
PART IV

LANGUAGE SPECIFICATION

28
LANGUAGE SYNTAX

The organization of this section follows that of the SQL-92 standard. The

syntax is listed under corresponding section numbers in the SQL-92 standard.

All new or modi�ed syntax rules are marked with a bullet (\�") on the left side

of the production.

Where appropriate, we provide disambiguating rules to describe additional syn-

tactic and semantic restrictions. We assume that the reader is familiar with

the SQL-92 standard, and that a copy of the standard is available for reference.

549

550 Chapter 28

29
SECTION 5 LEXICAL ELEMENTS

29.1 SECTION 5.2<TOKEN> AND<SEPARATOR>

The production for the non-terminal <delimiter token> is augmented.

<delimiter token> ::=

�

�

�

<period string>

The production for the non-terminal <reserved word> is modi�ed to add 25

reserved words. To conserve space, we do not copy the existing 227 reserved

word de�nitions from the SQL-92 standard.

<reserved word> ::=

�

�

�

CALENDRIC

�

�

CONTAINS

�

�

CREDIBILITY

�

�

�

DISTRIBUTION

�

�

�

EVENT

�

�

�

GENERAL

�

�

�

INAPPLICABLE

�

�

INDETERMINATE

�

�

�

MEETS

�

�

�

NEW

�

�

NOBIND

�

�

NONSTANDARD

�

�

�

PERIOD

�

�

PLAUSIBILITY

�

�

PRECEDES

�

�

PREVIOUS

�

�

PROPERTIES

�

�

�

RISING

�

�

�

SCALE

�

�

SNAPSHOT

�

�

STATE

�

�

SURROGATE

�

�

�

VACUUM

�

�

�

VALID

�

�

�

WEIGHTED

551

552 Chapter 29

29.2 SECTION 5.3<LITERAL>

The production for the non-terminal <general literal> is augmented.

<general literal> ::=

�

�

�

<period literal>

The <date string>, <time string>, <timestamp string>, and<interval string>

are generalized. The <year-month literal>, <day-time literal>, <day-time

interval>, <time interval>, <years value>, <months value>, <days value>,

<hours value>, <minutes value>, <seconds value>, <seconds integer value>,

<seconds fraction> and <datetime value> productions are all removed.

The allowable datetime, interval, and period literals is expanded to support

multiple character sets, user-speci�ed representations, and indeterminate and

now-relative values.

<date literal> ::=

� DATE <date string> <calendric-property speci�cation>

<time literal> ::=

� TIME <time string> <calendric-property>

<timestamp literal> ::=

� TIMESTAMP <timestamp string> [<timestamp precision>]

<calendric-property>

<interval literal> ::=

� INTERVAL [<sign>] <interval string> <interval quali�er>

<calendric-property>

<date string> ::=

� <datetime string>

<datetime string> ::=

� <character string literal>

�

�

�

<determinate datetime string>

�

�

�

<now-relative datetime string>

�

�

�

<indeterminate now-relative datetime string>

Section 5 Lexical Elements 553

�

�

�

<now-relative with indeterminate datetime string>

<time string> ::=

� <datetime string>

<timestamp string> ::=

� <datetime string>

<interval string> ::=

� <character string literal>

�

�

�

<determinate interval string>

�

�

�

<indeterminate interval string>

�

�

�

<now-relative interval string>

<period literal> ::=

� PERIOD <period string> [<period precision>] <calendric-property>

<period string> ::=

� <character string literal>

Format-related property values describe the contents of temporal constants.

The BNF grammar for format strings is as follows.

<format string> ::=

� <quote> [<character representation>

�

�

�eld speci�cation>]: : :

<quote>

<�eld speci�cation> ::=

� <less than operator> <�eld identi�er>

[<comma> <translation table name>

[<comma> <�eld formatting speci�cation>: : :]]

<greater than operator>

<�eld identi�er> ::=

� <identi�er>

<translation table name> ::=

� <identi�er>

554 Chapter 29

<�eld formatting speci�cation> ::=

� W <unsigned integer>

� L

� R

� Z

� B

� S

Syntax rules 7, 19, 20, 21, 22, 23 and 24 are removed, as they impose fairly

arbitrary restrictions on timestamps.

Additional syntax rules:

1. A <format string> de�nes the syntax of strings speci�ed as the values of

format properties in property tables. A <format string> must be con-

tained in an activated property table to a�ect the translation timestamps

or literal values.

2. In a <�eld speci�cation>, the table represented by the <translation ta-

ble name> and the character pattern shown by the <�eld formatting

speci�cation>, determine the output format and translation for the given

<�eld identi�er>.

3. Valid <�eld formatting speci�cation>s are as follows.

Case:

Wnum|place the value in an output �eld of width num. The default

�eld width is just large enough to contain the constant and a sign

if speci�ed. Truncation will occur on the right if the value is too

large, and the �eld is left-justi�ed. Truncation will occur on the left

is the �eld is too large, and the �eld is right justi�ed. Only one W

speci�cation is permitted for each <�eld formatting speci�cation>.

L|place the value left-justi�ed in the �eld. Cannot be speci�ed with

R.

R|place the value right-justi�ed in the �eld. Right justi�cation is

the default. Cannot be speci�ed with L.

Z|pad the �eld with zeros. Cannot be speci�ed with B.

B|pad the �eld with blanks. Blank padding is the default. Cannot

be speci�ed with Z.

Section 5 Lexical Elements 555

S|include a sign character in the output. For negative numeric values

the sign is always displayed. S forces a positive sign for positive

numeric values. Cannot be speci�ed for non-numeric data.

4. Within a <format string>, <less than operator> <less than operator>

denotes a single <less than operator>.

5. Within a <format string>, <quote><quote> (that is, a <quote symbol>)

denotes a single <quote>.

6. Any <character representation> appearing in the format string appears

in an output string in the same relative position and order with respect to

other <character representation>s and <�eld speci�cation>s.

7. A <datetime string> is any sequence of characters not containing a single

<quote>.

Case:

The value represented by a <datetime string> is the special granule

beginning if the <datetime string> is identical to the value of the

beginning string property.

The value represented by a <datetime string> is the special gran-

ule forever if the <datetime string> is identical to the value of the

forever string property.

The value of a <datetime string> is the special value until changed if

the <datetime string> is identical to the value of the

until changed string property.

The value represented by a <datetime string> is the special granule

initiation if the <datetime string> is identical to the value of the

initiation string property. This datetime is the creation time of the

schema for the database; no transaction time stored in this database

can precedes this instant.

The value of a <datetime string> is the special value now if the

<datetime string> is identical to the value of the now string property.

This special value, when bound in an executed statement, is identical

to the value of CURRENT TIMESTAMP.

The value represented by a <datetime string> is the value returned

by a calendar if the <datetime string> is a contiguous subset of a

string consistent with the value of the determinate datetime format

property, which can include references to calendric-speci�c �elds. The

calendar named in the value of the input epoch override property is

556 Chapter 29

attempted �rst. If this calendar does not recognize one of the �elds,

the calendars are attempted in the order speci�ed for the current

calendric system.

Let A be a valid<datetime string>, representing the datetime B. Let

T be a string consistent with the time zone format property, which

can include references to the �elds minute and hour. Let TZ be an

INTERVAL HOUR TO MINUTE computed from the values of the hour

and minute �elds. If the value of the datetime with time zone prop-

erty, with the period �eld replaced with A and the time zone �eld

replaced with B, is identical to the <datetime string>, then the value

represented by the <datetime string> is the datetime B displaced by

a time zone o�set of TZ.

Let A be a valid <datetime string>, representing the datetime B.

Let T be a string contained in the translation table named by the

time zone name table. Let TI be the index associated with this string

in this translation table. Let TZ be an INTERVAL HOUR TO MINUTE

computed by looking up TI and B in the system-wide time zone

table provided by the DBA, with the schema (INDEX SMALLINT,

VALIDTIME PERIOD, ENDTIME TIMESTAMP, OFFSET INTERVAL

HOUR TO MINUTE), where B overlaps VALIDTIME. If the value of

the datetime with time zone property, with the period �eld replaced

with A and the time zone �eld replaced with B, is identical to the

<datetime string>, then the value represented by the <datetime

string> is the datetime B displaced by a time zone o�set of TZ.

Let A and B be valid <datetime string>s, representing the datetimes

C and D. Let E be a string consistent with the distribution format

property, which can include references to the �eld distribution name.

If the value of the indeterminate datetime property, with the deter-

minate datetime 1 �eld replaced with A, the determinate datetime 2

�eld replaced with B, and the distribution �eld replaced with E, is

identical to the <datetime string>, then the value represented by the

<datetime string> is the indeterminate datetime with lower support

C, upper support D, and distribution as named in E.

Let A be a valid <determinate interval string>, representing the in-

terval B. Let C be a string consistent with the sign format property,

which can include references to the �eld sign. If the value of the

now relative datetime format property, with the now �eld replaced

with the value of the property now string, the determinate interval

�eld replaced with A, and the sign �eld replaced with C, is identical to

the <datetime string>, then the value represented by the <datetime

Section 5 Lexical Elements 557

string> is the now-relative datetime now + B or now - B, depending

on whether the sign �eld value is 0 or 1.

Let A be a valid <now-relative datetime string>, representing the

datetime B. Let C be a valid <determinate datetime string>, repre-

senting the datetimeD. Let E be a string consistent with the distribu-

tion format property, which can include references to the �eld distri-

bution name. If the value of the indeterminate now relative datetime

format property, with the now relative datetime �eld replaced with

B, the determinate datetime �eld replaced with D, and the distri-

bution �eld replaced with E, is identical to the <indeterminate now-

relative datetime string>, then the value represented by

<indeterminate now-relative datetime string> is the indeterminate

now-relative datetime with lower support B, upper support D, and

distribution as named in E.

Let A be a valid <indeterminate interval string>, representing the

interval B, with lower support C, upper support D, and distribu-

tion E. Let F be a string consistent with the sign format property,

which can include references to the �eld sign. If the value of the

now relative with indeterminate interval datetime format property,

with the now �eld replaced with the value of the property now string,

the indeterminate interval �eld replaced with A, and the sign �eld

replaced with F , is identical to the <now-relative with indeterminate

datetime string>, then the value represented by the <now-relative

with indeterminate datetime string> is the indeterminate datetime

with lower support now + C or now - C depending on whether the

sign �eld value is 0 or 1, upper support D, and distribution E.

8. An <interval string> is any sequence of characters not containing a single

<quote>.

Case:

The value of an <interval string> is the special value all of time if

the <interval string> is identical to the value of the all of time string

property.

The value of an <interval string> is the special value negative all of

time if the <interval string> is identical to the value of the nega-

tive all of time string property.

The value of an <interval string> is the value returned by a calendar

if the <interval string> is a contiguous subset of a value consistent

with the value of the determinate interval format property, which can

include references to calendric-speci�c �elds. The calendar named in

558 Chapter 29

the value of the input epoch override property is attempted �rst. If

this calendar does not recognize one of the �elds, the calendars are

attempted in the order speci�ed for the current calendric system.

Let A and B be valid <determinate interval string>s, representing

the intervals C and D. Let E be a string consistent with the dis-

tribution format property, which can include references to the �eld

distribution name. If the value of the indeterminate interval prop-

erty, with the determinate interval 1 �eld replaced with A, the de-

terminate interval 2 �eld replaced with B, and the distribution �eld

replaced with E, is identical to the <interval string>, then the value

represented by the <interval string> is the indeterminate interval

with lower support C, upper support D, and distribution as named

in E.

Let A be a valid <determinate datetime string>, representing the

datetime B. Let C be a string consistent with the sign format prop-

erty, which can include references to the �eld sign, whose value is

restricted to being 1. If the value of the now relative interval format

property, with the now �eld replaced with the value of the property

now string, the datetime �eld replaced with A, and the sign �eld

replaced with C, is identical to the <now-relative interval string>,

then the value represented by the <now relative interval string> is

the now-relative interval now - B.

9. A <period string> is any sequence of characters not containing a single

<quote>.

Case:

The value of a <period string> is the special value all of time if the

<period string> is identical to the value of the all of time period string

property.

Let A and B be valid <datetime string>s, representing datetimes

C and D. If the value of the determinate period format property,

with the determinate datetime 1 �eld replaced by A and the deter-

minate datetime 2 �eld replaced by B, is identical to the <period

string>, then the value of the <period string> is the period from C

to D.

Let A be a valid <period string>, representing the period B. Let

T be a string consistent with the time zone format property, which

can include references to the �elds minute and hour. Let TZ be an

INTERVAL HOUR TO MINUTE computed from the values of the hour

and minute �elds. If the value of the period with time zone property,

Section 5 Lexical Elements 559

with the period �eld replace with A and the time zone �eld replaced

with B, is identical to the <datetime string>, then the value repre-

sented by the <period string> is the period B displaced by a time

zone o�set of TZ.

Let A be a valid <datetime string>, representing the datetime B.

Let T be a string contained in the translation table named by the

time zone name table. Let TI be the index associated with this string

in this translation table. Let TZ be an INTERVAL HOUR TO MINUTE

computed by looking up TI and B in the system-wide time zone table

provided by the DBA, with the schema INDEX SMALLINT, VALIDTIME

PERIOD, ENDTIME TIMESTAMP, OFFSET INTERVAL HOUR TO MINUTE),

where B overlaps VALIDTIME. If the value of the period with time zone

property, with the period �eld replace with A and the time zone �eld

replaced with B, is identical to the <datetime string>, then the value

represented by the <period string> is the period B displaced by a

time zone o�set of TZ.

10. The data type of a <period literal> is PERIOD.

11. The starting delimiter and ending delimiter �elds mentioned within the

determinate period format determine whether the period literal is closed-

closed, closed-open, open-closed, or open-open. In any case, the value is

stored internally as a closed-closed period.

12. The non-terminal <calendric-property> is de�ned in Section 35.1.

13. If <calendric-property> contains a <calendric-spec clause> then the cal-

endric system named in the <calendric-spec clause> is used when in-

terpreting this literal. Otherwise, the globally declared calendric system

whose scope includes this literal is used.

14. If <calendric-property> contains a <property-spec clause> then the prop-

erties contained in the named property table are activated before interpret-

ing this literal, and deactivated after interpreting this literal.

15. If no DECLARE CALENDRIC SYSTEM command has been entered then the

implementation de�ned default calendric system is assumed.

Additional general rules:

1. The precision of a <time literal> is SECOND(0) if <time precision> is not

present. Otherwise, it is that speci�ed by <time precision>.

560 Chapter 29

2. The precision of a <timestamp literal> is SECOND(0) if <time precision>

is not present. Otherwise, it is that speci�ed by <timestamp precision>.

3. The granule denoted by a <datetime literal> is assumed to be the �rst

granule represented by the datetime string. This behavior may be changed

with appropriate �eld names.

4. Period literals are interpreted as follows. The beginning granule of the

period is the �rst granule contained in the period, and the ending granule

of the period is the last granule contained in the period. This behavior

may be changed with appropriate �eld names.

5. Closed-closed periods are closed on both ends (i.e., the period includes

both speci�ed datetimes). Closed-open periods do not contain their speci-

�ed ending datetime; they terminate one granule before their ending date-

time. Similarly, open-closed periods do not contain their speci�ed starting

datetime, and open-open do not contain either their speci�ed starting or

ending datetimes.

6. If the current calendric system is unable to successfully interpret a date-

time, period, or interval literal then an exception condition is raised: data

exception|invalid time value literal.

Section 5 Lexical Elements 561

29.3 SECTION 5.4 NAMES AND IDENTIFIERS

The following productions are added.

<calendric system name> ::=

� <identi�er>

<property table name> ::=

� <table name>

<time granularity> ::=

� <identi�er>

Additional syntax rules:

1. The identi�ers denoting calendric systems and property tables are imple-

mentation dependent.

2. The available <time granularity>s are implementation dependent, but

must include YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

562 Chapter 29

30
SECTION 6 SCALAR

EXPRESSIONS

30.1 SECTION 6.1<DATA TYPE>

The production for the non-terminal <data type> adds two new types.

<data type> ::=

�

�

�

<period type>

�

�

�

<surrogate type>

<period type> ::=

� [<indeterminate data type>] PERIOD [<period precision>]

[WITH TIME ZONE]

<period precision> ::=

� <period quali�er>

The production, <indeterminate data type> is added.

<indeterminate data type> ::=

� [NONSTANDARD] [GENERAL] INDETERMINATE

563

564 Chapter 30

<surrogate type> ::=

� SURROGATE

The <datetime type> non-terminal is modi�ed.

<datetime type> ::=

[<indeterminate data type>] DATE

�

�

�

[<indeterminate data type>] TIME [<time precision>]

[WITH TIME ZONE]

�

�

�

[<indeterminate data type>] TIMESTAMP [<timestamp precision>]

[WITH TIME ZONE]

<time precision> ::=

� <left paren> <time fractional seconds precision> <right paren>

<timestamp precision> ::=

� <timestamp quali�er>

<interval type> ::=

� [<indeterminate data type>] INTERVAL [<interval quali�er>]

Additional general rules:

1. The delimiting datetimes of a period shall have the same precision and

scale.

2. Values of type SURROGATE cannot be seen (displayed). Consequently, at-

tributes of SURROGATE type are not allowed in the outermost SELECT clause

of a query. Also, attributes of surrogate type cannot be assigned an explicit

value.

3. A special reserved word, NEW may be used when updating an attribute

value of SURROGATE type. The new value is a previously unused value.

4. Values of type SURROGATE can only be compared with respect to identity.

5. The default distribution is standard (not NONSTANDARD).

Section 6 Scalar Expressions 565

6. The default indeterminate datetime is compact (not GENERAL).

7. The default datetime is determinate (not INDETERMINATE).

8. The size of the timestamp format allocated depends on the kind of times-

tamp selected and the user-speci�ed precision. Enough space must be

allocated to the data �elds to accommodate the precision of the times-

tamp (precision rules are described elsewhere). The default indeterminate

timestamp format is the chunked with standard distributions format. By

specifying GENERAL the user chooses to use one of the general, indetermi-

nate timestamp formats. By specifying NONSTANDARD the user chooses to

use one of the nonstandard timestamp formats.

566 Chapter 30

30.2 SECTION 6.2<VALUE SPECIFICATION>

The productions for the non-terminals<parameter speci�cation> and<variable

speci�cation> are augmented to allow calendric system and property selection

per-item.

<parameter speci�cation> ::=

� <parameter name> [<indicator parameter>]

[<calendric-property>]

<variable speci�cation> ::=

� <embedded variable name> [<indicator variable>]

[<calendric-property>]

Additional syntax rules:

1. The non-terminal <calendric-property> is de�ned in Section 35.1.

2. If <calendric-property> is speci�ed then <parameter name> must have

the data type <character string type>. Similar remarks apply to

<embedded variable name>.

3. If<calendric-property> is speci�ed then the value contained in<parameter

name> or <variable name> is interpreted as a temporal value according to

the calendric system and/or calendar properties named by the <calendric-

property>.

4. If <calendric-property> contains a <calendric-spec clause> and the data

type of the column corresponding to the <parameter speci�cation> or

<variable speci�cation> is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL,

then the calendric system named in the <calendric-spec clause> is used

to translate the timestamp into a temporal value.

5. If <calendric-property> contains a <property-spec clause> and the data

type of the column corresponding to the <parameter speci�cation> or

<variable speci�cation> is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL,

then the property table named in the <property-spec clause> are acti-

vated before translating the timestamp, and deactivated immediately after

translating the timestamp.

Section 6 Scalar Expressions 567

6. If no SET CALENDRIC SYSTEM command has been entered then the imple-

mentation de�ned default calendric system is assumed.

568 Chapter 30

30.3 SECTION 6.3<TABLE REFERENCE>

The production for the non-terminal <table reference> is replaced with the

following. The �rst component can be more complex than a single <table

name>, and multiple space-separated <correlation name>s are permitted.

<table reference> ::=

� <table source> [[AS] <corr>

�

<corr>

	

...]

�

�

�

<derived table> [AS] <corr>

�

<corr>

	

...

�

�

<joined table>

<corr> ::=

� <correlation> [WITH CREDIBILITY <integer>]

�

�

<joined table>

The following productions are added. The �rst allows table references to be

de�ned in terms of other table references. The rest serve to de�ne <correlation

modi�er>.

<table source> ::=

� <table name> <correlation modi�er>

�

�

�

<correlation name> <correlation modi�er>

<correlation> ::=

� <correlation name> [<left paren> <derived column list>

<right paren>]

<correlation modi�er> ::=

� [<left paren> <coalescing columns> <right paren>]

[<left paren> <partitioning unit> <right paren>]

<coalescing columns> ::=

� <column name> [

�

<comma> <column name>

	

...]

�

�

�

<asterisk>

<partitioning unit> ::=

�

�

�

INSTANT

�

�

�

PERIOD

Section 6 Scalar Expressions 569

Additional syntax rules:

1. <coalescing columns> of <asterisk> imply all the attributes of the <table

name> or <correlation name>.

2. If the <coalescing attributes> are not present, then <asterisk> is assumed.

3. If a <correlation modi�er> is applied to a <table source>, then a

<correlation> is required.

4. If the <correlation modi�er> is applied to a <correlation name>, then the

attributes are drawn from the table upon which the <correlation name>

is based, and augment those attributes associated with the <correlation

name>. The latter attributes can be mentioned in this

<correlation modi�er>, but is not required.

5. If <partitioning unit> is not speci�ed, then Element is assumed.

6. If <partitioning unit> is not speci�ed, then no partitioning is assumed.

7. Partitioning on INSTANT is only allowed for event tables.

Additional general rules:

1. Let CM be the <correlation modi�er>. Let CN be a <column name>

contained in CM , and C be the column.

Case:

If CM is associated with a <table name>, then let T be that table

name. The table identi�ed by T is the ultimate table of CN .

If CN is associated with a <correlation name>, then let D be that

<correlation name>. The ultimate table of CN is the ultimate table

of D.

2. C must be a column of its ultimate table.

3. Only those <column name>s indicated as <coalescing columns> are ac-

cessible via the <correlation name>.

4. The credibility is a value between 0 and 100 (inclusive).

5. If the credibility phrase is missing, the default credibility is 100 or as

speci�ed by the user with a set statement.

570 Chapter 30

30.4 SECTION 6.5<SET FUNCTION SPECIFICATION>

An optional clause to the general set function production was added for weighted

aggregates.

<general function type> ::=

<set function type> <left paren> [<set quanti�er>]

� [WEIGHTED]

<value expression> <right paren>

One aggregate was added to the set function type.

<set function type> ::=

�

�

�

RISING

Additional syntax rules:

1. Let DT be the data type of the <value expression>.

2. If RISING is speci�ed, the data type of the result is a period.

3. If SUM is speci�ed, DT shall not be an instant or a period.

4. If AVG is speci�ed, DT shall not be a period, an event set, or a temporal

element.

5. If COUNT is speci�ed, WEIGHTED has no e�ect.

Additional general rules:

1. If WEIGHTED is speci�ed, and DT is temporal, then WEIGHTED has no e�ect

on the aggregate.

Section 6 Scalar Expressions 571

2. If WEIGHTED is speci�ed, let A be the speci�ed attribute of the aggregate

and let T be the argument source.

Case:

(a) If MAX is speci�ed, then the result is attribute A of the tuple, where, of

T, attribute A multiplied by the number of granules in its timestamp

is maximal.

(b) If MIN is speci�ed, then the result is attribute A of the tuple, where, of

T, attribute A multiplied by the number of granules in its timestamp

is minimal.

(c) If SUM is speci�ed, then the result is the sum of all attributes A in T,

piecewise multiplied by their timestamps, divided by the sum of the

timestamps.

(d) If AVG is speci�ed, then the result is the SUM function over T divided

by the cardinality of T.

3. If RISING is speci�ed without WEIGHTED, then the result shall be the

largest period such that the argument source T is monotonic increasing. If

WEIGHTED is speci�ed, then the largest period is computed over the value

of each attribute multiplied by its timestamp.

4. If MIN, MAX, SUM, or AVG is speci�ed and T is a timestamp, then

Case:

(a) If MIN is present, then use PRECEDE to determine the minimum times-

tamp, except in the case that A is an interval, in which case return

the interval with the minimal number of granules.

(b) If MAX is present, then use not PRECEDE to determine the maximum

timestamp, except in the case that A is an interval, in which case

return the interval with the maximal number of granules.

(c) If SUM is present, if the type of A is an interval, then return an interval

equal in length to the sum of the granules in T . Otherwise, the type

of A must be a temporal element or event set, and the result is the

result of set union of the elements of T .

(d) If AVG is present, if the type of A is an interval, then return an interval

equal in length to the average number of granules in T . If the type of A

is an instant, pick any origin O. Compute the average of the distance

from O to each instant in T , and return the instant representing the

distance from O to this average. If the type of A is period, then

the beginning instant of the resulting period is the average of the

572 Chapter 30

beginning instants of the periods in T , and the terminating instant of

the resulting period is the average of the terminating instants of the

periods in T .

5. If SUM is speci�ed, T is INTERVAL and the sum is not within the range

of data type then an exception condition is raised: data exception|time

value out of range.

Section 6 Scalar Expressions 573

30.5 SECTION 6.8<DATETIME VALUE FUNCTION>

Expressions evaluating to or taking as a parameter periods or temporal expres-

sions are added.

<datetime value function> ::=

�

�

�

BEGIN <left paren> <period value expression> <right paren>

�

�

�

END <left paren> <period value expression> <right paren>

�

�

�

FIRST <left paren> <datetime value expression> <comma>

<datetime value expression> <right paren>

�

�

�

LAST <left paren> <datetime value expression> <comma>

<datetime value expression> <right paren>

�

�

�

FIRST <left paren> <instant set value expression> <right paren>

�

�

�

LAST <left paren> <instant set value expression> <right paren>

�

�

�

VALID <left paren>

�

<table name>

�

�

<correlation name>

	

<right paren>

�

�

�

SCALE <left paren> <datetime value expression>

AS <time granularity> <right paren>

�

�

�

NOBIND <left paren> <datetime literal> <right paren>

�

�

�

NOBIND <left paren> <column reference> <right paren>

Additional general rules:

1. FIRST (LAST) extracts the �rst (last) instant from the instant set.

2. Use of VALID must be on valid or bitemporal event tables which are parti-

tioned.

3. Local invocation of a scale function overrides the global default.

4. The granularity of the resulting type of the SCALE operation is <time

granularity>.

5. A NOBIND function can only appear in the target list of an insert or

modify statement. Any other use of a nobind will generate a compile-time

error.

574 Chapter 30

30.6 SECTION 6.10<CAST SPECIFICATION>

Casting to di�erent granularities is allowed, by adding to the options of the

<cast target>.

<cast target> ::=

<domain name>

�

�

<data type>

�

�

�

<time granularity>

Casting between data types is extended to include the temporal types. No

syntactic changes or additions are required to do this.

Additional syntax rules:

1. Table 30.1 showing the allowable data conversions is augmented to add

the PERIOD (P), temporal element (TE), instant set (IS) data types, and

to add the time granularity (G) cast target.

2. If SD is AN and TD is YM or DT then the conversion is �rst done to the

EN type.

3. If SD is EN and TD is YM or DT then the conversion is dependent on

the current calendric system in e�ect when the <cast speci�cation> is

executed.

4. If SD is C and TD is D, T, TS, YM, DT, or P then the conversion is

dependent on the current calendric system and set of input properties in

e�ect when the <cast speci�cation> is executed.

Let CS be the current calendric system and PS be the appropriate output

format string currently in e�ect when the <cast speci�cation> is executed.

Then the <cast speci�cation> CAST(C AS X) where X is D, T, TS, YM,

DT, or P is equivalent to the following.

C WITH CALENDRIC CS WITH PROPERTIES PS

5. If SD is D, T, TS, YM, DT, or P and TD is FC or VC then the conversion

is dependent on the current calendric system and set of output properties

in e�ect when the <cast speci�cation> is executed, as described in Section

5.3 <literal>.

Section 6 Scalar Expressions 575

<data type> of TD

<data type> of SD EN AN VC FC VB FB D T TS

EN Y Y Y Y N N N N N

AN Y Y Y Y N N N N N

C Y Y M M Y Y Y Y Y

B N N Y Y Y Y N N N

D N N Y Y N N Y N Y

T N N Y Y N N N Y Y

TS N N Y Y N N Y Y Y

YM M Y Y Y N N N N N

DT M Y Y Y N N N N N

P N N Y Y N N N N N

TE N N N N N N N N N

IS N N N N N N N N N

<data type> of TD

<data type> of SD YM DT P TE IS G

EN M M N N N N

AN N N N N N N

C Y Y Y Y Y N

B N N N N N N

D N N Y Y Y Y

T N N Y Y Y Y

TS N N Y Y Y Y

YM Y N N N N Y

DT N Y N N N Y

P M M Y Y N Y

TE N N N Y Y Y

IS N N N Y Y Y

Table 30.1 Cast data conversions

576 Chapter 30

6. If SD is D, T, or TS and TD is P then the conversion results in a period

of duration one granule.

7. If SD is C and TD is P then the conversion is �rst done to the T data

type.

8. Let CS be the current calendric system and PS be the appropriate output

format string currently in e�ect when the <cast speci�cation> is executed.

Then the <cast speci�cation> CAST(T AS X) where T is D, T, TS, TM,

DT, or P and X is VC or FC is equivalent to the following.

T WITH CALENDRIC CS WITH PROPERTIES PS

9. If SD is YM or DT and TD is EN or AN then the conversion is dependent

on the current calendric system in e�ect when the <cast speci�cation> is

executed.

10. If SD is C, D, T, or TS and TD is TE then the conversion is �rst done to

the P type.

11. If SD is P and TD is TE, then the conversion is into a temporal element

containing one period.

12. If SD is C, T, TS, or P and TD is IS then the conversion is �rst done to

the TE type.

13. If SD is TE and TD is IS then the conversion is done by applying FIRST

to each period in the set.

14. If SD is D, T, TS, YM, DT, P, TE, or IS and TD is G then the conversion

results in a value of the data type SD at the underlying granularity TD.

Additional general rules:

1. Rule 3(c) is replaced with the following.

If TD is exact numeric and SD is interval then if there is a representation

of SV in the type TD that does not lose any leading signi�cant digits then

TV is that representation. Otherwise, an exception condition is raised:

data exception|numeric value out of range.

Section 6 Scalar Expressions 577

2. Rule 5(e) is replaced with the following.

If SD is a datetime, interval or period then let Y be the calendar dependent

character string produced from SV such that the interpreted value of Y is

SV and the interpreted precision of Y is the precision of SD.

Case:

If Y contains any <SQL language character> that is not in the reper-

toire of TD then an exception condition is raised: data exception|

invalid character value for cast.

If the length in characters LY of Y is equal to LTD then TV is Y.

If the length in characters LY of Y is less than LTD then TV is

extended on the right by LTD� Y spaces.

Otherwise an exception condition is raised: data exception|string

data, right truncation.

3. Rule 6(e) is replaced with the following.

If SD is a datetime, interval or period then let Y be the calendar dependent

character string produced from SV such that the interpreted value of Y is

SV and the interpreted precision of Y is the precision of SD.

Case:

If Y contains any <SQL language character> that is not in the reper-

toire of TD then an exception condition is raised: data exception|

invalid character value for cast.

If the length in characters LY of Y is less than or equal to MLTD

then TV is Y.

Otherwise an exception condition is raised: data exception|string

data, right truncation.

4. Rules 9(b){(c) are deleted, and Rule 9(a) is replaced with the following.

If TD is a datetime data type and SD is a character string then the determi-

nation of TV from SV is calendar dependent. If TV cannot be determined

from SV then an exception condition is raised: data exception|invalid

character value for cast.

5. Rules 10 and 11 are deleted.

578 Chapter 30

6. Rule 12 is replaced with the following.

If TD is an interval data type, then

Case:

(a) If SD is exact numeric then the determination of TV from SV is

calendar dependent.

If the representation of SV in the data type TD would result in the

loss of leading signi�cant digits, then an exception condition is raised:

data exception|time value out of range.

(b) If SD is character string then the determination of TV from SV is

calendar dependent.

If TV cannot be determined from SV then an exception condition is

raised: data exception|invalid character value for cast.

(c) If SD is P and TD is YM or DT, then the duration of SD is determined

in the precision of TD.

Section 6 Scalar Expressions 579

30.7 SECTION 6.11<VALUE EXPRESSION>

The production for the non-terminal <value expression> is augmented to in-

clude expressions evaluating to periods, to temporal elements, and to instant

sets.

<value expression> ::=

�

�

�

<period value expression>

�

�

�

<temporal element value expression>

�

�

�

<instant set value expression>

580 Chapter 30

30.8 SECTION 6.14<DATETIME VALUE EXPRESSION>

The <time zone speci�er> is augmented to allow symbolic time zones, such as

'MST'. The production for the non-terminal <period primary> is augmented

to also include references to tables themselves. Also, expressions evaluating to

temporal expressions are added.

<time zone speci�er> ::=

LOCAL

�

�

TIME ZONE <interval value expression>

�

�

�

TIME ZONE <character string literal>

Operand 1 Operator Operand 2 Yields

- interval interval

interval + interval interval

interval - interval interval

datetime + interval datetime

datetime - interval datetime

interval + datetime datetime

datetime - datetime interval

interval * numeric interval

numeric * interval interval

interval / numeric interval

interval / interval numeric

interval + period period

period + interval period

period - interval period

Table 30.2 Valid arithmetic expressions and results

Additional general rules:

1. If <character string literal> is a string contained in the translation ta-

ble named by the time zone name. Let TI be the index associated with

this string in this translation table. Let B be the value of <datetime

primary>. Let TZ be an INTERVAL HOUR TO MINUTE computed by look-

ing up TI and B in the system-wide time zone table provided by the

DBA, with the schema INDEX SMALLINT, VALIDTIME PERIOD, ENDTIME

Section 6 Scalar Expressions 581

TIMESTAMP, OFFSET INTERVAL HOUR TO MINUTE), where B overlaps

VALIDTIME.

2. The following is added to Rule 3.

The semantics of <datetime value expression>s involving<period term>s

is calendar-dependent. If the underlying granularities of both are supplied

by the SQL92 calendar, then the semantics are as follows. (Original Rule

3 goes here.)

3. Operands are coerced to the global scale/cast speci�ed in the last SET

SCALE/SET CAST command prior to the operation. If no such command

was issued or the defaults are speci�ed, then operands are scaled as needed

to enforce left-operand semantics.

4. The range of intermediate results is the maximum allowed by the imple-

mentation.

5. The following is added to Rule 6.

If <datetime value expression> is speci�ed, the semantics is calendar-

dependent. If the underlying granularities of both the <datetime value

expression> and the <datetime term>, as well as the <period quali�er>

are supplied by the SQL92 calendar, then the semantics are as follows.

(Original Rule 6 goes here.)

582 Chapter 30

30.9 SECTION 6.15<INTERVAL VALUE EXPRESSION>

The following production is added to the <interval value expression> non-

terminal.

<interval value expression> ::=

�

�

�

<interval value function>

New general rules:

1. The following is added to Rule 6.

If <datetime value expression> is speci�ed, the semantics is calendar-

dependent. If the underlying granularities of both the <datetime value

expression> and the <datetime term>, as well as the <period quali�er>

are supplied by the SQL92 calendar, then the semantics are as follows.

(Original Rule 6 goes here.)

Section 6 Scalar Expressions 583

30.10 SECTION 6.16<INTERVAL VALUE FUNCTION>

This is a new section.

<interval value function> ::=

� INTERVAL <left paren> <period value expression> <right paren>

�

�

�

ABSOLUTE <left paren> <interval value expression> <right paren>

�

�

�

SCALE <left paren> <interval value expression> AS

<time granularity> <right paren>

�

�

�

NOBIND <left paren> <interval literal> <right paren>

�

�

�

NOBIND <left paren> <column reference> <right paren>

Additional general rules:

1. Local invocation of a scale function overrides the global default.

2. The granularity of the resulting type of the SCALE operation is <time

granularity>.

3. A NOBIND function can only appear in the target list of an insert or

modify statement. Any other use of a nobind will generate a compile-time

error.

584 Chapter 30

30.11 SECTION 6.17<PERIOD VALUE EXPRESSION>

This is a new section.

<period value expression> ::=

� <period primary>

�

�

�

<interval value expression> <plus sign> <period value expression>

�

�

�

<period value expression> f<plus sign>

�

�

<minus sign>g

<interval value expression>

<period primary> ::=

� <period literal>

�

�

�

<column reference>

�

�

�

<scalar subquery>

�

�

�

<case expression>

�

�

�

<period value function>

�

�

�

<cast speci�cation>

Additional syntax rules:

1. The data type of a <period value expression> is PERIOD.

2. Table 30.2 lists the arithmetic expressions involving time that are valid.

Additional general rules:

1. If a temporal arithmetic operation yields a PERIOD value that is out of

range then an exception condition is raised: data exception|time value

out of range.

Section 6 Scalar Expressions 585

30.12 SECTION 6.18<PERIOD VALUE FUNCTION>

This is a new section.

<period value function> ::=

� VALID <left paren>

�

<table name>

�

�

<correlation name>

	

<right paren>

�

�

�

TRANSACTION <left paren>

�

<table name>

�

�

<correlation name>

	

<right paren>

�

�

�

PERIOD <left paren> <datetime value expression> <comma>

<datetime value expression> <right paren>

�

�

�

INTERSECT <left paren> <period value expression> <comma>

<period value expression> <right paren>

�

�

�

FIRST <left paren> <temporal element value expression>

<right paren>

�

�

�

LAST <left paren> <temporal element value expression>

<right paren>

�

�

�

SCALE <left paren> <period value expression> <right paren>

�

�

�

NOBIND <left paren> <period literal> <right paren>

�

�

�

NOBIND <left paren> <column reference> <right paren>

Additional general rules:

1. Use of VALID is allowed only on valid time state or bitemporal state tables

that are partitioned, and denotes a maximal period in the timestamp of

the underlying tuple.

2. Use of TRANSACTION is allowed only on transaction or bitemporal tables,

and denotes a maximal period in transaction time when the values of the

columns and the valid time associated with the tuple remained constant.

3. FIRST (LAST) extracts the �rst (last) maximal period from the temporal

element.

4. Local invocation of a scale function overrides the global default.

5. The granularity of the resulting type of the SCALE operation is <time

granularity>.

586 Chapter 30

6. A NOBIND function can only appear in the target list of an insert or

modify statement. Any other use of a nobind will generate a compile-time

error.

Section 6 Scalar Expressions 587

30.13 SECTION 6.19<TEMPORAL ELEMENT VALUE

EXPRESSION>

The following are new nonterminals introduced into the language.

<temporal element value expression> ::=

� <temporal element value term>

�

�

�

<temporal element value expression>

�

<plus sign>

�

�

<minus sign>

	

<temporal element value term>

<temporal element value term> ::=

� <temporal element value factor>

<temporal element value factor> ::=

� <temporal element value primary>

<temporal element value primary> ::=

� <temporal element value function>

Additional general rules:

1. ` + ' (`- ') on temporal elements is set union (di�erence).

588 Chapter 30

30.14 SECTION 6.20<TEMPORAL ELEMENT VALUE

FUNCTION>

A new nonterminal, <temporal element value function>, is added.

<temporal element value function> ::=

� VALID <left paren>

�

<table name>

�

�

<correlation name>

	

<right paren>

�

�

�

INTERSECT <left paren> <temporal element value expression>

<comma> <temporal element value expression>

<right paren>

�

�

�

SCALE <left paren> <temporal element value expression> AS

<time granularity> <right paren>

Additional general rules:

1. Use of VALID denotes the temporal element timestamping of the underlying

tuple, which must be associated with a valid time or bitemporal state table

that has not been partitioned.

2. Intersection of temporal elements is set intersection.

3. Local invocation of a scale function overrides the global default.

4. The granularity of the resulting type of the SCALE operation is <time

granularity>.

Section 6 Scalar Expressions 589

30.15 SECTION 6.21<INSTANT SET VALUE

EXPRESSION>

The following are new nonterminals introduced into the language.

<instant set value expression> ::=

� <instant set value primary>

�

�

�

<instant set value expression>

�

<minus>

�

�

<plus>

	

<instant set value primary>

<instant set value primary> ::=

� <instant set value function>

Additional general rules:

1. ` + ' (`- ') on instant sets is set union (di�erence).

590 Chapter 30

30.16 SECTION 6.22<INSTANT SET VALUE FUNCTION>

A new nonterminal, <instant set value function>, is added.

<instant set value function> ::=

� VALID <left paren>

�

<table name>

�

�

<correlation name>

	

<right paren>

�

�

�

INTERSECT <left paren> <instant set value expression> <comma>

<instant set value expression> <right paren>

Additional general rules:

1. Use of VALID denotes the instant set timestamping of the underlying tuple,

which must be associated with a valid-time or bitemporal event table that

has not been partitioned.

31
SECTION 7 QUERY

EXPRESSIONS

31.1 SECTION 7.1<ROW VALUE CONSTRUCTOR>

A tuple can now include a valid time.

<row value constructor> ::=

<row value constructor element>

�

�

�

<left paren> <row value constructor list> <right paren>

[<valid value>]

�

�

<row subquery>

<valid value> ::=

� VALID

�

<element value expression>

�

�

<interval value expression>

�

�

<event value expression>

�

�

<event set value expression>

	

591

592 Chapter 31

31.2 SECTION 7.3<TABLE EXPRESSION>

The production for the non-terminal <table expression> is replaced with the

following, adding one clause.

<table expression> ::=

� [<valid clause>]

<from clause>

[<where clause>]

[<group by clause>]

[<having clause>]

The following production is added.

<valid clause> ::=

�

�

VALID

�

�

VALID INTERSECT

	 �

<temporal element value expression>

�

�

<period value expression>

�

�

<datetime value expression>

�

�

<instant set value expression>

	

Additional general rules:

1. VALID INTERSECT T is equivalent to

VALID INTERSECT(T; INTERSECT(C

1

, : : :, INTERSECT(C

n�1

, C

n

)))

The correlation variables are listed in order of increasing granularity.

where C

i

are the correlation variables (or table names) mentioned in the

SELECT clause.

2. The default VALID clause is

VALID INTERSECT PERIOD 'all of time':

3. If the VALID clause speci�es a period or instant value, the values from

the other value-equivalent tuples are gathered into a temporal element or

instant set, respectively.

Section 7 Query Expressions 593

31.3 SECTION 7.6<WHERE CLAUSE>

To the production for <where clause> is added the plausibility phrase.

<where clause> ::=

� WHERE <search condition> [WITH PLAUSIBILITY <integer>]

Additional general rules:

1. The plausibility is a value between 1 and 100 (inclusive). A value of 1

implies a non-zero plausibility less than 1.

2. If the plausibility phrase is missing, the default plausibility is 100 or as

speci�ed by the user with a set statement.

594 Chapter 31

31.4 SECTION 7.7<GROUP BY CLAUSE>

The production for grouping column reference is extended.

<grouping column reference> ::=

<column reference> [<collate clause>]

�

�

�

<temporal partition>

<temporal partition> ::=

�

�

VALID <left paren>

�

<table name>

�

�

<correlation name>

	

<right paren>

�

�

�

<column reference>

	

� [USING

�

<partition expression>

�

�

INSTANT

	

]

� [LEADING <partition expression>]

� [TRAILING <partition expression>]

<partition expression> ::=

� <integer>

�

�

�

<time granularity>

�

�

�

<integer> <time granularity>

�

�

�

PERIOD 'All of time' <time granularity>

Additional syntax rules:

1. If the using clause, or the leading clause or the trailing clause is present,

and VALID is not present, then the type of the <column reference> in

a <temporal partition> clause must be a timestamp. If the <column

reference> is simply a timestamp with no leading, trailing, of using clause,

then partition the relation as SQL-92 de�nes.

2. VALID associated with a particular table may only be present once in a

<group by clause>

Additional general rules:

1. If the special period PERIOD 'All of time' <time granularity> is present

in the using clause, then the partition includes all of the time-line. If

the leading clause (trailing) includes the PERIOD 'All of time' <time

Section 7 Query Expressions 595

granularity>, then the leading partition (trailing) is of maximal length

(i.e. includes all previous (later) granules on the time-line).

2. The granularity of the using, leading, and trailing clauses, if they are

present, must be the same as the granularity of the valid clause.

3. If the type of the <column reference> in a <temporal partition> clause

is a timestamp, or VALID is present, then

(a) If the using clause is not present, then the default is INSTANT for

<partition expression>'s that contain VALID, and PERIOD 'All of

time' <time granularity> for <column references> in a <temporal

partition>. The default granularity is the granularity of the valid

clause. The using and leading clauses may only specify integral mul-

tiples of this granularity.

(b) If the leading (or trailing) clause is not present, then the default length

of the missing clause is length 0.

(c) The granularity in the leading, trailing, and using clauses is a calendar

granularity.

(d) If a granularity is given without the accompanying integer length, the

length is assumed to be 1.

4. If any or all of the using, trailing or leading clauses are present, or VALID

is present, then partition the table the following way. These computations

are done at the underlying granularity of the valid clause. The result of

the <temporal partition> will be an assignment of tuples to one or more

granules in the query result's valid time-line. Then an aggregate value will

be computed over the set of tuples associated with each granule. For each

tuple, we determine which granules it is associated with in the following

way. Also, if the <column reference> is a timestamp, then in the following,

use the values of the timestamp instead of the valid time from that relation

when processing the <temporal partition> which contains that <column

reference>.

(a) For each <temporal partition> (withR the expression's <table name>

or <correlation name>), determine which granules the tuple overlaps.

This is done by computing the least (L) and greatest granules (G)

which overlap the tuple's valid time from R, in the granularity of the

valid clause, with respect to the leading, trailing, and using clauses.

The tuple is �rst tentatively associated with the sequence of granules

from L to G, inclusive.

596 Chapter 31

(b) The using clause speci�es how many consecutive granules (f g

1

; : : : ;

g

n

g) are to be considered for each partition. The leading and trailing

clauses extend this sequence by their integral amounts, respectively

to the beginning and the end of the sequence. A tuple overlaps all

granules in a partition if it's valid time with respect to R intersects

f g

1

; : : : ; g

n

g.

(c) If for all <temporal partition>'s, a tuple is tentatively associated to

a granule g, then the tuple is associated with g.

Section 7 Query Expressions 597

31.5 SECTION 7.8<HAVING CLAUSE>

Additional general rules:

1. Let T be one of the clauses in the <temporal partition> clause.

2. If T contains a using clause, then the using clause must be larger than a

single granule, and the leading and trailing clauses must be zero length.

3. If the group-by clause contains a <temporal partition>, then the result of

a reference to valid time in the having clause is the valid time of the group

de�ned by the <temporal partition>.

598 Chapter 31

31.6 SECTION 7.9<QUERY SPECIFICATION>

The production is replaced with the following, adding one optional reserved

word.

<select statement: single row> ::=

� SELECT [<set quanti�er>] [SNAPSHOT] <select list>

<table expression>

We add an option to indicate use of the completed schema.

<select list> ::=

<column list>

�

�

<asterisk>

�

�

�

<asterisk> <asterisk>

�

�

<select sublist> [

�

<comma> <select sublist>

	

...]

Additional general rules:

1. SNAPSHOT speci�es that the resulting table will be a snapshot table. In

this case, the <table expression> should not include a <valid clause>.

2. Speci�cation of the ** option results in the use of the completed schemes

for the table(s) speci�ed.

32
SECTION 8 PREDICATES

32.1 SECTION 8.1<PREDICATE>

The production for the non-terminal <predicate> is replaced with the follow-

ing.

<predicate> ::=

<comparison predicate>

�

�

<between predicate>

�

�

<in predicate>

�

�

<like predicate>

�

�

<null predicate>

�

�

<quanti�ed comparison predicate>

�

�

<exists predicate>

�

�

<unique predicate>

�

�

<match predicate>

�

�

�

<precedes predicate>

�

�

�

<meets predicate>

�

�

�

<overlaps predicate>

�

�

�

<contains predicate>

599

600 Chapter 32

32.2 SECTION 8.2<COMPARISON PREDICATE>

No new syntax rules are required, but additional disambiguating rules are re-

quired for interval comparison.

1. The <less than operator>, <greater than operator>, and<equals operator>

are valid for interval comparison.

Section 8 Predicates 601

32.3 SECTION 8.7<QUANTIFIED COMPARISON

PREDICATE>

No additional productions are required. The following syntax rules are added.

Additional syntax rules:

1. Let T

1

be the type of <value expression>.

2. Let T

2

be the type of <row value expression>.

3. If either T

1

or T

2

is DATE, TIME, TIMESTAMP, PERIOD or INTERVAL then T

1

and T

2

must be comparable as de�ned in Table 32.1.

602 Chapter 32

32.4 SECTION 8.11<OVERLAPS PREDICATE>

The following productions are added for the new comparison operators. (The

production for the OVERLAPS predicate is extended.) The applicable types are

broadened to include temporal elements.

<overlaps predicate> ::=

<row value constructor 1> OVERLAPS <row value constructor 2>

�

�

�

<row value expression 1> OVERLAPS <row value expression 2>

<precedes predicate> ::=

� <row value expression 1> PRECEDES <row value expression 2>

<meets predicate> ::=

� <row value expression 1> MEETS <row value expression 2>

<contains predicate> ::=

� <row value expression 1> CONTAINS <row value expression 2>

This grammar is overly permissive in that it generates semantically illegal ex-

pressions. This is, however, consistent with the grammar originally provided

in the SQL-92 standard for datetime value comparison. Expressions violating

type constraints will be detected during semantic analysis.

Additional syntax rules:

1. Let T

1

be the type of <row value expression 1>.

2. Let T

2

be the type of <row value expression 2>.

3. T

1

and T

2

must be either PERIOD or datetime.

4. T

1

and T

2

shall be comparable as de�ned in Table 32.1.

5. Any comparison involving the PERIOD or datetime data types not listed in

Table 32.1 is disallowed.

Section 8 Predicates 603

Operand 1 Operator Operand 2

interval = interval

interval < interval

interval > interval

datetime/period/element = datetime/period/element

datetime/period/element PRECEDES datetime/period/element

datetime/period/element OVERLAPS datetime/period/element

datetime/period/element CONTAINS datetime/period/element

datetime/period/element MEETS datetime/period/element

Table 32.1 Permitted set of comparison operators

604 Chapter 32

33
SECTION 10 ADDITIONAL

COMMON ELEMENTS

33.1 SECTION 10.1<INTERVAL QUALIFIER>

This is signi�cantly generalized to allow implementation-de�ned granularities.

The <non-second datetime �eld> non-terminal is removed,<timestamp quali�er>

and <period quali�er> are added, and the following non-terminals are modi-

�ed.

<start �eld> ::=

� <time granularity> [<left paren> <interval leading �eld precision>

<right paren>]

�

�

�

<left paren> <interval string> <interval quali�er> <right paren>

<end �eld> ::=

� <time granularity> [<left paren>

<interval fractional seconds precision> <right paren>]

<single datetime �eld> ::=

� <time granularity> [<left paren> <interval leading �xed position>

[<comma> <interval trailing �eld position>] <right paren>]

<timestamp quali�er> ::=

� [<start �eld> TO] <end �eld>

�

�

�

<single datetime �eld>

605

606 Chapter 33

<period quali�er> ::=

� <timestamp quali�er>

The general rules are signi�cantly generalized to remove fairly arbitrary restric-

tions.

34
SECTION 11 SCHEMA

DEFINITION AND MANIPULATION

We add to the production for <schema element> to allow dynamic de�nition

of distributions.

<schema element> ::=

�

�

�

<create distribution statement>

607

608 Chapter 34

34.1 SECTION 11.3<TABLE DEFINITION>

The production for the non-terminal <table de�nition> is augmented with an

additional, optional clause, as well as with a <vacuuming de�nition>.

<table de�nition> ::=

CREATE [

�

GLOBAL

�

�

LOCAL

	

TEMPORARY] TABLE <table name>

<table elements>

� [<temporal de�nition>]

� [<vacuuming de�nition>]

[ON COMMIT

�

DELETE

�

�

PRESERVE

	

ROWS]

Three productions are added.

<temporal de�nition> ::=

� AS

�

VALID [STATE

�

�

EVENT]

	

[<timestamp precision>]

[AND TRANSACTION]

�

�

�

AS TRANSACTION

<vacuuming de�nition> ::=

� VACUUM <datetime value expression>

Additional general rules:

1. Case:

(a) if neither VALID nor transaction is speci�ed, the table is a snapshot

table.

(b) If AS VALID STATE is speci�ed, and TRANSACTION is not speci�ed,

then the tuples are timestamped with valid-time elements that are

sets of non-contiguous periods. The precision and scale of the periods

can be speci�ed.

(c) If AS VALID EVENT is speci�ed, and TRANSACTION is not speci�ed,

then the tuples are timestamped with valid-time instant sets. The

precision and scale of the instants can be speci�ed.

Section 11 Schema De�nition and Manipulation 609

(d) If TRANSACTION is speci�ed, and VALID is not speci�ed, then the tuples

are timestamped with transaction-time elements. The scale of the

timestamps is implementation-dependent.

(e) If TRANSACTION and VALID STATE are speci�ed, the the tuples are

timestamped with bitemporal elements that are sets of bitemporal

chronons. The precision and scale of the valid-time dimension can

be speci�ed; the scale of the transaction-time dimension is implemen-

tation-dependent.

(f) If TRANSACTION and VALID EVENT are speci�ed, the the tuples are

timestamped with bitemporal instant sets that are sets of bitem-

poral chronons. The precision and scale of the valid-time dimen-

sion can be speci�ed; the scale of the transaction-time dimension is

implementation-dependent.

2. The <vacuuming de�nition> is only allowed when the table supports

transaction time.

3. If <vacuuming de�nition> is not speci�ed, VACUUM TIMESTAMP

CURRENT TIMESTAMP is assumed (the default).

610 Chapter 34

34.2 SECTION 11.4<COLUMN DEFINITION>

<column de�nition> ::=

<column name>

�

<data type>

� [INAPPLICABLE <value expression>]

�

�

<domain name>

	

[<default clause>]

[<column constraint de�nition>...]

[<collate clause>]

Additional General Rules:

1. The INAPPLICABLE clause expressions may be either simple of a function

only of the attributes in the completed schema for the table.

Section 11 Schema De�nition and Manipulation 611

34.3 SECTION 11.5<DEFAULT CLAUSE>

The production for the non-terminal <default clause> is changed to the fol-

lowing.

<default clause> ::=

<literal>

�

�

<datetime value function>

�

�

�

<interval value function>

�

�

�

<period value function>

�

�

USER

�

�

SYSTEM USER

�

�

NULL

Additional syntax rules:

1. If <datetime value function>, <period value function>, or <interval value

function> is speci�ed then any parameters passed to these functions must

be property values representing a special time value or literal values.

2. Let T be the type of the column being initialized.

3. If T is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL then USER and SYSTEM

USER may not be speci�ed.

4. If T is DATE, TIME or TIMESTAMP then either a <literal> representing a

<datetime literal> or a <datetime value function> may be speci�ed. The

calendric system used to interpret the constant is the calendric system

whose scope is the smallest scope which encompasses the literal. The

properties used to interpret the constant are the set of properties active

when the default clause is executed.

5. If T is PERIOD then either a <literal> representing a <period literal> or a

<period value function> may be speci�ed. The calendric system used to

interpret the constant is the calendric system whose scope is the smallest

scope which encompasses the literal. The properties used to interpret the

constant are the set of properties active when the default clause is executed.

6. If T is INTERVAL then either a <literal> representing an <interval literal>

or an <interval value function> may be speci�ed. The calendric system

612 Chapter 34

used to interpret the constant is the calendric system whose scope is the

smallest scope which encompasses the literal. The properties used to inter-

pret the constant are the set of properties active when the default clause

is executed.

Section 11 Schema De�nition and Manipulation 613

34.4 SECTION 11.10<ALTER TABLE STATEMENT>

The <alter table statement> is augmented with the following alternatives.

<alter table action> ::=

�

�

�

<add valid de�nition>

�

�

�

<drop valid de�nition>

�

�

�

<replace valid def>

�

�

�

<add transaction de�nition>

�

�

�

<drop transaction de�nition>

�

�

�

<scale valid de�nition>

�

�

�

<cast valid de�nition>

�

�

�

<alter vacuuming de�nition>

The following productions are added.

<add valid de�nition> ::=

� ADD [VALID]

�

STATE

�

�

EVENT

	

[<timestamp precision>]

<drop valid de�nition> ::=

� DROP VALID

<replace valid de�nition> ::=

� REPLACE [VALID] [

�

STATE

�

�

EVENT

	

]

[<timestamp precision>]

<add transaction de�nition> ::=

� ADD TRANSACTION

<drop transaction de�nition> ::=

� DROP TRANSACTION

<scale valid de�nition> ::=

� SCALE VALID AS <timestamp precision>

<cast valid de�nition> ::=

� CAST VALID AS <timestamp precision>

614 Chapter 34

<alter vacuuming de�nition> ::=

� VACUUM <datetime value expression>

Additional syntax rules:

1. Let T be the table identi�ed in the containing <alter table statement>.

2. For the <add valid de�nition>, T shall be a snapshot or transaction-time

table.

3. For the <drop valid de�nition>, T shall be a valid-time or bitemporal

table.

4. For the <replace valid de�nition>, T shall be a valid-time or bitemporal

table.

5. For the <add transaction de�nition>, T shall be a snapshot table or a

valid-time table.

6. For the <drop transaction de�nition>, T shall be a transaction-time or

bitemporal table.

7. For the <scale valid de�nition>, T shall be a valid-time or bitemporal

table.

8. For the <cast valid de�nition>, T shall be a valid-time or bitemporal table.

9. For the <alter vacuuming de�nition>, T shall be a transaction-time or

bitemporal table.

Additional general rules:

1. For the <drop valid de�nition>, if T is a state table, it is converted to a

snapshot table with contents

SELECT SNAPSHOT * FROM T WHERE T OVERLAPS CURRENT TIMESTAMP

If T is an event table, it is converted to a snapshot table with contents

SELECT SNAPSHOT * FROM T

Section 11 Schema De�nition and Manipulation 615

2. In the <replace valid de�nition>, scale or cast is used as speci�ed by the

<set scale statement> or <set cast statement>.

3. For <scale valid de�nition>, the temporal element of each tuple of T is

converted to the new precision and scale, using a cast or scale operation.

4. If T was an state table and <valid de�nition> speci�es period, then only

the precision or scale of T's valid-time timestamps is altered. The temporal

element of each tuple of T is converted to the new precision and scale. If

the scale in increased, the additional fractional digits are set to zero.

5. If T was an state table and <valid de�nition> speci�es event, then the

timestamp of each tuple in T is converted from a set of periods to a set of

instants, equivalently,

SELECT * VALID BEGIN(T) FROM T(PERIOD)

6. If T was an event table and <valid de�nition> speci�es event, then only

the precision or scale of T's valid-time timestamps is altered. The instants

in the timestamp of each tuple of T are converted to the new precision and

scale. If the scale in increased, the additional fractional digits are set to

zero.

7. If T was an event table and <valid de�nition> speci�es period, then the

timestamp of each tuple in T is converted from a set of instants to a set

of periods, equivalently,

SELECT * VALID PERIOD(T, T) FROM T(EVENT)

8. The <datetime value expression> must, when the <alter table statement>

is issued, evaluate to a time value that is either not before the current cut-

o� point or is after the current time.

9. When an <alter table statement> with an <add transaction time> clause,

but with no <alter vacuuming de�nition>, is applied to a table that does

not support transaction time, the time the <alter table statement> takes

e�ect is used as the cut-o� point of the altered table.

616 Chapter 34

34.5 SECTION 11.38 DISTRIBUTIONS

This is a new section.

<create distribution statement> ::=

� CREATE [

�

GLOBAL

�

�

LOCAL

	

TEMPORARY] DISTRIBUTION

<distribution name> USING <table name>

<alter distribution statement> ::=

� ALTER DISTRIBUTION <distribution name> USING <table name>

<drop distribution statement> ::=

� DROP DISTRIBUTION <distribution name>

Additional general rules:

1. The distribution must conform to implementation-dependent distribution

constraints, otherwise an exception is raised.

2. The <create distribution statement> establishes a new distribution name.

3. Altering a distribution e�ectively destroys the old distribution and replaces

it with a new distribution having the indicated table descriptor.

35
SECTION 12 MODULE

The production for the non-terminal <module contents> is changed to in-

clude a global calendric system declaration statement, and a new non-terminal

<declare calendric system> is added to de�ne this statement.

<module contents> ::=

<declare cursor>

�

�

�

<declare calendric system>

�

�

<dynamic declare cursor>

�

�

<procedure>

<declare calendric system> ::=

� DECLARE CALENDRIC SYSTEM WITH <calendric spec>

<calendric spec> ::=

� DEFAULT

�

�

�

<calendric system name>

Additional syntax rules:

1. In a sequence of SQL statements, the last calendric system speci�ed in

a DECLARE CALENDRIC SYSTEM command remains in e�ect until a new

DECLARE CALENDRIC SYSTEM command is entered.

2. A DECLARE CALENDRIC SYSTEM WITH CALENDRIC DEFAULT statement re-

activates the implementation de�ned default calendric system.

617

618 Chapter 35

35.1 SECTION 12.5<SQL PROCEDURE STATEMENT>

The production for the non-terminal <SQL session statement> is changed to

include a session-level calendric system selection command, default session-level

scale and align speci�cation commands, and an additional production is added

to de�ne the calendric system selection command. We also add an option to

indicate which schema version to use.

<SQL session statement> ::=

<SQL set identi�er statement>

�

�

<set constraints mode statement>

�

�

<set transaction statement>

�

�

�

<set properties statement>

�

�

�

<set scale statement>

�

�

�

<set cast statement>

�

�

�

<set credibility statement>

�

�

�

<set plausibility statement>

�

�

�

<create distribution statement>

�

�

�

<alter distribution statement>

�

�

�

<drop distribution statement>

�

�

�

<schema set statement>

<set properties statement> ::=

� SET PROPERTIES

� [FOR CHARACTER SET

[DEFAULT

�

�

NATIONAL

�

�

<character set>]]

� [FOR

�

<time granularity>

�

�

<calendar name>

	

]

WITH <property spec>

<calendric-property> ::=

� [<calendric-spec clause>] [<property-spec clause>: : :]

<calendric-spec clause> ::=

� WITH CALENDRIC <calendric spec>

<property-spec clause> ::=

� WITH PROPERTIES <property spec>

Section 12 Module 619

<property spec> ::=

� PREVIOUS

�

�

�

DEFAULT

�

�

�

<property table name>

�

�

�

<table value constructor>

<schema set statement> ::=

� SET SCHEMA <datetime value expression>

<set credibility statement> ::=

� SET CREDIBILITY

�

<integer>

�

�

AS DEFAULT

	

<set plausibility statement> ::=

� SET PLAUSIBILITY

�

<integer>

�

�

AS DEFAULT

	

<set scale statement> ::=

� SET SCALE

�

<time granularity>

�

�

AS DEFAULT

	

<set cast statement> ::=

� SET CAST

�

<time granularity>

�

�

AS DEFAULT

	

Additional syntax rules:

1. The non-terminal<calendric system name>must be an <identi�er> nam-

ing a calendric system.

2. The non-terminal <property table name> is the name of a property table

de�ning properties for the speci�ed character set.

3. The non-terminal<table value expression> enumerates the rows of a prop-

erty table.

4. The most recent invocation of a <set credibility statement> or a <set

plausibility statement> takes precedence.

5. If both the <set credibility statement> and the <set plausibility statement>

are omitted, then the defaults, 100 and 100, respectively, are assumed.

6. The most recent invocation of a <set scale statement> or a <set cast

statement> takes precedence.

620 Chapter 35

7. If both the <set scale statement> and the <set cast statement> are omit-

ted (or speci�ed as default , then left argument granularity semantics is

assumed.

8. Case:

If neither <time granularity> nor <calendar name> is speci�ed, then

the properties for all granularities are altered.

If <time granularity> is speci�ed, then only the properties for that

granularity are altered.

If <calendar name> is speci�ed, then only the properties for the

granularities de�ned by that calendar are altered.

9. The <datetime value expression> evaluates to a transaction-time instant

that identi�es a particular schema version.

Additional general rules:

1. Specifying SET PROPERTIES WITH PREVIOUS causes the previous set of ac-

tive properties for the speci�ed character set to be reactivated.

2. Specifying SET PROPERTIES WITH DEFAULT causes the implementation de-

�ned set of default properties for the speci�ed character set to be activated.

3. A property table must have the schema (property:character string,

value:character string). The command to create a persistent property table

with property values of length at most twenty characters is the following.

CREATE TABLE property table(property VARCHAR 20,

value VARCHAR 20)

4. If a <set properties statement> or <property-spec clause> names a non-

existent <property table name>, then an exception condition is raised:

data exception|property table non-existent.

36
SECTION 13 DATA

MANIPULATION

36.1 SECTION 13.3<FETCH STATEMENT>

<fetch statement> ::=

FETCH [[<fetch orientation>] FROM] <cursor name>

[INTO <fetch target list>]

� [INTO VALID [PERIOD] <fetch target list>]

Additional syntax rules:

1. At least one of INTO <fetch target list> and INTO VALID [PERIOD] <fetch

target list> must be present in a fetch statement.

Additional general rules:

1. When a <fetch target list> follows INTO VALID PERIOD, it must contain

precisely a single <target speci�cation>. When a <fetch target list> fol-

lows INTO VALID (without PERIOD), it must contain exactly two <target

speci�cation>s.

2. When a <fetch target list> follows INTO VALID PERIOD, it must contain

precisely a single <target speci�cation>. This is only allowed with a state

table is being evaluated by the SELECT statement. When a <fetch target

list> follows INTO VALID (without PERIOD), it must contain exactly two

<target speci�cation>s if a state table is being evaluated by the SELECT

621

622 Chapter 36

statement, and exactly one <target speci�cation> is an event table is being

evaluated.

Section 13 Data Manipulation 623

36.2 SECTION 13.5<SELECT STATEMENT: SINGLE

ROW>

The production is replaced with the following, adding one optional reserved

word.

<select statement: single row> ::=

� SELECT [<set quanti�er>] [SNAPSHOT] <select list>

INTO <select target list>

<table expression>

Additional general rules:

1. SNAPSHOT speci�es that the resulting table will be a snapshot table. In

this case, the <table expression> should not include a <valid clause>.

624 Chapter 36

36.3 SECTION 13.7<DELETE STATEMENT: SEARCHED>

The production for the non-terminal <delete statement: searched> is aug-

mented with an additional, optional clause. This clause references the non-

terminal <valid clause> de�ned for the SELECT statement.

<delete statement: searched> ::=

DELETE FROM <table name>

[WHERE <search condition>]

� [<valid value>]

Additional general rules:

1. If T is a valid-time table, and the <valid value> is omitted, then the

default valid value speci�ed in the <table de�nition> is assumed. If there

was no default value speci�ed, then the interval

PERIOD(TIMESTAMP CURRENT TIMESTAMP, NOBIND(TIMESTAMP 'now'))

is assumed.

Section 13 Data Manipulation 625

36.4 SECTION 13.8<INSERT STATEMENT>

A <valid value> is added.

<insert columns and source> ::=

[<left paren> <insert column list> <right paren>]

� [<valid value>]

<query expression>

�

�

DEFAULT VALUES

The <insert column list> is modi�ed to permit the use of the NEW reserved

word.

<insert column list> ::=

� <insert column> [

�

<comma> <insert column>

	

...]

<insert column> ::=

� <column name>

�

�

�

NEW

Additional general rules:

1. NEW is permitted only when the <data type> of the corresponding column

is SURROGATE.

2. If T is a valid-time table, and the <valid value> is omitted, then the

default valid value speci�ed in the <table de�nition> is assumed. If there

was no default value speci�ed, then the interval

PERIOD(TIMESTAMP CURRENT TIMESTAMP, NOBIND(TIMESTAMP 'now'))

is assumed.

626 Chapter 36

36.5 SECTION 13.9<UPDATE STATEMENT:

POSITIONED>

Additional general rules:

1. If T is a transaction-time or bitemporal table, the transaction time of

the appended or update tuple is PERIOD(TIMESTAMP CURRENT TIMESTAMP,

NOBIND(TIMESTAMP 'until changed')).

Section 13 Data Manipulation 627

36.6 SECTION 13.10<UPDATE STATEMENT: SEARCHED>

<update statement: searched> ::=

UPDATE <table name>

SET <set clause list>

� [<valid value>]

[WHERE <search condition>]

Additional general rules:

1. If T is a transaction-time or bitemporal table, the transaction time of

the appended or update tuple is PERIOD(TIMESTAMP CURRENT TIMESTAMP,

NOBIND(TIMESTAMP 'until changed')).

628 Chapter 36

37
SECTION 21 INFORMATION
SCHEMA AND DEFINITION

SCHEMA

37.1 SECTION 21.3.8 TABLES BASE TABLE

ALTER TABLE TABLES ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN

('STATE','EVENT','NONE'))

ALTER TABLE TABLES ADD COLUMN

TRANSACTION TIME CHARACTER DATA

CONSTRAINT TRANSACTION TIME CHECK

CHECK (TRANSACTION TIME IN

('STATE', 'NONE'))

ALTER TABLE TABLES ADD COLUMN

VACUUM CUT-OFF TIMESTAMP

The precision and scale of the VACUUM CUT-OFF column is implementation-

de�ned.

629

