The MULTICAL Project

Thursday, January 1, 1970, 00:00 MST

1 qupapy, 1970

1970 1 A

Jueves, El Primero de Enero 1970 22

SV dlsg Y

Overview of MULTICAL

Michael Soo and Richard Snodgrass

November 2, 1993

Release 1.0

Abstract

MULTICAL is both a novel approach to supporting internationalization of time constants and a prototype that
demonstrates this approach. In this document we outline the concepts behind MULTICAL. We have augmented
the Structured Query Language (SQL), specifically, SQL2, with time values, i.e., temporal constants. Our
approach is distinct in that we allow many different calendars to be used in the database management system,
and we incorporate only calendar-independent constructs into the language. We introduce three new temporal
data types. New language features are defined for temporal built-in functions, special time values, arithmetic
expressions involving time, temporal predicates, and aggregate functions over time. We also consider the
architecture of a database management system (DBMS) supporting this language. We then turn to a prototype
DBMS that supports the proposed extensions. We describe how this prototype is used, and discuss the
diagnostics generated by the prototype. The appendix enumerates the error messages produced by MULTICAL.

The MuLTICAL Project
Department of Computer Science

The University of Arizona

Tucson, AZ 85721
multical@cs.arizona.edu

Title

Overview of MULTICAL

Author(s)
Michael Soo and Richard Snodgrass

Publication History
October 1993. Version 1.0.

Copyright and trademarks
Copyright © 1993 Michael Soo and Richard Snodgrass.
All rights reserved.

MurTiCAL 18 in the public domain and you may use it and dis-
tribute 1t in source and binary forms as you wish, provided that
this paragraph is duplicated in all forms and that any documen-
tation, advertising materials, and other materials related to such
distribution acknowledge that the software was developed at the
University of Arizona. The name of the University may not be used
to endorse or promote products derived from this software without
specific written permission. This software is provided “as is”
and without any express or implied warranties, including,
without limitation, the implied warranty of merchantabil-
ity and fitness for a particular purpose.

MurTiCAL is distributed in the hope that it will be useful. We ask
that you identify any changes you make. We do intend to continue
to develop and maintain the system as resources permit, and would
like to hear of any problems.

The MuLTICAL Project
Department of Computer Science
The University of Arizona
Tucson, AZ 85721

multical@cs.arizona.edu

1 Introduction

MurTiCAL is both a novel approach to supporting internationalization of time constants and a prototype
that demonstrates this approach. In this document we discuss the prototype query processor, multical.
We describe how this prototype is used, and summarize the diagnostics generated by the prototype.

We then outline the concepts behind MULTICAL. We have augmented the Structured Query
Language (SQL), specifically, SQL2, with time values, i.e., temporal constants. Our approach is distinct
in that we allow many different calendars to be used in the database management system, and we
incorporate only calendar-independent constructs into the language. We introduce three new temporal
data types. New language features are defined for temporal built-in functions, special time values,
arithmetic expressions involving time, temporal predicates, and aggregate functions over time. We also
consider the architecture of a database management system (DBMS) supporting this language.

The document is organized as follows. The first two sections discuss running multical and the
error messages it produces. Section b discusses general abstractions used to describe time and its use
in society, motivating the basic data model we propose. Section 6 briefly describes SQL constructs
supporting the concepts of Section 5. The primary focus of this paper, a system architecture supporting
the proposed language features, is described in Section 7. Section 8 discusses areas of related research.
The final section lists the advantages of our approach. An appendix lists the error messages.

2 Using multical

This section explains how to use multical, the prototype query language processor which illustrates
how MULTICAL can be integrated into an existing relational DBMS supporting SQL2.
multical may be invoked by typing

multical sql-file

The statements in sql-file, in SQL2 augmented with language constructs described in the document
“Mixed Calendar Query Language Support for Temporal Constants”, are interpreted by multical.
Relations mentioned by the CREATE TABLE statement are initialized with the contents from a file of the
same name as the relation, with an extension of . in, found in the current directory. If the input relations
are present in a different directory, it can be specified on the command line, e.g.,

multical sample.sql inputdir

During processing, the relations remain in main memory. Once the processing is done, all relations
are written to files with the same name as the relation, with an extension of .out, to the to the input
directory. If a different output directory 1s desired, it may also be specified, e.g.,

multical sample.sql inputdir outputdir

3 Error Messages

There are four categories of error messages.
1. A fatal error is serious enough to abort processing of the input file.

2. A severe error prevents the interpretation of the SQL2 statements but the program continues to
process the input file, to identify errors. Severe errors also cannot be suppressed.

3. A recoverable error is an error which is corrected by some default action of the query processor.
The SQL2 statements are still interpreted, but the resulting relations may not be what the user
intended.

4. A warning is an indication of a possible error and warns the user that the resulting relations may
not be what the user intended. The primary difference between recoverable errors and warnings
is that the recovery action for warnings is always to ignore the error or inconsistency while the
recovery action for recoverable errors is to fix the error or inconsistency in some way.

If any errors occur, a listing file with embedded error messages is created for the appropriate source
file. The errors also appear on standard error. A message on standard error is preceded by two lines of
numbered source statements, one of which contains the error(s), and is followed by one line of numbered
source statements. If the error occured at a specific position, a line containing a pointer to the token
causing the error follows the source line which contains the error. An additional line is output whenever
the file that the error occurs in changes. At the beginning of the errors, a line containing the information
about the translator is printed. Separate messages coming from different parts of the source program
are separated by horizontal lines.

A listing file 1s created for each source file which contains an error. The name of the listing file
is constructed by appending the suffix “.1ist” to the name of the appropriate source file. If write
permission does not exist for the listing file, or other errors occur in creating or opening the listing file,
the messages will only appear on standard error and the listing file, if it exists, is not changed.

Each error message in the listing file is preceded by a message indicating the line number of the
previous error message and 1s followed by a message indicating the line number of the next message.
This is particularly useful when working with large listings.

Each page of the listing file begins with a listing header containing the name, version, and copyright
date of the translator. Source lines which are longer than the page width of the listing file are split and
continued on the next line. Error messages which are longer than the page width are split at a word
break if possible and continued on the next line. Both standard error and the listing file contain a
summary line giving the count of errors for each severity level.

4 Supporting Multiple Calendars

The Lagunita workshop on future research in database systems identified the need for database manage-
ment systems to support time [Silberschatz et al. 1990]. The workshop report notes that no consensus
exists in support of any particular temporal model; the very nature of time implies different interpreta-
tions depending on the user’s perspective.

In this document, we summarize our approach to supporting a time-stamp attribute domain in
conventional relational database management systems (DBMSs). Our contention is that time, perhaps
more than any other data domain, is subject to user-interpretation—the DBMS must be capable of
accommodating the interpretation of time applicable to a user or a site. Conventional relational database
management systems do not address this problem at all; instead they impose a single interpretation of
time at both the query language and architectural levels. We advocate a general solution that, in effect,
internationalizes the time-stamp attribute domain provided by a DBMS. This approach is also applicable
to time representation in temporal database management systems [Snodgrass & Ahn 1986].

The focus of this proposal is on architectural requirements for time value support. We present
a summary of modifications to SQL [Melton 1990] to support temporal data, and then develop an
underlying system architecture. The main concept underlying the design is the separation of the universal
aspects of time from those that are user dependent. The support for these aspects of time is partitioned
at both the query language and the architectural levels. This separation allows customization of user-
dependent time aspects by local site personnel.

The proposal employs a limited notion of extensibility. Architectural support is provided for
addition and modification of the database management system components that impose a particular
interpretation on temporal values. We propose a limited, but practical, application of the techniques
proposed for extensible database management systems [Batory et al. 1988, Carey & Haas 1990, Carey
et al. 1986, Haas et al. 1990, Stonebraker et al. 1990]. Our approach is related to that of extensible
systems supporting abstract data types (ADTs). However, we believe that ADTs alone are inadequate
for the temporal extensions developed here, and we argue why in Section 8.

5 Physical Time, Calendars, and Calendric Systems

This section describes the basic model of time we propose. We first examine how time is represented
internally within the DBMS, and then introduce the concepts of calendars and calendric systems.

5.1 Physical Time

We assume the continuous time-line is quantized into chronons of fixed duration, and the granularity of
a time value at the query language level is exactly one chronon. The set of chronons form a finite, linear,
and totally-ordered set of time values with a defined identity relation.

In a physical relation, time values are represented by time-stamps, numeric values representing
chronons. Operations on time values are performed by executing analogous operations on time-stamps
corresponding to those temporal values. The exact semantics of this internal representation are described
elsewhere [Dyreson & Snodgrass 1992], but the details are not relevant here.

We note that time-stamps, while having a precise semantics tied to physical clocks, are independent
of an interpretation implied by a user perspective. Such an interpretation, of which there could be several,
are provided by calendars, which we now describe.

5.2 Calendars

A calendar 1s a human abstraction of the physical time-line. One calendar familiar to many is the
Gregorian calendar, based on the rotation of the Earth on its axis and its revolution around the Sun.
Some western cultures have used the Gregorian calendar since the late 16th century to measure the
passage of time. As another example, Islamics generally use a lunar calendar, based on the amount of
time required for the Moon to rotate around the Earth.

The Gregorian and lunar calendars are examples of daily and monthly calendars, but, in general,
a calendar can measure time using any well-defined time unit. For example, an employee time card can
be regarded as a calendar measuring time in eight hour increments and only defined for five days of each
week. We note that many different calendars exist, and that no calendar is inherently “better” than
another; the value of a particular calendar is wholly determined by the population that uses it. Table 1
lists several example calendars.

| Calendar | Description |
uTC2 Revised universal coordinated time
Gregorian Common western solar with months
Lunar Common eastern lunar
Julian Western solar with years and days
Meso-american 260 day cycles
Academic Year consists of semesters
Common Fiscal Financial year begins at New Year
Academic Fiscal Financial year starts in Fall
Federal Fiscal Financial year starts in October
Time card 8 hour days and 5 day weeks
3-shift Work Day | 24 hour day/three 8 hour shifts
Carbon-14 Time based on radioactive decay
Geologic Time based on geologic processes

Table 1: Common Calendars

We emphasize that the usage of a calendar depends on the cultural, legal, and even business
orientation of the user. For example, business enterprises generally perform accounting relative to some
fiscal year. However, the definition of fiscal year varies depending on the enterprise. Universities may have
their fiscal calendar coincide with the academic year in order to simplify accounting. Other institutions
use the more common half-yearly or quarterly definitions of fiscal year.

Calendars have two types of characteristics, ntrinsic characteristics which define the universal
qualities of the calendar, and extrinsic characteristics which define the user-dependent or varying qualities
of the calendar.

The intrinsic characteristics of a calendar define the intrinsic semantics of the calendar or com-
ponents that depend directly on such semantics. For example, the duration of time units (e.g., week,
month) and their interrelationships are intrinsic components of a calendar. Functions performing calen-
dar defined computations are also intrinsic. For example, in the Gregorian calendar one could construct

a field extraction function, month name_of, that returns the name of the month of a given date. Similarly,
a function harvest moon_date could be used to compute the date of the harvest moon in a given year.

The extrinsic characteristics, termed properties, of a calendar vary depending on the orientation
of the user, as discussed above. A typical calendar property is the language in which time values are
expressed. For example, in the Gregorian calendar English is used to express dates in the United States,
and French is used to express dates in France. Other properties include the format of time constants
(“January 1, 19007, and “1 January 1900” denote the same Gregorian date, but in different formats),
and local adjustments to time such as daylight savings time in the United States.

Properties, in conjunction with calendars, are crucial to supporting international use of the DBMS
(c.f. [Digital 1991]). We have identified ten properties that are universal to all calendars [Soo et al.
1992]. Local adaptation of calendar properties is supported by defining relations, termed property tables.
Any table used as a property table must have two attributes, property and value, where value defines
the named property. Both the property and value attributes must have the SQL type for string. For
example, to accommodate timezone calculations one could specify the location of interest as a property.
Using supporting information, such as timezone displacements, subsequent time calculations can be done
relative to this location. A default property table is provided by the implementation. The properties
contained in the default property table are active until overridden by a user defined property table.

We have exhibited examples of many calendars, and described how a particular calendar can varying
depending on its properties. We emphasize that database management systems attempting to support
time values must be capable of supporting any notion of time that is of interest to the user population.
We address this problem by allowing a calendar to be parameterized by its properties and by supporting
multiple calendars within the DBMS.

5.3 Calendric Systems

A calendric system defines the set of time values for an enterprise; it is the query language abstraction
of the physical time-line. A calendric system is defined as a collection of calendars where each calendar
is defined over non-overlapping periods of time, termed epochs. It is possible, and likely, that a calendric
system has gaps in its time-line that are not covered by any calendar.

Figure 1 illustrates a single calendric system, the Russian calendric system, used for time measure-
ment in the geographic area we now call “Russia.” The figure shows the physical time line divided into
a sequence of epochs. In the figure, the physical time-line is not shown to scale.

70,000 B.C. 600 B.C. 100 B.C. 1917 A.D. 1929 A.D. 1931 A.D.

Geologic Carbon-14 Roman Julian Gregorian Communist Gregorian
Calendar Calendar Calendar Calendar Calendar Calendar Calendar

Figure 1: The Russian Calendric System

In prehistoric epochs, the Geologic calendar and Carbon-14 dating (another form of a calendar)
are used to measure time. Later, during the Roman empire, the lunar calendar developed by the Roman
republic was used. Pope Julius, in the 1st Century B.C., introduced a solar calendar, the Julian calendar.
This calendar was in use until the 1917 Bolshevik revolution when the Gregorian calendar, first introduced
by Pope Gregory XIII in 1572, was adopted. In 1929, the Soviets introduced a continuous schedule work
week based on four days of work followed by one day of rest, in an attempt to break tradition with the
seven day week. This new calendar, the Communist calendar, had the failing that only eighty percent of
the work force was active on any day, and was abandoned after only two years in favor of the Gregorian
calendar, which is still in use today.

5.4 Summary

Calendars and calendric system define time at the query language level. Multiple calendars and calendric
systems allow support for many different notions of time. In conjunction with calendar properties, they
provide an important step toward generalization and internationalization of this limited but important
component of the DBMS.

6 SQL Language Modifications

This section describes calendar independent language modifications to SQL. We add data types and
operations to SQL that do not depend on the semantics of a particular calendar. In addition, we
describe language constructs for calendric system and property table specification. The presentation is
a significantly abridged description of the query language modifications we propose elsewhere [Soo &
Snodgrass 1992].

The specific language being modified is SQL2, the most recent standardization of the SQL language.
SQL2 extended the previous SQL standard with several new features including time data types [Melton
1990]. We eliminate the temporal extensions proposed in SQL2 and incorporate our own. (It can be
shown that our proposal subsumes the temporal extensions we replace.) We do not assume detailed
knowledge of SQL2, only that the reader is familiar with the general concepts of SQL. In this paper, a
reference to “SQL2” means the SQL2 language, while a reference to “SQL” implies a generic version of
the language.

Unless specifically noted, we use the familiar Gregorian calendar in examples, and rely on the
reader’s intuition until the necessary language constructs are defined.

6.1 Data Types

Our desire was to develop temporal data types with rich semantics that capture the intuitive and familiar
concepts of time while, at the same time, minimizing impact on the language as a whole. There are
three important temporal notions, moments in time, periods in time, and durations of time. We define
three new time-oriented data types, events, intervals, and spans, corresponding to each of these notions,
respectively. Example queries involving these data types are shown in Table 2.

Data Type | Ezample Query |

event “When was Ed hired?”
interval “Did Ed work for Alice during 19567”
span “How long was Ed in school?”

Table 2: Examples of Time-Oriented Queries

An event is an isolated instant in time; it is said to occur during some chronon ¢. For example, if
the implementation fixes the granularity of a chronon as one second, then an event is known to happen
during a particular second, and two events which occur during a single second are assumed to happen
simultaneously.

Specification of event values is done with a string-like notation. An event constant is syntactically
delimited by vertical bars (“|”). The string of characters contained within the bars is interpreted to
be an event constant defined by a calendar. As examples, |[Midnight December 31, 1991] is a valid
event constant in the Gregorian calendar, and |Sunset Ramadan 1, 1872] is a valid event constant in
the Islamic calendar. Conversely, |December 31, 1991] is not a valid event constant since it does not
fall within a single chronon.

An interval constant is syntactically delimited by square brackets (“[1”). The string of characters
contained within the square brackets is interpreted to be an interval constant. For example, [1776],
[July 1776], [July 4, 1776], [INoon July 3, 1776/, |Noon July 4, 1776|] and [Noon 7/3/1776
to Noon 7/4/1778] are valid interval constants.

We note that interval constants are not restricted to the form [starting_event, ending_event].
In the previous examples, the format of the interval values enclosed within the square brackets varies
considerably. We allow interval values to be any arbitrary string of characters, where the meaning of that
string of characters is determined by a calendar. Since input and output formats are calendar properties,
the interpretation and display of arbitrary strings as interval constants can be supported.

A span defines a duration of time, that is, a period of time with no specific starting or ending
chronons. For example, the span one week is known to have a duration of seven days, but one week
can refer to any block of seven consecutive days. A span can be either a positive or negative duration
of time. Span constants are syntactically delimited by percent signs (“%4”). For example, %1 week¥, %2
years’, and %-19 seconds are valid span constants.

The duration of a span is either context dependent or context independent. A fired span represents
the same duration independent of its usage. Conversely, the duration represented by a wvariable span
depends on the context in which it appears. For example, the constant %Aprily represents a fixed span
since the month of April always contains thirty-one days. An example variable span, in the Gregorian
calendar, is the constant %1 month’ which can represent anywhere from twenty-eight to thirty-one days,
depending on context.

Variable spans provide convenience but can cause semantic difficulties if not carefully designed.
Consider the following expression [Date 1988].

[12:00 PM May 31, 1991| + %1 month’

The result of the expression is an event. If, as one might expect, the expression computes the last day
of June 1991 then the result returned is 112:00 PM June 30, 1991| since June has only thirty days.
However, consider this expression.

(112:00 PM May 31, 1991| + %1 month%) - %1 monthY

Assuming that the addition operation still returns the value |12:00 PM June 30, 1991], subtracting
%1 month’ can return either |12:00 PM May 31, 1991| or |12:00 PM May 30, 1991| depending on
the duration of %1 month%. Both interpretations are valid, and neither should be excluded by the DBMS.

The meaning of %1 month is specific to the calendar that defines it. It is left to the calendar to
specify the appropriate semantics. Generality and usability are increased since the calendar is free to
ascribe any appropriate meaning.

We note that fixed spans and variable spans are not different data types; they possess the exact
same semantic properties. They differ only in how their meanings are assigned and computed, and these
are calendar specific issues.

As an example of using the temporal data types, consider an employment database containing
personnel information. We would like to store information such as the name and identification number
of the employee, his or her birthday and age, and the period of that person’s employment. A relation
with the schema employee(name, id, birthday, age, when_employed) can be used to store the employee
records. The SQL statement to create a base relation with this schema is shown below.

create table employee (name character (20),
id character (5), birthday event,
age span, when employed interval);

6.2 Calendric System and Property Selection

This section describes how calendric systems are selected and how calendar properties are specified.
Calendric systems can be specified globally or locally within a query. Similarly, property tables can be
specified as either session defaults or for individual data items.

6.2.1 Calendric System Specification

Calendric systems are specified by lexical scope in a sequence of SQL statements. The scope of a globally
declared calendric system is all statements up to but not including the next global declaration of a
calendric system. Global calendric systems are declared by a declare calendric system command.
Conversely, for a particular item, a local declaration can be used to override the declaration at the global
scope. Local declarations are made using an as clause.

Figure 2 shows a fragment of an SQL module. This example illustrates all of the ways in which
calendric systems and property tables may be specified; it is not intended to be realistic. The russian
calendric system is declared in the global scope. The scope of this declaration extends to the next
global declaration, naming the american calendric system. The russian calendric system applies to the
birthday and age attributes in the target list of the select statement since, unlike the when_employed
attribute, no calendric system is locally declared for these attributes via an as clause. Similarly, the
russian calendric system is used to resolve the function month name_of, and to interpret the constants
|2 Jinvar 1925]| and 1975 (“Jinvar” is a phonetic translation of the Russian word for “January” into

declare calendric system as russian;

declare x cursor for
select name, id, birthday,
age with property_table.a,
when_employed as american
from employee
where month name_of (birthday) = ’Jinvar’ and
birthday < |2 Jinvar 1925| and
age > %60 years? as american
with property_tableb
when_employed overlaps [1975];

procedure set_x_properties
sqlcode
set properties with x_property_table;

declare calendric system as american;

procedure open_x_cursor
sqlcode
open Xx;

Figure 2: Example of Calendric System and Property Selection

the Latin alphabet), while the american calendric system is used to interpret the span %60 years¥. We
note that, in this instance, the function month_name _of is defined via the russian calendric system and
returns Russian month names. We assume that the implementation defines a globally scoped default
calendric system that is applies if no calendric system is globally declared.

6.2.2 Property Specification

Properties may be specified on both a global and a per-item basis. The properties contained in a property
table are activated by executing a set properties command. Those properties remain in effect, and can
influence any intervening temporal operations, until explicitly deactivated by another set properties
command. In addition, a property table can be specified for a single operation.

The mechanisms for property selection are dynamic. This contrasts with the mechanisms for calen-
dric system selection which are static. This distinction is consistent with our specification of properties
as extensional—since the contents of the database can not be predicted a priori, the value of a property
cannot be known at compile-time. Static specification of property tables is therefore not possible.

In Figure 2, the procedure set_x_properties contains a command that activates the properties
contained in the property table x_property_table. Invocation of this procedure causes the proper-
ties contained in that table to be activated. These properties remain active until explicitly overrid-
den by another set properties command. For example, if an application program calls the proce-
dure set_x_properties prior to calling the procedure open x_cursor, then the properties contained in
x_property_table will override the properties in the default property table when the cursor is opened.

Conversely, naming a property table for an individual data item limits the activation of those
properties to the processing of that data item. For example, associated with the attribute age in
the select clause is a property table property_table_a. The properties in this table are activated
temporarily while time-stamps are being converted for the age attribute.

As mentioned in Section 5.2, a default table of property values is provided by the DBMS. The values

in the default property table are customized by local site personnel and are expected to be appropriate
for most situations at that site.

6.3 Built-in Functions

It is convenient to have simple mechanisms for data conversion and manipulation. To facilitate this,
we have defined nine built-in functions. These functions are categorized as either data constructors
(e.g., interval to compose an interval from two events), data deconstructors (e.g., begin to return the
starting event of an interval), or miscellaneous functions (e.g., first to return the prior of two events).
We emphasize that these functions are calendar independent. Additional calendar specific functions may
be defined by a calendar, an example being the function month name_of defined in Section 6.2.

6.4 Arithmetic Expressions

Arithmetic operations on temporal values are necessary in many computations. For example, one may
wish to determine how many shopping days are left until Christmas, or the arrival time of a train given
its departure time and the duration of its trip.

We extended the basic arithmetic operators (/, +, =, *) for events, intervals, and spans. Our design
goals were to maximize orthogonality whenever possible and to overload existing operators, thereby
minimizing the complexity of the language. Expressions with intuitive semantics such as event + span
are allowed while expressions with unintuitive semantics such as inferval + event are not.

6.5 Comparison Expressions

An important reason for incorporating time values into the DBMS 1s to determine the temporal relation-
ships between objects. For example, for the employee relation of Section 6.1, one might be interested in
who was hired during a particular year, or given two employees, who has more years of service.
Temporal comparison operators allows one to determine these relationships. A set of such operators
was defined for the event, interval, and span data types. We modified the semantics of existing time
comparison operators, overlaps, <, =, >, and =, and added three new comparison operators, precedes,
meets, and contains. The operator set was derived by examining the comparison operators of other
temporal extensions to SQL [Ariav 1986, Ben-Zvi 1982, Navathe & Ahmed 1989, Sarda 1990]. It can be
shown that our operators subsume each of these proposals, and, in fact, our operators can express any
possible relationship between any of the temporal data types. Full details are provided elsewhere [Soo

& Snodgrass 1992].

6.6 Aggregate Functions

There are six SQL aggregate functions which operate on sets of values. We extended the semantics of
five of these functions, count, sum, avg, max, and min, to accommodate the temporal data types. The
sixth aggregate function count (*), which determines the number of rows in a table, is not relevant to
the discussion. As with arithmetic expressions, we identified all applications of these functions to the
temporal types which have clear and intuitive semantics. For example, the sum of a set of span values
is clearly defined while the sum of a set of interval values is not.

6.7 Summary

Calendar independent constructs were added to SQL to support new time data types, temporal built-
in functions, temporal arithmetic and comparison, and aggregate functions. In addition, we defined
mechanisms for calendric system and property table selection, increasing the expressive power of the
query language through calendar specific operations.

Interestingly, the complexity of the language has actually decreased after subtracting the previous
temporal support and adding our temporal modifications. Seventeen keywords dealing with Gregorian
calendar constructs were deleted, and nine keywords for calendar independent constructs were subse-
quently added. This simplification is primarily due to the fact that, in SQL2, calendar specific constructs
are implemented as keywords in the query language, while we support them through extensions of the

query language, in the form of calendar defined functions. In addition, we significantly increase the
expressive power of the language, as SQL2 only supports a single calendar, the Gregorian calendar, and
a single language, English.

7 System Architecture

The language constructs just described provide their expressive power through extensibility: local users
can define new calendars and calendric systems, reference them in queries, and can also alter the prop-
erties of calendars. Supporting this extensibility requires a more open architecture than that employed
in current database management systems.

In this section, we describe modifications to the architecture of a conventional relational DBMS to
support the language constructs of the previous section. We discuss only the components of the database
management system which must be modified or extended to support our data model. Essential, but non-
germane, components such as concurrency control, recovery management, and storage access methods
are omitted.

7.1 Overview

Figure 3 contains a diagram showing the major components of the system. Each box in the figure
represents a component of the system; a solid line arrow from one component to another indicates
that the former utilizes services provided by the latter. Data structures (non-procedural components)
are shown as ovals, and a dashed line arrow indicates a data structure contains a reference to another
component.

Uniform Calendric Support Field Value Support
(ucs) (FV)

ot vaue i
RS e

. Field value table
Calendar l

l Field value routine Field value routine l

Query Processor

Syntax analyzer /
Semantic analyzer /

Time-stamp ADT
(TADT)

i st
Calendar l Calendar | veo

{

Figure 3: System Architecture Overview

The figure shows the following components.

e Query processor—a conventional query processing system extended to support the new temporal
constructs.

e Uniform calendric support (UCS)—an interface that manages access to the services provided by
calendars. Each calendric system is defined as a collection of data structures within the UCS.
Within the architecture, calendric systems have no procedural component; they merely provide a
mechanism for accessing the services exported by their calendars.

o Field Value Support (FV)—a set of tables and routines supporting extensible formatting of tem-
poral constants.

e Calendar—a set of tables and routines implementing calendar dependent operations. We note that,
as shown in Figure 3, calendars can be shared by multiple calendric systems.

e Time-stamp ADT (TADT) support—a set of routines encapsulating operations on physical time-
stamps. The TADT implements all temporal operations that do not require interpretation by a
calendar.

In Figure 3, 1t is readily apparent that the support for calendar dependent operations is partitioned
from the support for calendar independent operations. The UCS is responsible for executing, by using

the appropriate calendric system, all calendar dependent operations. The TADT, on the other hand,
provides calendar independent operations, specifically, memory management, and built-in, arithmetic,
comparison, and aggregate operations on time-stamps.

This distinction is the key aspect of our approach. We isolate operations requiring calendar in-
terpretation by encapsulating them within a calendar, and provide calendar independent operations
elsewhere. This allows the architecture to support extensibility and interchangeability of calendric sys-
tems and calendars.

As an example, consider the arithmetic operation of computing the sum of two span values. Vari-
able spans require calendar interpretation while fixed spans do not. Therefore, the TADT exports an
operation tadt _fs_add_fs which adds two fixed spans, while a calendar must provide an operation for
adding variable spans to fixed spans, cal_calendar_vs_add_fs, and an operation for adding variable
spans to variable spans, cal_calendar_vs_add_vs. The UCS exports a generic span addition opera-
tion, ucs_s_add_s, which the query processor invokes whenever a span addition operation is performed.
ucs_s_add_s queries the TADT to determine if its parameters are variable or fixed spans, then calls the
appropriate TADT or calendar routine.

Extensibility of calendric systems and calendars 1s central to our architecture. We therefore support
definition of calendric systems and calendars by local site personnel. A base version of the DBMS will
likely include several calendars and calendric systems, and these calendars and calendric systems will
be adequate for most users. In addition, we anticipate a market for customized calendars and calendric
systems, with third party vendors specializing in developing such solutions.

Calendar and calendric system definition will be performed by a database implementor (DBI), a
person with sufficient knowledge of the internal workings of the DBMS to implement calendar-defined
functions and routines [Richardson & Carey 1987]. The DBI is responsible for supplying the support-
ing components of calendars and calendric systems and generating the resulting database management
system. To simplify this task, we have designed a DBMS generation toolkit that accepts calendar and
calendric system specifications provided by the DBI and composes the DBMS from those specifications
and preexisting components. The toolkit is described in Section 7.8.

We continue by describing the system components shown in Figure 3 in more detail. We use
pertinent examples, such as supporting variable span operations, to illustrate the design.

7.2 Time-stamp ADT Support

As previously mentioned, the TADT is responsible for all temporal operations that do not require
calendar interpretation. This includes all operations on event, interval, and fixed span values plus
auxiliary operations for time-stamp manipulation. The representations of all such values as stored in
the database are necessarily calendar independent [Dyreson & Snodgrass 1992]. Operations involving
variable spans require calendar support and are not implemented by the TADT.

As shown in Figure 3, the operations provided by the TADT are used by the run-time support of
the query processor, the UCS, and any calendars defined in the system. The query processor invokes the
TADT to allocate run-time data structures, as well as to execute all built-in, arithmetic, comparison, and
aggregate operations involving non-span operands. A calendar calls the time-stamp creation routines of
the TADT while computing a time-stamp equivalent to a temporal constant encountered in the input.
The UCS invokes the TADT to execute fixed span operations, as we discuss below.

7.3 Uniform Calendric Support

The UCS provides a generic interface to all calendar defined services. It is invoked by the query processor
to activate and deactivate calendric systems and properties, convert temporal constants to time-stamps,
convert time-stamps to temporal constants, resolve calendar defined functions, and execute all span
operations. It maintains data structures defining calendric systems, and invokes calendar operations on
behalf of the query processor. In general, the UCS is responsi