
Towards an Infrastructure for

Temporal Databases

Report of an Invitational ARPA/NSF

Workshop

Niki Pissinou, Richard T. Snodgrass,

Ramez Elmasri, Inderpal S. Mumick,

M. Tamer

�

Ozsu, Barbara Pernici,

Arie Segev, Babis Theodoulidis and

Umeshwar Dayal

TR 94-01

March 1, 1994

1



Executive Summary

Temporal databases has been an active area of research for the the last �fteen years, with

a corpus nearing 800 papers. While most applications need to store time-varying data, there are

no widely used commercial temporal databases. A primary reason for the absence of technology

transfer from research to practice is the lack of a commonly accepted consensus data model or query

language upon which to base research and development. Even the terminology is inconsistent.

On June 14{16, 1993, the International Workshop on an Infrastructure for Temporal Databases

was held in Arlington, TX. Forty-four prominent researchers from ten countries and from ten in-

dustrial labs and companies and from many universities participated in this workshop. Much of

the workshop comprised intensive meetings of four working groups. Additionally, there was sub-

stantial e�ort both before the meeting, to prepare infrastructure proposals for debate, and after

the meeting, to build on the insights that emerged from the discussion.

The �rst working group discussed characteristics of the various application areas that could

bene�t from temporal databases, and strove to identify essential features to be provided by a

temporal database system in order to be usable by these di�erent communities as well as features

and functionality for which additional research is needed. This group emphasized the need for

(a) identifying core functionality to be provided by the temporal database management system

(TDBMS), and the associated removal of such features such as temporal reasoning from this

infrastructure, (b) ways to bridge the \conceptual gap" between the TDBMS research community

and the potential user community, and (c) an open architecture, so that handling for time could

be integrated into existing tools, instead of requiring the wholesale incorporation of a TDBMS.

The second group considered the much narrower topic of how SQL-92 could be extended to

support time. The primary realization was that there were three fundamental, and contradictory,

viewpoints on how time should be incorporated in SQL: (a) the required additional support is

primarily in the algebraic operators and in the syntax; the underlying data model need not be

changed; (b) e�orts should be directed solely towards adding time to the SQL3 proposal; and (c)

a two-pronged approach should be adopted in which parallel e�orts would consider adding time

to SQL-92 and to SQL3. Whatever the approach, it was agreed that the temporal data model

underlying the language be designed solely in terms of its semantic properties, with distinct and

possibly multiple data models being employed for representation and presentation.

The third working group attempted to identify infrastructure for the next generation of tem-

poral database concepts, including extensions of the relational data model as well as the adoption

of concepts from the semantic, object-oriented, and active data models. The participants felt that

the object-oriented data models, particularly in conjunction with SQL3, provide the most appro-

priate basis for future work. However, research into temporal object bases and temporal active

databases is still in its very early stages, and so the infrastructure discussed here entails primarily

a core set of concepts and terminology.

The �nal working group attempted to classify representational models and system imple-

mentation techniques and to propose a TDBMS reference architecture. It was decided that the

reference architecture should not di�er markedly from those of non-temporal DBMSs, and that

extensibility at all levels is a vital characteristic of the architecture, if diverse storage models,

temporal algebras, execution algorithms, and query optimization strategies are to be employed.

Common themes ran through the discussions of all four groups. The infrastructure must be

based on a base set of desired features, so that most temporal applications receive at least some

support from the temporal DBMS. Terminology is critical. Aspects of the conceptual model must

be separated from concerns of the representation. The baseline architecture must be extensible,

and should identify what is di�erent about a temporal DBMS, and what can vary between TDBMS

implementations.

i



Contents

Executive Summary i

1 Introduction 1

2 Group A: Special Requirements and Approaches 2

2.1 Introduction and Group Charter : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

2.2 Current Status of the Field : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

2.3 Discussion of Glossary Terms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.4 Features to be Supported by a TDBMS : : : : : : : : : : : : : : : : : : : : : : : : 3

2.4.1 General Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.4.2 Basic Functionality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.4.3 Additional Needs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.5 Conclusion and Follow-on E�orts : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3 Group B: Extending SQL-92 6

3.1 Introduction and Group Charter : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.2 Current Status of the Field : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.3 Level of Language Support : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.4 Desired Functionality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.5 Separation of Concerns : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.6 Unresolved Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3.7 Conclusion and Follow-on E�orts : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4 Group C: Advanced Relational and Non-Relational Temporal Databases 16

4.1 Introduction and Group Charter : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.2 Current Status of the Field : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

4.2.1 Temporal Object Based Modeling : : : : : : : : : : : : : : : : : : : : : : : 17

4.2.2 Active & Real-Time Databases : : : : : : : : : : : : : : : : : : : : : : : : : 18

4.3 Next Generation Temporal Data Modeling Concepts : : : : : : : : : : : : : : : : : 19

4.4 Active and Temporal Database Concepts : : : : : : : : : : : : : : : : : : : : : : : : 20

4.5 Temporal Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

4.5.1 Temporal Rules in a Non-temporal Database : : : : : : : : : : : : : : : : : 22

4.5.2 Temporal Rules in Temporal Databases : : : : : : : : : : : : : : : : : : : : 25

4.5.3 Actions of Rules in Temporal Databases : : : : : : : : : : : : : : : : : : : : 25

4.6 Temporal Consistency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

4.7 Real Time Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

4.8 Conclusion and Follow-on E�orts : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

5 Group D: Implementation 29

5.1 Introduction and Group Charter : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

5.2 Current Status of the Field : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

5.3 Baseline Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

5.4 Performance Benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

5.5 Extensible Query Processing Architecture : : : : : : : : : : : : : : : : : : : : : : : 31

5.6 Conclusion and Follow-on E�orts : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

6 Conclusions 32

ii



7 Acknowledgements 33

A Group Members 34

B Proceedings Abstracts 35

References 47

Workshop Call for Position Papers 54

List of Figures

1 Interaction of Conceptual and Representational Data Models : : : : : : : : : : : : 14

iii



1 Introduction

Temporal databases has been an active area of research for the last �fteen years, with a corpus

nearing 700 papers [KLINE93]. Most database conferences include at least one paper on tempo-

ral databases (TDB). Temporal databases are now discussed in several undergraduate database

textbooks. There are perhaps one hundred researchers actively studying temporal databases.

During that time an astonishing diversity of temporal data models and query languages has

arisen. Most applications, whether business, engineering, medical, or scienti�c, need to store

historical data.

Surprisingly, in spite of both this substantial activity and this pressing requirements from

the user community, there are no widely used commercial temporal database management systems

(TDBMS). One view is that there is an embarrassment of riches in the TDB literature: with so

many alternative approaches from which to choose, it is safer for a DBMS vendor not to choose than

to choose an approach that ultimately yields to a competing alternative. The same phenomenon

may be occurring in TDB research. In contrast to the 
urry of activity in query languages and data

models, there is a dearth of results in temporal database design and temporal query optimization,

in part because there is no commonly accepted consensus data model or query language upon

which to base research and development. At a more fundamental level, even the terminology is

highly nonstandard. As an example, the terms intrinsic time, logical time, real-world time, and

valid time have all been used for the core concept of the time at which something happened.

It was decided in early 1992 that a meeting should be held with the objective of identifying

a common infrastructure to provide a foundation for implementation and standardization as well

as for further research into temporal databases. Subsequently, on June 14{16, 1993, the Inter-

national Workshop on an Infrastructure for Temporal Databases was held in Arlington, Texas.

Forty-four prominent researchers from ten countries (Belgium, Canada, Denmark, Israel, Italy,

Germany, Greece, Switzerland, the UK, and the US) and from ten industrial labs and companies

(Beckman Institute, Bell Communications Research, AT&T Bell Labs, Digital Systems Research,

the European Computer-Industry Research Centre, Honeywell, IBM, Lawrence Berkeley Labs,

Tandem, and Texas Instruments) and from many universities participated in the workshop (see

Appendix A).

The workshop consisted of plenary sessions (invited talks one day and discussions the other

two days) as well as group sessions where four working groups addressed speci�c issues amenable

to infrastructure. Group A surveyed existing and anticipated applications of temporal databases,

and gathered requirements of these applications for temporal databases. Group B considered the

fairly narrow question of extending SQL-92 to support time in a comprehensive fashion. Group C

considered extensions to a wider range of data models, including advanced relational models (e.g.,

that underlying SQL3), object-oriented data models, and active data models. Finally, Group D

considered the de�nition of an architecture for temporal database management systems.

There was also substantial e�ort both before the meeting, to prepare infrastructure proposals

for debate, and after the meeting, to build on the insights that emerged from the discussion.

Speci�cally, an initial glossary of temporal database concepts and a test suite of temporal queries

were distributed before the workshop. Both of these documents were amended based on the analysis

and critique of the workshop. A language design committee was constituted after the workshop to

develop a consensus temporal query language extension to SQL-92; this design also bene�ted from

the discussion at the workshop.

This report documents the discussions and consensus reached at the workshop. The report

re
ects the conclusions reached at the workshop in June, 1993 and further discussions amongst

the group participants through electronic mail. In preparing this report, each group coordina-

tor assembled ideas and prepared an initial draft, which was then reviewed by all the workshop

1



participants.

The record of the deliberations of these four groups, in the following four sections, forms the

bulk of this report. Each of these sections begins with the group's charter and a brief snapshot of

the status of the �eld and ends with a list of follow-on e�orts. Appendices identify the workshop

participants, provide the abstracts of the position papers that appear in the proceedings of the

workshop, and give the original workshop call for position papers.

2 Group A: Special Requirements and Approaches

2.1 Introduction and Group Charter

Temporal databases can be used in a variety of applications. In addition to conventional applica-

tions handling administrative data of various types, other applications such as of logistics, scienti�c

applications, and arti�cial intelligence present new requirements to the temporal database com-

munity.

The working group on Special Requirements and Approaches, consisting of G. Ariav, M. Baud-

inet, M. Boddy, C. Dyreson, M. Egenhofer, P. Hayes, F. Olken, B. Pernici, and S. Sripada, with

the collaboration of occasional visitors, discussed characteristics of the di�erent application areas,

attempted to relate terminology di�ering from that generally used in the temporal database com-

munity, and strived to identify essential features to be provided by a temporal database system in

order to be usable by these di�erent communities as well as features and functionality for which

additional research is needed.

In the following, the basic characteristics of the di�erent application areas are brie
y outlined,

followed by an analysis of features to be supported by a temporal database management system

(TDBMS).

2.2 Current Status of the Field

G. Ariav started the discussion with a presentation based on a set of problems from case stud-

ies illustrated in his position paper at the workshop [Ariav93]. Other application domains were

also considered, speci�cally geographical information systems (GIS), scienti�c applications, and

planning and scheduling applications.

The group isolated two needs not met in current TDBMS proposals.

1. Multiple time lines

Traditionally, only one time line has been associated to a given entity, termed valid time.

However, there are cases in which several time lines seems to be needed. Let us consider,

for instance, a check with an associated payment date. It has at least three dates associated

with it: the date in which it is issued, the date at which it can be paid, and the date at which

it is actually paid. In this case, three validity times seem to be needed.

2. An undo operation

In several applications there is the need of undoing previous operations. A rollback operation

in this case is not appropriate, since the undo should be limited only to a given instance,

not extended to all the database. Typical cases in which this operation is needed are in the

domain of CAD databases.

A common feature of these applications is that temporal data are mostly imprecise and

concern relative times. Ordering relationships between events are often more frequent than a

precise location on the time axis of the events.

2



An additional common feature, is that there is a need for merging di�erent databases, possibly

de�ned on di�erent time granularities.

2.3 Discussion of Glossary Terms

The term which was widely debated in this working group is chronon. This concept is essential in

the discussed cases, since the data are on time lines that di�er from those common in administrative

data. For instance, scienti�c databases storing geological data need to store data in terms of

geological eras. Distinguishing between chronons and their representation at the physical level is

important. Since di�erent application domains have such di�ering requirements concerning needed

chronons, the user must be allowed de�ne the appropriate chronon in the data de�nition language.

Even within the same database, several chronons may be used for di�erent data sets (e.g. in

di�erent relations), so appropriate support must be provided.

Another important discussion, related to the problem of chronons, is the need to distinguish

between instants and chronons. In scienti�c applications, it is usual to have ordering relationships

between events, rather than precise times associated to them. Di�erent events, although not

simultaneous, and for which a relative order is known, could occur within the same chronon.

2.4 Features to be Supported by a TDBMS

2.4.1 General Discussion

In general, there seems to be a gap between the goals assumed by the temporal database community

and the needs discussed in the working group on special requirements.

To de�ne the needed requirements, the �rst, important consideration is the de�nition of the

boundary between the functionality to be supported by the temporal database system and that

provided by applications working with the data stored in the database.

It initially seems desirable that the TDBMS provide not only basic functions, but also ad-

vanced features useful for speci�c applications. For instance, a classical problem found in scienti�c

and logistic applications is the \shortest path" problem. In practice, it seems that in order to

provide reasonably e�cient access to data, it might be important to provide some support also for

this type of computation. A similar related problem is that of providing recursive queries support

in relational databases.

However, the group, decided that, at least for the short term, only basic functionality should

be considered for the purpose of establishing an infrastructure, provided that the system does not

become an obstacle for users to retrieve their data.

An important consideration concerns the nature of temporal data in a temporal database.

The request is for particular forms of support for data de�ned as temporal. This support should be

analogous to that provided in classical databases for prede�ned attribute domains. For instance,

if an attribute is de�ned on the integer domain, it is not possible to insert characters as values.

Obviously, more sophisticated types of consistency checks can be de�ned. Analogously, there is

a need for providing true temporal attributes with appropriate consistency checks, to justify the

de�nition of a temporal attribute. For instance, let us suppose that Name functionally determines

Salary. The TDBMS should ensure that the same nameis not associated with tow di�erent salaries

at the same time. Such integrity constraints may be de�ned on attribute values that have been

speci�ed as valid time attributes. If the temporal attribute is treated simply as any other attribute,

there seems to be no need to de�ne it speci�cally as \temporal."

3



2.4.2 Basic Functionality

A fundamental need of most users is for support of time values at many di�erent granularities. Ap-

propriate operations must be supplied to perform conversions of time values between the di�erent

granularities, and to formulate queries and present results in an appropriate form.

A related feature is the need for a merge operation in order to be able to work with data

coming from di�erent databases (or relations) de�ned at di�erent granularity levels.

Concerning times, in scienti�c databases and in planning and scheduling databases it is es-

sential to provide support not only for times based on the time line (absolute times) but also for

time which are relative to other times. To this purpose, the use of time variables, both for time

points and for time entities, has been suggested (alternative name: symbolic time points/interval).

Accordingly, appropriate temporal relationships (possibly imprecise) have to be de�ned and

supported in the TDBMS (point-point relations, interval-point relations, interval-interval rela-

tions). However, only storage support should be provided: reasoning on these times is considered

outside the scope of the temporal database.

Several features related to queries have been identi�ed.

� Support for relative times (temporally ordered attributes);

� Support for aggregation operators over time; and

� Support for temporal joins.

In our discussions, the term \relative time" was used in several senses: times speci�ed with re-

spect to an unanchored rather than an anchored ordering, but also times that were \variable" (e.g.,

we would consider \Easter" as a variable time, dependent on context for disambiguation/grounding,

and \after A but before B" as a relative time speci�ed as a position in an ordering that is unan-

chored to a time-line);

The issue of query result presentation is also important, in particular concerning the pre-

sentation of approximate answers, and in providing answers sorted according to a speci�ed time

dimensions, to increase readability (re-arranging in time).

2.4.3 Additional Needs

A number of possible extensions to the above basic functionalities can be considered.

� De�nition of time-varying data types (with interpolation functions, with associated proba-

bilities, and the like) and of associated operations;

� De�nition of composite events;

� Associating disjoint intervals with data values; and

� Support of periodic data.

2.5 Conclusion and Follow-on E�orts

The result of this working group can be summarized by considering the following question: \Can

the diverse needs of the user community be served by temporal database technology?"

Characterizing the commonalities of the user community is an enterprise doomed to fail,

because users are many and their needs are diverse. Nonetheless, it is an e�ort we attempted

in our group, gathering potential users from a variety of disciplines. Although the group was

4



not representative of the user community as a whole, those that were present were knowledgeable

potential users familiar with, by and large, database technology, and their target applications also

involved time at a fundamental level. Yet these were only potential users of temporal database

technology, primarily because of two factors.

First, no common infrastructure for temporal database research exists. This lack of common

infrastructure is detrimental, not only from a research perspective, but more importantly for this

group, from a pure salesmanship perspective. Users could not say what a temporal database is, nor

even begin to comprehend how it could be of service to their applications. Towards this end, the

glossary was important, yet at the same time confusing. The glossary was couched in the language

of temporal database researchers. But as researchers in other disciplines have their own (implicit)

glossaries for time related concepts; the \conceptual gap" between the two glossaries was di�cult

to bridge. Also, the lack of an infrastructure document led users to look for such in the glossary,

but the glossary was not written nor designed for such a purpose. Consequently, basic concepts

such as chronon and event remained permanently ba�ing, primarily because there exists no \road

map" to provide users an understanding of how these terms �t together.

This raises the issue of whether the glossary should serve as a document for researchers active

in the �eld or provide a gentle introduction to temporal databases to researchers and users from

other communities. The consensus of the group seemed to be that the glossary can only be written

for researchers in the �eld and that some other form or document should present the infrastructure

and advertise the utility of temporal databases. The glossary should provide a backdrop to the

infrastructure, only giving meaning to words that are unfamiliar to the reader.

The second factor is related to the �rst. The users in our group have developed tools to

meet their needs (e.g., the geographer in our group developed a GIS). By and large, users want to

\extend" their tools to include support for time values. The key characteristic of this extension

is its ad-hoc nature. The tools exist and a great deal of e�ort and research has been invested

in creating them. By and large these users are only interested in providing better support for

time values or time-related processes, rather than replacing these tools with a temporal database.

In order for temporal database technology to serve these users, that technology must provide a

platform on which these tools can reside, without requiring substantial modi�cation of the tools

themselves. Perhaps one could characterize this need by saying that users are very strongly in

favor of an \open" architecture.

Because time is considered an \add-on" in these systems, many of the issues discussed by other

working groups for inclusion in the infrastructure did not emerge as user concerns. In particular, we

did not discuss nor even raise questions as to whether SQL-92 or SQL3 should serve as a platform

for an infrastructure query language and data model. Users have their own \high-level" query

language targeted for their applications (e.g., temporal reasoner, GIS, human genome project) and

any language that is capable of extracting time-related information (in a very primitive way) would

su�ce. This is not a criticism of the laudable goals of these other groups, only an observation that

none of the users in our group currently base their tools on SQL-like interfaces or databases. The

consensus TSQL2/3 e�ort is certainly of importance to the large community of actual database

users. But almost unanimously, the users in our group were uninterested in the di�erences between

these alternatives because they already have their own query languages and data models. It is an

open question as to whether the users wanted a temporal abstract data type (ADT) or something

more complex.

In essence, it is a matter of timing. The temporal database community is somewhat late to

the game due to a lack of common infrastructure and working temporal databases. Consequently

other players have already taken the �eld. If we are to have any impact on the game, as a practical

matter, the question of how to integrate with existing tools is of primary importance and runs

5



deeper than SQL-integration.

Some speci�c user needs did emerge, aside from the \open" architecture requirement. Let us

consider relative time. Can it be supported by a temporal database? That depends on what is

meant by \supported". Certainly, a temporal database can store such times and their associated

constraints. Interpreting these constraints however is another matter, and lies in the sphere of

general temporal reasoners rather than temporal databases. But embedding a temporal database

within a temporal reasoner is exactly what the users in our group desired. Our users had temporal

reasoners. They were interested in knowing whether and how their reasoners could be seamlessly

coupled with a temporal database. They did not expect the temporal database to interpret the

relative times, that would be done by the reasoner. At �rst glance, it would seem that the only

requirement for a temporal database to \support" relative times is the capability of storing such

times (as valid times) and passing \uninterpreted" times to a higher level. Since these times are

uninterpreted, they should remain inert in determining temporal keys and normal forms.

This is not to suggest that all user requirements can be accommodated as easily; a user,

say, who desires continuous times may be somewhat harder to satisfy. Rather it suggests that the

functionality of a temporal database must be clearly and distinctly articulated before integration

can take place. The above example places relative times outside the sphere of temporal databases

(a widely-held viewpoint within the community?). The line must be drawn everywhere on exactly

what is and what is not supported by a temporal database, perhaps further dividing that support

into core and optional functionality. The consensus of our group was that user needs are diverse,

consequently core functionality should be minimized and ease of extensibility should be maximized.

3 Group B: Extending SQL-92

3.1 Introduction and Group Charter

The working group, consisting of I. Ahn, J. Cli�ord, F. Grandi, C.S. Jensen, W. K�afer, K. Kulkarni,

N. Lorentzos, R. Snodgrass, A. Tansel, with occasional visitors, addressed a fairly narrow but

complex topic: how should SQL-92 be extended to support time in a comprehensive fashion.

The ultimate goal is to produce a concrete language de�nition that can be used by temporal

DBMS researchers as an infrastructure, incorporated into legacy (relational) DBMS products, and

considered by the SQL standards committee. The (quite ambitious) goals of this working group

were to put into place a structure for such a language de�nition, and to reduce the number of

possibilities to a small set that can be further evaluated in the coming months.

3.2 Current Status of the Field

Researchers have been proli�c in developing temporal data models and query languages, in an

attempt to �nd the right tradeo�s among a set of irreconcilable constraints [MS91a]. Over the

last �fteen years of work, a total of over two dozen temporal extensions of the relational data

model have been proposed. Approximately half of these models support only valid time; three

models support only transaction time; and the remaining seven or so support bitemporal relations.

The temporal data models may be compared by asking four basic questions: how is valid time

represented (alternatives include event, interval or temporal element stamping of individual at-

tributes or tuples), how is transaction time represented (alternatives include event, interval, three

events, or temporal element stamping of individual attributes, tuples, or sets of tuples), how are

attribute values represented (alternatives range from atomic valued, to ordered pairs, to triplet

valued, to set-triplet valued), and is the model homogeneous and coalesced (all four alternatives

are represented).

6



As examples of the diversity of data models, we brie
y examine some of those proposed by

members of the working group.

� In the Historical Database Model, an additional, chronon-valued attribute, STATE, is part

of each relation schema. A boolean attribute, EXISTS, is also added to indicate whether the

particular tuple exists for that state [Cli82, CW83]. Hence, this model timestamps tuples

with valid-time events.

� The Temporal Relational Model [LJ88, Lor88] was the �rst to support nested speci�cation

of timestamps using values of di�erent granularity and to support periodic events. This

model associates timestamps with individual attribute values rather than with tuples. In

this approach time is treated in all respects like any other domain type. As a consequence,

there is no need for time to be treated as a means to stamp data. Subsequently, there

is no need to distinguish between user de�ned time and stamping time. Furthermore, no

implicit or mandatory timestamp attributes are assumed. Timestamps are simply explicit,

numeric-valued attributes, to be viewed and updated directly by the user. They represent

either the chronon during which one or more attribute values are valid or a boundary point

of the interval of validity for one or more attribute values. Since valid time is recorded in an

explicit attribute, no distinction has to be made between user-de�ned and valid time. Several

timestamp attributes of nested granularity may also be used together in a speci�cation of a

chronon. The model can also handle intervals of types other than time.

� In di�erentiating valid and transaction time, a four-dimensional data model was used [SA85,

SA86]. Relational instances were illustrated as a sequence, stamped with individual transac-

tion times, of three-dimensional volumes, where one of the dimensions was valid time (tuples

were stamped with intervals).

� In the data model associated with TQuel, four implicit attributes were added to each rela-

tion: the transaction time of the transaction inserting the tuple, the transaction time of the

transaction logically deleting the tuple, the time that the tuple started being valid in reality,

and the time that the tuple stopped being valid in reality [Sno87, SGM93].

� Tansel's model ([Tan86], Tansel in [CT85]) was designed to support the calculus-based query

language HQuel [TA86] and, later, the Time-by-Example language [TAO89]. The model

allows only one type of object: the valid-time relation. However, four types of attributes

are supported: Attributes may be either non-time-varying or time-varying, and they may be

either atomic-valued or set-valued. The attributes of a relation need not be the same type,

and attribute values in a given tuple need not be homogeneous. The value of a time-varying,

atomic-valued attribute is represented as a triplet containing an element from the attribute's

value domain and the boundary points of its interval of existence while the value of a time-

varying, set-valued attribute is simply a set of such triplets. Tansel generalizes this model to

nested (N1NF) relations and provides formal de�nitions of a temporal relational algebra and

a temporal relational calculus which are shown to be equivalent [Tan91b]. Normal forms for

nested temporal temporal relations have also been developed [TG89]

� The Historical Relational Data Model [CC87], a re�nement of the model associated with a

valid-time algebra (Cli�ord in [CT85], [Cli82]), is unique in that it associates timestamps with

both individual tuples and with individual attribute values of the tuples. The data model

allows two types of objects: a set of chronons, termed a lifespan, and a valid-time relation,

where each attribute in the relation schema and each tuple in the relation is assigned a

lifespan. A relation schema in the Historical Relational Data Model is an ordered four-tuple

7



containing a set of attributes, a set of key attributes, a function that maps attributes to

their lifespans, and a function that maps attributes to their value domains. A tuple is an

ordered pair containing the tuple's value and its lifespan. Attributes are not atomic; rather,

an attribute's value in a given tuple is a partial function from a domain of chronons onto the

attribute's value domain. The domain of chronons for each such function-valued attribute is

de�ned as the the intersection of the lifespans of the particular attribute and tuple.

� Gadia's homogeneous model [Gad88] allows two types of objects: valid-time elements [GV85]

and valid-time relations. Valid-time elements, which were �rst proposed by Shashi Gadia,

have the nice property that they are closed under union, di�erence, and complementation,

unlike intervals.

� Gadia's multihomogeneous model [GY88] is an extension of the homogeneous model. It

lifts the restriction that all attribute values in a tuple be functions on the same temporal

element, in part to be able to perform Cartesian product without loss of temporal information

caused by merging two timestamps into one. In this data model, temporal elements may be

multi-dimensional to model di�erent aspects of time (e.g., valid time and transaction time).

Attribute values are still functions from temporal elements onto attribute value domains, but

attribute values need not be functions on the same temporal element.

� The association of facts with time is implicit in the transaction-time data model DM/T

[JMR91]. Instead, DM/T contains a special system-generated and maintained transaction-

time relation, termed a backlog, for each user-de�ned transaction-time relation. This log-

like backlog contains the full, timestamped change history of the associated user-de�ned

relation. Backlog tuples, change requests, are stamped with a single transaction-time value

and an attribute with values that indicate whether an insertion, deletion, or modi�cation is

requested.

� The \history-oriented" data model uses a unique key/surrogate as an object identi�er and

interval tuple time-stamping, with only start-time stored if versions are ordered along time

[GST91].

� Cli�ord and Tuzhilin in [TC90] de�ne a temporal algebra TA that is applicable to any

temporal relational data model supporting discrete linear bounded time. This algebra has the

�ve basic relational algebra operators extended to the temporal domain and a new operator

of linear recursion. They prove that this algebra has the expressive power of a safe temporal

calculus based on the predicate temporal logic with the until and since temporal operators,

the language TC which was �rst proposed as a query language for valid-time databases in

[Tuzh89]. Cli�ord, Croker and Tuzhilin present the calculus L

h

for a temporally grouped data

model which they call M

T

G [CCT93]. The model M

T

G extends the traditional relational

model by de�ning the domains of each attribute to be functions from a temporal domain into

an ordinary domain, and thus each tuple contains the entire \history" of some real-world

object. L

h

is a many-sorted extension of Codd's relational calculus, the extensions being the

inclusion of additional sorts of variables, so that it includes variables ranging not only over

ordinary values, but also over historical values and over times. Although the language L

h

was not proposed as an end-user query language, a more user-friendly, SQL-like syntactic

variant, similar to the HOT-SQL presented by Fabio Grandi at the workshop (a variant of

HoTQuel in [GST91]), could easily be designed.

Most temporal data models are paired with a temporal query language proposal. Some two

dozen temporal relational query languages have been proposed, including seven extending the

8



relational algebra, �ve extending Quel, seven extending SQL, and a few being based on other

formalisms. We list a few examples, proposed by members of the working group.

� The semantics of the algebra de�ned on the Historical Relational Data Model extends the

relational operators union, di�erence, intersection, projection, and Cartesian product to han-

dle lifespans directly [CC87]. Temporal variations of the joins are de�ned using intersection

semantics, and several new time-oriented operations are introduced.

� The Structured Query Language plus Time (SQL+T) is based on the tuple-timestamped

model, where each tuple is associated with four timestamps, to valid time and to transaction

time [Ahn93]. It augments SQL with valid, when, and as of clauses.

� TempSQL is based on an attribute timestamped, homogeneous data model, where temporal

elements are used as the timestamps [Gad92]. The language augments SQL with a while

clause, in which temporal expressions are used to specify temporal selection.

� TQuel is based on a tuple timestamping bitemporal data model [Sno87, Sno93]. It is quite

similar semantically to TSQL+T, and uses similar additional syntactic constructs. It is

supported procedurally with an attribute-timestamped temporal algebra [MS91b].

� HoTQuel is based on a tuple timestamped valid-time data model, and provides two types of

range variables: history variables which have histories as values and denote objects and tuple

variables which have tuples as values and denote object versions [GST91]. A more recent

proposal showed how history variables could be added to SQL [GST93].

� HQuel is based on an attributed time-stamped valid-time data model (Tansel in [CT85],

[TA86, TG89, Tan91a]). The data model has four di�erent kinds of attributes: elemen-

tary (atomic), set-valued, triplet-valued, and set triplet-valued. The �rst two are non time-

varying; the other two are time-varying attributes. HQuel supports methods for referencing

members of a set, for indicating time-stamps and value of a triplet, and for comparing at-

tribute values. There is an equivalent algebra for this language; it includes restructuring and

temporal operations in addition to regular algebraic operations. In addition to conventional

algebraic operations, it includes operations to restructure temporal relations, to synchronize

the time associated with attributes, and to form and decompose timestamped values. There

is also an equivalent calculus for HQuel.

� Time-by-Example (TBE) [TAO89] is a graphical query language similar to QBE that fol-

lows hierarchically arranged subqueries of the Summary-Table-by-Example (STBE) [OO84]

database query language. For query processing and optimization TBE queries are converted

to equivalent algebraic operations [Tan86].

� SQL

T

is based on nested relations that use attribute timestamping and allow inhomogeneous

tuples [Tan93]. It augments the SELECT statement with temporal features and allows access

to individual temporal values.

� IXSQL is based on an interval-extended relational algebra [LM93]. In addition to the �ve

primitive operations on the conventional relational model, it supports two more relational

algebra operations, new comparison operators and new scalar functions. Again, no distinction

is made between user-de�ned and valid time, or between explicit and implicit attributes.

Support for time in conventional data base systems (e.g., [TC83, OC87]) is entirely at the level

of user-de�ned time (i.e., attribute values drawn from a temporal domain). These implementations

9



are limited in scope and are, in general, unsystematic in their design [Dat88, DW90]. The standards

bodies (e.g., ANSI) are somewhat behind the curve, in that SQL includes no time support. Date

and time support very similar to that in DB2 is included in the SQL-92 standard [MS93]. SQL-92

corrects some of the inconsistencies in the time support provided by DB2 but inherits its basic

design limitations [SS92]. The SQL3 draft proposal contains no additional temporal support over

SQL-92.

Many within the temporal database research community perceive that the time has come to

consolidate approaches to temporal data models and algebra- and calculus-based query languages,

to achieve a consensus query language and associated data model upon which future research can

be based. Within the broad diversity of language and modeling constructs, common themes keep

emerging. However, the community is quite fragmented, with each research project being based

on a particular and di�erent set of assumptions and approaches. Often these assumptions are not

germane to the research per se, but are made simply because the research required a data model or

query language with certain characteristics, with the particular one chosen rather arbitrarily. For

example, research in query optimization must assume some data model and some query language,

but the details are often not critical. It would be better in such circumstances for research projects

to choose the same language. Unfortunately, no existing language has attracted a following large

enough to become the one of choice.

3.3 Level of Language Support

The primary realization to come out of the workshop was that there were three fundamental

viewpoints on how time should be incorporated into SQL. In the following, we present each of

these viewpoints, along with some of their supporting arguments.

The �rst viewpoint argues that the SQL data model is already quite close to having the

support required by temporal applications. The additional support that is necessary is primarily

in the algebraic operators and to the syntax of the language. A concrete realization of this viewpoint

is the IXSQL proposal, which extends SQL with a generic interval data type (of course, the focus

here is on intervals of time). The data model is identical to that of SQL, with the addition of

DATEINTERVAL. The algebra for this language is an extension of the relational algebra, retaining

the traditional operators in an unmodi�ed form, and adding two new operators. Unfold converts

an interval into a set of time points, with the remaining attributes duplicated for each time point.

Fold is the inverse operator. In terms of the SQL syntax, new predicates on intervals are de�ned,

and two clauses are added, a REFORMAT clause, to support Fold and Unfold, and a NORMALISE

clause, which can be simulated with the REFORMAT clause.

Several advantages accrue from this approach.

� Since intervals are generic, and can thus be de�ned over any metric, this approach naturally

supports spatial and spatiotemporal databases.

� Since the extensions to SQL are minimal, especially compared with other approaches, imple-

mentation is less di�cult, and acceptance by the user community may be easier to attain.

� Multiple time (and other metric) intervals may easily be incorporated.

� Every snapshot relation is also a valid valid-time relation.

The second and third viewpoints share the belief that time is a basic aspect of data, and

therefore should be incorporated in a fundamental way into the data model and query language.

The two viewpoints di�er on the timing of the language de�nitions. The second viewpoint holds

that, with SQL-92 an accepted standard and SQL3 being actively designed, there is no sense in

10



extending SQL-92. Instead, e�orts should be directed towards adding time to the SQL3 proposal,

yielding perhaps a temporal query language standard in the 1995{1996 time frame.

Several advantages have been stated of a single SQL3 extension.

� SQL-92 is frozen, so any extensions based on SQL-92 will be rendered meaningless when

SQL3 is accepted.

� SQL3 has several data modeling constructs, including object orientation, which can aid in the

development of temporal extensions. For example, it allows nested relations to be simulated,

thereby accommodating more temporal data models than SQL-92.

� A two-pronged approach would be di�cult to coordinate, and could easily result in incom-

patible proposals.

� Research is active in temporal databases, with new ideas appearing all the time. It is impor-

tant to do the design \right," or we will be saddled with a poor design, with no opportunity

to change it (we get only one chance).

The third viewpoint favors a two-pronged approach, in which parallel e�orts would consider

adding time to SQL-92 and to SQL3. The rationale is that time will be added to the SQL standard

only when there is implementation experience available, and that won't occur unless there is a

consensus extension of SQL that admits a straightforward implementation without requiring SQL3

constructs.

Proponents of the third viewpoint counter with advantages of their approach.

� SQL-92 provides a stable basis on which to do language design; SQL3 is constantly changing.

� Designing an SQL3 extension will not impact actual applications before 1997, when the �rst

implementations supporting SQL3 may start to appear.

� Should extension of only SQL3 proceed, there is the chance that a vendor will go ahead and

implement temporal support now, in an ad hoc fashion, which the SQL3 standard will be

forced to incorporate (as happened with user-de�ned time).

� The SQL3 standards bodies will not be interested in fundamental time support until users

clamor for it, and until a commercial, relational DBMS (or perhaps two such systems) sup-

ports time.

These three viewpoints are clearly in con
ict. However, each has its vocal proponents, mar-

shaling strong technical arguments to advocate their position. The disparity between these dis-

tinct viewpoints o�ers one explanation as to why there has not been greater consensus in the �eld.

Clearly, it is di�cult to arrive at a single data model when there are fundamental disagreements

concerning even the extent to which time should be incorporated in the model.

3.4 Desired Functionality

Much of the discussion of the working group was devoted to determining the functionality that is

desired in a temporal query language. We now list the aspects discussed. We refer to an extension

of SQL (-92 or 3) as TSQL, for convenience, keeping in mind the diversity of opinion listed in the

previous section.

There have been three types of time that may be used in a temporal database: user-de�ned

time, valid time, and transaction time [SA86]. User-de�ned time has garnered support in most

commercial DBMS's (and is present in the SQL-92 standard), and transaction time is supported

11



in some object-oriented databases (as version identi�ers) and one relational database (Montage).

However, the range of applications that could use valid-time support (most applications, in fact),

as well as those that could use support of all three kinds of time (which is not the majority

of applications, but certainly a sizable portion), dictates that a bitemporal extension of SQL is

warranted.

At the same time, it is important to support legacy applications. Hence, temporal support

should be optional in both the schema and in the query language. This requirement translates

into the ability to specify snapshot relations (for which no temporal support is required), as well

as valid-time, transaction-time, and bitemporal relations in the CREATE TABLE statement. It also

implies that queries should be able to include multiple types of relations in the FROM clause, and

evaluate to multiple types of relations. For example, it should be possible to compute via SELECT

a snapshot relation from a bitemporal relation.

The extension to SQL should be upward compatible. Existing SQL queries should remain

valid in TSQL. Query language reducibility is also important: an SQL query, evaluated on a

temporal database as a TSQL query, should result in a temporal relation, which, when timesliced at

a particular time, yields the same snapshot relation that results when this same query is evaluated

as an SQL query on the timeslice of the temporal database at the same time. This property ensures

that user's intuition concerning SQL will transfer over wholesale to TSQL.

Some data model proposals require that the underlying valid time domain extend only to

now. Other data models support future time. (Note that transaction time, on the other hand, is

never allowed to extend past now: it is impossible to know entirely accurately what will be stored

in the future in the database). Planning applications require future time support; hence, it should

be present in the data model for TSQL.

The controversy of discrete versus continuous time surfaced in several working group dis-

cussions, as well as the workshop plenary sessions. As this topic has been discussed for literally

thousands of years by philosophers, mathematicians and physicists, it is understandable that the

intricacies of this dichotomy would not be fully resolved in this workshop. Nevertheless, this work-

ing group agreed that the representation (as opposed to the conceptual model) should be discrete.

Gio Wiederhold invoked a useful analogy of real numbers and their representations. While 
oating

point numbers in computer programs can be conceptualized by programmers as real (i.e., con-

tinuous) numbers, their representation must necessarily be discrete. The same should hold for

timestamps in TSQL's data model.

A more restricted incarnation of this issue is the distinction between open and closed intervals.

An open interval, generally denoted as [a; b), where a and b are timestamps, contains the time

between a and b, as well as the time instant a, but not the time instant b. Conversely, the closed

interval [a; b] contains the instant b. In a discrete representation, [a; b+1) � [a; b]; in a continuous

model of time, there is no successor to b, and so the two are not comparable. At the representation

level of TSQL, which uses discrete time, the distinction is not important. At the language level,

which the user can pretend is based on continuous time, the language should support both open

and closed intervals in the presentation (input and output) of temporal values.

The �nal issue discussed at length was that of ungrouped versus grouped completeness. These

terms were presented by James Cli�ord at the workshop, based upon his previous research [CCT93].

In this work the authors attempt to contrast those models which employ tuple-time-stamping,

which they term temporally ungrouped, and those which employ complex attribute values bearing

the temporal dimension, which they term temporally grouped. After de�ning canonical versions

of these two types of data models, called M

TU

and M

TG

, respectively, they present logic-based

query languages for each of them and propose them as standards for measuring the expressive

power of query languages for such models. They further demonstrate that the grouped models are

12



more expressive than the ungrouped models, but de�ne a precise, though cumbersome, technique

for extending a temporally ungrouped model, by means of a group surrogate, in such a way as to

extend its expressive power to that of the temporally grouped complete models. In surveying some

(but by no means all) of the models that have appeared in the literature, they demonstrate the

following: (i) several algebras and calculus-based query languages are ungrouped complete, (ii) the

calculus L

h

is, by their de�nition, grouped complete, and (iii) to their knowledge no algebra has

been shown to be grouped complete.

While the expressive power of ungrouped complete was generally accepted as a desirable

property for TSQL, there was considerable discussion concerning grouped complete. The bene�t

of grouped complete is that it supports a rather strong notion of the \history of an attribute,"

called a history in the Glossary. For example, one can talk about \John's salary history" as a single

object, and ask to see it, or de�ne constraints over it, etc. If the data model and query language

are not grouped complete, then the salary history will be lost unless the key (here, the name) is

always retained, which places a burden on the user. Ungrouped models also generally require some

kind of time-invariant key to identify entities in the miniworld being modeled by the database,

whereas \histories" are supported directly in grouped models without any need for time-invariant

keys.

The primary concern raised by some members of the working group was one of implementabil-

ity. It was pointed out that no implementation of a grouped model exists, but this was countered by

the observation that few of the proposed models of any ilk have been implemented. A formal map-

ping of a grouped complete data model onto an ungrouped complete model, via system-maintained

surrogates, has been given. However, it was pointed out that this mapping has never been imple-

mented, and the concern was raised that implementing joins in this approach appears to some to

be di�cult.

The working group members fell into two camps. One position was that the lack of an existing

SQL extension de�nition that was grouped complete, as well as the lack of any implementation

experience with grouped complete data models, rendered this requirement of grouped complete

too risky to incorporate into TSQL at this time. The other position held that the ultimate aim

was to make life easier for the user, even if it complicated the implementation, and thus grouped

complete should be a requirement of the model.

This discussion can be examined in light of the three viewpoints presented earlier. The

�rst viewpoint, minimally adapt the data model to support time, favors neither ungrouped nor

grouped complete, as both of these distort the original relational model to too great a degree. The

second viewpoint, that only SQL3 should be extended, is comfortable with grouped complete. The

third viewpoint, advocating de�nition of both TSQL2 and TSQL3, was generally comfortable with

TSQL3 being grouped complete, but not so with TSQL2.

3.5 Separation of Concerns

As previously mentioned, there are now over two dozen temporal data models, each with one

or more associated query languages. While such a diversity of approaches is a re
ection of the

excitement and ferment in the area of temporal databases, it also at some point may become

counter-productive.

Focusing on data semantics (what is the meaning of the data stored in the data model), data

presentation (how temporal data is displayed to the user), on data storage (what regular storage

structures can be employed with temporal data), and on e�cient query evaluation, has complicated

the primary task of capturing the time-varying semantics. The result has been a plethora of

incompatible data models and query languages, and a corresponding dearth of database design

and implementation strategies that may be employed across these models.

13



The previously proposed data models arose from several considerations. They were all exten-

sions of the conventional relational model that attempted to capture the time-varying semantics

of both the enterprise being modeled and the state of the database. They attempted to retain the

simplicity of the relational model; the tuple-timestamping models were perhaps most successful

in this regard. They attempted to present all the information concerning an object in one tuple;

the attribute-value timestamped models were perhaps best at that. And they attempted to en-

sure ease of implementation and query evaluation e�ciency; the backlog representation may be

advantageous here.

Most proposed models aim at being suitable for data presentation, for data storage, and

for capturing the temporal semantics of data. Seen solely as means of capturing the temporal

semantics, such models exhibit presentational and representational anomalies because they encode

the temporal semantics in ways that are more complicated than necessary. Put di�erently, the time-

varying semantics is obscured in the representation schemes by other considerations of presentation

and implementation.

It is clear from the large number of proposed data models that meeting all goals simultaneously

is a di�cult, if not impossible, task. We therefore advocate a separation of concerns, i.e., adopting

a very simple conceptual data model that captures the essential semantics of time-varying relations,

but has no illusions of being suitable for presentation, storage, or query evaluation. Proposals for

this conceptual data model were discussed, but a �nal choice was not made.

Figure 1 places the conceptual temporal data model with respect to the tasks of logical and

physical database design, storage representation, query optimization, and display. As the �gure

shows, logical database design produces the conceptual relation schemas, which are then re�ned

into relation schemas in some representational data model(s) during physical database design. The

query language itself would be based on the conceptual data model. Query optimization may be

performed on the logical algebra, parameterized by the cost models of the representation(s) chosen

for the stored data, and in the algebra of the representational model. Finally, display presentation

should be decoupled from the storage representation, and should be capable of exploiting the

several existing data models having convenient display formats.

Logical

Database

Design

Conceptual
 

Temporal

Data Model

Query
Optimization

Tuple−timestamping

Attribute−value

Timestamping

Backlogs

Sequence of 

Five timestamps

Display Formats

Format
1

Format n

Representational Data Models

Physical

Database
Design

Valid−time States
Logical

Figure 1: Interaction of Conceptual and Representational Data Models

Note that this arrangement hinges on the semantic equivalence of the various data models. It

must be possible to map between the conceptual model and the various representational models.

An appropriate conceptual data model would allow equivalences to be demonstrated with many

of the representational models thus far proposed. This equivalence should be based on snapshot

equivalence, which says that two relation instances are equivalent if all their snapshots, taken at all

times (valid and transaction), are identical. Snapshot equivalence provides one means of comparing

14



rather disparate representations. However, it can be demonstrated that a grouped relation can

be snapshot equivalent to a large number of ungrouped relations, only one of which carries the

same information content. Some argued that the notion of strong equivalence [CCT93], somewhat

(but not entirely) captured by the the term \history equivalence" in the glossary, provides a more

appropriate means of comparing disparate representations.

3.6 Unresolved Issues

Finally, there were a myriad of issues that were discussed brie
y, or that were listed as important

but not discussed.

� Homogeneity|In some data models, all the attributes of a tuple are de�ned over the same

interval(s) of time, termed homogeneity. Others allow attributes to be de�ned over di�ering

intervals of time, in part to permit Cartesian product.

� Coalescing|Some data models require that value-equivalent tuples (those with identical

explicit attribute values), be coalesced if they overlap in time, that is, combined into one

tuple. Others allow non-coalesced value-equivalent tuples to be present. Note that the need

for coalescing only arises in ungrouped models.

� Attribute-value versus tuple timestamping|The �eld is split on this aspect, with very roughly

half the data models adopting the former approach, which is viewed by some as being more

\object-oriented," and half adopting the latter approach, which is viewed by some as being

more e�cient.

� Levels of Nesting|Some attribute-value timestamped models, notably Tansel's data model

[Tan86], can be viewed as an extension of nested relational models. One can then ask if the

nesting should be restricted to one level, or if multiple levels of nesting should be allowed.

� Vacuuming|When transaction time is supported, all updates, including (logical) deletion,

are implemented as physical insertions, leading to ever-growing databases. So, unlike in the

standard relational model, an additional notion of deletion is necessary in order to control

the size and contents of the database. Vacuuming is this notion and denotes the 
exible,

physical deletion, consistent with the semantics of transaction time, of data in a temporal

database supporting transaction time.

� Periodic Time|Lorentzos' data model is notable in its support for periodic events, such as an

airline 
ight every day at a certain time [Lor88]. There has also been substantial theoretical

advances in this area.

� \Manufactured" Time|Some advocate intersection semantics, where the period of validity

of a tuple resulting from Cartesian product is the intersection of the period of validities of

the two underlying tuples, and characterize any time outside of this time as \manufactured,"

and hence in some way arti�cial. Others feel that there are applications for which other

semantics, such as union semantics, are entirely natural.

� Restructuring allows one to \group" on identi�ed attributes, without being restricted to the

grouping that may be imposed by the schema.

Each of these issues must be examined in the development of a conceptual temporal data model.

15



3.7 Conclusion and Follow-on E�orts

As mentioned in Section 3.3, there were con
icting viewpoints on a temporal extension of SQL.

They can be summarized as (a) with the addition of an interval data type, there will be su�cient

support in SQL2/3's data model to support applications using temporal data; (b) a two-pronged

e�ort should be initiated, the �rst being a short-term e�ort to de�ne a temporal extension to SQL-

92 and the second being a long-term e�ort to de�ne a comprehensive extension to SQL3, and (c)

temporal support should be added, but only SQL3 should be extended. Whatever the approach,

it was agreed that the temporal data model underlying the language be designed solely in terms

of its semantic properties, with distinct and possibly multiple data models being employed for

representation and presentation.

4 Group C: Advanced Relational and Non-Relational Temporal

Databases

4.1 Introduction and Group Charter

The overall objective of the discussions in working group C, consisting of A. Buchmann, S.

Chakravarthy, T.-S. Cheng, K. Dittrich, S.K. Gadia, T. Lawson, I.S. Mumick, M.T.

�

Ozsu, N. Pissi-

nou, K. Ramamritham, A. Segev, M. Soo, S. Su, B. Theodoulidis, and G. Wuu, was to identify

the common infrastructure for the next generation of temporal database concepts including ex-

tensions of the relational data models as well as the adoption of concepts from the semantic and

object-oriented data models.

While it is true that the majority of the work on temporal databases has been in the context

of the relational data model, a number of approaches based on semantic data models, such as

the entity-relationship, infological and object data models, have appeared in the literature. The

motivation behind all of these approaches is that the relational data model is considered to be

insu�ciently expressive for complex database applications such as multimedia, executive infor-

mation systems, computer-aided design (CAD), computer integrated manufacturing (CIM), and

geographical information systems (GIS). These applications have strong requirements to model

the temporal or spatio-temporal relationships between objects. Therefore, \temporality" is an

important (even if not integral) part of the next generation of database systems. Another trend

that started in the 1980's is the incorporation of constraints, triggers, and rules in relational and

object-oriented databases. Work in this area is concerned with active temporal databases and was

considered at the group discussions.

In view of this, the overall objective of the discussions in group C was to identify a common

infrastructure for the next generation of temporal databases, including extensions to the relational

data model and object-based models. These issues were discussed in two subgroups, then integrated

in plenary sessions of group C. Subgroup C1, consisting of S.K. Gadia, T. Lawson, M.T.

�

Oszu,

N. Pissinou, S. Su, B. Theodoulidis and G. Wuu, addressed data modeling concepts, time concepts

and the incorporation of time into the next generation of temporal databases, with an emphasis

on object based models. Subgroup C2, consisting of A. Buchmann, S. Chakravarthy, K. Dittrich,

I.S. Mumick, K. Ramamritham, and A. Segev addressed the area of active temporal databases

with particular reference to the notion of temporal rules.

The following sections elaborate on the consensus reached for the infrastructure and the open

issues and future work that need to be carried out in order to complete the infrastructure for the

next generation of temporal databases.

16



4.2 Current Status of the Field

4.2.1 Temporal Object Based Modeling

The twomost prominent models that provided the basis for the development of temporal conceptual

models are the entity-relationship (ER) model [Chen76] and the object based model. The ER model

deals with the structural component and is founded on the notions of entity and relationship. The

object model deals with both the structural and behavioral components and is founded on the

notions of object, structure and behavior (method). Furthermore, a number of approaches include

notions like Event-Condition-Action (ECA) rules that deal with the constraint component. Several

approaches of introducing time into an object based data model were discussed. The group isolated

three main approaches.

1. To extend the semantics of a preexisting snapshot model to incorporate time directly (built-

in).

2. To base the new model on a snapshot model with time appearing as an additional attribute(s).

3. To move in an independent direction, developing entirely new approaches.

As examples of the diversity of data models, based on these three approaches, we brie
y

examine some of the proposed models:

� The Infological data model [LAN73, LS75], is one of the earliest of the conceptual data models

that recognized time to be indeed a distinguished entity. It is based on the natural human

perception of elementary facts (e-facts). Speci�cally, the concepts of an object, a property

(or relation), and time are associated to form an atomic e-fact, which is assumed to be the

\building block" of human knowledge. Storing such an e-fact in the information system

results in an elementary message (e-message), which includes the references to an object, a

property (attribute or relation), and a time point or period.

� The Time-extended Entity Relationship Model (TERM) [KLO81] focuses on a on a set of

modeling primitives based on the constructs of the ER model. The notion of history structure

introduced in the model, augments the basic ER constructs to create new constructs such as

attribute-history and role-history.

� The Temporal EER model [EWK93] is an extended ER model which accommodates temporal

information for entities, relationships, superclasses/subclasses and attributes.

� The Entity-Relationship-Time (ERT) model [TWL90, TLW91, TAL92, Theo93] is an ER-

based formalism which makes a clear distinction between objects and relationships. On this

basis, the ERT model accommodates the explicit modeling of time, taxonomic hierarchies

and complex objects. The ERT model together with the Conceptual Rule Language and the

Process Interaction Diagrams provides a uniform formalism for developing temporal database

applications.

� The ERAE data model [DUB+86, DH87] is an attempt to extend the semantics of the ER

model with a distinguished type Event as one of its basic constructs. The Conceptual Mod-

elling Language (CML) which is based on the TAXIS model [GBM83] includes time as a

primitive notion.

17



Other semantic data models that have addressed the introduction of time include the RM/T

[CODD79], which is an extension of the traditional relational model to handle among others se-

quencing of events, and the Functional Data Model [SHI81].

One of the earliest attempts to introduce time into the object-oriented data model is reported

in [CC88], which proposed certain terminology and concepts. Other research in extending object

based models to incorporate the semantics of time or the roles of temporal objects include the

following.

� The Time In Object Databases work [P90, P91, PM92, PM93b, PM94b, PM94c] addresses

temporal problems at the �nest level of granularity, viz., the object level, explores the seman-

tics of time in the context of object databases, and identi�es the temporal aspects of objects

and temporal inter/intra-object relationships and changes to existing notions of temporal

data that are necessary because of the transition from the relational to the object model.

The work speci�cally involves the design and development of a model that integrates time

with object databases and demonstrates how the constructs and operations of this model may

be used as the basis for the stepwise re�nement of other models of increasing complexity.

� TOODM [RS91] is a temporal object-oriented data model that supports multiple time lines

and schema histories and incorporates a temporal object-oriented algebra [RS93a, RS92] and

a temporal object-oriented SQL [RS93b].

� The OSAM*/T modelmodel and its associated query language called OQL/T [SC91, SKL89],

is based on notion of time-varying association.

� The OODAPLEX model [DW92, WD93] accommodates temporal data modeling through the

notion of function.

� The OOTempDBM model [CG93] captures the temporal semantics of objects through type

inheritance.

� The [KRS90] extends a complex object model by adding transaction and valid times to tuples.

� The TIGUKAT [GO93] model incorporates time as an abstract type. TIGUKAT models

everything in the system as a �rst-class object. Therefore, it is only natural to model time in

the same manner. TIGUKAT associates temporality with individual objects. An object is

time varying (temporal) if it has at least one time varying (temporal) behavior. A behavior

is time varying if it is an instance of type TemporalBehavior. Thus, temporal behaviors are

represented by a type in the type lattice. Since a behavior is itself an object, temporal-

ity is built bottom up and since everything is an object, there is actually no di�erentiation

between the attribute versioning and object versioning approaches in TIGUKAT. Applica-

tions that require the functionality of object management systems also require an extensible

type system. Applications built on top of TIGUKAT may have di�erent type semantics.

Consequently, a rich and extensible set of types are provided to support various models of

time (more speci�cally, structural models of time and the density of these structural mod-

els). Temporal constraints are introduced to represent relationships between objects, more

speci�cally between objects in a class and those existing in their (immediate) superclass.

4.2.2 Active & Real-Time Databases

Active databases evaluate conditions and execute actions in response to event occurrences (either

primitive or complex) according to the semantics of rule processing in active databases. Incorpora-

tion of active capability has typically been addressed with respect to a snapshot (i.e., non-temporal)

18



database. A limited notion of time is used in events (e.g., temporal events and composite events)

and for specifying deadlines (e.g., complete action prior to a given time). A large body of work

exists on the speci�cation of rules, its execution semantics, modeling of events, and incorporating

active capability into object-oriented paradigms [AMC93, Cha92, CM93, BM91, DBB+88, DHL91,

DG93, GJ91, GJS92b, GJS92a, JMS92, JMS93, MD89, SPAM91, SC93b, WF90].

Although rules have been used in temporal databases, there is no agreement on when a rule

itself, used in a temporal or non-temporal database, may be considered to be temporal. A related

issue is, when does a rule require temporal support for its activation? Further, rules often are not

modeled in the same way as data; rules should be treated as �rst class objects, and so rules must

be subject to the same temporal semantics as data. The working group addressed this new aspect

of temporal rules in addition to de�ning rule structure for active databases.

Work on integrating temporal and active database features has started appearing in the

literature only recently. Examples of such works include [CK93, EGS92, EGS93a, DG93, GJMS93].

Some related issues have also been discussed in the context of real-time databases [BB93, Rama93a].

4.3 Next Generation Temporal Data Modeling Concepts

The purpose of this discussion was to identify the key concepts of the next generation of temporal

data models and languages. It was agreed that the next generation of temporal data models should

be an extended model, rather than extensible with respect to the current generation. This implies

the design of the next generation of temporal databases should not be limited to current solutions

and approaches to temporal modeling, nor should be an \extensible relational approach."

An important issue, rising from the isolation of the three approaches for next generation

temporal data modeling proposed in Section 4.2, concerns the role of a temporal data model.

Without clarifying this issue, it is di�cult to extend the object model to include temporality. The

role of a temporal data model is to visualize and structure temporal data, temporal information

and the temporal relationship of objects. In general, one of the main ways of structuring and

visualizing temporal data is through the use of abstraction at various levels of granularity. To do

so, a temporal model can be discussed in terms of three distinct parts: structures, operations and

constraints. The structural component of a data model, deals with objects and their relationships

while the operational/behavioral component deals with the manipulation of objects. The constraint

component deals with rules for the integrity of the object structure and manipulation over time.

In line with existing data modeling design principles, the basic concepts and components

identi�ed by the group for the next generation of temporal data models were classi�ed into three

broad categories: Temporal Structural properties, Temporal Operational/behavioral properties,

and Temporal Constraint properties. Temporal structural properties describe the objects of the

application domain in terms of their properties and their relationships with other objects (in-

ter/intra object relationships) with respect to time. Temporal operational properties describe the

behaviour of objects over time, as re
ected through changes in their properties. Finally, tempo-

ral constraint properties describe conditions the object properties must satisfy during the object

lifespan. More speci�cally,

1. A temporal object is de�ned as a set of one or more temporal properties. The temporal

properties describe structural, operational and constraint characteristics of objects over time.

2. A temporal constraint or rule is a database rule that includes also its validity period and

is divided into three parts namely event, condition and action part. All these parts may

refer to time points but at least the event or condition part do so in order for the rule to be

characterized as a temporal rule.

19



Based on these de�nitions, and after many hours of discussions the following consensus were

achieved.

� The design of the temporal query language associated with the above concepts should take

into consideration the traditional language design issues such as ease of use, optimizability,

expressiveness and implementability.

� Schema evolution should be supported in a way that will accommodate object persistence

across schema changes. The issue of dynamic schema evolution is very important in object-

oriented databases and time support can provide approaches to deal with this issue.

� The participants agreed that the modeling of time should be independent of the particular

choice for the data model. This means that irrespective of the data modeling concepts, time

has an ontology by itself that needs to be de�ned and agreed upon.

� Besides the basic infrastructure concepts of the next generation of temporal data models, it

is possible to de�ne additional constructs for the declaration of conditions/constraints (e.g.,

homogeneity) which may be bene�cial in application development.

The next generation of temporal databases should explicitly support a rich set of time con-

cepts. The workshop participants identi�ed the following concepts as the minimum set of concepts

to be incorporated: bitemporal interval, bitemporal span, bitemporal chronon, bitemporal element,

bitemporal time point, and operations on intervals, spans and time points as well as conversion

facilities between them.

Although all the above concepts are necessary for a comprehensive treatment of time in

databases, the participants singled out the notions of interval, span and time point as the key

concepts upon which the other concepts can be de�ned.

The discussion on how to incorporate time within individual models was not conclusive. The

participants felt that in the �rst instance, the infrastructure should identify concepts rather than

techniques. The identi�cation of concepts should point out what needs to be expressed explicitly

in terms of time within an object model. The particular technique to be followed cannot be agreed

within the community at this stage. Consequently, it \does not matter" how one includes time as

long as there is the capability to incorporate it.

4.4 Active and Temporal Database Concepts

To reach consensus on the subject of Active Temporal Databases, there �rst has to be a shared

understanding of the structure of rules and the de�nition of event. Accordingly, we �rst provide

consensus de�nitions of active rules and events (in the context of rule de�nition). We limit the

discussion to active rules (ignoring, for instance, deductive rules).

An active rule is an Event-Condition-Action (E-C-A) rule, where

Event E: is a basic or composite event, as de�ned below.

Condition C: is either (1) a boolean expression, or (2) a query in the database query language

that results in a TRUE/FALSE answer. The query must be side-e�ect free.

Action A: is an execution of a database operation or an arbitrary application program.

De�nition 4.1 Basic Event: a pair (event occurrence, time instant). The event occurrence is

represented by some symbol e and is mapped to a time instant t on the system clock. The basic

event (e; t) is said to occur at time t. 2

20



It should be noted that an event occurs at a point in time. Examples of basic events include

begin transaction, after commit, and before read. In fact, basic events can be obtained from

most database operations by adding the modi�ers before or after to the name of the database

operation. External signals, and time events, such as 11:00am, are permitted as basic events. A

time event is represented by the pair (time name, time instant), where time name is the symbol

representing the event occurrence. (``11:00am'', 11:00am on July 20, 1993) is an example

of a basic event.

Events may have attributes. For instance, an after insert event has information regarding

the speci�c relation updated as well as the speci�c tuple inserted. Such information is an attribute

of the event. In addition, event attributes may include system-level information such as transaction

id, user id, and time.

De�nition 4.2 Composite Event: can be created from basic and other composite events through

the use of a closed algebra. A composite event occurs at a time instant, as speci�ed by the closed

algebra in terms of the time instants of component basic events. 2

Several algebras for composite events have been proposed, e.g., Snoop [CM93], SAMOS [DG93],

[Chom92], and ODE [GJS92b, GJS92a, JMS92, GJMS93]. We permit simple conditions, such as

X > 10 on attribute X of an event, or a boolean predicate on attributes of events, to be included

in the algebra for composite events. Note that the boolean predicates in a composite event do

not refer to items stored in the database, and can be evaluated from the given event, without

querying the database. Permitting boolean expressions allows for easy speci�cation and e�cient

implementation of events such as

every n

th

trade of IBM stock at price > 50

that would otherwise require complex temporal queries in the Condition part. A more complex

algebra may also permit predicates that refer to database items, We assume that an optimizer that

can move such complex predicates into the condition part would be provided, thereby making the

algebra equivalent to the one we consider.

Both basic and composite events are usually referred to by event names or event identi�ers.

Depending upon the event description, and the type of database, a rule may get associated with one

or more relations, views, or objects. Rules can typically be inserted, deleted, updated, activated,

and deactivated by the user as well as by the system.

To summarize, for the purpose of this report, we will assume that the event part of a rule is

based on an algebra, that the algebra will permit certain conditions to be included in the event

part, and that there will be a separate Condition part in the rule. For high-level syntax, we

will express a rule as \WHEN event IF condition THEN action"; di�erent syntax may be used and

defaults assumed in actual implementations. It is desirable of course to standardize on a rule

language.

4.5 Temporal Rules

Following the above de�nitions of rules and events, we focus on the de�nition of temporal rules,

and distinguish between two cases: temporal rules in non-temporal databases and temporal rules

in temporal databases.

De�nition 4.3 Temporal Active Rule: An active rule is said to be temporal if (1) the event

is a composite event that refers to basic events occurring at time points other than the time when

the rule is �red, or (2) the event refers to explicit time basic events, or (3) the condition contains

21



a temporal database query that cannot be expressed in a non-temporal query language that can

reference the basic event (or the last basic event in the composite event that caused the rule to

�re), operating over a database that does not maintain a temporal history. 2

Note that the action is not mentioned in the de�nition of a temporal active rule. The action

is an arbitrary procedure, and we will not attempt to characterize a rule based on the behaviour

of the action.

In the above de�nition of a temporal active rule, conditions (1) and (2) may be seen as the

de�nitions of a temporal event , and condition (3) as the de�nition of a temporal condition.

4.5.1 Temporal Rules in a Non-temporal Database

In a non-temporal database, the query language is non-temporal, so the condition of a rule cannot

contain a temporal query. Hence, active rules in a non-temporal database are temporal if and only

if (1) the event is a composite event that refers to basic events occurring at time points other than

the time when the rule is �red, or (2) the event refers to explicit time basic events.

We consider both these cases:

Composite events ) Temporal Rules Composite event algebras enable one to relate basic

events occurring at di�erent points in time. One can specify simple patterns of such events that

are of interest, in much the same way as a temporal query can specify patterns of values in suc-

cessive versions of relations. Composite events thus represent simple forms of temporal queries,

and can provide simple temporal features. Active rules using such event algebras must there-

fore be considered to be temporal rules . The composite algebras can be used in non-temporal

databases, provided mechanisms to recognize these event patterns are provided [CM93, DG93,

Chom92, GJS92a, JMS92]. While we will not discuss any particular algebra in this paper, we will

illustrate their relationship to temporal databases through a representative syntax.

EXAMPLE 4.1 Consider an inventory database in a store. There is an inventory(item,

amount) relation storing the amount of each item in stock. Further, at the end of every month,

sales statistics for the month are computed. One of the statistics is the average price and quantity

sold for each item in the store during the last month.

We want to label an item as high-tech if it sold in low quantities and at high prices for three

consecutive months some time in the past, and has been selling in high quantities and at low prices

for the last three consecutive months. Clearly, in a temporal database, a temporal query can be

used to identify the high-tech items. We show how a composite algebra can be used to de�ne a

temporal rule that labels items as high-tech.

Let u be an item carried by the store, and let u sale(Q, P) be an event representing the

insertion of the monthly statistic \item u sold in quantity Q at average price P during the last

month".

We �rst de�ne derived events u losale and u hisale that represent the facts that (1) item u

sold in low quantities at high prices, and (2) item u sold in high quantities at low prices, respectively,

in the last month. Assume LO QTY, LO PRICE, HI QTY, and HI PRICE are system constants de�ned

elsewhere.

(r1 ): #define u losale = u sale(Q, P) && Q < LO QTY&& P > HI PRICE;

#define u hisale = u sale(Q, P) && Q > HI QTY && P < LO PRICE ;

Suppose that, when we identify an item to be high-tech, we want to check if its current stock

is greater than HI QTY, and if not, we want to place an order for an amount = HI QTY less the

22



currently stocked quantity of the item. One may chose to write this as follows (the syntax below is

for purpose of illustration only, we are not promoting this syntax. For instance, in a real language,

one would have higher order constructs to represent repetition).

(r2 ): WHEN sequence(u losale, u losale, u losale)

followedby

sequence(u hisale, u hisale, u hisale)

IF (SELECT amount

FROM inventory

WHERE item = 'u' AND amount < HI QTY)

THEN order('u', (HI QTY - amount));

The WHEN part of the active rule uses two composite algebra operators: sequence and followed-

by. sequence(u losale, u losale, u losale) is a composite event that occurs when a sequence

of three consecutive u losale events occur, at the point when the last u losale event in the

sequence occurs. The composite event (a followedby b) occurs if the event b occurs sometime

after event a has occurred, at the point in time when event b occurs. So, the composite event in

the WHEN clause occurs at the point in time when the third month's high sale �gure is reported,

and at some time in the past, three consecutive low sale �gures were posted. The IF part of the

rule is a condition that checks if the given SQL query returns a nonempty answer. In case it does,

an order is placed for the di�erence between HI QTY and the amount returned by the SQL query.

2

The active rule r2 is considered to be a temporal rule because it can be mapped to an

equivalent rule where the WHEN clause contains basic events, and the IF clause contains a temporal

query, providing such a query was permissible in the system. For example, if the WHEN part was

limited to basic events, then it would contain the event u hisale, and the IF part would need a

temporal query that refers to old versions of a sales relation. We assume here that the sales relation

only keeps the average price and total quantities for the last one month. Since an active rule that

has a temporal query in the condition part and a basic event in the event part would de�nitely be

called a temporal rule, we must also consider the equivalent rules of type r2 as temporal.

One may want to enhance Example 4.1 to:

1. Require that the sequence of u losale events be followed by the sequence of u hisale events

within one year.

2. Check whether the current inventory amount is less than the sum of the last two months

sales, and if so, to order the di�erence between the sum of the last two months sales and the

current amount in the inventory.

3. Rather than writing a separate rule for each item that one wants to track in a similar fashion,

write one active rule to track all such items.

These enhancements require that events have attributes, and that attributes of events be passed

across time, to other events, and into the condition and action part [GJMS93]. The resulting rule

may be written as follows.

EXAMPLE 4.2 Let sale(I, Q, P) be an event representing the insertion of the monthly statis-

tic \item I sold in quantity Q at an average price of P during the last month".

The derived events losale(I, T) and hisale(I, Q, T) have attributes, and represent the

facts that (1) item I sold in low quantities at high prices in month T, and (2) item I sold in high

quantity Q at low prices in month T, respectively.

23



(r3 ): #define losale(I, T) = sale(I, Q, P) && Q < LO QTY && P > HI PRICE && T = time();

#define hisale(I, Q, T) = sale(I, Q, P) && Q > HI QTY && P < LO PRICE && T = time();

time() is a function that returns the current time at time of invocation. The time() function is

invoked at the time of occurrence of event sale(I, Q, P), and thus captures the month when the

sales �gures are posted.

The active rule may now be written as follows.

(r4 ): WHEN sequence(losale(I, T1), losale(I, ), losale(I, ))

followedby

sequence(hisale(I, , ), hisale(I, Q1, ), hisale(I, Q2, T2))

&& (T2 - T1 � 12)

IF (SELECT amount

FROM inventory

WHERE item = I AND (amount < (Q1+Q2)))

THEN order(I, (Q1 + Q2 - amount)) ;

The symbol ` ' is used for an argument position whose value is not important in specifying the

rule. The WHEN part of the active rule includes a simple condition (T2 - T1 � 12) to ensure

that the current hisale event is within 12 months of the �rst losale event being considered to satisfy

the composite event. Using the same variable I in all events ensures that all sales events are about

the same item. The item I and the quantities Q1 and Q2 are then available, and used, in the

condition and action part. 2

Explicit Time Events ) Temporal Rules The event can contain explicit reference to times,

such as at \11:00am on Jan 26, 1950". A calendar algebra can be de�ned to refer to time events at

a higher level, such as \3rd Friday of a month". In either of the above cases, we say that the event

refers to basic time events, so the active rule is temporal. Such basic time events can be used like

any other basic events in de�ning composite events using a composite algebra.

An example of a temporal rule using basic time events is, \WHEN every 10 Minutes IF con-

dition THEN Evaluate(Portfolio)" where Evaluate is a user-de�ned procedure that is applied

to the named object (condition may be any condition on the database states).

In many business applications, there is a need to reference times which are not standard

Gregorian dates, e.g. \business days" or \trading days". Several proposals have been introduced

recently of a database support for di�erent calendric systems [SSD92, CS93, CSS93]. In the context

of this position paper, a calendar is a semantic collection of time interval possibly with a cyclical

structures. Calendars can be operated upon via an algebra (calendar expressions) and the result

is also a calendar. The interpretation of the expression is a function of the operand calendars.

So \Every Fri in 1993" will yield a di�erent result if applied to the Gregorian calendar than if

applied to the business days calendars. The collection of those Fridays is also a calendar. There is

one base calendar (e.g., the Unix time system) to which all other de�ned calendars are mapped. It

should be noted that such an algebra is more powerful than functions (such as DATE functions).

We use Chandra's calendar algebra [CSS93] to illustrate the idea (a di�erent language could

be used). Assume that the calendars WEEKS, DAYS, Expiration Month, and AM BUS DAYS (American

Business Days) were already de�ned. The following code speci�es a basic time event that can be

included as the event of a rule associated with trading stock options; it speci�es \third Friday of

the expiration month if a business day, else the preceding business day".

{

Fridays = [5]/DAYS:during:WEEKS;

24



temp1 = [3]/Fridays:overlaps:Expiration_Month;

/* 3rd Friday of the expiration month where expiration

month is a predefined calendar */

if (temp1:intersects:holidays) /* if holiday */

return([n]/AM_BUS_DAYS:<:temp1);

/* last business day before 3rd friday of expiration month */

else

return(temp1);

}

The above example illustrates that calendars can be de�ned as part of the event speci�cation

and previously de�ned calendars can also be referenced. If such an algebra is used it has to be part

of the event composition algebra mentioned before. Incorporating such calendars expressions into

rules require the design of parsers for such scripts that create an e�cient evaluation plan. Chandra

also describes the implementation of such temporal rules in POSTGRES [CSS93].

4.5.2 Temporal Rules in Temporal Databases

From the de�nition of temporal rules, it follows that an active rule in a temporal database is

nontemporal if the event is basic and the condition contains a non-temporal query that could be

expressed in a non-temporal query language. All other rules in a temporal database are called

temporal rules . Thus, rules that would be considered temporal in a non-temporal database, are

also considered temporal in a temporal database.

Further, both temporal and non-temporal active rules can be be viewed as �rst class database

objects. This means that the history of rules should be kept. Each rule is associated with trans-

action and valid times. Transaction time is the time when the rule was recorded in the database.

Valid time represent the time point(s) when the rule is applicable, i.e., checked for activation. The

valid time of a rule can be speci�ed explicitly as a temporal element, or implicitly in terms of data

condition(s) or the occurrence of some event(s). Activation and deactivation of rules is achieved

by changing their valid time.

There are two basic alternatives for modeling the history of rules. In the �rst way, the rule

is considered as a single unit, and thus, a change to one of the components is regarded as deletion

(note: in the temporal database case, deletion of a rule amounts to inde�nite deactivation) of the

rule and the addition of a new rule. In the second way, a rule is considered to be a complex object

and the history of the individual components is maintained, that is, we can represent di�erent

versions of the same rule.

4.5.3 Actions of Rules in Temporal Databases

When a rule is activated, and the condition evaluates to true, the action part of the rule gets

executed. In a temporal database, the action can include any update to the database, including

updates to past or future valid times of data items. Such updates are called retro-active and

pro-active updates, respectively.

If proactive or retroactive updates are allowed in a temporal database, rules can e�ect data

in several ways. We will elaborate on the retroactive case only; dealing with proactive updates is

25



similar. In [EGS93a] the following characterization of retroactive e�ects is given. In the following

de�nitions, \past" is measured relative to the time of the operation or triggering of a rule:

De�nition 4.4 Retroactive Update: an update operation that modi�es past values of data

elements. 2

De�nition 4.5 A Retroactive Rule: a rule whose action includes a retroactive update. 2

De�nition 4.6 Retroactive Rule Activation: the application of a rule to past snapshots. 2

These de�nitions indicate that rules can e�ect data retroactively in two main ways: due to retroac-

tive rules, or due to retroactive activation of rules. The latter case can occur for two reasons: 1)

a rule is introduced in the system with a valid time that includes past time interval(s), or 2) a

retroactive update occurred, and the updated data element(s) trigger a rule which was valid at

that past time.

4.6 Temporal Consistency

Generally speaking, the consistency of a database is measured relative to the e�ect of a serial

execution of a set of transactions on a state that is assumed to be consistent (i.e., the serializability

condition), and relative to a set of constraints that limit the space of legal database states. In

the rest of this section we assume that the serializability condition is satis�ed, and therefore,

consistency is in the context of constraints only. Constraints can be non-temporal, i.e., they refer

to any valid time snapshot, or temporal, i.e., they refer to particular snapshot(s). It is assumed

that constraints can be compiled into rules that enforce them. Note that these rules can also derive

data items.

In order to characterize the actions of rules in a temporal database, there is a need to dis-

tinguish between a database state and a snapshot. The following de�nitions refer to a bitemporal

database, i.e., a database that supports both transaction and valid times. We use the term system

time to refer to the time values generated by the system clock. It is assumed that these time

values are used as the domain of transaction time. Observation time refers to the reference point

in the system time line from which the database state is observed. In conventional databases the

observation point is always NOW. In temporal databases the observation point can be less than

or equal to NOW. Only data objects with transaction time less than the observation time can be

seen by a query (or a transaction).

We de�ne a few concepts needed to understand temporal consistency.

De�nition 4.7 Database State(t): all the values of data objects committed by system time

t. 2

Since we assume no overwriting of data, each state contains the complete database evolution up

to time t. Moreover, the history of database states is kept as well, and therefore is a history of

histories (or a sequence of sequences). Note that database states are ordered by system time.

EXAMPLE 4.3 Assume that the values of data object A are changed by transactions in the

following way (the values of A are denoted as a

1

, a

2

, etc. a

i

is the new value inserted by transaction

TR

i

):

Transaction TR

1

TR

2

TR

3

Value a

1

a

2

a

3

Transaction Time 1 3 11

Valid Time [1; 4] [3; 10] [9; 15]

26



The database state at time 2 contains the information in the �rst column, at time 5 the information

in the �rst two columns, etc. 2

De�nition 4.8 Transaction Time Database Snapshot(t): the database state at system time

t. It is assumed that this snapshot is the same for any observation time greater than t. 2

Note that Transaction Time Database Snapshot is the same as the database state at the speci�ed

time. The reason the two de�nitions are given is that those two terms are used by many people

with di�erent meaning. It is convenient in some contexts to use the term database state and in

others to use transaction time snapshot. However, these are synonyms.

De�nition 4.9 Valid Time Database Snapshot(t

1

; t

2

): the world's state (as inferred from the

database states) at valid time t

1

as observed from system time t

2

. t

1

can be either greater than or

less than or equal to t

2

(greater than implies that the data values are predictions). 2

For valid time snaphots, t

2

is necessary for the following reasons. At the presence of retroactive

or proactive updates, a snapshot characterization requires the speci�cation of an observation point,

i.e., the snapshot values can be di�erent for di�erent observation points. In the above example,

the database snapshot at valid time 2 will give the value v

1

; at valid time 4, however, there are two

values, v

1

and v

2

inserted by transactions TR

1

and TR

2

respectively. If we assume that the later

commit is the right value, the snapshot value will be v

2

. There are situations where the snapshot

value has to be determined based on more complex inference [EGS92]. It should be noted that also

without retroactive or proactive updates t

2

is necessary (of course one can default it to NOW);

for example, if A had a value a with valid and transaction times 2, then a valid time snapshot

requested at system time t

2

for valid time 2 may have di�erent values for di�erent observation times

t

2

; the value corresponding to t

2

= 4 is a, while the value corresponding to t

2

= 1 is \unknown."

Thus the value of a data object at a given valid time is a function of the observation time.

Consequently, the consistency of the database has to be determined relative to a chosen observation

time.

De�nition 4.10 Temporal Consistency at Time t: An active temporal database is consistent

at system time t if for all valid time instants t

v

, a valid time snapshot at time t

v

as seen from time

t (which will include all the data objects whose valid time intervals include t

v

when observed from

time t) satis�es all the rules that are valid at time t

v

. 2

Note that if rules can also change retroactively, then determining which rule is valid at t

v

in

the above de�nition is not trivial. That is, when observing the database state from observation

time t, then for a particular t

v

and a data objectD, there may be two or more rules which constrain

D (possibly in a contradictory way). For example, at time t = 1 the constraintD < 10 was inserted

with valid time interval [1,5]; this constraint was changed to D < 8 at t = 5 with valid time [3,10];

then at t = 10 a transaction changed the value of D at valid time 4 from 7 to 9. How should

consistency be enforced? if we evaluate it against the rules that existed at time 4 as we see them

from observation time 10, then two rules exist and if we assume that the latest is correct then the

new value of D should be rejected. However, if the consistency is evaluated relative to the rules

that were valid at time 4 as we saw them at that time, then the new value should be accepted.

Enforcing consistency is necessary when new data values are modi�ed, and when rules are

activated. The complexity of the task is a function of which updates and rules are allowed. A

classi�cation of temporal active database systems based on that level of complexity is useful.

Factors that will a�ect it include the following.

� Are retroactive/proactive updates to data permissible?

27



� Are retroactive/proactive updates to rules

� Are retroactive/proactive rules permissible?

� Is retroactive/proactive activation of rules permissible?

4.7 Real Time Constraints

The ECA model allows one to capture the condition corresponding to the lack of completion by

a deadline but not much more. Consider the rule, \At deadline if A not completed do recovery

action." There is no way to say \complete A within deadline" so that the system tries proactively

to meet the deadline and only if it fails it takes recovery action.

It is not di�cult to see that active databases provide a good model for the arrival (i.e.,

triggering) of periodic/aperiodic activities based on events and conditions. Even though the ECA

model implies that an active database can be made to react to timeouts, time constraints are not

explicitly considered by the underlying transaction processing mechanism.

However, the primary goal of real-time database systems is to complete transactions on time

[Rama93b]. One can thus state the main de�ciency in active databases in relation to what is

required for them to deal with time constraints on the completion of transactions: time constraints

must be actively taken into consideration.

Consider a system that controls the landing of an aircraft. Ideally, we would like to ensure

that once the decision is made to prepare for landing, necessary steps, for example, to lower the

wheels, to begin deceleration, and to reduce altitude, are completed within a given duration, say

10 seconds. Here the steps may depend on the landing path, the constraints speci�c to the air-

port, and the type of aircraft, and hence may involve access to a database containing the relevant

information. In those situations where the necessary steps have not been completed in time, we

would like to abort the landing within a given deadline, say within 5 seconds; the abort must be

completed within the deadline, presumably because that is the \cushion" available to the system

to take alternative actions. This requirement can be expressed as follows.

ON (10 seconds after initiating landing preparations)

IF (steps not completed)

DO (within 5 seconds Abort landing).

Thus, while active databases possess the necessary features to deal with many aspects of real-

time database systems, the crucial missing ingredient is the active pursuit of the timely processing

of actions.

4.8 Conclusion and Follow-on E�orts

The overall objective of the discussions in group C was to identify the common infrastructure

for the next generation of temporal database concepts including extensions of the relational data

models as well as the adoption of concepts from object based data models. The emphasis of the

discussions was on object based models since the participants felt that this is the most likely way

forward. Research work in the areas of temporal object bases and temporal active databases is

quite preliminary and consequently, the infrastructure is less well developed here as compared with

that for temporal relational databases.

The participants of group C1 discussed in some detail the future directions of the work in

this area. Although, it is too early to consolidate, the participants felt that any future work on

infrastructure should be linked with work on SQL3. The main reason for that is that SQL3 is still

open for negotiation and in addition, incorporation of time semantics into it will certainly have a

28



major impact in the community unlike the work in temporal relational databases and extensions

of SQL-89 and SQL-92.

Future work in this area should also be linked with the �ndings and conclusions reported

in the next section, in order to provide the required performance levels necessary for the wide

acceptability of temporal object database technology. This link was not investigated in any detail

during this workshop but it will certainly be a major issue for discussion at a future infrastructure

workshop.

Finally, work on the glossary should incorporate concepts from any proposed extensions to

SQL3 and agreed infrastructure for temporal object databases.

5 Group D: Implementation

5.1 Introduction and Group Charter

Working group D, consisting of J. Blakeley, R. Elmasri, S. Jajodia, V. Kouramajian, K. Makki,

D. Peuquet, V. Tsotras, and D. Wells, was concerned with the de�nition of system implementation

techniques and an architecture for temporal databases. The identi�cation of any similarities and

di�erences between an architecture for a temporal DBMS and that for a non-temporal DBMS was

one of our goals. Proposing a reference architecture was one of the goals of the group.

A second goal was to identify a suitable model, or models, for representing temporal databases

at the storage level. Such a model would be needed for discussions on several system modules,

such as query optimization, it was argued. As it turned out, our discussions led us to change this

opinion.

A third goal was to identify which aspects of a temporal database, if any, need to be identi�able

at the storage level; for example, whether such time dimensions as valid and transaction time would

need to be explicitly represented at the storage level.

The fourth goal was to identify a number of system modules (query optimization, concurrency

control, security, etc.) and to determine preliminary requirements for each of these modules.

Finally, we wanted to discuss what are typically temporal database applications in preparation

for the speci�cation of performance benchmarks. These benchmarks would be used to compare

proposed indexing and storage structures for temporal databases.

5.2 Current Status of the Field

Only a few generalized temporal database management systems have been implemented. The

TQuel prototype [AS86] is perhaps the best known. However, because many applications of

databases are inherently temporal, there have been countless implementations of ad-hoc temporal

databases that either utilize existing commercial DBMSs or that build temporal databases over

�le systems. In these implementations, the meaning and interpretation of time is implemented by

the user application programs rather than being understood by the DBMS software itself, which

is the goal of a generalized temporal DBMS.

A number of indexing techniques have been proposed that claim to improve the performance

of search based on temporal conditions. Some are extensions of techniques that were originally

proposed for spatial indexing, whereas others were explicitly designed for temporal databases.

A crucial aspect of a temporal DBMS architecture is to de�ne a standard algebra that is well

accepted for temporal database operations. This would correspond to the well-accepted relational

algebra operations for representing non-temporal database requests. In addition, a set of update

operations for temporal databases would be useful. These operations would be the target internal

representation for temporal queries and updates, and would serve as a basis for such systemmodules

29



as query processing and optimization. Unfortunately, there is no well-accepted temporal database

algebra (there is, however, no shortage of candidates [MS91a]).

There has been little research in areas such as identifying concurrency control, recovery,

security, and other techniques that would take advantage of temporal database features, such as

the availability of the history of database changes.

5.3 Baseline Architecture

After heated discussion, there was general agreement that the architecture of a temporal DBMS

should not di�er drastically from that for a non-temporal DBMS. In particular, it seems that at

the physical storage level (i.e. disk pages), data can be stored as byte streams as for non-temporal

databases. However, we did not have enough time to discuss the impact of time on concurrency

control, recovery, and security mechanisms. We mainly were considering the system modules for

query processing and optimization.

Our baseline architecture consists of four main modules. At the lowest level, a storage system

exists, which stores persistent data in disk pages. This level could use existing storage systems,

such as EXODUS or the UNIX �le system. Stored objects are retrieved as byte streams, and

interpreted as objects at a higher level of the system based on the information stored in the system

catalog. We could not agree whether the basic storage model should be based on tuple versioning,

attribute versioning, the use of deltas, or a combination of these techniques. At the storage level,

data records can be clustered for e�cient access. For example, the partitioning of storage into a

current store and history store could be used. Indexes to locate related data or to search based on

time conditions, attribute values, or a combination of both, could be built.

Above the storage level, there would be a number of higher level modules. One module

would include an extensible library of available execution algorithms is proposed. Another module

that contains a library of available index structures would be accessible by some of the execution

algorithms. The execution algorithms would be various implementations of the high-level tempo-

ral database operations. A query optimization module would create an execution strategy for a

temporal query by choosing the appropriate options from the execution algorithms library. With

reference to the conceptual architecture shown in Figure 1, these two lower levels (storage system,

query optimization and evaluation) correspond to the representational side of that �gure.

Standard modules such as query parser would create an internal query representation, which

would then be optimized by the query optimizer (query parsing and logical query optimization

corresponds to the right middle of Figure 1, concerned with the (single) conceptual data model on

which the temporal query language is based.

The issue of which set of formal operations to use in representing and optimizing temporal

queries was not resolved. There were two main points of view. The �rst was that we should

extend the standard relational algebra operations with the interval algebra [All83] so that we can

proceed with prototype implementations and analysis of various optimization methods, indexing

techniques, and execution algorithms. The second point of view was that we do not fully understand

how temporal databases di�er from non-temporal ones, and that we should examine new algebras

developed explicitly for temporal databases. The conclusion was that we should proceed in both

directions, with some researchers taking the �rst shorter-term approach, while others pursue a

possible long-term better solution.

The indexing module should be extensible. Thus, new indexing methods would be added

to the library as they become implemented. For each indexing method, the speci�cation of the

storage model that it is compatible with, as well as the execution modules that can use it, and cost

estimate functions for use by the optimizer, must be given when it is added to the index library.

30



5.4 Performance Benchmarks

Performance benchmarks to compare various proposals for temporal index structures and search

techniques are needed. We agreed that there is probably no typical temporal database application,

so that it would be necessary to create a number of benchmarks for di�erent applications. The

following characteristics should be considered when designing a temporal benchmark.

� Database size (volume of data): This could be identi�ed by the average number of snapshot

objects, and the total number of stored objects.

� Frequency of updates: The parameters that could specify this include the average version

interval (lifespan), average number of versions per (non-temporal) object, percentage of very

longed lived objects, and other parameters.

� The purging or archiving characteristics of the application.

� The presence of retrospective updates.

� Query characteristics: These include whether the prevailing queries are purely temporal,

purely attribute based, or a combination. For temporal queries, a further distinction into

point versus interval queries is possible. An initial matrix to characterize query characteristics

at a low level was proposed.

The metrics to be measured by a benchmark include the space consumption by indexing and

storage structures, the update time, the archiving/migration time, and access times for di�erent

types of queries.

5.5 Extensible Query Processing Architecture

We further discussed the query processing architecture for temporal databases and agreed that

it should support extensibility at various levels. At the algebra level, the architecture should

support the use of di�erent algebras; for example, a relational algebra extended with Allen's

interval algebra, or one of the many algebras proposed by temporal database researchers. The set

of execution algorithms in the execution algorithms library should also be extensible. New search

techniques can be incorporated by adding their implementations and descriptions to the library,

along with cost estimation formulas to be used by the optimizer. The optimization algorithms

themselves may be changed by basing them on di�erent paradigms, such as dynamic programming

or branch and bound.

This organization is consistent with the trend towards open architectures.

5.6 Conclusion and Follow-on E�orts

In summary, our group recommends that the architecture for temporal databases be based on

similar architectures for non-temporal databases. The emphasis is on 
exibility so that various

query optimizers, execution algorithms, index techniques, and storage models could be supported.

We recommend two levels of future investigation: short term and long term.

For the short term, we should examine in more detail the suggested framework for temporal

query processing and optimization. The proposed system modules and their interactions should be

further speci�ed. We recommend that an algebra for internal representation of temporal queries be

developed based on extending the existing relational algebra with temporal operations. Research

to optimize temporal queries based on this algebra would then proceed. A library of execution

algorithms and a library of indexing methods that can be used to implement the operations of this

31



algebra would be needed. The characterization of a number of benchmarks for various temporal

database applications is needed to be able to compare various optimization techniques and indexing

methods.

For the longer term, we recommend that research continue in identifying whether or not

there are more signi�cant di�erences between temporal and non-temporal databases. The use of

proposed temporal algebras that are more independent from the relational algebra as a basis for

system implementation should be investigated. The impact of temporal databases on concurrency

control, recovery, security, and other system modules should be investigated.

6 Conclusions

This workshop was the �rst opportunity for those active in temporal databases to meet and discuss

the common aspects of extant ideas and proposals. The workshop was unusual in that the topics

of discussion were not new results of research, nor recommendations for future research, but rather

which results of previous research could be identi�ed as common infrastructure.

The preceding four sections each enumerate speci�c contributions to an infrastructure for

temporal databases. There were several common threads that ran through many of these individual

group discussions.

� The infrastructure must be based on a core set of desired features, so that most temporal

applications receive at least some support from the temporal DBMS.

Applications demand a wide variety of temporal database features, from storage of time-

stamps through temporal joins through support for relative time (in which only the relative

ordering of events is known), through full-
edged temporal reasoning. Because of this di-

versity of requirements, the infrastructure should only include those aspects that support a

signi�cant fraction of the applications, and that are fairly well understood.

� Terminology is critical.

As time is such a prevalent aspect of data, and indeed of life in general, it is natural that

di�erent spheres of activity would come up with di�erent terms for the same concept (e.g., an

airplane trip from New York to Paris is a \macro-event" to some and an \interval" to others)

and identical terms for di�erent concepts (e.g., an \event" to some is simply a position on a

time line, whereas to others it is an occurrence of something interesting). Much e�ort was

invested to develop a well-de�ned glossary of relevant terms.

� Aspects of the conceptual model must be separated from concerns of the representation.

This separation proved to be bene�cial in several of the discussions: it enabled the issue of

performance to be separated from the issue of semantic integrity. Particularly in databases,

performance is seen as all-important, with other issues subjugated to a lesser status. Several

of the groups made explicit distinction between the semantics of the data, as expressed in the

conceptual model, from the encoding of the data, as expressed in a representational model.

� The baseline architecture must be extensible, and must identify what is di�erent about a

temporal DBMS, and what can vary between TDBMS implementations.

The distinction of conceptual versus representational is incorporated into the architecture.

Extensibility of the storage model and index library ensures that di�erent representational

models can be employed, thereby achieving high performance through the use of storage

models and temporal indexes appropriate to the application.

32



In addition to this report, several other components of an infrastructure for temporal databases

have recently been completed.

Substantial e�ort over the two years preceding the workshop generated an initial glossary

that was published in the ACM SIGMOD Record [JCG+92], and its impact on standardizing

terminology is now being felt. Christian S. Jensen headed an editorial board to complete the

glossary. The glossary, containing 87 terms and their de�nitions, will appear in the March, 1994

issue of the ACM SIGMOD Record.

Also, over the six months prior to the workshop a fairly exhausting consensus e�ort generated

an initial draft of a \language benchmark" intended to be an aid in evaluating the user-friendliness

of proposals for temporal query languages. Christian S. Jensen spearheaded the e�ort to complete

\test suite of temporal query languages", as it is now called. This document is focused on SQL

language extensions.

Several other e�orts contemporaneous with the planning of the workshop also contribute to

an infrastructure for temporal databases. The �rst book on temporal databases [TCG+93] is

a comprehensive volume covering modeling, languages, and implementation aspects of temporal

databases. The book consists of 23 chapters that report the research results of leading researchers

in temporal databases. The �fth in a series of bibliographies on temporal databases appeared in

the December, 1993 issue of ACM SIGMOD Record, a bibliography on spatiotemporal databases

appeared in the March, 1993 issue of ACM SIGMOD Record, and an extended version will appear

in the International Journal of Geographical Information Systems.

Several consensus e�orts were started as a result of the discussions at the workshop. The

glossary is continuing, and new terms will be added as temporal databases and their diverse

applications are better understood. The TSQL2 and TSQL3 language design e�orts are ongoing.

In particular, the TSQL2 language design committee has released an initial language speci�cation.

In sum, the last two years have seen a blossoming of consensus e�orts within the temporal

database community. The temporal database book, the glossary, the temporal query language test

suite, the TSQL2 language de�nition, and this report are tangible artifacts of the community's new-

found willingness to work together to produce a realistic, articulated, and coherent infrastructure

on which future research and industrial development can proceed.

7 Acknowledgements

Curtis Dyreson contributed to the preparation of Section 2. Fabio Grandi's notes were helpful in

the preparation of Section 3.

Gio Wiederhold has pushed for an infrastructure for temporal databases for many years now,

and this workshop is one result of his e�orts. Maria Zemankova was vital in shepherding the

initial proposal through an NSF review. Without their diligence this workshop would never have

occurred.

This workshop was supported by ARPA and the National Science Foundation under grant IRI-

9304091. Support was also provided by Bell Communications Research and Tandem Corporation.

However, the �ndings expressed in this report do not necessarily re
ect the o�cial position of any

of the sponsoring agencies.

33



A Group Members

Participant Group A�liation

Ilsoo Ahn B AT&T Bell Laboratories

Gad Ariav A Tel Aviv University, Israel

Marianne Baudinet A Universite Libre de Bruxelles, Belgium

Jos�e Blakeley D Texas Instruments

Mark Boddy A Honeywell Systems and Research Center

Alex Buchmann C.2 Technisch Hochschule Darmstadt, Germany

Sharma Chakravarthy C.2 University of Florida

Su-Shing Chen National Science Foundation

Tsz-Shing Cheng C.1's rapporteur Iowa State University

James Cli�ord B New York University

Klaus Dittrich C.2 Universitat Zurich, Switzerland

Curtis Dyreson A's rapporteur University of Arizona

Ramez Elmasri D's coordinator University of Texas at Arlington

Max Egenho�er A University of Maine

Shashi K. Gadia C.1; visited B Iowa State University

Fabio Grandi B's rapporteur Universit�a di Bologna, Italy

Pat Hayes A Beckman Institute

Sushil Jajodia D George Mason University

Christian S. Jensen B Aalborg Universitetscenter, Denmark

Wolfgang K�afer B Universitaet Kaiserslautern, Germany

Vram Kouramajian D's rapporteur University of Texas at Arlington

Krishna Kulkarni B Tandem Corporation

Ted Lawson C.1 University of Wales College of Cardi�, U.K.

Nikos Lorentzos B Agricultural University of Athens, Greece

Kia Makki D University of Nevada

Inderpal Singh Mumick C.2 AT&T Bell Laboratories

Frank Olken A Lawrence Berkeley Lab

M. Tamer

�

Oszu C.1 University of Alberta, Canada

Barbara Pernici A's coordinator Politecnico di Milano, Italy

Donna Peuquet D Pennsylvania State University

Niki Pissinou C.1 University of Southwestern Louisiana

Krithi Ramamritham C.2 University of Massachusetts

Scott Relan Digital Systems Research

Arie Segev C.2's coordinator University of California at Berkeley

Richard Snodgrass B's coordinator University of Arizona

Michael Soo C.1's rapporteur University of Arizona

Sury Sripada A ECRC, Munich, Germany

Stanley Su C.1 University of Florida

Abdullah Uz Tansel B City University of New York

Babis Theodoulidis C.1's coordinator UMIST, Manchester, U.K.

Vassilis Tsotras D Polytechnic University

David Wells D Texas Instruments

Gio Wiederhold ARPA/SISTO

Gene Wuu C.1 Bell Communications Research

34



B Proceedings Abstracts

As a prelude to the workshop, the invited participants prepared position papers for distribution about a

month before the workshop. The participants were encouraged to read these position papers, to inform the

discussions at the workshop.

The following is a list of the position papers, with their abstracts. The entire proceedings is available

at cost by sending a request to Robyn Austin, Department of Computer Science, University of Arizona,

Tucson, AZ 85721, or robyn@cs.arizona.edu.

Proposed Temporal Database Concepts{May 1993

Christian S. Jensen (editor), et al.

This document contains the complete set of glossary entries proposed by members of the temporal

database community from Spring 1992 until May 1993. It is part of an initiative aimed at establishing

an infrastructure for temporal databases. As such, the proposed concepts will be discussed during the

\International Workshop on an Infrastructure for Temporal Databases," in Arlington, TX, on June 1993,

with the speci�c purpose of de�ning a consensus glossary of temporal database concepts and names.

Earlier status documents appeared in March 1993 and December 1992 and included terms pro-

posed after an initial glossary appeared in ACM SIGMOD Record in September 1992. This document

subsumes all the previous documents. Additional information related to the initiative may be found at

ftp.cs.arizona.edu in the tsql directory, accessible via anonymous ftp.

SQL+T: a Temporal Query Language

Ilsoo Ahn

Many temporal languages have been proposed over the years, but none of them has emerged as the

standard. The absence of a standard language is one of the obstacles that slow the progress of the temporal

database technology. It would be worthwhile to design and agree upon a temporal query language that

encompass desirable characteristics of various proposals in a consistent framework. In this paper, we propose

a new temporal query language, Structured Query Language plus Time (SQL+T). SQL+T is an intuitive

and straightforward extension of SQL2, built on the existing features available in commercial relational

DBMSs and the new SQL92 standard. And it is powerful enough to support the temporal requirements

in real applications, and 
exible enough to handle all the di�erent types of time-oriented applications with

varying degrees of temporal support. We de�ne the semantics of the new language in SQL, demonstrating

that they vary greatly depending on the types of temporal support. We also describe how to simulate

SQL+T, mapped to SQL, on a conventional relational DBMS. We believe SQL+T includes many useful

concepts that can be considered for the standard temporal language.

Tools for Managing Temporally Oriented Data: Are They Really Practically Irrelevant?

Gad Ariav

The discussion of infrastructure for temporal databases rests on the premise that the widespread use

of tools for temporally oriented data management is inhibited by the lack of coherent, standardized view of

this discipline. Alas, a decade of fairly intensive study of the various aspects temporally oriented information

systems (TOIS) has created so far only limited interest outside the respective academic communities. Is the

concept practically irrelevant?

In this paper we report the initial �ndings of a study that attempted to develop some deeper sense

of the value and need for TOIS in information systems practice. As indicated by the study, the actual

reference to temporally oriented data management tools and concepts is indeed abundant, and thus the

inhibiting factors have to be sought elsewhere. We then speculate about possible di�culties in the practical

implementation of TOIS and suggest related research questions.

35



Temporal Databases: Beyond Finite Extensions

Marianne Baudinet, Jan Chomicki, and Pierre Wolper

We argue that temporal databases should not be restricted to relations with �nite extensions. Many

temporal events are periodic and have no natural bounds. Moreover, such events have a more compact

representation when allowed to be unbounded. We present two formalisms for representing and querying

possibly in�nite periodic data and discuss some of their properties, including expressiveness and query

evaluation complexity. Finally, we turn to implementation issues and argue that signi�cant extensions to

existing database systems are necessary in order to implement the frameworks we describe.

Challenges for Research on Temporal Databases

Jos�e A. Blakeley

This paper poses �ve challenges to the temporal database research community. (1) To unify the

support of time-varying data with other notions of change in databases such as schema evolution, versioning,

and change management under a common theme of database change. (2) To develop a core, reusable set

of temporal constructs that can be used to extend any data model with time-varying semantics. (3) To

design new database query languages in such a way that they can accommodate any extensions to the

data model including time-varying, distribution, and persistence extensions. (4) To develop an extensible,

temporal query processing framework that allows the temporal database research community to experiment

with newly discovered algebraic operators, equivalence transformations, execution algorithms (e.g., temporal

sort-merge join), cost and selectivity estimations, and state space search strategies to �nd the most e�ective

combination of ideas. (5) To develop a standard benchmark for temporal databases that includes both

functionality and performance benchmarks similar to the TPC-X benchmarks for relational databases. The

paper also proposes the Open Object-Oriented Database Management System (Open OODB) developed by

Texas Instruments as part of the ARPA Persistent Object Bases program as an example system that can

provide the basic infrastructure required by the temporal database community to enable experimentation

of new ideas and e�ective transfer of temporal database technology.

On Combining Temporal and Real-Time Databases

A.P. Buchmann and H. Branding

This position statement introduces three issues that are relevant in combining temporal and real-time

databases. First, it introduces the speci�cation of validity intervals and the derivation of timing constraints

from them. Next it states the need to consider future time in temporal databases, and the need to unify the

representation of time in temporal and active databases. Finally, it addresses the handling of contingency

plans and the need for branching time.

Semantics of Time-varying Information and Resolution of Time Concepts in

Temporal Databases

Sharma Chakravarthy and Seung-Kyum Kim

In this paper, we �rst identify a number of temporal database issues that need to be addressed in

order to establish an infrastructure for temporal database research and systems development. These issues

are: non-availability of commercial temporal databases, number and semantics of time concepts required,

query language extensions, possible layered architecture for supporting time-varying information, to name

a few. This paper speci�cally elaborates on the semantics of time concepts in temporal databases - one of

the issues identi�ed earlier. We present a formal de�nition of temporal validity. The notion of temporal

validity is extended to the interpretation-based validity, with which the confusion among various time

concepts introduced earlier for temporal databases can be dispelled. Then, we discuss the problem of

preserving multiple past states of a temporal database, which leads to the identi�cation of a maximal set of

time concepts. It is shown that the time concept, event time is needed to properly model retroactive and

proactive updates, as it is not possible to model them using only the valid and transaction times as thought

earlier. We also show the adequacy of three time concepts for completely preserving di�erent past states

generated by retroactive and proactive updates, error corrections, and delayed updates.

36



Grouped and Ungrouped Historical Data Models: Expressive Power and Completeness

James Cli�ord, Albert Croker, and Alexander Tuzhilin

Numerous proposals for extending the relational data model to incorporate the temporal dimension

of data have appeared in the past several years. These proposals have di�ered considerably in the way that

the temporal dimension has been incorporated both into the structure of the extended relations of these

temporal models, and consequently into the extended relational algebra or calculus that they de�ne. Because

of these di�erences it has been di�cult to compare the proposed models and to make judgments as to which

of them might in some sense be equivalent or even better. In this paper we de�ne the notions of temporally

grouped and temporally ungrouped historical data models and propose two notions of historical relational

completeness, analogous to Codd's notion of relational completeness, one for each type of model. We

show that the temporally ungrouped models are less expressive than the grouped models, but demonstrate

a technique for extending the ungrouped models with a grouping mechanism to capture the additional

semantic power of temporal grouping. For the ungrouped models we de�ne three di�erent languages, a

temporal logic, a logic with explicit reference to time, and a temporal algebra, and show that under certain

assumptions all three are equivalent in power. For the grouped models we de�ne a many-sorted logic with

variables over ordinary values, historical values, and times. Finally, we demonstrate the equivalence of

this grouped calculus and the ungrouped calculus extended with a grouping mechanism. We believe the

classi�cation of historical data models into grouped and ungrouped provides a useful framework for the

comparison of models in the literature, and furthermore the exposition of equivalent languages for each type

provides reasonable standards for common, and minimal, notions of historical relational completeness.

On the Semantics of Transaction Time and Valid Time in Bitemporal Databases

James Cli�ord and Tom�as Isakowitz

Numerous proposals for extending the relational data model to incorporate the temporal dimension

of data have appeared in the past several years. While most of these have been historical databases,

incorporating in some fashion a valid time dimension to the data model and the query languages, others have

been rollback databases, incorporating a transaction time dimension, or bitemporal databases, incorporating

both of these temporal dimensions. In this paper we address an issue that has been lacking in many of these

papers, namely, a formal speci�cation of the precise semantics of these temporal dimensions of data. We

introduce the notion of reference time - the time that any operation is applied to the database state - and

provide a logical analysis of the interrelationships among these three temporal dimensions. We also provide

an analysis of the meaning of various variables such as now and 1 which have been used in many of these

models without a complete speci�cation of their semantics.

Extending Existing DBMSs to Manage Temporal Data: An Object-Oriented

Approach

Umeshwar Dayal and Gene T.J. Wuu

In this paper we propose an object-oriented approach to support temporal data modeling and manip-

ulation. We rely on the rich object-oriented type system to model temporal information, and use an existing

database language to express complex temporal queries. There are two major bene�ts to this approach: (1)

temporal and non-temporal queries can be expressed uniformly using the same language, and (2) existing

DBMSs and their query processors can be smoothly extended to support the temporal database features.

To show the general applicability of our approach and to have maximum impact on the industry, we chose

to illustrate our approach using the object extension of the current SQL3 draft.

Time Issues in Active Database Systems

Klaus R. Dittrich and Stella Gatziu

Active mechanisms based on event-condition-action rules will play an important role in next-generation

database management systems. As an event, in its most general form, is essentially a point in time, it is

obvious that an appropriate concept of time is needed for the speci�cation of events. However, there are also

other aspects related to time that need to be considered in active database systems, and which should tie in

with the general concept of time in case the active database is also a temporal one. This position paper gives

37



a brief account of where time issues arise in active database systems, and especially demonstrates various

options for powerful event speci�cation features.

A Proposed Timestamp Format

Curtis E. Dyreson

Many database management systems and operating systems provide support for time values. At the

physical level time values are known as timestamps. A timestamp has a physical realization and a temporal

interpretation. The physical realization is a pattern of bits while the temporal interpretation is the meaning

of each bit pattern, that is, the time each pattern represents. We propose a timestamp physical realization

for events, intervals and spans, based on three basic timestamp formats. These formats can represent all of

time to the granularity of a second, and all of recorded history to a �ner granularity of a microsecond. Our

proposed formats were designed to be more space and time e�cient than existing timestamps. We compare

our timestamp formats with those used in common operating systems and database management systems.

We recommend that these formats be used for user-de�ned, transaction-time, and valid-time timestamps.

Indexing, Searching and Archiving Issues in Temporal Databases

Ramez Elmasri and Vram Kouramajian

In this paper, we identify many of the key issues related with storing, searching and archiving of

temporal data, and outline an infrastructure for a temporal storage model. The infrastructure encompasses

an indexing mechanism, physical storage design, search algorithms and archiving strategies that take into

account the characteristics of temporal data.

Our index is suitable for the majority of temporal search operations. The archiving model assumes a

two-level magnetic-optical storage system, and includes strategies for dealing with very long lived versions.

A variation of the time index, the monotonic B+-tree (MBT), is also described. The MBT is very e�cient

for append only databases that exhibit monotonic growth over the time dimension.

An object-oriented model for temporal databases

Tsz S. Cheng and Shashi K. Gadia

We propose an Object-Oriented Temporal Database Model (OOTempDBM) and a query language

OOTempSQL for handling temporal data. Our model captures the semantics of temporal objects through

type inheritance. Our underlying principles for handling temporal data are independent of the choice of a

data model. In past, these principles have been applied to our relational model. To further our work, we

show how our principles can be applied in object-oriented environment. As some infrastructure is already

available in OODAPLEX to suit our needs, we have chosen it as a base to build the rest of our model. We

also compare OOTempSQL to the query language in OODAPLEX, and argue that the former is higher level

than later. In addition OOTempSQL has many desirable features not found in other models for temporal

data.

Updates and incremental recomputation of active relational expressions in tem-

poral databases

Madhuri L. Edara and Shashi K. Gadia

An active expression is one whose result is explicitly stored by the system. A technique for incremental

recomputation of active relational expressions for relations in the classical database setting has been proposed

by Qian and Wiederhold. We extend their technique to a temporal database model. Because temporal tuples

can be very large relative to incremental changes, we introduce the notion of horizontal tuple fragments,

and propagate them in incremental recomputation. We present propagation rules for a certain restructuring

operator in the chosen temporal database model. We show that the propagation of fragments works nicely

in case of weakly invariant expressions in the temporal model. We enumerate problems in propagating tuple

fragments in non weakly invariant expressions and observe that full tuples need to be propagated in their

recomputation.

SQL-like seamless query of temporal data

38



Shashi K. Gadia and Gautum Bhargava

In this paper we present our model and a query language TempSQL for seamless integration of static,

snapshot and temporal data. In our model the compatibility of TempSQL with SQL is achieved through

the concept of a user. Our one dimensional model is generic in the sense it can be used to query valid

or transaction time data, and also readily extends to the bitemporal case. When our model is applied to

transaction time we obtain a capability of querying updates and queries. In the bitemporal case our model

yields a capability to query errors in every day record keeping. It is also argued that in the bitemporal case

the storage requirements can be reduced to that for storing one dimensional valid time database plus the

amount of error in the database.

An SQL-like seamless query language for spatio-temporal data

Shashi K. Gadia, Vimal Chopra, and U. Sunday Tim

There is a need for query languages in spatio-temporal databases that treat spatial and temporal

dimensions uniformly. The users should be given a simple view of data and freed of the worry of how it

is physically represented. This is even more important because physical implementation of spatial data is

expected to be a topic of study for quite some time to come. We present a model and an SQL-like query

language called ParaSQL for spatial data. Without tying ourselves down to any particular implementation,

we propose certain closure properties for spatio-temporal regions to make ParaSQL seamless. Space and

time coexist seamlessly providing unrestricted navigation in SpaSQL queries. To illustrate the modeling

and querying capability in our framework, we present a case study of an application in agriculture systems

and environmental management.

Incomplete information in relational temporal databases

Shashi K. Gadia, Sunil S. Nair and Yiu-Cheong Poon

For the conventional relational model there has been considerable research in the area of incomplete

information. On the other hand, research in temporal databases has concentrated on models in which com-

plete historical information is needed. However, the likelihood of missing information in temporal databases

is greater because of the vast amount of information. Hence, a mechanism must be provided to store and

query incomplete temporal information. In this paper we present a model for incomplete information in

temporal databases. The model generalizes our previous model for complete temporal information. It is

shown that our relational operators produce results that are reliable. We also show, with some exceptions,

that if the de�nitions of the operators were strengthed to give more information, we may obtain results that

are not reliable.

Temporal Mediators as a way to Support Multiple Temporal Representations

X. Sean Wang and Sushil Jajodia

In temporal databases, each object is associated with some timestamped data, i.e., time-varying

attribute values together with timestamps that give periods of validity to these values. Timestamped data

often exhibit more complicated syntax and semantics than conventional (non-temporal) data. This leads

to at least two problems: (1) Users have to understand possibly di�erent logical and physical structures

of the underlying data in these databases, and (2) user queries must be in terms of the time units (e.g.,

day) on which the timestamps are based. These two problems may prevent a user from using the databases

e�ectively. In order to solve these two problems, we introduce the concept of a temporal mediator.

A temporal mediator consists of three components: (i) a reservoir for windowing functions and con-

version functions, (ii) a time unit thesaurus and (iii) a query interpreter. There are two types of windowing

functions, one associates time points to sets of tuples, and the other associates tuples to sets of time points.

A conversion function transforms information in terms of one time unit into that in terms of some other

time unit. The time unit thesaurus stores the knowledge about time units (e.g., names of time units and

relationships among them). Users pose queries using the windowing functions and desired time units. (A

query language, which can be used to form such queries, is given in the paper.) To answer such a user query,

the query interpreter �rst employs the windowing functions together with the time unit thesaurus to access

the temporal data from the underlying databases and then uses the time unit thesaurus to select suitable

39



conversion functions which convert the responses to the desired time units. Thus, a temporal mediator

provides a simple interface that supports multiple temporal representations.

The concept of the temporal mediator leads the authors to propose to the workshop the following

research directions: (1) Continue the current investigation into logical and physical aspects of di�erent

temporal data models, and (2) initiate an investigation into the issues related to the user interfaces and the

interaction between these user interfaces and the temporal data models.

Three Proposals for a Third-Generation Temporal Data Model

Christian S. Jensen and Richard Snodgrass

We present three general proposals for a next-generation temporal data model. Each of these proposals

express a synthesis of a variety of contributions from diverse sources within temporal databases. We believe

that the proposals may aid in bringing consensus to the area of temporal data models.

The current plethora of diverse and incompatible temporal data models has an impeding e�ect on the

design of a consensus temporal data model. A single data model is highly desirable, both to the temporal

database community and to the database user community at large. It is our contention that the simultaneous

foci on the modeling, presentation, representation, and querying of temporal data have been a major cause

of the proliferation of models. We advocate instead a separation of concerns.

As the next step, we propose a data model for the single, central task of temporal data modeling. In

this model, tuples are stamped with bitemporal elements, i.e., sets of pairs of valid and transaction time

chronons. This model has no intention of being suitable for the other tasks, where existing models may

perhaps be more appropriate. However, this model does capture time-varying data in a natural way.

Finally, we argue that the 
exible support for physical deletion is needed in bitemporal databases.

Physical deletion requires special attention in order not to compromise the correctness of query processing.

Temporal Selection, Temporal Projection, and Temporal Join Revised

Wolfgang K�afer

This paper presents an innovative approach to temporal relational operations, in particular to the

temporal join operation. However, before this operation can be discussed the more basic operations, such as

temporal selection, temporal projection and temporal Cartesian Product have to be introduced. These oper-

ations are part of a temporal relational data model which provides valid- time relations with a tuple-oriented

time-stamping scheme. Our new approach to the temporal join operation stems from the observation that

units of all temporal operations are histories - and not single tuples. A history or time sequence is a

time-ordered list of tuples describing the same real-world entity. For example, in order to re
ect a change

concerning the entity, a new tuple representing the new state must be inserted into this list (not necessarily

at the end). Thereby integrity constraints de�ned for the list must be checked, e.g. does the new data with

its validity interval interfere or contradict with already stored data and validity intervals? Choosing time

sequences as the units for our temporal operations o�ers new insights, e.g. into the temporal join operation

which is traditionally de�ned on a tuple- oriented basis. Along with the discussion of the temporal oper-

ations we propose extensions of SQL to accommodate the new (temporal) functionality. Operations and

associated language extensions are illustrated on a small sample database.

An Object-Oriented Approach to Temporal Modelling

Ted Lawson, Carmel Balthazaar, and Alex Gray

This paper discusses an object-oriented approach to temporal modelling which we believe to be relevant

to the development of an infrastructure (or infrastructures) for temporal databases, and in particular to the

development of conceptual temporal models, and the establishment of standard models. It is clear that there

are many facets to the representation of time. For example, in a business application the time span between

two events could be measured in Gregorian calendar days or in working days. We describe a collection

of classes encoded in the Ei�el object-oriented language which together embody a multi-faceted temporal

model. At present the classes exist only as executable object-oriented language code, but they could be

incorporated into some future object-oriented DBMS. They fall into three groups and each group re
ects a

di�erent principal facet of the model. The �rst is independent of any particular representation of time; the

second re
ects time represented in the Gregorian calendar; the third includes specialized extensions such

40



as time-zone dependent time and \working day" durations. The collection is openly extendible, so that it

could, for example, include a facet to re
ect time represented using an Islamic calendar. The model can

be seen as incorporating a conventional relational temporal model, and could be extended to incorporate

a knowledge-based one. We suggest that such an extendible multi-faceted model could be the basis for a

standard temporal model.

Axiomatic Generalization of the Relational Model to Support Valid Time Data

Nikos A. Lorentzos

In recent years a lot of research has been undertaken in valid time data modelling. Many extensions

to the snapshot relational model have been proposed but researchers in the area have not come to a general

agreement about the properties which a reference valid time relational model should satisfy. This paper

aims at closing this gap, by proposing a set of properties subject to constructive discussion, in order to

achieve a standardization of the properties of a reference valid time Database Management System. To this

end, the properties are identi�ed by which the snapshot relational model has to be enhanced, so as to handle

valid time data. Two reference valid time relational models are speci�ed. The �rst is a generalization of the

snapshot relational model which satis�es First Normal Form. The second is a generalization of the nested

snapshot relational model. It is the most general in that it can manage any piece of data which can be

managed by any of the other models. It is then shown that all valid time extensions to the relational model

which have been proposed, represent approaches towards the formalization of these two reference valid time

data models and, therefore, they all have to be further extended.

Algebraic optimization in a relational model for temporal databases

Sunil S. Nair and Shashi K. Gadia

For the conventional relational model there has been considerable research in the area of query opti-

mization. However, research in temporal databases has concentrated on the development of models to store

and query historical information. The amount of data stored in a temporal database can be extremely large.

Hence if temporal databases are to become viable in practice, it is important that optimization for temporal

queries be studied. In this paper we develop a set of algebraic identities for a model for temporal databases.

We present an algorithm that uses these identities to convert a given temporal query to another equiva-

lent query that will execute more e�ciently. We also give algorithm to compute the cross-product of two

temporal relations, which yields substantial savings over the brute force method under certain conditions.

Research Perspective on Time in Object Databases

Niki Pissinou, Kia Makki, and Yelena Yesha

There are currently many data models that have powerful modeling constructs designed to make the

tasks of database design, evolution, and manipulation simple and easy for database designers and users.

In this paper, we look at the issues of dealing with temporal modeling in the context of object databases.

In particular, we provide a survey of some important research achievements in temporal databases from

the past two decades and signi�cant contributions from related areas. We also examine a number of major

objectives and areas of challenge which remain for researchers and implementors of temporal object database

systems and discuss the time dimension in relation to object data modeling. We investigate the important

issues that arise when attempting to integrate time with object databases and present our approach to

temporal object modeling. Our main objective here, is to provide the necessary background and motivation

to design and develop a model that integrates time with objects, thus supporting temporal temporal data

and the temporal evolution of data in an object database framework. Such a work will present a signi�cant

step towards the synthesis of an integrated object data model with a high level of abstraction, that supports

the temporal and dynamic aspects of data modeling in addition to structural and behavioral ones.

41



Temporal Extensions to a Uniform Behavioral Object Model

Iqbal A. Goralwalla and M. Tamer

�

Ozsu

We de�ne temporal extensions to a uniform, behavioral and functional object model. This is on-going

work and our proposals in this paper should be interpreted as an indication of our current thinking and the

directions that we are following rather than as �nalized research. We hope that these ideas will be topics of

discussion at the workshop as part of the infrastructure for temporal databases.

Towards the development of a general Temporal Manager for Temporal

Databases: a layered and modular approach

Luca Console, Barbara Pernici, and Paolo Terenziani

Two main aspects have been taken into account in the design of languages and systems for managing

temporal information: the trade-o� between expressive power and computational complexity of temporal

reasoning and the desire to provide high level common-sense primitives for data manipulation and retrieval

with a precise semantics. A layered and modular architecture facilitates the approach to the above men-

tioned problems: a temporal manager can be loosely coupled to existing DBMS to provide time-related

functionalities; at the physical level, temporal information can be organized in such a way that, with a num-

ber of well de�ned limitations in the expressive power of the language, a correct and complete propagation

of temporal constraints is tractable; access to temporal information can be provided with the traditional

temporal primitives provided in the literature, by providing higher level representations, to facilitate users'

understanding of performed operations. The paper presents LATER (LAyered TEmporal Reasoner), an

architecture for the management of temporal information for Databases, developed according to the above

principles. LATER is a modular (and extensible) architecture providing a set of primitives for data manip-

ulation and query. Moreover, since in LATER temporal reasoning is performed during data manipulation

(insertion and/or deletion of temporal information), queries can be answered in constant time, regardless of

the contents and dimension of the database.

Towards a Temporal Logic Reconstruction of Temporal Databases

Angelo Montanari and Barbara Pernici

This position paper aims at contributing to a formal, consensus de�nition of the semantics of time-

varying information in temporal databases. Such a formalization is necessary to precisely characterize

their requirements and expressiveness. The paper proposes a temporal logic reconstruction of (bi) tempo-

ral databases that can be seen as the logical counterpart of the relational algebra approaches to temporal

database semantics formalization. More precisely, we de�ne a topological, bidimensional temporal logic, pro-

vided with a model-theoretic semantics and a sound axiomatization, that combines Rescher and Urquhart's

topological temporal logic and Gabbay's two dimensional temporal logic. It allows us to formally deal

with basic concepts as ordering and metric temporal relations, chronologically stable and unstable times,

transaction and valid time. We also show how this formalism can be extended to provide a formal basis for

advanced features such as time granularity, multiple versions, and variants. To illustrate the capabilities of

the proposed formalism, we present in some detail the formalization of transaction and valid times. In the

last section, we illustrate how it can be used for reasoning about stored temporal information at query time.

A Framework for the Representation of Spatiotemporal Processes in Geographic

Information Systems

Donna J. Peuquet

The need for greater understanding of regional and global environmental processes and how man's

activities are a�ecting the natural environment is being viewed with increasing urgency. Although the study

of dynamics in space/ time is certainly not new, nor is it unique to a single �eld, addressing current human

and environmental issues requires empirical examination from a much broader and integrated perspective

than our current representational techniques will currently allow.

Current representational approaches for geographic data are based on a traditional cartographic pa-

radigm, and are thus also geared toward representation of static situations. Cartography has traditionally

focused on the visible representation of a portion of the world at a speci�c point in time. Although Ge-

42



ographic Information Systems (GIS) are intended to provide an integrated and 
exible tool for analyzing

large volumes of data, representations historically used in GIS are also geared toward a similar static view.

E�orts to enhance the temporal capabilities of GIS have served to reveal many problems at a fundamental,

conceptual level.

A representational framework that uni�es temporal, as well as spatial and object (i.e., feature-related)

aspects is described which incorporates concepts from Perceptual Psychology, Arti�cial Intelligence and

other �elds. It is the goal of this research to provide a drawing-together of many concepts and ideas, many

of which are well known on an individual basis, so that not only can analytical tools be improved, but also

to provide a more common ground among various �elds.

Time for Real-Time Temporal Databases?

Krithi Ramamritham

Time related concepts appear in both temporal databases and real-time databases.In this position pa-

per, we show that with minor changes to the recently compiled basic concepts of temporal databases, it is pos-

sible to cover the conceptual needs of real-time databases as well. We also discuss practical implementation-

oriented issues that arise when real-time databases are married to temporal databases. The motivation

behind this paper is to determine whether, as we attempt to standardize temporal database concepts, it is

possible to take into account the speci�c characteristics of real-time databases as well so as to expand the

applicability of temporal databases.

Temporal Active Databases

Opher Etzion, Avigdor Gal and Arie Segev

In recent years there has been an increasing e�ort to provide database support to complex new appli-

cations such as computer aided design, o�ce information systems, manufacturing information systems, and

scienti�c databases. Those e�orts resulted in advanced data models and database management systems,

such as extensible relational systems, object-oriented databases, and deductive databases. More recently

there has been an e�ort to integrate the di�erent non-traditional functionalities into single systems. We

argue that a temporal database (or a data model) should be speci�ed in the context of a non-temporal

database (or data model). Consequently, existing data models should be augmented with temporal support.

Obvious candidates are the relational model, extended relational models, object-oriented models, and statis-

tical databases. Quite a few papers have been published on temporal relational databases, and presumably

many will be included in this workshop. In this paper we present (via examples) functionality which is

needed to support object-oriented features, rules and constraints, and temporal semantics including data

and meta-data histories, multiple time types, and temporal transactions.

Multiple Calendar Support for Conventional Database Management Systems

Michael D. Soo

We describe a speci�c approach to supporting a time-stamp attribute domain in conventional relational

database management systems. In contrast to existing proposals, which assume that a single interpretation

of time is su�cient for all users and applications, we advocate a general solution that supports multiple

interpretations of time. The main concept underlying this proposal is that the universal aspects of time are

separated from the user dependent aspects, at both the query language and the architectural levels. The

user dependent aspects are encapsulated in calendars and calendric systems, each of which are extendible

by local site personnel. In this way, the available time support can be customized to local requirements.

We brie
y describe modi�cations to SQL2 that support multiple calendars and calendric systems. These

modi�cations reduce the complexity of the language while simultaneously increasing its expressive power.

Finally, we describe a set of tools that aid in the generation of calendars and calendric systems. This

work can be viewed as a limited but practical application of research into extensible database management

systems.

43



Design of the ChronoBase Temporal Deductive Database System

S.M. Sripada

The various considerations that have in
uenced the design of the conceptual model, query language,

and architecture of ChronoBase, a temporal deductive database system being developed at ECRC, are

brie
y described in this position paper.

Modeling and Management of Temporal Data in Object-Oriented Knowledge Bases

Stanley Y.W Su and Hsin-Hsing M. Chen

There has been a considerable amount of work on object-oriented databases, active databases, and

deductive databases. The common objective of these e�orts is to produce highly intelligent and active sys-

tems for supporting the next generation of database applications. These future systems must be capable

of capturing the concepts of time and managing not just temporal data but temporal knowledge expressed

by knowledge rules. In this paper, we describe the work on a temporal object-oriented knowledge model

OSAM*/T, its associated temporal query language OQL/T, an underlying temporal algebra TA-algebra,

and some implementation techniques developed at the Database Systems Research and Development Cen-

ter of the University of Florida. In addition to the characteristics of traditional object-oriented paradigm,

the model is featured by its strong support of association types and its incorporation of temporal knowl-

edge rules for specifying temporal and other types of semantic constraints associated with object classes

and their temporal object instances. The query language is featured by its pattern-based speci�cation of

temporal object associations which allows complex queries with various time constraints to be formulated

in a relatively simple way. The temporal algebra provides a set of primitive operators for manipulating

homogeneous and/or heterogeneous patterns of temporal object associations, thus providing the needed

mathematical foundation for processing and optimizing temporal queries. The implementation techniques

include a Delta-Instance and Multi-Snapshot Storage Model, and data partitioning and clustering schemes

for storage management of temporal knowledge bases. The purpose of this paper is to share with the re-

search community the work accomplished and the on-going e�ort at UF with the hope to contribute to

the workshop's objective of establishing \an infrastructure supporting both desirable practice and future

research on temporal databases."

SQL

T

: A Temporal Extension to SQL

Abdullah Uz Tansel

In this paper, we propose an extension to SQL, called SQLT for handling temporal data. The under-

lying data model allows sets as attribute values. Each attribute value can be a simple value or a temporal

atom which consists of a temporal set, a set of time points and a value. A temporal atom asserts that

the value is valid over the time period represented by the temporal set. SQLT allows set comparison, set

operations on temporal sets and SELECT statement in the target list. Features of SQLT are illustrated by

examples.

We believe that our extension to SQL will help to identify fundamental constructs needed for manip-

ulating temporal data as well as the desired features of the underlying data model. Thus, it will contribute

to establish a common foundation in temporal databases and the standardization e�orts in query languages.

Towards the First Generation of Temporal Information Servers

Babis Theodoulidis

The development and installation of medium and large scale information systems are based, to a

high extend, on Database Management Systems (DBMS). Today, there are many organisations which have

to process historical data, using conventional commercial DBMSs. However, existing commercial DBMS

technology do not provide support for the management of temporal data. As a consequence, large pieces

of application dependent code have to be written in order to accommodate time dependent application

requirements. This paper discusses the requirements for the �rst generation of Temporal Database Manage-

ment Systems and proposes an overall component architecture for such systems. In addition, a Temporal

Information Model (TIM) is described that addresses the needs for application independent representation

of temporal information and a workplan for the consolidation of the work in this area is proposed.

44



Access Methods for Historical Data

Nickolaos Kangelaris and Vassilis J. Tsotras

In this paper we attempt a comparison of di�erent indexing techniques that have been proposed for

e�cient access to historical data. The comparison is based on a collection of criteria that we believe are of

importance in dealing with such indexing methods. As this is an on-going e�ort we do not claim that this

is a complete comparison, either in covering all related indexing methods or in the criteria used. However,

such a paper serves as a constructive summary of what has been achieved, to the best of our knowledge,

in the area of access methods for temporal databases. Our purpose is to identify the di�cult problems in

accessing historical data and provide a good description of how the di�erent methods aim to solve them.

We have studied six such methods, namely, the Time-Split B-tree, the Time Index, the Segment R-tree, the

fully Persistent B+-tree, the Append-only tree and the Snapshot index.

Exploring the Possibility of Time as a Seamless Database Extension

David L. Wells

The Open Object-Oriented Database (Open OODB) seamlessly adds database functionality such as

persistence, transactions, distribution, views, versions, and automatic index maintenance to popular object-

oriented programming languages such as C++ and CLOS. These extensions are supported in a uniform

manner in the Open OODB by a common computational model and database management systems (DBMS)

infrastructure.

If temporal semantics can be added to databases using the same computationalmodel and mechanisms,

programmers can be presented with an abstraction of temporal functionality that is compatible with other

semantic extensions, and the developers of temporal DBMSs can use the Open OODB's infrastructure to

implement their temporal extensions. To determine if this is feasible, this paper sketches Open OODB's

computational model and infrastructure, and explores aspects of temporal extensions that appear amenable

to the same model and mechanisms. It is hoped that this will allow experts in temporal databases to

determine the feasibility of using the Open OODB architecture as an infrastructure component for temporal

databases.

The Need to Harmonize Temporal Data Models

Gio Wiederhold

The objective of DARPA in sponsoring this workshop is to establish a common model for temporal

databases at a higher level of abstraction than we have now. Having a common model will enhance the

research of those subscribing to it, since now their results can be shared in the accepted scienti�c tradition.

Researchers choosing alternative models can discuss their di�erences in a relative way, and their readers can

clearly achsses the speci�c choices being made; just as now new database concepts are described relative to

the relational model.

If the temporal database research community is to make a link with practice, then some common

voice is needed. Such a voice warrants support for substantial research, even while alternative models and

assessed and being proposed. A common model provides a harmonious base for this voice.

Temporal Queries for Active Database Support

Narain Gehani, H.V. Jagadish, Inderpal Singh Mumick and Oded Schmueli

An active database monitors events (such as access, insert, delete, and update of tuples/objects, and

invocation of methods on objects). Each event potentially changes the database state. Applications may

wish to react to sequences of events and database states satisfying certain properties. Speci�cation of such

sequences can be viewed as a formulation of temporal queries. Further, monitoring such sequences, or

equivalently, the evaluation of such temporal queries, must be e�cient, and must not require storage of the

entire database history.

In this paper, we present a language for specifying temporal queries that are of interest in an active

database, and for which we can hope to develop e�cient evaluation techniques.

History and Tuple Variables for Temporal Query Languages

45



Fabio Grandi, Maria Rita Scalas and Paolo Tiberio

Standard relational query languages provide range variable whose values are tuples and which are used

to denote objects (entities or relationships). Snapshot relational databases represent an object by means of

a tuple, whereas temporal relational databases represent an object by means of a collection of time-stamped

tuples with the same key value. Temporal extensions of query languages proposed so far are also provided

with range variable whose values are still tuples and so can no longer denote objects, but time-stamped

object versions.

In this paper we denote as history the set of all the tuples with the same key value in a relation and

propose the introduction of two new kinds of range variables: history variables which have histories as values

and denote objects and tuple variables which have tuples as values and denote object versions. We also

illustrate temporal extensions to SQL with these two types of variables. Some examples show how history

and tuple variables can improve clarity and ease of use of a temporal query language. Therefore we propose

that the two types of variables should be part of a common infrastructure for a temporal SQL extension.

IXSQL: An Interval Extension to SQL

Nikos A. Lorentzos and Yannis G. Mitsopoulos

IXSQL, an extension of SQL, is proposed for the management of data of a generic interval data type.

In addition to the �ve primitive operations on the conventional relational model, it supports two more

relational algebra operations, new comparison operations and new scalar functions. Historical databases is

one of the many application areas of IXSQL, in which an implementation is currently in progress.

The TSQL Benchmark

Christian S. Jensen (Editor)

This document presents the temporal database community with an extensive, consensus benchmark

for temporal query languages. The benchmark is semantic in nature. It is intended to be helpful when

evaluating the user-friendliness of temporal query languages, including proposals for the consensus temporal

SQL that is currently being developed.

The benchmark consists of a database schema, an instance for the schema, and a set of queries on this

database. The queries are classi�ed according to a taxonomy, which is also part of the benchmark.

46



References

[Ahn93] I. Ahn. SQL+T: a Temporal Query Language. In Proceedings of the International Workshop

on an Infrastructure for Temporal Databases, Arlington, TX, June 1993.

[All83] J.F. Allen. Maintaining Knowledge about Temporal Intervals. CACM, 26(11):832{843, Novem-

ber 1983.

[AMC93] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for Object-

Oriented Databases. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 99{108, 1993.

[Ariav93] G. Ariav. Tools for managing temporally oriented data: are they really prectically relevant?

In Proceedings of the International Workshop on an Infrastructure for Temporal Databases,

Arlington, TX, June 1993.

[AS86] I. Ahn and R. Snodgrass. Performance Evaluation of a TemporalDatabase Management System.

In Proceedings of the SIGMOD International Conference, Washington, DC, pp. 96{107, May

1986.

[BB93] A.P. Buchmann, H. Branding. On Combining Temporal and Real-Time Databases. In Pro-

ceedings of the International Workshop on an Infrastructure for Temporal Databases, Arlington,

TX, June 1993.

[BM91] Catriel Beeri and Tova Milo. A model for active object oriented database. In Proceedings of

the Seventeenth International Conference on Very Large Databases, pages 337{349, Barcelona,

Spain, September 1991.

[CC87] J. Cli�ord and A. Croker. The historical relational data model (hrdm) and algebra based on

lifespans. In Proceedings of the International Conference on Data Engineering, pages 528{537,

Los Angeles, CA, Feb 1987.

[CC88] J. Cli�ord and A. Croker. \Objects in Time," IEEE Database Engineering Bulletin, 11(4),

December 1988.

[CCT93] J. Cli�ord, A. Croker, and A. Tuzhilin. On completeness of historical relational query languages.

Technical report STERN IS-93-8, New York University Stern School of Business, 1993. (to

appear in TODS).

[CG93] T.S. Cheng and S.K. Gadia. An Object-Oriented Model for Temporal Databases. In Proceedings

of the International Workshop on an Infrastructure for Temporal Databases, Arlington, TX,

June 1993.

[Cha92] S. Chakravarthy. Architectures and monitoring techniques for active databases: An evaluation.

UF-CIS TR-92-041. (Submitted to Applied Data and Knowledge Engineering Journal).

[Chen76] P.P.-C. Chen. The Entity-Relationship Model-Toward a Uni�ed View of Data. ACM TODS

1(1):9{36, March 1976.

[Chom92] Jan Chomicki. Real-Time Integrity Constraints In Proceedings of the Eleventh Symposium on

Principles of Database Systems, pp. 274{281, San Diego, CA, June 1992.

[CK93] S. Chakravarthy and S.K. Kim. Semantics of Time-Varying Information and Resolution of

Time Concepts in Temporal Databases. In Proceedings of the International Workshop on an

Infrastructure for Temporal Databases, Arlington, Tx, June 1993.

[Cli82] J. Cli�ord. A model for historical databases. In Proceedings of Workshop on Logical Bases for

Data Bases, Toulouse, France, December 1982.

47



[CM93] S. Chakravarthy and D. Mishra. Snoop: An expressive event speci�cation language for active

databases. UF-CIS-TR-93-007, University of Florida, March 1993. (Revised and extended

version of UF-CIS-TR-91-23).

[CODD79] E.F. Codd. Extending the Database Relational Model to Capture More Meaning. ACM TODS,

4:397{434, 1979.

[CS93] R. Chandra and A. Segev. Managing Temporal Financial Data in an Extensible Database. In

Proceedings of the 19th Int. Conf. on Very Large Databases, Dublin, Ireland, September, 1993.

[CSS93] R. Chandra, A. Segev, and M. Stonebraker. Implementing Calendars and Temporal Rules

in Next-Generation Databases. Technical Report LBL-34229, Lawrence Berkeley Laboratory,

June 1993.

[CT85] J. Cli�ord and A.U. Tansel. On an algebra for historical relational databases: Two views. In

Proceedings of the International Conference on Management of Data, pages 247{265, Austin,

TX, May 1985.

[CW83] J. Cli�ord and D. S. Warren. Formal semantics for time in databases. ACM TODS, 8(2):214{

254, June 1983.

[Dat88] C.J. Date. A proposal for adding date and time support to sql. ACM SIGMOD Record,

17(2):53{76, June 1988.

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ladin, D.R. McCarthy,

A. Rosenthal, S. Sarin, M.J. Carey, M. Livny, and R. Jauhari. The HIPAC project: Combining

active databases and timing constraints. ACM SIGMOD Record, 17(1):51{70, March 1988.

[DG93] K.R. Dittrich and S. Gatziu. Time Issues in Active Database Systems. In Proceedings of

the International Workshop on an Infrastructure for Temporal Databases, Arlington, TX, June

1993.

[DH87] E. Dubois and J. Hagelstein. Reasoning on Formal Requirements: A Lift Control System. In

Proceedings on S/W Speci�cation and Design, 1987.

[DHL91] U. Dayal, M. Hsu, and R. Ladin. A transaction model for long-running activities. In Proceedings

of the Seventeenth International Conference on Very Large Databases, pp. 113{122, Barcelona,

Spain, September 1991.

[DUB+86] E. Dubois, et al. The ERAE Model : A Case Study in Information Systems Design Method-

ologies : Improving the Practice (CRIS-3). T.W. Olle, H.G. Sol and A.A. Verrijn-Stuart (eds),

North-Holland, 1986.

[DW90] C. J. Date and C. J. White. A Guide to DB2, Volume 1, Third edition. Addison-Wesley,

Reading, MA, September 1990.

[DW92] U. Dayal and G.T.J. Wuu. A UniformApproach to Processing Temporal Queries. In Proceedings

of the International Conference on Very Large Databases, Vancouver, Canada, August 1992.

[EGS92] O. Etzion, A. Gal, and A. Segev. Temporal Support in Active Databases. In Proceedings of

the Second International Workshop on Technologies and Systems, Dallas, TX, December 1992.

[EGS93a] O. Etzion, A. Gal, and A. Segev. Retroactive and Proactive Database Processing. Technical

Report LBL-34424, Lawrence Berkeley Laboratory, July 1993.

[EGS93b] O. Etzion, A. Gal, and A. Segev. TemporalActive Databases. In Proceedings of the International

Workshop on an Infrastructure for Temporal Databases, Arlington, TX, June 1993.

[EW90] R. Elmasri and G.T.J Wuu, A Temporal Model and Query Language for ER Databases. In

Proceedings of the International Conference on Data Engineering, May 1990, pp. 76{83.

48



[EWK93] R. Elmasri, G. Wuu and V. Kouramajian. A Temporal Model and Query Language for

EER Databases. Chapter 9, Temporal Databases: Theory, Design, and Implementation. Ben-

jamin/Cummings, 1993, pp. 212{229.

[Gad88] S.K. Gadia. A homogeneous relational model and query languages for temporal databases.

ACM TODS, 13(4):418{448, dec 1988.

[Gad92] S.K. Gadia. A seamless generic extension of SQL for querying temporal data. Technical Report

TR-92-02, Computer Science Department, Iowa State University, May 1992.

[GBM83] S.J. Greenspan, A. Borgida and J. Mylopoulos. A Knowledge Representation Approach to Soft-

ware Engineering: The TAXIS Project. In Proceedings of the Canadian Information Processing

Society, Ottava, Ontario, May 1983.

[GJ91] N. Gehani and H.V. Jagadish. Ode as an active database: Constraints and triggers. In Pro-

ceedings of the Seventeenth International Conference on Very Large Databases, pp. 327{336,

Barcelona, Spain, September 1991.

[GJS92a] N. Gehani, H.V. Jagadish, and O. Shmueli. Composite event speci�cation in active databases:

Model and implementation. In Proceedings of the Eighteenth International Conference on Very

Large Databases, pp. 327{338, Vancouver, Canada, August 1992.

[GJS92b] N. Gehani, H.V. Jagadish, and O. Shmueli. Event speci�cation in an active object-oriented

database. In Proceedings of ACM SIGMOD 1992 International Conference on Management of

Data, pp. 81{90, San Diego, CA, June 1992.

[GJMS93] N. Gehani, H.V. Jagadish, I.S. Mumick, and O. Shmueli. Temporal Queries for Active Database

Support. In Proceedings of the International Workshop on an Infrastructure for Temporal

Databases, Arlington, TX, June 1993.

[GM91] D. Gabbay and P. McBrien. Temporal logic and historical databases. In Proceedings of the

Seventeenth International Conference on Very Large Databases, p. 423{430, Barcelona, Spain,

September 1991.

[GO93] I. Goralwalla and M.T.

�

Ozsu. Temporal Extensions to a Uniform Behavioral Object Model.

In Proceedings of the International Conference on Entity-Relationship Approach, Dallas, June

1993.

[GST91] F. Grandi, M. R. Scalas, and P. Tiberio. A History-oriented Data View and Operation Semantics

for Temporal Relational Databases. Technical Report CIOC-CNR N. 76, Universit�a di Bologna,

Italy, Revised April 1993.

[GST93] F. Grandi, M. R. Scalas, and P. Tiberio. History and Tuple Variables for Temporal Query

Languages. In Proceedings of the International Workshop on an Infrastructure for Temporal

Databases, Arlington, TX, June 1993.

[GV85] S.K. Gadia and J.H. Vaishnav. A query language for a homogeneous temporal database. In

Proceedings of the Symposium of Principles of Database Systems, pp. 51{56, March 1985.

[GY88] S.K. Gadia and C.S. Yeung. A generalized model for a relational temporal database. In Pro-

ceedings of the ACM International Conference on Management of Data, pp. 251{259, Chicago,

IL, June 1988.

[JCG+92] C.S. Jensen, J. Cli�ord, S.K. Gadia, A. Segev, and R.T. Snodgrass. A glossary of temporal

database concepts. ACM SIGMOD Record, 21(3):35{43, September 1992.

[JMR91] C.S. Jensen, L. Mark, and N. Roussopoulos. Incremental implementation model for relational

databases with transaction time. IEEE Transactions on Knowledge and Data Engineering,

3(4):461{473, December 1991.

49



[JMS92] H.V. Jagadish, I.S. Mumick, and O. Shmueli. Events with attributes in an active database.

Technical Report 921214-18-TM, AT&T Bell Laboratories, December 1992.

[JMS93] H.V. Jagadish, I.S. Mumick, and O. Shmueli. Sequences with attributes. Submitted for Publi-

cation, 1993.

[KLINE93] N. Kline. An Update of the Temporal Database Bibliography. SIGMOD Record, 22(4):66{80,

December, 1993.

[KLO81] M.R. Klopprogge. TERM: An Approach to Include the Time Dimension in the Entity-

Relationship Model. In Proceedings of the Second International Conference on the Entity Re-

lationship Approach, Washington, DC, 1981.

[KRS90] W. K�afer, N. Ritter and H. Schoning. Support for Temporal Data by Complex Objects. In Pro-

ceedings of the 16th International Conference on Very Large Data Bases, Brisbane, Australia,

1990, pp. 24{35.

[LAN73] B. Langefors. Theoretical Analysis of Information Systems. Student Literature and Auerbach,

Lund, Sweden, 1973.

[LJ88] N.A. Lorentzos and R.G. Johnson. Extending relational algebra to manipulate temporal data.

Information Systems, 13(3):289{296, 1988.

[LLPS91] G.M. Lohman, B. Lindsay, H. Pirahesh, and K.B. Schiefer. Extensions to Starburst: Objects,

types, functions, and rules. Communications of the ACM, 34(10):94{109, October 1991.

[Lor88] N.A. Lorentzos. A Formal Extension of the Relational Model for the Representation and

Manipulation of Generic Intervals. Ph.D. thesis, Birkbeck College, University of London, 1988.

[LM93] N.A. Lorentzos and Y.G. Mitsopoulos. IXSQL: An Interval Extension to SQL. In Proceedings

of the International Workshop on an Infrastructure for Temporal Databases, Arlington, TX,

June 1993.

[LS75] B. Langefors and B. Sundgren. Information Systems Architecture. Petrocelli/Charter, New

York, 1975.

[MD89] D.R. McCarthy and U. Dayal. The architecture of an active database management system. In

Proceedings of ACM SIGMOD 1989 International Conference on Management of Data, pp. 215{

224, Portland, OR, May 1989.

[MS93] J. Melton and A.R. Simon. Understanding the New SQL: A Complete Guide. Morgan Kauf-

mann, 1993.

[MS91a] E. McKenzie and R. Snodgrass. An Evaluation of Relational Algebras Incorporating the Time

Dimension in Databases. ACM Computing Surveys, 23(4):501{543, December 1991.

[MS91b] E. McKenzie and R. T. Snodgrass. Supporting Valid Time in an Historical Relational Alge-

bra: Proofs and Extensions. Technical Report TR{91{15, Department of Computer Science,

University of Arizona, Tucson, AZ, August 1991.

[OC87] Oracle Computer, Inc. ORACLE Terminal User's Guide. Oracle Corporation, 1987.

[OO84] Z.M.

�

Ozsoyo�glu and G.

�

Ozsoyo�glu. Summary-table-by-example: A database query language

for manipulating summary data. In Proceedings of the International Conference on Data En-

gineering, pp. 193{202, Los Angeles, CA, April 1984.

[P90] N. Pissinou. A Conceptual Framework For Time In Object Databases. Technical Report,

Computer Research Institute, University of Southern California, Los Angeles, California, 1990.

50



[P91] N. Pissinou. Time In Object Databases. Ph.D. Thesis, Department of Computer Science,

University of Southern California, December 1991.

[PM92] N. Pissinou and K. Makki. T-3DIS: An Approach to Temporal Object Databases. In Proceed-

ings of the International Conference on Information and Knowledge Management, Baltimore,

Maryland, November 1992.

[PM93a] N. Pissinou and K. Makki. A Framework for Temporal Object Databases. Lecture Notes In

Computer Science Series, Springer-Verlag, Volume 752, 1993.

[PM93b] N. Pissinou and K. Makki. Separating Semantics From Representation in a Temporal Ob-

ject Database Domain. In Proceedings of the International Conference on Information and

Knowledge Management, Washington D.C., November 1993.

[PM94a] N. Pissinou and K. Makki. A Uni�ed Model and Methodology for Temporal Object Databases.

The International Journal on Intelligent and Cooperative Information Systems, 2(2), 1994.

[PM94b] N. Pissinou and K. Makki. A Coherent Architecture for a Temporal Object Database Manage-

ment System. International Journal of Systems and Software, 23, 1994.

[PM94c] N. Pissinou and K. Makki. Separating Semantics From Representation in a Temporal Object

Database Domain. The Journal of Computer Information Systems, Spring 1994.

[Rama93a] K. Ramamritham. Real-Time Databases. Journal of Distributed and Parallel Databases,

1(2):199{226, 1993.

[Rama93b] K. Ramamritham. Time for Real-Time Temporal Databases? In Proceedings of the Interna-

tional Workshop on an Infrastructure for Temporal Databases, Arlington, TX, June 1993.

[Ric92] J. Richardson. Supporting lists in a data model (a timely approach). In Proceedings of the Eigh-

teenth International Conference on Very Large Databases, pp. 127{138, Vancouver, Canada,

August 1992.

[RS91] E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with Temporal

Constraints In Proceedings of the 10th International Conference on The Entity-Relationship

Approach October 1991, San Mateo, California, pp. 205{229.

[RS92] E. Rose and A. Segev. A Temporal Object-Oriented Algebra and Query Language. Lawrence

Berkeley Laboratory technical report LBL-32013, 1992.

[RS93a] E. Rose and A. Segev. TOOA: A Temporal Object-Oriented Algebra. In Proceedings of the 7th

European Conference on Object-Oriented Programming, Kaiserslautern Germany, July 1993,

Lecture Notes in Computer Science, Springer-Verlag, Vol. 707, pp. 297{325.

[RS93b] E. Rose and A. Segev. TOOSQL { A Temporal Object-oriented Query Language. In Proceedings

of the 10th International Conference on The Entity-Relationship Approach, Dallas, Texas, 1993.

[SA85] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In Proceedings of the ACM

International Conference on Management of Data, pp. 236{246, Austin, TX, May 1985.

[SA86] R.T. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9):35{42, September

1986.

[SA91] S.Y.W. Su and A.M. Alashqur. A Pattern-based Constraint speci�cation Language for Object-

oriented Databases. In Proceedings of IEEE Spring COMPCON 91, San Francisco, CA, Febru-

ary 1991.

[SC91] S.Y.W. Su and H.H. Chen. A temporal Knowledge Representation Model OSAM*/T and Its

Query Language OQL/T. In Proceedings of the 17th International Conf. on Very Large Data

Bases, Barcelona, Spain, September 1991, pp. 431{442.

51



[SC93a] S.Y.W. Su and H.H. Chen. Modeling and Management of Temporal Data in Object-oriented

Knowledge Bases. In Proceedings of the Workshop on an Infrastructure for Temporal Databases,

Arlington, TX, June 1993.

[SC93b] S.Y.W. Su and H.H. Chen. Temporal Rule Speci�cation and Management in Object-oriented

Knowledge Bases. In Proceedings of the First International Workshop on Rules in Database

Systems, Edingburgh, Scotland, August 1993.

[SGM93] R. Snodgrass, S. Gomez, and E. McKenzie. Aggregates in the Temporal Query Language TQuel.

To appear in IEEE Transactions of Knowledge and Data Engineering, 1993.

[SHI81] D.W. Shipman. The Functional Data Model and the Data Language DAPLEX, ACM TODS

6(1):140{173, March 1981.

[SK91] M. Stonebraker and G. Kemnitz. The Postgres Next-generation Database Management System.

Communications of the ACM, 34(10):78{93, October 1991.

[SKL89] S.Y.W. Su, V. Krishnamurphy and H. Lam. An Object-oriented Semantic Association Model

(OSAM*) for Modeling CAD/CAM Databases. Chapter 17 in Arti�cial Intelligence: Manu-

facturing Theory and Practice, S.T. Kumara, A.L. Soyster, and R.L. Kashyap (eds.), Institute

of Industrial Engineers, Industrial Engineering and Management Press, Norcross, GA., 1989,

pp. 463{494.

[Sno87] R.T. Snodgrass. The Temporal Query Language TQuel. ACM Tods, 12(2):247{298, June 1987.

[Sno93] R.T. Snodgrass. An Overview of TQuel. Chapter 6. Temporal Databases: Theory, Design, and

Implementation. Benjamin/Cummings, 1993, pp. 141{182.

[SPAM91] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert: An architecture for transforming a

passive dbms into an active dbms. In Proceedings of the Seventeenth International Conference

on Very Large Databases, pp. 469{478, Barcelona, Spain, September 1991.

[SS91] Y.M. Shyy and S.Y.W. Su. K: A High-level Knowledge Base Programming Language for

Advanced Database Applications. In Proceedings of the ACM International Conference on

Management of Data, Denver, CO., May 1991, pp. 338{347.

[SS92] M. Soo and R. Snodgrass. Mixed Calendar Query Language Support for Temporal Constants.

TempIS Technical Report 29, Computer Science Department, University of Arizona, Tucson,

Arizona, Revised May 1992.

[SSD92] M. Soo, R.T. Snodgrass, C. Dyreson, C.S. Jensen and N. Kline. Architectural Extensions to

Support Multiple Calendars. TempIS Technical Report 32, Computer Science Department,

University of Arizona, Revised May 1992.

[SSU91] A. Silberschatz, M. Stonebraker, and J.D. Ullman. Database systems: Achievements and

opportunities. Communications of the ACM, 34(10):110{120, October 1991.

[TA86] A.U. Tansel and M.E. Arkun. Hquel, a query language for historical relational databases. In

Proceedings of the Third International Workshop on Statistical and Scienti�c Databases, July

1986.

[Tan86] A.U. Tansel. Adding time dimension to relational model and extending relational algebra.

Information Systems, 11(4):343{355, 1986.

[Tan91a] A.U. Tansel. A Historical Query Language. Information Sciences, 53:101{133, 1991.

[Tan91b] A.U. Tansel. Temporal relational data model. Technical report, Baruch College, CUNY, 1991.

[Tan93] A.U. Tansel. SQL

T

: A Temporal Extension to SQL. In Proceedings of the International

Workshop on an Infrastructure for Temporal Databases, Arlington, TX, June 1993.

52



[TAO89] A.U. Tansel, M.E. Arkun, and G.

�

Ozsoyo�glu. Time-by-example query language for historical

databases. IEEE Transactions on Software Engineering, 15(4):464{478, April 1989.

[TC83] Tandem Computers. ENFORM Reference Manual. Cupertino, CA, 1983.

[TC90] A. Tuzhilin and J. Cli�ord. A Temporal Relational Algebra as a Basis for Temporal Relational

Completeness. In Proceedings of International Conference on Very Lanrge Databases, Brisbane,

Australia, August 1990.

[TG89] A. Tansel and L. Garnett. Nested historical relations. In Proceedings of the ACM International

Conference on Management of Data, pp. 284{293, May 1989.

[TC90] A. Tuzhilin and J. Cli�ord. A temporal relational algebra as a basis for temporal relational

completeness. In Proceedings of the International Conference on Very Large Databases, pp. 13{

23, 1990.

[TCG+93] A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.). Temporal

Databases: Theory, Design, and Implementation. Database Systems and Applications Series.

Benjamin/Cummings, Redwood City, CA, 1993.

[Tuzh89] A. Tuzhilin. Using Relational Discrete Event Systems and Models for Prediction of Future

Behavior of Databases. Ph.D. thesis, New York University, October 1989.

[TAL92] B. Theodoulidis, P. Alexakis and P. Loucopoulos. Veri�cation and Validation of Temporal

Business Rules. In Proceeding of the 3rd International Workshop on the Deductive Approach to

Information Systems and Databases, Roses (Catalonia), Spain, September 1992.

[Theo93] C. Theodoulidis. Towards the First Generation of Temporal Information Servers. In Proceedings

of the 1st International Workshop on an Infrastructure for Temporal Databases, Arlington,

Texas, June 1993.

[TLW91] C. Theodoulidis, P. Loucopoulos and B. Wangler. The Entity Relationship Time Model and the

Conceptual Rule Language. In Proceedings of the 10th Conference on the Entity Relationship

Approach, San Mateo, CA, October 1991.

[TWL90] C. Theodoulidis, B. Wangler and p. Loucopoulos Requirements Speci�cation in TEMPORA

In Proceedings of the 2nd Nordic Conference on Advanced Information Systems Engineering

(CAiSE90), Kista, Sweden, 1990.

[WD92] G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented Databases. In Pro-

ceedings of the International Conference on Data Engineering, IEEE Computer Society, 1992.

[WD93] G. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned Object-oriented

Databases. Chapter 10 of Temporal Databases: Theory, Design, and Implementation. Ben-

jamin/Cummings, 1993, pp. 230{247.

[WF90] J. Widom and S.J. Finkelstein. Set-oriented production rules in a relational database system. In

Proceedings of ACM SIGMOD 1990 International Conference on Management of Data, pp. 259{

270, Atlantic City, NJ, May 1990.

[WFW75] G. Wiederhold, J.F. Fries and S. Weyl. Structured Organization of Clinical Databases. In

Proceedings of the NCC, AFIPS Press, Montvale, New Jersey, 1975.

53



Workshop Call for Position Papers

54


