
The TSQL Benchmark

DRAFT

James Cli�ord Shashi K. Gadia Fabio Grandi Christian S. Jensen

Patrick Kalua Sunil Nair Edward Robertson John F. Roddick

Maria Rita Scalas Richard T. Snodgrass Abdullah Tansel Paolo Tiberio

Alexander Tuzhilin Gene Wuu

May 8, 1993

1 Introduction

1.1 Goal

The central goal of this document is to provide the temporal database community with a com-

prehensive consensus benchmark for temporal query languages that is independent of any existing

language proposal.

This is not a performance benchmark, but is rather a semantic benchmark intended to be an

aid in evaluating the user-friendliness of proposals for temporal query languages. Thus, temporal

query languages should ideally be able to express the benchmark queries both conveniently and

naturally.

To obtain a consensus benchmark, researchers in temporal databases have been invited to par-

ticipate in this initiative, and each researcher that has contributed signi�cantly will be a coauthor.

The electronic mail distribution tsql@cs.arizona.edu is used as the medium for discussing the

benchmark and related issues.

As a consequence of the central goal above, no existing temporal data models are used or

mentioned. The relation schemas of the benchmark are expressed as sets of attributes, including

one attribute illustrating user-de�ned time. However, the underlying temporal aspects are implicit

(of course, speci�c temporal data models might add explicit temporal attributes). The contents

of the relations are described in natural language. The benchmark queries are also given only in

natural language.

The benchmark is not intended to constitute a metric for query language completeness, and as

such it is not a substitute for a rigorous theoretical study of expressive powers of various temporal

query languages. Comprehensiveness of the benchmark is desirable only to ensure that all aspects

of query language design are covered.

It it emphasized that using the benchmark as an advanced, quantitative scoring system for

comparing languages makes little sense. Thus, one language is not necessarily superior to another

just because one is capable of expressing more benchmark queries than the other. Rather, the

focus is on user-friendliness.

1.2 Scope

Within certain boundaries, discussed next, the benchmark is intended to contain all queries that

appear reasonable and that are consistent with the schema and data of the benchmark.

1

First, the benchmark is of a semantic nature|in its current form, it is not aimed at performance

comparisons. The intention is to provide a foundation for comparing the descriptive and operational

characteristics and capabilities of temporal query languages, not their performance characteristics.

Properly extended with additional relation schemas and a variety of large instances, the benchmark

can also be used for performance comparisons.

Second, a number of restrictions are imposed on which types of queries are admissible in this

version of the benchmark, including the following.

� Queries are restricted to valid time only. Transaction-time related queries are not explored.

� Schema evolution and versioning are not considered.

� Incompleteness is not considered.

� Recursive queries are not included.

� General temporal reasoning is beyond the scope of this version of the benchmark.

� Queries involving aggregation facilities are not considered.

� Only queries are included|updates are not considered.

� Continuous attributes such as time are not included.

� The querying of data valid in the future is not explored.

These advanced aspects are excluded solely for pragmatic reasons, and the exclusion is not

meant to imply in any way that the aspects are not important. The restrictions simply represent

an attempt to reduce the size of the initial benchmark to manageable proportions.

It is emphasized that this benchmark is merely the �rst in a sequence of ever-more comprehen-

sive benchmarks. Later benchmarks will relax the above restrictions on the scope of comprehen-

siveness imposed on this benchmark. Speci�cally, the next version of the benchmark is intended

to include queries that involve aggregation.

2 The Benchmark Database Schema

2.1 Criteria

A suitable database schema for the benchmark should satisfy four criteria.

� The schema should be natural. That is, it should correspond to a reasonable, though possibly

greatly simpli�ed, segment of the real world. This both reduces the need to explain the model

and enhances the ability to recognize verball pitfalls in the path to the query instances.

� The schema should be simple. This will aid in making the benchmark easy to understand.

This criterion restricts the number of relation schemas and the number of attributes of the

individual schemas. Additionally, the names of the relations and of the attributes should be

short, as they will be referenced repeatedly.

When an extension is proposed, the bene�ts should be carefully compared with the added

complexity.

2

� The schema should allow for comprehensiveness within the chosen scope. Using the schema,

it should be possible formulate queries of all the types that appear reasonable.

This indicates a need for at least two related relation schemas (for natural join queries).

� A schema that has already been used frequently is preferred over a new schema. This

guarantees that many existing queries can be adapted easily to the benchmark.

� For clarity, schema and attribute names must start with capital letters.

2.2 The Schema

The database schema consists of three valid-time relation schemas, Emp, Skills, and Dept. They

are de�ned as follows.

Relation Emp uses the attributes Name, Salary, and Dept for recording the salaries of employees

and the departments where they work. In addition, it contains attributes Gender and D-birth

which indicate the gender and date of birth of an employee. While the salary and department of

an employee varies over time, both Gender and D-birth are time-invariant.

Relation Skills records the association of employees with skills via the two attributes Name

and Skill. The skills of an employee may vary over time. For example, employees are considered

to have the skill \driving" only during those interval(s) when they hold valid licenses.

Relation Dept records the association of employees, as managers, with departments, and it

contains three attributes, Department, recording a department name, Manager, recording the

manager of the department, and Budget, recording the budget of the department.

Attributes Name, Dept, Department, Skill, and Manager are of type textString; attribute

Gender is one of F (female) and M (male); Salary and Budget are of type integer; and D-birth

is a user-de�ned time value which may be compared with valid times.

The relation schemas obey the following snapshot functional and multivalued dependencies:

For Emp:

Name ! Salary

Name ! Dept

Name ! Gender

Name ! D-birth

For Skills:

Name !! Skill (and Name 6! Skills)

For Dept:

Department ! Manager

Manager ! Department

Department ! Budget

Note that Name is the primary key of Emp (it is the only candidate key). For Skills, there is no

non-trivial key. For Dept, each of Department and Manager is a candidate key, and Department

is selected as the primark key.

Each of the relation schemas are in snapshot Boyce-Codd normal form.

It is emphasized that the notion of key does not capture correspondence between attribute

values and the real-world objects they represent. As one consequence, it is possible in this schema,

e.g., for a person to change Name attribute value over time.

The attribute Manager of Dept is a foreign key for the attribute Name of Emp. Thus, a tuple

is allowed to exist in the Dept relation only if, for each non-empty snapshots of this tuple, the

Manager attribute value exists as a Name value of some tuple in the simultaneous snapshot of the

Emp relation.

3

3 The Benchmark Data

3.1 Criteria

� For clarity, the database instance should ideally accord with all and only those constraints

which are explicitly stated in the de�nition of the database schema.

� For simplicity and ease of typing, attribute values should be short and salary values should

be multiples of $10,000.

� Transitions (i.e., timestamp values) occur only at the beginning of the month, and all dates

should be in the time interval from 1/1/81 to 12/31/88 (because the digits 8 and 9 are

relatively hard to distinguish). Time intervals are all speci�ed by the inclusive starting and

ending events. Also for clarity, relation instance names should start with lowercase letters.

� The data should include a \hole in the history" of some entity. For example, the database

may be designed to contain a whole in the employment of some employee.

� The data should include asynchronous behavior of attributes. For example, the department

and salary of employees may change independently.

3.2 The Proposed Data

Three instances, emp, skills, and dept, are de�ned over the Emp, Skills, and Dept relation

schemas, respectively. The contents of these instances is described below.

There are two employees, identi�ed by ED and DI in the following.

ED worked in the Toy department from 2/1/82 to 1/31/87, and in the Book department from

4/1/87 to the present. His name was Ed from 2/1/82 to 12/31/87, and Edward from 1/1/88 to the

present. His salary was $20K from 2/1/82 to 5/31/82, then $30K from 6/1/82 to 1/31/85, then

$40K from 2/1/85 to 1/31/87 and 4/1/87 to the present. ED is male and was born on 7/1/55.

Several skills are recorded for ED . He has been quali�ed for typing since 4/1/82 and quali�ed

for �ling since 1/1/85. He was quali�ed for driving from 1/1/82 to 5/1/82 and from 6/1/84 to

5/31/88.

DI worked in and managed the Toy department from 1/1/82 to the present. Her name is

Di throughout her employment. The budget of the Toy department was $150K from 1/1/82 to

7/31/84, $200K from 8/1/84 to 12/31/86, and $100K from 1/1/87 to the present. Her salary

was $30K from 1/1/82 to 7/31/84, $40K from 8/1/84 to 8/31/86, then $50K from 9/1/86 to the

present. DI is female and was born on 10/1/60. DI has been quali�ed for directing from 1/1/82

to the present.

The present time (i.e., the value of now) is 1/1/90.

4 Classi�cation of Benchmark Queries

A classi�cation of benchmark queries will be based on a comprehensive taxonomy of queries. First,

critria for such a taxonomy are outlined. Next, the taxonomy itself is presented. As the taxonomy

is too �ne-grained, categories are then merged into an adequate number of groups which can

subsequently be used for classi�cation.

4

4.1 Criteria

Three criteria for an appropriate taxonomy of benchmark queries are suggested.

� The taxonomy should be schema and instance independent. This criterion helps ensure that

the taxonomy will persist when the benchmark database schema evolves as new versions

appear. Ideally, this will allow for an incremental mode of work, where only new queries

need to be categorized and existing queries do not need re-categorization.

� The taxonomy should provide comprehensive coverage of benchmark queries. Comprehen-

siveness is desirable to avoid holes and point to many categories of queries.

� The taxonomy should be useful when structuring the presentation of benchmark queries.

Most importantly, it should provide su�cient structure. Thus, taxonomies that have only

few categories and that map many queries to single categories are problematic. If the number

of categories is excessive for presentation purposes, classes of categories may be identi�ed with

individual sections.

4.2 The Taxonomy

The taxonomy is characterized as having a projection (output) and a selection component, much

like SQL. Then each component is covered in turn. Finally, the full taxonomy is summarized and

a notation for naming individual categories is de�ned.

4.2.1 Top-level Taxonomy

At the top level, the taxonomy is divided into two orthogonal parts, namely a part where queries

are categorized according to their output component and a part where the categorization is based

on the selection component. Thus, a category is described by two components, as illustrated in

Figure 1.

f< output component >g � f< selection component >g

Figure 1: Top-level Description of Benchmark Taxonomy

This top-level design reects the SQL template (i.e., SELECT : : :FROM : : :WHERE : : :). The �rst

component categorizes the contents of the SELECT clause, and the second component categorizes

the contents of the WHERE clause. No component is needed to reect the FROM clause where tuple

variables are de�ned. The two components are orthogonal only in the same sense that the WHERE

and SELECT clauses of a particular query are orthogonal.

4.2.2 Output-based Taxonomy

The output-based taxonomy is intended to reect the part of queries where the format of the

resulting tuples is speci�ed. The taxonomy is described in Figure 2 and is explained in the following.

The idea is to distinguish between queries based on the format of the result tuples. A tuple may

include an explicit-attribute component and a valid-time component, each of which are considered

next.

5

8

>

>

>

<

>

>

>

:

explicit-attribute component

none

projected

complete

9

>

>

>

=

>

>

>

;

�

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

valid-time component

none

8

>

>

>

<

>

>

>

:

type

event

interval

element

9

>

>

>

=

>

>

>

;

�

8

>

<

>

:

value

derived

imposed

9

>

=

>

;

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

Figure 2: Output-based Taxonomy

If present, the explicit-attribute component, may contain all attributes in the argument relation

(multiple relations are discussed below) or it may contain a subset of the attributes in the argument

relation. In the �rst case, the explicit attribute component is \complete," and in the second, it is

\projected."

To exemplify, consider a tuple telling that Ed is in the Book department from 1/1/82 to

12/31/84. Here \Ed" and \Book" constitute the explicit-attribute component, and \1/1/82" and

\12/31/84" is the valid-time component. If the argument relation contained an attribute \Salary"

in addition to the Name and Department attributes, this result is projected.

If several relations are used in a query, the argument relation is the Cartesian product of these,

i.e., the schema is the concatenation of the schemas of the relations used in the query.

The valid-time component of a tuple may be of three types. First, it may be an event, i.e.,

a single time value (e.g., 3/1/83). Second, it may be an interval, i.e., a sequence of consecutive

time values (e.g., as above). Third, it may be an element, i.e., a set of time values which may

be described by a set of intervals (e.g., 1/1/82 to 12/31/84, 2/1/85 to 3/31/85, and 5/1/86 to

5/31/86).

Orthogonally, the value of a valid-time component may be derived or imposed. A derived value

is computed solely in terms of the valid-time components of the tuples in the argument relation.

An imposed value is computed by explicit assignment in the query.

Note that at least one of the two components must be present in the result of a query. This

part of the taxonomy results in 20 mutually exclusive categories.

The distinctions above are based on the schema of result relations. It is possible also to

distinguish between the cardinalities of result relations, e.g., between set-valued and single-tuple

valued results.

4.2.3 Selection-based Taxonomy

The selection component is divided into two parts, one for valid-time selection and one for selection

not involving valid time. See Figure 3.

f< valid-time selection >g

�

� f< non-temporal selection >g

�

Figure 3: Top-level Selection-based Taxonomy

Both parts are based on the same observation. In general, a selection predicate is built from

atomic selection predicates using logical operators (e.g., and, or, and implies) and parenthesis.

6

Both parts categorize queries based on the atomic predicates used in the queries. As several types

of atomic predicates may be used in the same query, queries generally fall into multiple categories

(as indicated in Figure 3 by the Kleene star, \

�

"). We examine each part of the selection-based

taxonomy in turn.

Atomic valid-time selection predicates are assumed to be of the form

arg

1

op arg

2

;

where op is a some comparison operator (e.g., precedes, and contains). It is assumed that arg

1

is the valid time of the data, and restrictions are imposed based on the type of the comparison

operator, on the origin of arg

2

, and on the type of arg

2

. Figure 4 outlines the categories.

8

>

>

>

<

>

>

>

:

type of comparison operator

duration-based

ordering-based

containment-based

9

>

>

>

=

>

>

>

;

�

8

>

>

>

<

>

>

>

:

type of arg

2

event

interval

element

9

>

>

>

=

>

>

>

;

�

8

>

>

>

<

>

>

>

:

origin of arg

2

explicitly supplied in query

user-de�ned attribute value

computed from other valid times

9

>

>

>

=

>

>

>

;

Figure 4: Valid-time Selection-based Taxonomy

Three types of comparison operators are identi�ed. First, a comparison operator may be

duration-based. For example the operator spanExceeds returns true if the duration of the �rst

argument is equal to or larger than the duration of the second argument. Second, comparison

operators may be based on ordering. Operators in this category include precedes and meets.

The �rst applies to all timestamps and evalutes to true if the largest time in the �rst argument is

smaller than the smallest times in the second argument. Operator meets appears to be useful only

for events and intervals. Two timestamps meet if they are not separated by any event (i.e., may

be coalesced). Operators based on containment include = (identity), overlaps, and contains.

The second argument (arg

2

) may be an event, an interval, or an element. Also, it may come

from three sources. First, it may be supplied directly in the query, as a constant. Second, it may

be the value of a user-de�ned time attribute in an argument tuple. Note that this is only possible

for events if �rst normal form is required. Third, like the �rst argument, the second argument may

be computed from valid times in the argument tuples.

If the three types of categories are completely orthogonal, this part of the taxonomy will

contribute with a total of 27 categories. However, it may be debated whether intervals and elements

may be used as values of user-de�ned attributes (resulting in non-1NF relations).

The �nal part of the selection-based taxonomy categorizes queries based solely on the part of

the selection component that involves only ordinary, non-temporal selection.

Many possibilities for categorization exist. Below, in Figure 5, we distinguish between four

signi�cant types of atomic selection predicates. First, an attribute may be compared with a

constant, supplied by the user. Second, attribute values, both in the same relation, may be

compared. Third, a primary key value may be compared with a matching foreign key value.

Fourth, arbitrary attributes of possibly distinct relations may be compared. In the �gure, � ::= <

j > j � j � j = , i.e., a combination of equality and/or the one of the two inequality operators. If

we distinguish between situations where only equality is involved and situations where inequality

is involved, this give 8 categories.

7

8

>

>

>

>

>

<

>

>

>

>

>

:

non-temporal attribute value selection

att � Constant

att

1

� att

2

att

k

� att

fk

att(rel

1

) � att(rel

2

)

9

>

>

>

>

>

=

>

>

>

>

>

;

�

8

>

<

>

:

comparison operator, �

only equality (=)

inequality (<>)

9

>

=

>

;

Figure 5: Non-temporal Selection-based Taxonomy

4.2.4 Additional Contributions|TEMPORARY

The distinction between grouped and ungrouped queries has not been integrated into the taxonomy.

To do that, de�nitions of these categories are needed.

4.3 Overview and Naming of Categories

Each query has a single output component, zero or more valid-time selection components (one per

such operator), and zero or more non-temporal selection-based components (one per such operator).

The taxonomy is summarized in Figure 6. There, the names introduced in the taxonomy are used

along with punctuation in order to name a category.

<category> ::= <output> `/' f<v-t selection> g* `/' f<non-t selection> g*

<output> ::= `(' fNone j Projected j Complete g `,' /� explicit-attribute component

fNone j /� no valid-time attribute

fEvent j Interval j Element g `,' /� type of valid-time attribute

fDerived j Imposed g g `)' /� value of valid-time attribute

<v-t selection> ::= `(' fDuration j Ordering j Containment g `,' /� operator type

fEvent j Interval j Element g `,' /� argument type

fExplicit j User-de�ned j Computed g `)' /� argument origin

<non-t selection> ::= `(' f`=' j `<>' g `,' /� operator type

fConstant j Single j Foreign j Arbitrary g `)' /� argument types

Figure 6: Overview of the Taxonomy used for Naming Categories

To exemplify the use of Figure 6 for naming categories, consider the query \When was Ed

Manager of the Toy Department." This query is in the category shown next (with no valid-time

selection).

(None, Element, Derived) // (=, Constant)

It may be observed that the taxonomy gives rise to a large number of categories. For example,

assuming a single non-temporal operator and no valid-time operators, there are 20 � 8 = 160

categories. Adding a single valid-time operator while assuming orthogonality yields an additional

4320 categories!

8

As a result, it becomes necessary to create classes of categories which then may be used for

clasifying the benchmark queries.

One approach would be to name a class of categories of queries, by simply replacing one or

more of the entries with the Kleene star (*"), e.g.,

(None, Element, Derived) / (*,*,*) / (=, Constant)

The above query category would be in this class. In the next section, we de�ne the classes to

be used in the benchmark.

4.4 Forming Classes from Categories

The idea is to remove distinctions from the comprehensive taxonomy until a suitable number of

classes is obtained. Figure 7 is thus a reduced version of Figure 6.

<class-name> ::= <reduced output> `/' f<reduced v-t selection> g*

<reduced output> ::= `(' fNone j Proj/Comp g `,' /� explicit-attribute component

fNone j Not empty g `)' `/' /� valid-time attribute component

<reduced v-t selection> ::= `(' fDuration j Other g `,' /� comparison operator type

fEvent j Interval j Element g `,' /� argument type

fComputed j Other g `)' /� argument origin

Figure 7: Overview of the Classi�cation of Queries

The second and third lines concern output. Only the prescence or absence of explicit attributes

and timestamps are distinguished, leading to three categories. The last three lines concern valid-

time selection (non-temporal selection is disregarded). Comparison operators may be duration-

based or not; arguments be of either event, interval, or element type; and the arguments may or

may not derive from valid times of tuples.

9

