
?

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

?

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

��

�

�

�

�

�

�

�=

Q

Q

Q

Q

Q

Q

Qs

Q

Q

Q

Q

Q

Q

Qs

B

B

B

B

B

B

B

B

B

B

B

B

B

BN

�

�

�

�

�

�

�

�

�

�

�

�

�

�


�

�

�

�

�	

Q

Q

Q

Q

Q

Q

Qs

?

Data Model

Temporal

Selection and Proj.

Transaction Time

Selection and Proj. Speci�cation

SchemaHistorical

Data Model

Historical

Time

User-De�ned

Time-stamp

Representation

Versioning

Schema

Aggregates

Schema

Evolution

Terminology

Figure 1: Task Dependencies

6



3.10 Transaction Time Selection and Projection

At a minimum, these constructs should support rollback. A design decision is whether the histor-

ical selection and projection constructs should be extended, or whether di�erent constructs, such

as the as of clause in TQuel, are needed.

4 Prerequisites

Dependencies between the tasks result in a partial order on their completion, as shown in Figure 1.

These dependencies take the following considerations into account.

� The design of the time-stamp representation and of the user-de�ned time domain are in-

dependent of extensions of the underlying data model to incorporate valid or transaction

time.

� The constructs for historical selection should be consistent with those used in expressions

involving user-de�ned time.

� The constructs for historical selection and projection, unlike those for user-de�ned time,

require a speci�ed data model.

� While constructs for schema speci�cation do not require the operations of historical selection

and projection to be elaborated, the constructs for schema evolution will require new tuples

to be generated that are consistent with a modi�ed schema.

� Schema versioning is only possible if transaction time is supported.

� My guess is that once the underlying data model has been agreed upon, the remaining tasks

should proceed quickly.

5 How to Proceed

The �rst step is for the research community to reach a consensus on the process of language design.

Such a process has been outlined in this white paper. Either a modi�cation of this paper, or a

replacement with an alternate proposal, is a necessary pre-condition for a subsequent e�ort.

As previously mentioned, an e�ort is currently underway to generate a glossary of terms. This

glossary should be made into a white paper and distributed for comments, thereby addressing the

�rst task.

I have been working with my students for about nine months now on tasks two and three,

designing a time-stamp representation and a user de�ned time domain. We are preparing white

papers on both of these topics, which we will distribute shortly.

The community can then react to these three proposals, as well as begin deliberation on an

extension to the relational data model to incorporate valid time.

5



3.4 Underlying Historical Relational Data Model

Determining the correct data model underlying TSQL will probably be the most di�cult of all the

tasks. Unfortunately, and not coincidentally, this task is a central one, on which most of the other

tasks are predicated. To focus the design, I advocate that time be added to the data model in two

separate steps, with the �rst to add valid time and the second to later add transaction time.

A proposal is needed that confronts the controversies currently raging in the research commu-

nity, including 1NF vs. :1NF, temporally grouped vs. temporally ungrouped, tuple time-stamped

vs. attribute value time-stamped, homogeneous vs. non-homogeneous, events vs. intervals, and

whether keys should be required.

3.5 Historical Selection and Projection

Historical selection is the analogue of conventional selection: the identi�cation of tuples that satisfy

some speci�ed predicate, in this case a predicate on the time(s) the data elements (attribute values

or tuples) were valid. One design issue is whether the where clause in SQL should be extended,

or whether a new clause, such as the when clause in TQuel, is preferred.

Historical projection is an analogue of conventional projection, where component(s) of tuples

are retained, in this case, components of the time(s) the data elements were valid. One fundamental

question is whether the derived intervals must be subsets of the underlying intervals. A second

design issue is whether the target list in SQL should be extended, or whether a new clause, such

as the valid clause in TQuel, is preferred.

3.6 Aggregates

Extension of the current SQL aggregates is required, along with the de�nition of new time-oriented

aggregates (e.g., first), and of temporal analogues of aggregate variants such as unique (e.g.,

moving window).

3.7 Schema Speci�cation and Evolution

SQL has a create table statement. This will need to be extended to allow speci�cation of time-

varying relations in addition to conventional relations. Also, the schema of a relation may need to

be changed to indicate a conversion from a time-varying relation, or vice versa. This will probably

be a particularly easy extension to design.

3.8 Adding Transaction Time to the Data Model

Since transaction time is orthogonal to valid time, the design process will be simpli�ed if these

two aspects are attacked separately. The hope is that once the impact of adding valid time to the

language has been adequately considered, the incorporation of transaction time will be easier.

3.9 Schema Versioning

When schema evolution and support for transaction time are both present, a database may contain

multiple versions of the schema, each in e�ect for disjoint intervals of transaction time. This aspect,

while di�cult to implement, probably has little impact on the language design.

4



The process will be iterative, and will converge when everyone is satis�ed or exhausted. Meet-

ings and workshops may be held to speed the design along.

Dissemination of the design can also be incremental, with consensus white papers being pub-

lished in such outlets as SIGMOD Record andData Engineering. One or more panels at conferences

might also be appropriate.

3 Tasks

Here I list a series of tasks that culminate in a fully elaborated language design. Each task has as

its goal the production of and agreement on a white paper that addresses the indicated portion of

the language.

3.1 Terminology

An agreed-upon set of terms must be the �rst order of business. Fortunately, several researchers

are working on exactly this issue in conjunction with a book being written on temporal databases.

It appears that convergence will be achieved soon.

3.2 Physical Time Line and Time-stamp Representation

Current DBMS's assume a time line starting at 1 A.D. or later and consisting of days or seconds,

up to 9999 A.D.. One di�culty is that there are several de�nitions of second and of day. Another

di�culty is that such a limited time line is of little use to many potential users of a temporal

database, such as geologists, archaeologists, anthropologists, and astronomers. Such a time line

doesn't even include all of recorded history, and so doesn't fully support historians. Expanding

the time line back to the creation of the universe (approximately 15 billion years ago), raises other

de�nitional questions. For example, a solar year in the time of the dinosaurs was 400 days long.

A year is di�cult to de�ne more than 6 billion years ago, before the earth was formed.

What is needed is an identi�cation of one or more physical clocks that cover all of past time

(15 billion years) and all of the foreseeable future. This de�nition of a physical time line should

be convertible to other de�nitions that might be useful. A representation as a time-stamp data

structure is also needed, with a precise semantics, i.e., a correspondence with a particular time of

this physical clock for each valid bit pattern. Decisions need to be made about treating events as

in�nitely small points in time or as chronons of �nite but nondecomposable length, and utilizing

closed or open representations for intervals.

3.3 User-de�ned Time Domain

In conventional as well as time-oriented databases, individual attributes can be associated with

a temporal domain, termed user-de�ned time. Such a domain is supported by the DBMS in

similar ways to other specialized domains, such as money, e.g., conversion to and from a string

representation and the availability of comparison predicates. While SQL2 and DB2's SQL include

two time-oriented attribute domains, datetimes and intervals, these language variants are limited

to a single calendar, the Gregorian calendar, o�er little or no support for anchored intervals,

do not support languages other than English, and exhibit many problems with the semantics of

arithmetic and boolean expressions. A proposal is needed that addresses these problems, while

providing appropriate constructs for schema de�nition, time value input and output, predicates,

arithmetic manipulation, and temporal functions.

3



I strongly agree that interesting research is possible and even desirable in extending the other

languages to include temporal support, such extensions are necessarily outside of the scope of

TSQL.

On the other hand, I feel that TSQL need not be consistent with SQL2, which is in the �nal

standardization process, nor SQL3, which is currently being designed. SQL2 contains severe 
aws

in its (minimal) handling of time-stamps, and SQL3 is a moving target which, in its present state,

is regarded by many as a baroque design with a bewildering array of features.

While the goal is a fully elaborated language design, there is no expectation that this design

will be made into a standard. Of course, one hopes that our results would be acceptable to the

standards bodies. It is important to keep in focus the objective of the TSQL design: to provide a

basis for future research in temporal databases.

While temporal object-oriented query languages are being actively investigated, it would be

distracting and counter-productive at this stage to attempt to merge the rather disparate ap-

proaches of object-oriented and relational languages while also addressing the temporal processing

needs. Those involved in object-oriented language design are encouraged to produce, in parallel

with this e�ort, a temporal object-oriented extension to SQL. At a later date, the two extensions

could be merged.

TSQL should be comprehensive: it should have constructs, extended in a natural fashion, that

support all of the functionality of SQL, including update, aggregates, and schema speci�cation

and evolution. Consistent with the modi�er \temporal", TSQL should support both valid and

transaction time.

The language design should include a formal semantics.

The TSQL design should not attempt to de�ne an associated algebra, storage structures,

indexing structures, access methods, fourth-generation interfaces, support for distributed systems

or heterogeneous databases, or optimization techniques. Such aspects, while important, are more

properly the target of the research e�orts that will utilize TSQL as a common substrate.

Finally, the design of TSQL should avoid active areas of research where new results are gener-

ated frequently. Such areas include historical indeterminacy and temporal database design.

2 Design Process

It is in everyone's best interest to have as many participants in the design as possible. It would be

wonderful to tap the extensive expertise available in the research community. On the other hand,

the process must balance the desirability for input with the necessity of a design by a small number

of designers, to avoid \design by committee" and all the di�culties such a design necessarily brings

upon itself. Fortunately, there is a natural limiting mechanism available. Simply put, the design

should be done by those researchers willing to put forth the e�ort to produce initial proposals

and/or to modify designs in response to comments from a much larger community of evaluators.

Language designers will be self-selected persons who are willing to write white papers on some

speci�c aspect of the design. White papers will include a survey of relevant research and a concrete

proposal for some component of TSQL. Generally the proposal will include a formal syntax of the

suggested constructs, an informal semantics (in prose) of these constructs, and, ideally, a formal

semantics. These white papers should explicitly state the rationale behind important design

decisions, to enable concrete discussion of the proposals.

Evaluators will be self-selected persons willing to comment in writing on a white paper. The

comments will be collected, and addressed either by the author(s) of the initial white paper or by

other designers willing to produce a new draft of the white paper.

2



TSQL: A Design Approach

White Paper

Richard Snodgrass

Department of Computer Science

University of Arizona

Tucson, AZ 85721

rts@cs.arizona.edu

February 21, 1992

Abstract

In this white paper I outline a proposal for a process by which a design for a temporal extension

to SQL could be produced by the research community.

I believe that many within the temporal database research community perceive that the time has

come to consolidate approaches to temporal data models and calculus-based query languages, to

achieve a consensus query language and associated data model upon which future research can

be based. While some two dozen query language proposals exist, with a diversity of language

and modelling constructs, common themes keep resurfacing. However, the community is quite

fragmented, with each research project being based on a particular and di�erent set of assumptions

and approaches. Often these assumptions are not germane to the research per se, but are made

simply because the research required a data model or query language with certain characteristics,

with the particular one chosen rather arbitrarily. It would be better in such circumstances for

research projects to choose the same language. Unfortunately, no existing language has attracted

a following large enough to become the one of choice.

Gio Wiederhold of DARPA has long pressed for a consensus extension to SQL that could

form a common core for future research. Let's term this extension the Temporal Structured Query

Language, or TSQL (not to be confused with an existing language proposal of the same name). In

this white paper I outline a proposal for a process by which a design for TSQL could be produced

by the research community.

1 Scope

The scope of the TSQL language design should be restricted so that a coherent design is possible.

In this section I propose aspects that should be included, and perhaps more importantly, those

that should not be included.

TSQL is to be a relational query language. Given that SQL is \intergalactic dataspeak" (Mike

Stonebraker's term), TSQL should whenever possible be consistent with standard SQL, speci�cally,

SQL89. It simply doesn't make sense to base TSQL on competing (and arguably better) query

languages such as Quel, Datalog, or Daplex. (Given that my language design work is based on

Quel, I �nd it particularly painful that SQL has dominated over that superior language.) While

1


