORMATION_SCHEMA. CHARACTER_DATA

CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN ('STATE','NONE')),

CONSTRAINT VIEWS_PRIMARY_KEY

PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT VIEWS_IN_TABLES_CHECK

CHECK ((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES

WHERE TABLE_TYPE = 'VIEW')),

CONSTRAINT VIEWS_IS_UPDATABLE_CHECK_OPTION_CHECK

CHECK ((IS_UPDATABLE, CHECK_OPTION) NOT IN

(VALUES ('NO', 'CASCADED'), ('NO', 'LOCAL')))

)

Note to proposal reader: This adds one column: TRANSACTIONTIME SUPPORT.

2) Add the following Item to the Description:

1. The values of TRANSACTIONTIME SUPPORT have the following meanings:

STATE The table being described has transaction-time support.

NONE The table being described does not have transaction-time support.

42 DBL:? and X3H2-96-502r2

17.2.3 Subclause 12.2.4 TABLE CONSTRAINTS base table

1) Replace the TABLE CONSTRAINTS table with the following.

CREATE TABLE TABLE_CONSTRAINTS

(

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CONSTRAINT_TYPE_NOT_NULL NOT NULL

CONSTRAINT CONSTRAINT_TYPE_CHECK

CHECK (CONSTRAINT_TYPE IN

('UNIQUE',

'PRIMARY KEY',

'FOREIGN KEY',

'CHECK')),

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT TABLE_CONSTRAINTS_TABLE_CATALOG_NOT_NULL NOT NULL,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT TABLE_CONSTRAINTS_TABLE_SCHEMA_NOT_NULL NOT NULL,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT TABLE_CONSTRAINTS_TABLE_NAME_NOT_NULL NOT NULL,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_CONSTRAINTS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_CONSTRAINTS_INITIALLY_DEFERRED_NOT_NULL

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('SEQUENCED','NONSEQUENCED','NONE')),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

TRANSACTIONTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN ('SEQUENCED','NONSEQUENCED','NONE')),

TRANSACTIONTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT TABLE_CONSTRAINTS_PRIMARY_KEY

PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT TABLE_CONSTRAINTS_DEFERRED_CHECK

CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

(VALUES ('NO', 'NO'),

('YES', 'NO'),

('YES', 'YES'))),

CONSTRAINT TABLE_CONSTRAINTS_CHECK_VIEWS

CHECK (TABLE_CATALOG

<> ANY (SELECT CATALOG_NAME FROM SCHEMATA)

OR

((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES

WHERE TABLE_TYPE <> 'VIEW'))),

DBL:? and X3H2-96-502r2 43

CONSTRAINT TABLE_CONSTRAINTS_UNIQUE_CHECK

CHECK (1 =

(SELECT COUNT (*)

FROM (SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM TABLE_CONSTRAINTS

WHERE CONSTRAINT_TYPE IN ('UNIQUE', 'PRIMARY KEY')

UNION ALL

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM REFERENTIAL_CONSTRAINTS

UNION ALL

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM CHECK_CONSTRAINTS) AS X

WHERE (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)

= (X.CONSTRAINT_CATALOG, X.CONSTRAINT_SCHEMA, X.CONSTRAINT_NAME))),

CONSTRAINT UNIQUE_TABLE_PRIMARY_KEY_CHECK

CHECK (UNIQUE (SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLE_CONSTRAINTS

WHERE CONSTRAINT_TYPE = 'PRIMARY KEY'))

)

Note to proposal reader: This adds two columns: TRANSACTIONTIME SUPPORT and TRANSACTION-

TIME PERIOD.

2) Add the following Items to the Description:

1. The values of TRANSACTIONTIME SUPPORT have the following meanings:

SEQUENCED The table constraint being described was speci�ed with TRANSACTIONTIME and

without NONSEQUENCED.

NONSEQUENCED The table constraint being described was speci�ed with NONSEQUENCEDTRANS-

ACTIONTIME.

NONE TRANSACTIONTIME was not speci�ed in the table constraint being described.

2. The value of TRANSACTIONTIME PERIOD is the value of the <value expression> contained in the

<transactiontime option> associated with the table constraint being described.

44 DBL:? and X3H2-96-502r2

17.2.4 Subclause 12.2.6 ASSERTIONS base table

1) Replace the TABLE ASSERTIONS table with the following.

CREATE TABLE ASSERTIONS

(

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ASSERTIONS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ASSERTIONS_INITIALLY_DEFERRED_NOT_NULL NOT NULL,

CHECK_TIME INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ASSERTIONS_CHECK_TIME_CHECK

CHECK (CHECK_TIME IN ('IMMEDIATE', 'DEFERRED')),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('SEQUENCED','NONSEQUENCED','NONE')),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

TRANSACTIONTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN ('SEQUENCED','NONSEQUENCED','NONE')),

TRANSACTIONTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT ASSERTIONS_PRIMARY_KEY

PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT ASSERTIONS_FOREIGN_KEY_CHECK_CONSTRAINTS

FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)

REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT ASSERTIONS_FOREIGN_KEY_SCHEMATA

FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

REFERENCES SCHEMATA,

CONSTRAINT ASSERTIONS_DEFERRED_CHECK

CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

VALUES (('NO', 'NO'),

('YES', 'NO'),

('YES', 'YES')))

)

Note to proposal reader: This adds two columns: TRANSACTIONTIME SUPPORT and TRANSACTION-

TIME PERIOD.

2) Add the following Items to the Description:

1. The values of TRANSACTIONTIME SUPPORT have the following meanings:

SEQUENCED The assertion being described was speci�ed with TRANSACTIONTIME and without

NONSEQUENCED.

NONSEQUENCED The assertion being described was speci�ed with NONSEQUENCED TRANSAC-

TIONTIME.

NONE TRANSACTIONTIME was not speci�ed in the assertion being described.

DBL:? and X3H2-96-502r2 45

2. The value of TRANSACTIONTIME PERIOD is the value of the <value expression> contained in the

<transactiontime option> associated with the assertion being described.

46 DBL:? and X3H2-96-502r2

18 Annex A (informative) Implementation-de�ned elements

1) Add the following item to the list of implementation-de�ned elements.

1) (Insert this Item) Subclause 3.1, \De�nitions": The precision of the transaction-time period of rows

with transaction-time support is implementation-de�ned.

DBL:? and X3H2-96-502r2 47

19 Acknowledgments

This change proposal presents an improved and extended version of some of the constructs in TSQL2,

which was designed by a committee consisting of Richard T. Snodgrass (chair), Ilsoo Ahn, Gad Ariav, Don

S. Batory, James Cli�ord, Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang

K�afer, Nick Kline, Krishna Kulkarni, T.Y. Cli� Leung, Nikos Lorentzos, John F. Roddick, Arie Segev,

Michael D. Soo and Surynarayana M. Sripada. Their participation in the TSQL2 design was critical.

We thank Mike Sykes and Krishna Kulkarni for help with the de�nition of transaction time, and Jim

Melton for general help with writing change proposals. This revision bene�ted from suggestions from Mike

Sykes and Hugh Darwin.

The �rst author was supported in part by NSF grant ISI-9202244 and by grants from IBM, the AT&T

Foundation, and DuPont. The second and third authors were supported in part by the Danish Natural

Science Research Council, grant 9400911. In addition, the third author was supported by grants 11{1089{1

and 11{0061{1, also provided by the Danish Natural Science Research Council.

