
The MultiCal Project

1 1970

Jueves, El Primero de Enero 1970

1970 1 1

Thursday, January 1, 1970, 00:00 MST

Overview of MultiCal

Michael Soo and Richard Snodgrass

November 2, 1993

Release 1.0

Abstract

MultiCal is both a novel approach to supporting internationalization of time constants and a prototype that

demonstrates this approach. In this document we outline the concepts behindMultiCal. We have augmented

the Structured Query Language (SQL), speci�cally, SQL2, with time values, i.e., temporal constants. Our

approach is distinct in that we allow many di�erent calendars to be used in the database management system,

and we incorporate only calendar-independent constructs into the language. We introduce three new temporal

data types. New language features are de�ned for temporal built-in functions, special time values, arithmetic

expressions involving time, temporal predicates, and aggregate functions over time. We also consider the

architecture of a database management system (DBMS) supporting this language. We then turn to a prototype

DBMS that supports the proposed extensions. We describe how this prototype is used, and discuss the

diagnostics generated by the prototype. The appendix enumerates the error messages produced byMultiCal.

The MultiCal Project

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

multical@cs.arizona.edu

Title

Overview of MultiCal

Author(s)

Michael Soo and Richard Snodgrass

Publication History

October 1993. Version 1.0.

Copyright and trademarks

Copyright
c
 1993 Michael Soo and Richard Snodgrass.

All rights reserved.

MultiCal is in the public domain and you may use it and dis-

tribute it in source and binary forms as you wish, provided that

this paragraph is duplicated in all forms and that any documen-

tation, advertising materials, and other materials related to such

distribution acknowledge that the software was developed at the

University of Arizona. The name of the University may not be used

to endorse or promote products derived from this software without

speci�c written permission. This software is provided \as is"

and without any express or implied warranties, including,

without limitation, the implied warranty of merchantabil-

ity and �tness for a particular purpose.

MultiCal is distributed in the hope that it will be useful. We ask

that you identify any changes you make. We do intend to continue

to develop and maintain the system as resources permit, and would

like to hear of any problems.

The MultiCal Project

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

multical@cs.arizona.edu

1 Introduction

MultiCal is both a novel approach to supporting internationalization of time constants and a prototype

that demonstrates this approach. In this document we discuss the prototype query processor, multical.

We describe how this prototype is used, and summarize the diagnostics generated by the prototype.

We then outline the concepts behind MultiCal. We have augmented the Structured Query

Language (SQL), speci�cally, SQL2, with time values, i.e., temporal constants. Our approach is distinct

in that we allow many di�erent calendars to be used in the database management system, and we

incorporate only calendar-independent constructs into the language. We introduce three new temporal

data types. New language features are de�ned for temporal built-in functions, special time values,

arithmetic expressions involving time, temporal predicates, and aggregate functions over time. We also

consider the architecture of a database management system (DBMS) supporting this language.

The document is organized as follows. The �rst two sections discuss running multical and the

error messages it produces. Section 5 discusses general abstractions used to describe time and its use

in society, motivating the basic data model we propose. Section 6 briey describes SQL constructs

supporting the concepts of Section 5. The primary focus of this paper, a system architecture supporting

the proposed language features, is described in Section 7. Section 8 discusses areas of related research.

The �nal section lists the advantages of our approach. An appendix lists the error messages.

2 Using multical

This section explains how to use multical, the prototype query language processor which illustrates

how MultiCal can be integrated into an existing relational DBMS supporting SQL2.

multical may be invoked by typing

multical sql-�le

The statements in sql-�le, in SQL2 augmented with language constructs described in the document

\Mixed Calendar Query Language Support for Temporal Constants", are interpreted by multical.

Relations mentioned by the CREATE TABLE statement are initialized with the contents from a �le of the

same name as the relation, with an extension of .in, found in the current directory. If the input relations

are present in a di�erent directory, it can be speci�ed on the command line, e.g.,

multical sample.sql inputdir

During processing, the relations remain in main memory. Once the processing is done, all relations

are written to �les with the same name as the relation, with an extension of .out, to the to the input

directory. If a di�erent output directory is desired, it may also be speci�ed, e.g.,

multical sample.sql inputdir outputdir

3 Error Messages

There are four categories of error messages.

1. A fatal error is serious enough to abort processing of the input �le.

2. A severe error prevents the interpretation of the SQL2 statements but the program continues to

process the input �le, to identify errors. Severe errors also cannot be suppressed.

3. A recoverable error is an error which is corrected by some default action of the query processor.

The SQL2 statements are still interpreted, but the resulting relations may not be what the user

intended.

4. A warning is an indication of a possible error and warns the user that the resulting relations may

not be what the user intended. The primary di�erence between recoverable errors and warnings

is that the recovery action for warnings is always to ignore the error or inconsistency while the

recovery action for recoverable errors is to �x the error or inconsistency in some way.

1

If any errors occur, a listing �le with embedded error messages is created for the appropriate source

�le. The errors also appear on standard error. A message on standard error is preceded by two lines of

numbered source statements, one of which contains the error(s), and is followed by one line of numbered

source statements. If the error occured at a speci�c position, a line containing a pointer to the token

causing the error follows the source line which contains the error. An additional line is output whenever

the �le that the error occurs in changes. At the beginning of the errors, a line containing the information

about the translator is printed. Separate messages coming from di�erent parts of the source program

are separated by horizontal lines.

A listing �le is created for each source �le which contains an error. The name of the listing �le

is constructed by appending the su�x \.list" to the name of the appropriate source �le. If write

permission does not exist for the listing �le, or other errors occur in creating or opening the listing �le,

the messages will only appear on standard error and the listing �le, if it exists, is not changed.

Each error message in the listing �le is preceded by a message indicating the line number of the

previous error message and is followed by a message indicating the line number of the next message.

This is particularly useful when working with large listings.

Each page of the listing �le begins with a listing header containing the name, version, and copyright

date of the translator. Source lines which are longer than the page width of the listing �le are split and

continued on the next line. Error messages which are longer than the page width are split at a word

break if possible and continued on the next line. Both standard error and the listing �le contain a

summary line giving the count of errors for each severity level.

4 Supporting Multiple Calendars

The Lagunita workshop on future research in database systems identi�ed the need for database manage-

ment systems to support time [Silberschatz et al. 1990]. The workshop report notes that no consensus

exists in support of any particular temporal model; the very nature of time implies di�erent interpreta-

tions depending on the user's perspective.

In this document, we summarize our approach to supporting a time-stamp attribute domain in

conventional relational database management systems (DBMSs). Our contention is that time, perhaps

more than any other data domain, is subject to user-interpretation|the DBMS must be capable of

accommodating the interpretation of time applicable to a user or a site. Conventional relational database

management systems do not address this problem at all; instead they impose a single interpretation of

time at both the query language and architectural levels. We advocate a general solution that, in e�ect,

internationalizes the time-stamp attribute domain provided by a DBMS. This approach is also applicable

to time representation in temporal database management systems [Snodgrass & Ahn 1986].

The focus of this proposal is on architectural requirements for time value support. We present

a summary of modi�cations to SQL [Melton 1990] to support temporal data, and then develop an

underlying system architecture. The main concept underlying the design is the separation of the universal

aspects of time from those that are user dependent. The support for these aspects of time is partitioned

at both the query language and the architectural levels. This separation allows customization of user-

dependent time aspects by local site personnel.

The proposal employs a limited notion of extensibility. Architectural support is provided for

addition and modi�cation of the database management system components that impose a particular

interpretation on temporal values. We propose a limited, but practical, application of the techniques

proposed for extensible database management systems [Batory et al. 1988, Carey & Haas 1990, Carey

et al. 1986, Haas et al. 1990, Stonebraker et al. 1990]. Our approach is related to that of extensible

systems supporting abstract data types (ADTs). However, we believe that ADTs alone are inadequate

for the temporal extensions developed here, and we argue why in Section 8.

5 Physical Time, Calendars, and Calendric Systems

This section describes the basic model of time we propose. We �rst examine how time is represented

internally within the DBMS, and then introduce the concepts of calendars and calendric systems.

2

5.1 Physical Time

We assume the continuous time-line is quantized into chronons of �xed duration, and the granularity of

a time value at the query language level is exactly one chronon. The set of chronons form a �nite, linear,

and totally-ordered set of time values with a de�ned identity relation.

In a physical relation, time values are represented by time-stamps, numeric values representing

chronons. Operations on time values are performed by executing analogous operations on time-stamps

corresponding to those temporal values. The exact semantics of this internal representation are described

elsewhere [Dyreson & Snodgrass 1992], but the details are not relevant here.

We note that time-stamps, while having a precise semantics tied to physical clocks, are independent

of an interpretation implied by a user perspective. Such an interpretation, of which there could be several,

are provided by calendars, which we now describe.

5.2 Calendars

A calendar is a human abstraction of the physical time-line. One calendar familiar to many is the

Gregorian calendar, based on the rotation of the Earth on its axis and its revolution around the Sun.

Some western cultures have used the Gregorian calendar since the late 16th century to measure the

passage of time. As another example, Islamics generally use a lunar calendar, based on the amount of

time required for the Moon to rotate around the Earth.

The Gregorian and lunar calendars are examples of daily and monthly calendars, but, in general,

a calendar can measure time using any well-de�ned time unit. For example, an employee time card can

be regarded as a calendar measuring time in eight hour increments and only de�ned for �ve days of each

week. We note that many di�erent calendars exist, and that no calendar is inherently \better" than

another; the value of a particular calendar is wholly determined by the population that uses it. Table 1

lists several example calendars.

Calendar Description

UTC2 Revised universal coordinated time

Gregorian Common western solar with months

Lunar Common eastern lunar

Julian Western solar with years and days

Meso-american 260 day cycles

Academic Year consists of semesters

Common Fiscal Financial year begins at New Year

Academic Fiscal Financial year starts in Fall

Federal Fiscal Financial year starts in October

Time card 8 hour days and 5 day weeks

3-shift Work Day 24 hour day/three 8 hour shifts

Carbon-14 Time based on radioactive decay

Geologic Time based on geologic processes

Table 1: Common Calendars

We emphasize that the usage of a calendar depends on the cultural, legal, and even business

orientation of the user. For example, business enterprises generally perform accounting relative to some

�scal year. However, the de�nition of �scal year varies depending on the enterprise. Universities may have

their �scal calendar coincide with the academic year in order to simplify accounting. Other institutions

use the more common half-yearly or quarterly de�nitions of �scal year.

Calendars have two types of characteristics, intrinsic characteristics which de�ne the universal

qualities of the calendar, and extrinsic characteristicswhich de�ne the user-dependent or varying qualities

of the calendar.

The intrinsic characteristics of a calendar de�ne the intrinsic semantics of the calendar or com-

ponents that depend directly on such semantics. For example, the duration of time units (e.g., week,

month) and their interrelationships are intrinsic components of a calendar. Functions performing calen-

dar de�ned computations are also intrinsic. For example, in the Gregorian calendar one could construct

3

a �eld extraction function, month name of, that returns the name of the month of a given date. Similarly,

a function harvest moon date could be used to compute the date of the harvest moon in a given year.

The extrinsic characteristics, termed properties, of a calendar vary depending on the orientation

of the user, as discussed above. A typical calendar property is the language in which time values are

expressed. For example, in the Gregorian calendar English is used to express dates in the United States,

and French is used to express dates in France. Other properties include the format of time constants

(\January 1, 1900", and \1 January 1900" denote the same Gregorian date, but in di�erent formats),

and local adjustments to time such as daylight savings time in the United States.

Properties, in conjunction with calendars, are crucial to supporting international use of the DBMS

(c.f. [Digital 1991]). We have identi�ed ten properties that are universal to all calendars [Soo et al.

1992]. Local adaptation of calendar properties is supported by de�ning relations, termed property tables.

Any table used as a property table must have two attributes, property and value, where value de�nes

the named property. Both the property and value attributes must have the SQL type for string. For

example, to accommodate timezone calculations one could specify the location of interest as a property.

Using supporting information, such as timezone displacements, subsequent time calculations can be done

relative to this location. A default property table is provided by the implementation. The properties

contained in the default property table are active until overridden by a user de�ned property table.

We have exhibited examples of many calendars, and described how a particular calendar can varying

depending on its properties. We emphasize that database management systems attempting to support

time values must be capable of supporting any notion of time that is of interest to the user population.

We address this problem by allowing a calendar to be parameterized by its properties and by supporting

multiple calendars within the DBMS.

5.3 Calendric Systems

A calendric system de�nes the set of time values for an enterprise; it is the query language abstraction

of the physical time-line. A calendric system is de�ned as a collection of calendars where each calendar

is de�ned over non-overlapping periods of time, termed epochs. It is possible, and likely, that a calendric

system has gaps in its time-line that are not covered by any calendar.

Figure 1 illustrates a single calendric system, the Russian calendric system, used for time measure-

ment in the geographic area we now call \Russia." The �gure shows the physical time line divided into

a sequence of epochs. In the �gure, the physical time-line is not shown to scale.

Roman

Calendar
Geologic
Calendar

Carbon-14

Calendar

Julian

Calendar

Gregorian

Calendar

Communist

Calendar

Gregorian

Calendar

600 B.C. 100 B.C. 1929 A.D. 1931 A.D.1917 A.D.70,000 B.C.

Figure 1: The Russian Calendric System

In prehistoric epochs, the Geologic calendar and Carbon-14 dating (another form of a calendar)

are used to measure time. Later, during the Roman empire, the lunar calendar developed by the Roman

republic was used. Pope Julius, in the 1st Century B.C., introduced a solar calendar, the Julian calendar.

This calendar was in use until the 1917 Bolshevik revolution when the Gregorian calendar, �rst introduced

by Pope Gregory XIII in 1572, was adopted. In 1929, the Soviets introduced a continuous schedule work

week based on four days of work followed by one day of rest, in an attempt to break tradition with the

seven day week. This new calendar, the Communist calendar, had the failing that only eighty percent of

the work force was active on any day, and was abandoned after only two years in favor of the Gregorian

calendar, which is still in use today.

5.4 Summary

Calendars and calendric system de�ne time at the query language level. Multiple calendars and calendric

systems allow support for many di�erent notions of time. In conjunction with calendar properties, they

provide an important step toward generalization and internationalization of this limited but important

component of the DBMS.

4

6 SQL Language Modi�cations

This section describes calendar independent language modi�cations to SQL. We add data types and

operations to SQL that do not depend on the semantics of a particular calendar. In addition, we

describe language constructs for calendric system and property table speci�cation. The presentation is

a signi�cantly abridged description of the query language modi�cations we propose elsewhere [Soo &

Snodgrass 1992].

The speci�c language being modi�ed is SQL2, the most recent standardization of the SQL language.

SQL2 extended the previous SQL standard with several new features including time data types [Melton

1990]. We eliminate the temporal extensions proposed in SQL2 and incorporate our own. (It can be

shown that our proposal subsumes the temporal extensions we replace.) We do not assume detailed

knowledge of SQL2, only that the reader is familiar with the general concepts of SQL. In this paper, a

reference to \SQL2" means the SQL2 language, while a reference to \SQL" implies a generic version of

the language.

Unless speci�cally noted, we use the familiar Gregorian calendar in examples, and rely on the

reader's intuition until the necessary language constructs are de�ned.

6.1 Data Types

Our desire was to develop temporal data types with rich semantics that capture the intuitive and familiar

concepts of time while, at the same time, minimizing impact on the language as a whole. There are

three important temporal notions, moments in time, periods in time, and durations of time. We de�ne

three new time-oriented data types, events, intervals, and spans, corresponding to each of these notions,

respectively. Example queries involving these data types are shown in Table 2.

Data Type Example Query

event \When was Ed hired?"

interval \Did Ed work for Alice during 1956?"

span \How long was Ed in school?"

Table 2: Examples of Time-Oriented Queries

An event is an isolated instant in time; it is said to occur during some chronon t. For example, if

the implementation �xes the granularity of a chronon as one second, then an event is known to happen

during a particular second, and two events which occur during a single second are assumed to happen

simultaneously.

Speci�cation of event values is done with a string-like notation. An event constant is syntactically

delimited by vertical bars (\|"). The string of characters contained within the bars is interpreted to

be an event constant de�ned by a calendar. As examples, |Midnight December 31, 1991| is a valid

event constant in the Gregorian calendar, and |Sunset Ramadan 1, 1872| is a valid event constant in

the Islamic calendar. Conversely, |December 31, 1991| is not a valid event constant since it does not

fall within a single chronon.

An interval constant is syntactically delimited by square brackets (\[]"). The string of characters

contained within the square brackets is interpreted to be an interval constant. For example, [1776],

[July 1776], [July 4, 1776], [|Noon July 3, 1776|,|Noon July 4, 1776|] and [Noon 7/3/1776

to Noon 7/4/1776] are valid interval constants.

We note that interval constants are not restricted to the form [starting event, ending event].

In the previous examples, the format of the interval values enclosed within the square brackets varies

considerably. We allow interval values to be any arbitrary string of characters, where the meaning of that

string of characters is determined by a calendar. Since input and output formats are calendar properties,

the interpretation and display of arbitrary strings as interval constants can be supported.

A span de�nes a duration of time, that is, a period of time with no speci�c starting or ending

chronons. For example, the span one week is known to have a duration of seven days, but one week

can refer to any block of seven consecutive days. A span can be either a positive or negative duration

of time. Span constants are syntactically delimited by percent signs (\%"). For example, %1 week%, %2

years% and %-19 seconds% are valid span constants.

5

The duration of a span is either context dependent or context independent. A �xed span represents

the same duration independent of its usage. Conversely, the duration represented by a variable span

depends on the context in which it appears. For example, the constant %April% represents a �xed span

since the month of April always contains thirty-one days. An example variable span, in the Gregorian

calendar, is the constant %1 month% which can represent anywhere from twenty-eight to thirty-one days,

depending on context.

Variable spans provide convenience but can cause semantic di�culties if not carefully designed.

Consider the following expression [Date 1988].

|12:00 PM May 31, 1991| + %1 month%

The result of the expression is an event. If, as one might expect, the expression computes the last day

of June 1991 then the result returned is |12:00 PM June 30, 1991| since June has only thirty days.

However, consider this expression.

(|12:00 PM May 31, 1991| + %1 month%) - %1 month%

Assuming that the addition operation still returns the value |12:00 PM June 30, 1991|, subtracting

%1 month% can return either |12:00 PM May 31, 1991| or |12:00 PM May 30, 1991| depending on

the duration of %1 month%. Both interpretations are valid, and neither should be excluded by the DBMS.

The meaning of %1 month% is speci�c to the calendar that de�nes it. It is left to the calendar to

specify the appropriate semantics. Generality and usability are increased since the calendar is free to

ascribe any appropriate meaning.

We note that �xed spans and variable spans are not di�erent data types; they possess the exact

same semantic properties. They di�er only in how their meanings are assigned and computed, and these

are calendar speci�c issues.

As an example of using the temporal data types, consider an employment database containing

personnel information. We would like to store information such as the name and identi�cation number

of the employee, his or her birthday and age, and the period of that person's employment. A relation

with the schema employee(name, id, birthday, age, when employed) can be used to store the employee

records. The SQL statement to create a base relation with this schema is shown below.

create table employee (name character (20),

id character (5), birthday event,

age span, when employed interval);

6.2 Calendric System and Property Selection

This section describes how calendric systems are selected and how calendar properties are speci�ed.

Calendric systems can be speci�ed globally or locally within a query. Similarly, property tables can be

speci�ed as either session defaults or for individual data items.

6.2.1 Calendric System Speci�cation

Calendric systems are speci�ed by lexical scope in a sequence of SQL statements. The scope of a globally

declared calendric system is all statements up to but not including the next global declaration of a

calendric system. Global calendric systems are declared by a declare calendric system command.

Conversely, for a particular item, a local declaration can be used to override the declaration at the global

scope. Local declarations are made using an as clause.

Figure 2 shows a fragment of an SQL module. This example illustrates all of the ways in which

calendric systems and property tables may be speci�ed; it is not intended to be realistic. The russian

calendric system is declared in the global scope. The scope of this declaration extends to the next

global declaration, naming the american calendric system. The russian calendric system applies to the

birthday and age attributes in the target list of the select statement since, unlike the when employed

attribute, no calendric system is locally declared for these attributes via an as clause. Similarly, the

russian calendric system is used to resolve the function month name of, and to interpret the constants

|2 Jinvar 1925| and 1975 (\Jinvar" is a phonetic translation of the Russian word for \January" into

6

: : :

declare calendric system as russian;

declare x cursor for

select name, id, birthday,

age with property table a,

when employed as american

from employee

where month name of(birthday) = 'Jinvar' and

birthday < |2 Jinvar 1925| and

age > %60 years% as american

with property table b

when employed overlaps [1975];

procedure set x properties

sqlcode

set properties with x property table;

declare calendric system as american;

procedure open x cursor

sqlcode

open x;

: : :

Figure 2: Example of Calendric System and Property Selection

the Latin alphabet), while the american calendric system is used to interpret the span %60 years%. We

note that, in this instance, the function month name of is de�ned via the russian calendric system and

returns Russian month names. We assume that the implementation de�nes a globally scoped default

calendric system that is applies if no calendric system is globally declared.

6.2.2 Property Speci�cation

Properties may be speci�ed on both a global and a per-item basis. The properties contained in a property

table are activated by executing a set properties command. Those properties remain in e�ect, and can

inuence any intervening temporal operations, until explicitly deactivated by another set properties

command. In addition, a property table can be speci�ed for a single operation.

The mechanisms for property selection are dynamic. This contrasts with the mechanisms for calen-

dric system selection which are static. This distinction is consistent with our speci�cation of properties

as extensional|since the contents of the database can not be predicted a priori, the value of a property

cannot be known at compile-time. Static speci�cation of property tables is therefore not possible.

In Figure 2, the procedure set x properties contains a command that activates the properties

contained in the property table x property table. Invocation of this procedure causes the proper-

ties contained in that table to be activated. These properties remain active until explicitly overrid-

den by another set properties command. For example, if an application program calls the proce-

dure set x properties prior to calling the procedure open x cursor, then the properties contained in

x property table will override the properties in the default property table when the cursor is opened.

Conversely, naming a property table for an individual data item limits the activation of those

properties to the processing of that data item. For example, associated with the attribute age in

the select clause is a property table property table a. The properties in this table are activated

temporarily while time-stamps are being converted for the age attribute.

As mentioned in Section 5.2, a default table of property values is provided by the DBMS. The values

7

in the default property table are customized by local site personnel and are expected to be appropriate

for most situations at that site.

6.3 Built-in Functions

It is convenient to have simple mechanisms for data conversion and manipulation. To facilitate this,

we have de�ned nine built-in functions. These functions are categorized as either data constructors

(e.g., interval to compose an interval from two events), data deconstructors (e.g., begin to return the

starting event of an interval), or miscellaneous functions (e.g., first to return the prior of two events).

We emphasize that these functions are calendar independent. Additional calendar speci�c functions may

be de�ned by a calendar, an example being the function month name of de�ned in Section 6.2.

6.4 Arithmetic Expressions

Arithmetic operations on temporal values are necessary in many computations. For example, one may

wish to determine how many shopping days are left until Christmas, or the arrival time of a train given

its departure time and the duration of its trip.

We extended the basic arithmetic operators (/, +, -, *) for events, intervals, and spans. Our design

goals were to maximize orthogonality whenever possible and to overload existing operators, thereby

minimizing the complexity of the language. Expressions with intuitive semantics such as event + span

are allowed while expressions with unintuitive semantics such as interval + event are not.

6.5 Comparison Expressions

An important reason for incorporating time values into the DBMS is to determine the temporal relation-

ships between objects. For example, for the employee relation of Section 6.1, one might be interested in

who was hired during a particular year, or given two employees, who has more years of service.

Temporal comparison operators allows one to determine these relationships. A set of such operators

was de�ned for the event, interval, and span data types. We modi�ed the semantics of existing time

comparison operators, overlaps, <, =, >, and =, and added three new comparison operators, precedes,

meets, and contains. The operator set was derived by examining the comparison operators of other

temporal extensions to SQL [Ariav 1986, Ben-Zvi 1982, Navathe & Ahmed 1989, Sarda 1990]. It can be

shown that our operators subsume each of these proposals, and, in fact, our operators can express any

possible relationship between any of the temporal data types. Full details are provided elsewhere [Soo

& Snodgrass 1992].

6.6 Aggregate Functions

There are six SQL aggregate functions which operate on sets of values. We extended the semantics of

�ve of these functions, count, sum, avg, max, and min, to accommodate the temporal data types. The

sixth aggregate function count(*), which determines the number of rows in a table, is not relevant to

the discussion. As with arithmetic expressions, we identi�ed all applications of these functions to the

temporal types which have clear and intuitive semantics. For example, the sum of a set of span values

is clearly de�ned while the sum of a set of interval values is not.

6.7 Summary

Calendar independent constructs were added to SQL to support new time data types, temporal built-

in functions, temporal arithmetic and comparison, and aggregate functions. In addition, we de�ned

mechanisms for calendric system and property table selection, increasing the expressive power of the

query language through calendar speci�c operations.

Interestingly, the complexity of the language has actually decreased after subtracting the previous

temporal support and adding our temporal modi�cations. Seventeen keywords dealing with Gregorian

calendar constructs were deleted, and nine keywords for calendar independent constructs were subse-

quently added. This simpli�cation is primarily due to the fact that, in SQL2, calendar speci�c constructs

are implemented as keywords in the query language, while we support them through extensions of the

8

query language, in the form of calendar de�ned functions. In addition, we signi�cantly increase the

expressive power of the language, as SQL2 only supports a single calendar, the Gregorian calendar, and

a single language, English.

7 System Architecture

The language constructs just described provide their expressive power through extensibility: local users

can de�ne new calendars and calendric systems, reference them in queries, and can also alter the prop-

erties of calendars. Supporting this extensibility requires a more open architecture than that employed

in current database management systems.

In this section, we describe modi�cations to the architecture of a conventional relational DBMS to

support the language constructs of the previous section. We discuss only the components of the database

management system which must be modi�ed or extended to support our data model. Essential, but non-

germane, components such as concurrency control, recovery management, and storage access methods

are omitted.

7.1 Overview

Figure 3 contains a diagram showing the major components of the system. Each box in the �gure

represents a component of the system; a solid line arrow from one component to another indicates

that the former utilizes services provided by the latter. Data structures (non-procedural components)

are shown as ovals, and a dashed line arrow indicates a data structure contains a reference to another

component.

Query Processor

Run-time support

Syntax analyzer

Semantic analyzer

Uniform Calendric Support

(UCS)

Calendric system Calendric system

Calendar Calendar Calendar

Field value routineField value routine

Field value table

Field value table

Field Value Support

(FV)

Time-stamp ADT

(TADT)

Figure 3: System Architecture Overview

The �gure shows the following components.

� Query processor|a conventional query processing system extended to support the new temporal

constructs.

� Uniform calendric support (UCS)|an interface that manages access to the services provided by

calendars. Each calendric system is de�ned as a collection of data structures within the UCS.

Within the architecture, calendric systems have no procedural component; they merely provide a

mechanism for accessing the services exported by their calendars.

� Field Value Support (FV)|a set of tables and routines supporting extensible formatting of tem-

poral constants.

� Calendar|a set of tables and routines implementing calendar dependent operations. We note that,

as shown in Figure 3, calendars can be shared by multiple calendric systems.

� Time-stamp ADT (TADT) support|a set of routines encapsulating operations on physical time-

stamps. The TADT implements all temporal operations that do not require interpretation by a

calendar.

In Figure 3, it is readily apparent that the support for calendar dependent operations is partitioned

from the support for calendar independent operations. The UCS is responsible for executing, by using

9

the appropriate calendric system, all calendar dependent operations. The TADT, on the other hand,

provides calendar independent operations, speci�cally, memory management, and built-in, arithmetic,

comparison, and aggregate operations on time-stamps.

This distinction is the key aspect of our approach. We isolate operations requiring calendar in-

terpretation by encapsulating them within a calendar, and provide calendar independent operations

elsewhere. This allows the architecture to support extensibility and interchangeability of calendric sys-

tems and calendars.

As an example, consider the arithmetic operation of computing the sum of two span values. Vari-

able spans require calendar interpretation while �xed spans do not. Therefore, the TADT exports an

operation tadt fs add fs which adds two �xed spans, while a calendar must provide an operation for

adding variable spans to �xed spans, cal calendar vs add fs, and an operation for adding variable

spans to variable spans, cal calendar vs add vs. The UCS exports a generic span addition opera-

tion, ucs s add s, which the query processor invokes whenever a span addition operation is performed.

ucs s add s queries the TADT to determine if its parameters are variable or �xed spans, then calls the

appropriate TADT or calendar routine.

Extensibility of calendric systems and calendars is central to our architecture. We therefore support

de�nition of calendric systems and calendars by local site personnel. A base version of the DBMS will

likely include several calendars and calendric systems, and these calendars and calendric systems will

be adequate for most users. In addition, we anticipate a market for customized calendars and calendric

systems, with third party vendors specializing in developing such solutions.

Calendar and calendric system de�nition will be performed by a database implementor (DBI), a

person with su�cient knowledge of the internal workings of the DBMS to implement calendar-de�ned

functions and routines [Richardson & Carey 1987]. The DBI is responsible for supplying the support-

ing components of calendars and calendric systems and generating the resulting database management

system. To simplify this task, we have designed a DBMS generation toolkit that accepts calendar and

calendric system speci�cations provided by the DBI and composes the DBMS from those speci�cations

and preexisting components. The toolkit is described in Section 7.8.

We continue by describing the system components shown in Figure 3 in more detail. We use

pertinent examples, such as supporting variable span operations, to illustrate the design.

7.2 Time-stamp ADT Support

As previously mentioned, the TADT is responsible for all temporal operations that do not require

calendar interpretation. This includes all operations on event, interval, and �xed span values plus

auxiliary operations for time-stamp manipulation. The representations of all such values as stored in

the database are necessarily calendar independent [Dyreson & Snodgrass 1992]. Operations involving

variable spans require calendar support and are not implemented by the TADT.

As shown in Figure 3, the operations provided by the TADT are used by the run-time support of

the query processor, the UCS, and any calendars de�ned in the system. The query processor invokes the

TADT to allocate run-time data structures, as well as to execute all built-in, arithmetic, comparison, and

aggregate operations involving non-span operands. A calendar calls the time-stamp creation routines of

the TADT while computing a time-stamp equivalent to a temporal constant encountered in the input.

The UCS invokes the TADT to execute �xed span operations, as we discuss below.

7.3 Uniform Calendric Support

The UCS provides a generic interface to all calendar de�ned services. It is invoked by the query processor

to activate and deactivate calendric systems and properties, convert temporal constants to time-stamps,

convert time-stamps to temporal constants, resolve calendar de�ned functions, and execute all span

operations. It maintains data structures de�ning calendric systems, and invokes calendar operations on

behalf of the query processor. In general, the UCS is responsible for executing any operation which could

possibly be calendar dependent.

Speci�cally, event and interval computations are calendar independent. Hence, operations on events

and intervals, once translated into time-stamps, can be executed directly by the TADT. For example,

event values, i.e., time-stamps in the physical representation, do not require a calendar interpretation;

10

their time-stamps completely describe their values. Therefore, operations on event values, such as

event precedes interval, are simple time-stamp manipulations that can be performed directly by the

TADT. However, for operations involving span values, it is not known if the operation is calendar

independent until the time-stamps of the operands are examined. Variable spans require calendar support

while operations involving only �xed spans do not. The query processor is not capable of resolving this

since, in the type system of the query language, variable spans and �xed spans are not distinguished.

Therefore, the TADT provides a routine tadt is variable span which determines if a span is variable

or �xed. The UCS calls this routine to determine if any operand is variable and, if so, invokes a calendar

to perform the given operation. Otherwise, the operation is passed to the TADT which performs the

computation. Interestingly, almost two-thirds of the UCS routines are these simple \tra�c-control"

routines related to variable spans. We will describe in more detail the interface between the UCS and a

calendar in Section 7.7.

We describe the UCS operations supporting calendric system selection, property activation, con-

stant translation, time-stamp translation, and calendar de�ned function binding in the next section.

7.4 Query Processing Subsystem

In our limited context, the query processing system is responsible for invoking the UCS when calen-

dar support might possibly be required for a certain operation and for invoking TADT routines when

executing operations that are clearly calendar independent.

The TADT solely provides run-time operations such as temporal arithmetic; the UCS provides

operations that support the query processing system at both compile-time and run-time. The query

processing system invokes the UCS during semantic analysis to perform calendric system binding, and

type checking and binding of calendar de�ned functions, such as month name of. During query execution,

the query processor invokes the UCS to translate temporal constants into time-stamps, translate time-

stamps into output strings, and activate and deactivate calendric systems and properties. We note that

the syntax analyzer of the query processor does not require either UCS or TADT provided services. The

syntax analyzer must, of course, be able to recognize and parse the language constructs described in

Section 6.

We continue by describing, in detail, the modi�cations to the semantic analyzer and the run-time

system of the query processor.

7.4.1 Semantic Analysis

Semantic analysis is responsible for ensuring the semantic correctness of the query, that is, such tasks

as type checking and binding of names are performed by the semantic analyzer. It is preferable to

perform these tasks at compile-time since programmer intervention is normally required when semantic

errors occur. We have attempted to maximize the amount of semantic checking possible at compile-time,

though some semantic checking must be delayed until run-time for exibility.

The binding of calendric systems and calendar de�ned functions occurs at compile-time. This is

made possible by the static scoping of declare calendric system commands, as discussed in Section 6.

When this command is parsed, the semantic analyzer invokes the UCS to verify that the named calendric

system actually exists. If so, the UCS records the named calendric system as being the currently

active calendric system. Later, when a calendar de�ned function such as month name of in Figure 2 is

encountered, the semantic analyzer invokes the UCS to bind that function to its implementation. The

UCS veri�es that the function is de�ned via the current calendric system, and performs type checking

on the function's parameters. In Figure 2, this directs the UCS to use the russian calendric system

when resolving the function month name of.

Other minor extensions to the semantic analyzer are required, including type evaluation and check-

ing of temporal arithmetic and comparison expressions and of related constructs such as procedure

parameters. Such extensions do not require UCS or TADT support.

7.4.2 Run-time System

Several aspects of our language proposal cannot be satis�ed by compile-time resolution and therefore

require run-time resolution. Speci�cally, temporal constants cannot be evaluated at compile-time, in

11

contrast to arithmetic or string constants. This is because the meaning of a temporal constant such as

|1 January 1900| depends not only on a calendar, but also on the set of active calendar properties,

which are unknown at compile-time. For example, consider the declaration of cursor x in Figure 2. At

compile-time, the semantic analyzer knows that the russian calendric system is to be used to evaluate

the constant [1975]. However, SQL semantics state that the query is not evaluated until the cursor

is opened, that is, until the procedure open x cursor is called, and, in general, it is impossible to tell

what the active set of properties will be at that time. In this case, the semantic analyzer associates with

[1975] the name of its calendric system. When the cursor is opened at run-time, the query processor

retrieves the name of the calendric system and invokes the UCS to activate it. If a property table were

speci�ed for [1975] via a with clause, the properties in the property table would also be activated. The

constant is then passed to the UCS for evaluation.

While this may delay the detection of errors, we feel that this exibility is desirable. As discussed

in Section 5.3, properties are, by nature, extrinsic to a calendar and are most appropriately stored

extensionally where they can be manipulated and changed. Since the extension of a relation is only

known at run-time, compile-time evaluation of temporal constants is precluded.

The run-time system of the query processor utilizes services exported by both the TADT and the

UCS. When performing operations that could possibly require calendar support, the run-time system

invokes UCS provided routines, and when performing operations that are clearly calendar independent,

the run-time system invokes TADT provided routines.

This partitioning has been mentioned before, but we note here that the query processor is able to

determine the correct module to invoke based on typing information and the kind of operation being

performed. For example, calendric system and property manipulation statements such as declare

calendric system, set properties, and the with and as clauses are supported by UCS routines.

Furthermore, operations such as span + span might require calendar support depending on if either

operand is a variable span. Such operations are routed to the UCS which makes the determination about

the type of spans being added then either invokes the TADT if both spans are �xed or invokes a calendar

any of the spans is variable. Conversely, operations such as event - event, event precedes interval, and

intersect(interval, interval) which do not involve calendar dependent operands are passed directly to

the TADT for evaluation.

7.5 Calendric System Data Structures

As previously mentioned, a calendric system is represented by data structures within the UCS; calendric

systems contain no procedural components. From an architectural standpoint, a calendric system exists

solely to integrate calendars and to supply a mechanism for accessing the facilities those calendars provide.

As such, static data structures identifying calendars and the services exported by those calendars are all

that is needed to implement a calendric system.

A calendric system data structure contains three components, the name of the calendric system,

the calendars and epochs de�ned for the calendric system, and a list of routines. The set of routines

de�ned by each calendric system is the collection of routines de�ned by each calendar composing the

calendric system. This list is collected by the DBMS generation toolkit described in Section 7.8.

When a temporal constant is encountered in a query, the UCSmust select a calendar of the calendric

system to translate the constant into a timestamp. This is necessary since several calendars within the

same calendric system may be capable of translating a given constant. We describe a DBI-controlled

mechanism for calendar selection elsewhere [Soo et al. 1992].

7.6 Field Value Support

The �eld value support module provides a set of tables and routines that allow extensible formatting of

temporal constants. Speci�cally, the �eld value support module exports services that translate between

an internal parsed representation of a temporal constant and the textual external representation of that

constant. Field value support has been separated from calendars in the architecture because distinct

calendars may make use of the same �eld value table and routines.

The �eld value support performs two functions. First, routines are provided to internally name

and access �eld value tables. Second, routines are provided that actually perform the translation of

12

index values into text strings. Field value tables relate index values and text strings. We note here that,

while conceptually table-driven, the �eld value support also supports the procedural translation of index

values. These services are used by the UCS when translating strings into time-stamps and time-stamps

into strings. A detailed example is provided in the next section.

7.7 Calendars

The calendar is the most critical component of the architecture. It represents the local adaptation of

temporal semantics within the architecture, and so the majority of its contents must be provided by the

DBI. These contents include calendar unique functions, routines supporting temporal constant evaluation

and time-stamp evaluation, and calendar dependent aggregate, arithmetic, and comparison operations.

These routines constitute the services the calendar exports to the UCS.

Constructing calendar routines may be di�cult for the DBI. Consequently, whenever possible we

have identi�ed common processing that must be present in all calendars, and shifted that code into the

UCS to minimize the DBI's programming e�ort. Shifting processing to the UCS is made possible by

using table-driven algorithms. Calendars provide tables describing data formats and �eld values to the

UCS; the UCS uses this information to interpret input data or construct output data. In particular, in

Section 5.2 properties allow local adaptation of semantics. At the query language level, properties are

used to parameterize calendars, and property values a�ect the result of calendar operations. However,

at the architectural level, our goal is to simplify the implementation of calendars as much as possible.

Consequently, we have moved the interpretation and application of property values out of the calendar

and into the UCS. Calendars are not required to interpret property values directly, and whenever possible,

the UCS pre-processes the data to apply the e�ects of property values.

7.8 Generating Calendars and Calendric Systems

To ease the task of integrating new calendric systems and calendars into the DBMS, we have designed

a toolkit that generates calendric system data structures and some of the components of calendars from

higher-level speci�cations.

This architecture shares the characteristics of most extensible DBMSs, in that certain aspects are

bound at DBMS-generation time, other aspects are bound at schema-de�nition time, and still other

aspects are bound during query evaluation. Speci�cally, in our design calendars and calendric systems

are declared when a DBMS is generated; the calendric system is bound at schema de�nition time (or

more precisely, when an SQL module is compiled), and properties, such as output format, are bound at

query evaluation time.

7.9 Architectural Implications for Extensibility

A well-known concern with extensible DBMSs is that extensions are error-prone|they interact with

the core DBMS, but are developed separately, and usually by less experienced personnel. These errors

can a�ect not only the correctness of the extension, but the correctness, performance, and security of

the DBMS itself. In our context, the DBI must be concerned with protecting the DBMS from errors

introduced by calendars. However, this protection must be balanced with the degree of exibility needed

to meet a given site's requirements.

There are several ways that a site's requirements can be met while still ensuring that calendars

do not adversely a�ect the DBMS. Many site-speci�c adaptations can be accommodated through the

manipulation of properties, with little exposure to security violations, and little impact on correctness

or performance. For greater extensibility, the DBI can insist that only vendor supplied calendars be

installed, assuming the site's requirements can be met through vendor developed packages. If the vendor

code is well-tested, then it is safe assumption that the calendar will not adversely a�ect the DBMS. If the

site's requirements cannot be met by available packages, the architecture has been designed to simplify

the construction of calendars as much as possible. Much of the processing has been moved outside of

the calendars and into the UCS and the TADT, and the generation toolkit is designed to minimize the

actual programming e�ort required for a calendar. If the DBI can be trusted to write correct code, the

architecture accommodates a high degree of exibility.

13

A related issue is how to isolate calendars from the DBMS internally within the architecture. As

previously mentioned, the interaction between the calendar and other modules has been minimized as

much as possible. Calendars invoke only TADT operations, and this is necessary since the time-stamp

representation is encapsulated within the TADT. Also, whenever possible, parameters passed from the

UCS to a calendar and from a calendar to the TADT are passed by value rather than by reference

to minimize the chance of memory contamination. Lastly, the architecture accommodates a variety of

implementation strategies for calendar address spaces. Calendars can share the DBMS's address space,

or exist in a separate address space, either their own or the user's address space. These options represent

a tradeo� between performance and risk of contamination. Highest performance is possible in the address

space of the DBMS, at the risk of having the least isolation. The performance di�erence between the

remaining two options is negligible. However, we note that the code space required to duplicate calendars

in individual user processes could be substantial, and failure of a calendar could cause failure of the user

process. Lastly, if calendars occupy their own, separate address spaces, their services can conceivably be

made available system-wide, as opposed to the DBMS exclusively, thus encapsulating calendar services

for the computing system as a whole.

The architecture accommodates a spectrum of strategies for calendar extensibility. The DBI must

balance exibility and performance against the risk of errors when selecting or developing new calendars

for an installation. The architecture aids in this process by easing the development of new calendars, and

simplifying their interaction with other components. If desired, a great degree of exibility is available.

Otherwise, the design attempts to simplify the extension process as much as possible.

8 Related Work

Several investigations into conceptual database time have been made. Anderson developed a formal

framework to support conceptual time spaces using inheritance hierarchies [Anderson 1982, Anderson

1983]. Her model also supports multiple conceptual times; this work can be considered a practical

extension of the concepts developed by Anderson. However, our work di�ers in that it is designed as

the �rst step in a general extension of SQL to support time, and as such, forms the basis for exploring

temporal semantics beyond those of Anderson's.

Cli�ord and Rao developed a framework for describing temporal domains using naive set theory

and algebra [Cli�ord & Rao 1987]. This work allows a hierarchy of calendar independent domains to be

built and temporal operators to be de�ned between objects of a single domain and between objects of

di�erent domains. The framework is powerful but lacks the ability to describe time domains that are

inconsistent with domains of larger units. For example, weeks are inconsistent with months since a whole

number of weeks do not ordinarily correspond to a single month. Our work removes this limitation by

making the semantics of any conceptual time unit user-de�nable. The user is not tied to any prede�ned

notion of time or time domain.

Allen motivated the interval as a fundamental temporal entity [Allen 1983]. He formalized the set

of possible relationships which could hold between two intervals and developed an inference algorithm to

maintain the set of temporal relationships between entities. We use Allen's work on interval relationships

as the basis for de�ning new temporal comparison operators in SQL.

Other time extensions to SQL have been proposed. Date proposed augmenting SQL with date and

time data types [Date 1988]. He extended SQL with facilities to support a single calendar, the Gregorian

calendar. Also included were syntax and semantics for arithmetic and boolean expressions involving

time. A single uni�ed data type, the interval, was de�ned and used to represent both durations of time

and events in time. This uni�cation allows a high degree of orthogonality in temporal expressions but

causes semantic di�culties since the distinction between event and duration objects is blurred. Also, the

specialization of the solution to a single calendar limits its generality.

Many other researchers have developed sophisticated time-oriented data models and extended SQL

to support these data models [Ariav 1986, Ben-Zvi 1982, Navathe & Ahmed 1989, Sarda 1990]. Generally,

this line of research has ignored the issue of temporal constants or has assumed the use of a single calendar

system. Additional papers concerning temporal data models and query languages other than SQL can

be found in the collected bibliographies on time in databases [Bolour et al. 1982, McKenzie 1986, Soo

1991, Stam & Snodgrass 1988].

14

In the commercial arena, as previously mentioned, several systems with support for temporal data

types exist [Oracle 1987, Tandem 1983]. These implementations are limited in scope and are, in general,

unsystematic in their design. Date provides a thorough critique of one of the systems, DB2 [Date &

White 1990, Date 1988].

The extensibility of calendars and calendric systems is a limited form of database extensibility

[Carey & Haas 1990]. Our proposal supports query language extensibility in the form of calendar func-

tions, and presentation extensibility in the form of time display customization. We note that the temporal

types utilized in the query language are not extensible, though the domain of spans can be enlarged with

variable spans de�ned through a calendar.

Several extensible prototypes o�er the capability to construct abstract data types (ADTs) [Stone-

braker et al. 1990], and it is reasonable to ask whether time can be adequately supported as an ADT. We

feel that it cannot. Time is a fundamental data type|many DBMSs provide it and most applications

use it. Indeed, the SQL2 proposal [Melton 1990], in addition to the SQL variant supplied with IBM's

DB2 [Date & White 1990], both provide special support for time. As such it is appropriate for temporal

data to be supported by the DBMS directly rather than supported by a local extension. Furthermore,

calendar selection would be awkward to specify in a query if added as a database extension rather than

providing base query language constructs to the user. In particular, compile-time checking of calendar

functions, which is possible using static scoping, would be precluded if time were supported strictly as

an ADT.

9 Conclusions

We have proposed an extension to SQL and a system architecture addressing the problem of time value

representation in a conventional relational database management system. The contributions of this

approach can be summarized as follows.

� We argued that many di�erent calendars are in use, due to the cultural, linguistic, legal, and

business concerns of users, and we showed how supporting multiple calendars and parameterizing

calendars by properties can address these needs.

� We introduced the novel concepts of spans, calendric systems, calendars, and calendar properties.

� We extended SQL2 to support multiple calendars and calendric systems, and, in the process,

reduced the complexity of the language while increasing its expressive power.

� We proposed an architecture that permits the database implementor (DBI) at a local site to

de�ne new calendars and calendric systems, and allows the database administrator and users to

parametrize those calendars, providing limited extensibility of this simple but important component

of the DBMS.

� Our architecture moves most of the processing of time into two modules, the temporal abstract

data type module, and the uniform calendric support module, and out of the DBI-supplied calendar

modules, thereby separating the universal aspects of time from the user dependent aspects.

The key aspect of the proposal is that the DBMS support needed for the user dependent aspects of time

is partitioned from the support for the universal aspects of time, and this partitioning is present at both

the query language and system architecture levels.

10 Acknowledgements

The development of this system has been the joint e�ort of Curtis Dyreson, Suchen Hsu, Christian S.

Jensen, Nick Kline, Richard Snodgrass, and Michael Soo.

Support for this research was provided in part by the National Science Foundation through grant

IRI-8902707 and by the IBM Corporation through contract #1124.

15

11 Bibliography

[Allen 1983] Allen, J .F. \Maintaining Knowledge about Temporal Intervals." Communications of the

Association of Computing Machinery, 26, No. 11, Nov. 1983, pp. 832{843.

[Anderson 1982] Anderson, T. L. \Modeling Time at the Conceptual Level," in Proceedings of the Interna-

tional Conference on Databases: Improving Usability and Responsiveness. Ed. P. Scheuermann.

Jerusalem, Israel: Academic Press, June 1982, pp. 273{297.

[Anderson 1983] Anderson, T. L. \Modeling Events and Processes at the Conceptual Level," in Proceed-

ings of the Second International Conference on Databases. Ed. S.M. Deen and P. Hammersley.

The British Computer Society. Cambridge, Great Britain: Wiley Heyden Ltd., 1983.

[Ariav 1986] Ariav, G. \A Temporally Oriented Data Model." ACM Transactions on Database Systems,

11, No. 4, Dec. 1986, pp. 499{527.

[Batory et al. 1988] Batory, D., J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell and T. Wise.

\GENESIS: An Extensible Database Management System." IEEE Transactions on Software

Engineering, 14, No. 11, Nov. 1988, pp. 1711{1730.

[Ben-Zvi 1982] Ben-Zvi, J. \The Time Relational Model." PhD. Dissertation. Computer Science De-

partment, UCLA, 1982.

[Bolour et al. 1982] Bolour, A., T. L. Anderson, L. J. Dekeyser and H. K. T. Wong. \The Role of Time

in Information Processing: A Survey." SigArt Newsletter, 80, Apr. 1982, pp. 28{48.

[Carey & Haas 1990] Carey, M. and L. Haas. \Extensible Database Management Systems." ACM

SIGMOD Record, 19, No. 4, Dec. 1990, pp. 54{60.

[Carey et al. 1986] Carey, M.J., D.J. DeWitt, J.E. Richardson and E.J. Shekita. \Object and File

Management in the EXODUS Extensible Database System," in 1986 VLDB Conference. VLDB.

Kyoto, Japan: Aug. 1986, pp. 1{27.

[Cli�ord & Rao 1987] Cli�ord, J. and A. Rao. \A Simple, General Structure for Temporal Domains," in

Proceedings of the Conference on Temporal Aspects in Information Systems. AFCET. France:

May 1987, pp. 23{30.

[Digital 1991] DEC \Digital Guide to Developing International Software." Digital Press, 1991.

[Date & White 1990] Date, C. J. and C. J. White. \A Guide to DB2." Reading, MA: Addison-Wesley,

1990. Vol. 1, 3rd edition.

[Date 1988] Date, C.J. \A Proposal for Adding Date and Time Support to SQL." SIGMOD Record, 17,

No. 2, June 1988, pp. 53{76.

[Dyreson & Snodgrass 1992] Dyreson, C. E. and R. T. Snodgrass. \Time-stamp Semantics and Repre-

sentation." TempIS Technical Report 33. Computer Science Department, University of Arizona.

Feb. 1992.

[Haas et al. 1990] Haas, L., Chang, W., Lohman, G., McPherson, M., Wilms, P., Lapis, G., Lindsay, B.,

Pirahesh, H., Carey, M., and E. Shekita. \Starburst Mid-Flight: As The Dust Clears." IEEE

Transactions on Knowledge and Data Engineering, 2, No. 1, Mar. 1990, pp. 143{160.

16

[McKenzie 1986] McKenzie, E. \Bibliography: Temporal Databases." ACM SIGMOD Record, 15, No.

4, Dec. 1986, pp. 40{52.

[Melton 1990] Melton, J. (ed.) \Solicitation of Comments: Database Language SQL2." American

National Standards Institute, Washington, DC, 1990.

[Navathe & Ahmed 1989] Navathe, S. B. and R. Ahmed. \A Temporal Relational Model and a Query

Language." Information Sciences, 49 (1989), pp. 147{175.

[Oracle 1987] Oracle Computer, Inc. \ORACLE Terminal User's Guide." Oracle Corporation, 1987.

[Richardson & Carey 1987] Richardson, J.E. and M.J. Carey. \Programming Constructs for Database

System Implementation in EXODUS," in Proceedings of the ACM SIGMOD Annual Conference.

Ed. U. Dayal and I. Traiger. Association for Computing Machinery. San Francisco, CA: ACM

Press, May 1987, pp. 208{219.

[Sarda 1990] Sarda, N. \Extensions to SQL for Historical Databases." IEEE Transactions on Knowledge

and Data Engineering, 2, No. 2, June 1990, pp. 220{230.

[Silberschatz et al. 1990] Silberschatz, A., M. Stonebraker and J. Ullman. \Database Systems: Achieve-

ments and Opportunities." ACM SIGMOD Record, 19, No. 4, Dec. 1990, pp. 6{22.

[Snodgrass & Ahn 1986] Snodgrass, R. T. and I. Ahn. \Temporal Databases." IEEE Computer, 19, No.

9, Sep. 1986, pp. 35{42.

[Soo 1991] Soo, M. D. \Bibliography on Temporal Databases." ACM SIGMOD Record, 20, No. 1, Mar.

1991, pp. 14{23.

[Soo & Snodgrass 1992] Soo, M. D. and R. Snodgrass. \Mixed Calendar Query Language Support for

Temporal Constants." TempIS Technical Report 29. Computer Science Department, University

of Arizona. October 30, 1991 1992.

[Soo et al. 1992] Soo, M. D., R. Snodgrass, C. Dyreson, C. S. Jensen and N. Kline. \Architectural

Extensions to Support Multiple Calendars." TempIS Technical Report 32. Computer Science

Department, University of Arizona. Revised May 1992.

[Stam & Snodgrass 1988] Stam, R. and R. Snodgrass. \A Bibliography on Temporal Databases."

Database Engineering, 7, No. 4, Dec. 1988, pp. 231{239.

[Stonebraker et al. 1990] Stonebraker, M., L. Rowe and M. Hirohama. \The Implementation of POST-

GRES." IEEE Transactions on Knowledge and Data Engineering, 2, No. 1, Mar. 1990, pp.

125{142.

[Tandem 1983] Tandem Computers, Inc. \ENFORM Reference Manual." Cupertino, CA, 1983.

17

A Error Messages

The following is a list of error messages produced by multical. Each message is followed by a description

of the message, the compiler recovery action, and the suggestions for correcting the error. The severity

level is also speci�ed. The particular kind of error is indicated by the numbering scheme.

� Unnumbered messages are from the shell.

� Messages numbered between 1 and 29 are fatal errors.

� Messages numbered between 30 and 59 indicate a currently unsupported feature of SQL2.

� Messages numbered between 100 and 199 indicate syntactic errors during syntactic analysis.

� Messages numbered between 200 and 229 are concerned with name resolution.

� Messages numbered between 230 and 239 are concerned with calendar functions.

� Messages numbered between 240 and 299 are concerned with type checking violations.

� Messages numbered between 300 and 399 are concerned with errors encountered during query

interpretation.

30 Internal error.

Fatal. Internal error in resolvecalendarspec.

31 Internal system error.

Fatal. Internal error in resolvecalendarpropertyspec.

32 Illegal type value

Fatal.

33 Illegal return type

Fatal.

34 Invalid type

Fatal.

35 Illegal binary operation

Fatal.

36 Illegal pre�x operator

Fatal.

37 Illegal aggregate expression

18

Fatal.

38 Illegal value expression

Fatal.

39 Invalid condition

Fatal.

40 Invalid value speci�cation

Fatal.

41 Illegal set statement

Fatal.

42 Invalid statement

Fatal.

60 Cursors are not supported.

Fatal.

61 These expressions are not type checked

Fatal.

62 Subqueries are not supported

Fatal.

200 Table not de�ned.

Severe. No table with this name can be located.

Recovery Action: The statement is ignored.

To correct the error : Either change the name, or de�ne the table.

201 Tuple variable not found.

Severe. No tuple variable of this name has been declared.

Recovery Action: The statement is ignored.

To correct the error : Either change the name, or declare this tuple variable in the From clause.

202 Unde�ned calendric system.

Severe. A calendric system that does not exist has been referenced.

19

Recovery Action: The statement is ignored.

To correct the error : Either reference an existing calendric system, or ask the DBA to create

this calendric system.

203 Ambiguous column.

Severe. The speci�ed column is de�ned in two tables associated with tuple variables declared

in the From clause.

Recovery Action: The statement is ignored.

To correct the error : Change the column name or remove one of the tuple variables.

204 Column not found.

Severe. This column has not been de�ned in any of the tables associated with the tuple vari-

ables declared in the From clause.

Recovery Action: The statement is ignored.

To correct the error : Change the column name, add a tuple variable to the From clause, or add

this column to one of the tables referenced in the From clause.

205 Undeclared calendric function

Severe.

Recovery Action: The statement is ignored.

206 Unde�ned column in table associated with tuple variable <name>.

Severe. The column has not been de�ned in the table associated with this tuple variable.

Recovery Action: The statement is ignored.

To correct the error : Change the column name, specify a di�erent tuple variable, or add the

column to the indicated table.

240 Illegal operation on a temporal value

Severe.

Recovery Action: The statement is ignored.

241 Illegal operation on a char value

Severe.

Recovery Action: The statement is ignored.

242 Char value compared with another type

Severe.

Recovery Action: The statement is ignored.

243 Event compared with another type

20

Severe.

Recovery Action: The statement is ignored.

244 Span compared with another type

Severe.

Recovery Action: The statement is ignored.

245 Interval compared with another type

Severe.

Recovery Action: The statement is ignored.

246 An interval cannot be multiplied

Severe.

Recovery Action: The statement is ignored.

247 An event cannot be multiplied

Severe.

Recovery Action: The statement is ignored.

248 An interval cannot be divided

Severe.

Recovery Action: The statement is ignored.

249 An event cannot be divided

Severe.

Recovery Action: The statement is ignored.

250 A span cannot be multiplied by an interval

Severe.

Recovery Action: The statement is ignored.

251 A span cannot be multipled by an event

Severe.

Recovery Action: The statement is ignored.

252 Only a span can be added to a span

Severe.

Recovery Action: The statement is ignored.

21

253 Only a span or an event can be added to a span

Severe.

Recovery Action: The statement is ignored.

254 Only a span can be subtracted from an interval

Severe.

Recovery Action: The statement is ignored.

255 Only an event or a span can be subtracted from an event

Severe.

Recovery Action: The statement is ignored.

256 Unary minus cannot be applied to an event

Severe.

Recovery Action: The statement is ignored.

257 Unary minus cannot be applied to an interval

Severe.

Recovery Action: The statement is ignored.

258 Begin should have exactly 1 argument

Severe.

Recovery Action: The statement is ignored.

259 An interval should appear here

Severe.

Recovery Action: The statement is ignored.

260 End should have exactly one argument

Severe.

Recovery Action: The statement is ignored.

261 An interval should appear here

Severe.

Recovery Action: The statement is ignored.

262 First should have exactly two arguments

Severe.

22

Recovery Action: The statement is ignored.

263 First requires two events as arguments

Severe.

Recovery Action: The statement is ignored.

264 Last should have exactly two arguments

Severe.

Recovery Action: The statement is ignored.

265 Last requires two events as arguments

Severe.

Recovery Action: The statement is ignored.

266 Interval should have exactly two arguments

Severe.

Recovery Action: The statement is ignored.

267 Interval requires two events as arguments

Severe.

Recovery Action: The statement is ignored.

268 Intersect should have exactly two arguments

Severe.

Recovery Action: The statement is ignored.

269 Intersect requires two intervals as arguments

Severe.

Recovery Action: The statement is ignored.

270 Span should have exactly one argument

Severe.

Recovery Action: The statement is ignored.

271 An interval is required here

Severe.

Recovery Action: The statement is ignored.

272 Absolute requires one argument

23

Severe.

Recovery Action: The statement is ignored.

273 A span is required here

Severe.

Recovery Action: The statement is ignored.

274 A char or interval is not allowed here

Severe.

Recovery Action: The statement is ignored.

275 A char or interval is not allowed here

Severe.

Recovery Action: The statement is ignored.

276 A char or interval is not allowed here

Severe.

Recovery Action: The statement is ignored.

277 A char, event, or interval is now allowed as an argument to sum

Severe.

Recovery Action: The statement is ignored.

278 Events can only precede events or intervals

Severe.

Recovery Action: The statement is ignored.

279 Intervals can only precede events or intervals

Severe.

Recovery Action: The statement is ignored.

280 Only intervals can meet intervals

Severe.

Recovery Action: The statement is ignored.

281 Events can overlap only intervals

Severe.

Recovery Action: The statement is ignored.

24

282 Intervals can overlap only events or intervals

Severe.

Recovery Action: The statement is ignored.

283 An event or interval expected as the �rst argument to overlap

Severe.

Recovery Action: The statement is ignored.

284 Only intervals can contain other intervals

Severe.

Recovery Action: The statement is ignored.

285 Events and intervals cannot be inequality compared

Severe.

Recovery Action: The statement is ignored.

286 Intervals can only precede events or intervals

Severe.

Recovery Action: The statement is ignored.

25

Contents

1 Introduction 1

2 Using multical 1

3 Error Messages 1

4 Supporting Multiple Calendars 2

5 Physical Time, Calendars, and Calendric Systems 2

5.1 Physical Time : 3

5.2 Calendars : 3

5.3 Calendric Systems : 4

5.4 Summary : 4

6 SQL Language Modi�cations 5

6.1 Data Types : 5

6.2 Calendric System and Property Selection : 6

6.2.1 Calendric System Speci�cation : 6

6.2.2 Property Speci�cation : 7

6.3 Built-in Functions : 8

6.4 Arithmetic Expressions : 8

6.5 Comparison Expressions : 8

6.6 Aggregate Functions : 8

6.7 Summary : 8

7 System Architecture 9

7.1 Overview : 9

7.2 Time-stamp ADT Support : 10

7.3 Uniform Calendric Support : 10

26

7.4 Query Processing Subsystem : 11

7.4.1 Semantic Analysis : 11

7.4.2 Run-time System : 11

7.5 Calendric System Data Structures : 12

7.6 Field Value Support : 12

7.7 Calendars : 13

7.8 Generating Calendars and Calendric Systems : 13

7.9 Architectural Implications for Extensibility : 13

8 Related Work 14

9 Conclusions 15

10 Acknowledgements 15

11 Bibliography 16

A Error Messages 18

27

