
The TSQL Benchmark

�

Christian S. Jensen (editor) James Cli�ord Shashi K. Gadia Fabio Grandi

Patrick P. Kalua Nick Kline Angelo Montanari Sunil S. Nair Elisa Peressi

Barbara Pernici Edward L. Robertson John F. Roddick Nandlal L. Sarda

Maria Rita Scalas Arie Segev Richard T. Snodgrass Abdullah Tansel

Paolo Tiberio Alexander Tuzhilin Gene T. J. Wuu

This paper appeared in Proceedings of the International Workshop on an Infrastructure

for Temporal Databases, Arlington, TX, June 14-16, 1993, pp. QQ-1-QQ-28.

Abstract

This document presents the temporal database com-

munity with an extensive, consensus benchmark for

temporal query languages. The benchmark is semantic

in nature. It is intended to be helpful when evaluating

the user-friendliness of temporal query languages, in-

cluding proposals for the consensus temporal SQL that

is currently being developed.

The benchmark consists of a database schema, an

instance for the schema, and a set of queries on the

�

Correspondence may be directed to the TSQL electronic

mail distribution, tsql@cs.arizona.edu, or to the editor at

Aalborg University, Datalogi, Fr. Bajers Vej 7E, DK{9220 Aal-

borg �, Denmark, csj@iesd.auc.dk. A�liations and e-mail ad-

dresses of the authors follow. J. Cli�ord, Information Systems

Dept., New York University, jcliffor@is-4.stern.nyu.edu;

S. K. Gadia, Computer Science Dept., Iowa State Univer-

sity, gadia@cs.iastate.edu; F. Grandi, Dip. di Elettron-

ica Informatica e Sistemistica, Universit�a di Bologna, Italy,

fabio@deis64.cineca.it; P. P. Kalua, Computer Science De-

partment, Indiana University, kalua@cs.indiana.edu; N. Kline,

Computer Science Dept., University of Arizona, kline@cs.-

arizona.edu; A. Montanari, Dip. di Matematica e Informatica,

Universit�a di Udine, montanari@uduniv.cineca.it; S. S. Nair,

Computer Science Department, Iowa State University,

snair@cs.iastate.edu; E. Peressi, Dip. di Matematica e In-

formatica, Universit�a di Udine, peressi@udmi5400.cineca.it;

B. Pernici, Dip. di Matematica e Informatica, Univer-

sit�a di Udine, pernici@uduniv.cineca.it; E. L. Robert-

son, Computer Science Department, Indiana University,

edrbtsn@cs.indiana.edu; J. F. Roddick, School of Com-

puter and Information Science, University of South Aus-

tralia roddick@unisa.edu.au; N. L. Sarda, Computer Sci-

ence and Eng. Dept., Indian Institute of Technology, Bom-

bay, India, nls@cse.iitb.ernet.in; M. R. Scalas, Dip. di

Elettronica Informatica e Sistemistica, Universit�a di Bologna,

Italy, rita@deis64.cineca.it; A. Segev, School of Busi-

ness Adm. and Computer Science Research Dept., Uni-

versity of California, segev@csr.lbl.gov; R. T. Snod-

grass, Computer Science Dept., University of Arizona, rts@-

cs.arizona.edu; A. Tansel, Bernard M. Baruch College, City

University of New York, UZTBB@CUNYVM.CUNY.EDU; P. Tiberio,

Dip. di Elettronica Informatica e Sistemistica, Universit�a

di Bologna, Italy, tiberio@deis64.cineca.it. A. Tuzhilin,

Information Systems Dept., New York University, tuz-

hilin@square1.stern.nyu.edu; G. T. J Wuu, Bell Communi-

cations Research, wuu@ctt.bellcore.com.

this database. The queries are classi�ed according to

a taxonomy, which is also part of the benchmark.

1 Introduction

The central goal of this document is to provide the

temporal database community with a comprehensive

consensus benchmark for temporal query languages

that is independent of any existing language proposal.

This is not a performance benchmark, but is rather

a semantic benchmark intended to be an aid in eval-

uating the user-friendliness of proposals for tempo-

ral query languages. Thus, temporal query lan-

guages should ideally be able to express the bench-

mark queries both conveniently and naturally.

To obtain a consensus benchmark, researchers in

temporal databases were invited to participate in this

initiative, and each researcher that contributed signif-

icantly is a coauthor. The electronic mail distribution

tsql@cs.arizona.edu was used as the medium for

discussing the benchmark and related issues.

The benchmark consists of a database schema, an

instance for the schema, and a set of queries on the

this database. The queries are classi�ed according to

a taxonomy, which is also part of the benchmark. As

a consequence of the central goal above, no existing

temporal data models are used or mentioned. The

relation schemas of the benchmark are expressed as

sets of attributes, including one attribute illustrating

user-de�ned time. However, the underlying temporal

aspects are implicit (of course, speci�c temporal data

models might add explicit temporal attributes). The

contents of the relations are described in natural lan-

guage. The benchmark queries are also given only in

natural language. The taxonomy is independent of

any particular temporal query language.

The benchmark is not intended to constitute a met-

ric for query language completeness, and as such it is

not a substitute for a rigorous theoretical study of ex-

pressive powers of various temporal query languages.

QQ-1

Comprehensiveness of the benchmark is desirable only

to ensure that a wide range of query language design

aspects are covered.

It it emphasized that using the benchmark as an

advanced, quantitative scoring system for comparing

languages makes little sense. Thus, one language is

not necessarily superior to another just because one

is capable of expressing more benchmark queries than

the other. Rather, the focus is on user-friendliness.

The presentation is structured as follows. Below,

the intended scope of the benchmark is de�ned. Sec-

tions 3, 4, and 5 �rst state criteria for what should

be required from a suitable database schema and in-

stance and classi�cation scheme, respectively. Second,

an actual schema, instance, and classi�cation schema

is presented. The main body of the paper is Section 6,

which presents, using the classi�cation scheme, ap-

proximately 170 benchmark queries. Comments re-

lated to this benchmark, by identi�ed contributors,

are included as appendices at the end.

2 Scope

Within certain boundaries, discussed next, the bench-

mark is intended to contain all queries that appear

reasonable and that are consistent with the schema

and data of the benchmark.

First, the benchmark is of a semantic nature|in

its current form, it is not aimed at performance com-

parisons. The intention is to provide a foundation

for comparing the descriptive and operational char-

acteristics and capabilities of temporal data models

and query languages, not their performance charac-

teristics. Properly extended with additional relation

schemas and a variety of large instances, the bench-

mark can also be used for performance comparisons.

Second, a number of restrictions are imposed on

which types of queries are admissible in this version of

the benchmark, including the following.

� Queries are restricted to valid time only.

Transaction-time related queries are not explored.

� Schema evolution and versioning are not consid-

ered.

� Incompleteness is not considered.

� Recursive queries are not included.

� General temporal reasoning is beyond the scope

of this version of the benchmark.

� Queries involving aggregation facilities are not

considered.

� Only queries are included|updates are not con-

sidered.

� Continuous attributes such as time are not in-

cluded.

� The querying of data valid in the future is not

explored.

These advanced aspects are excluded solely for

pragmatic reasons, and the exclusion is not meant to

imply in any way that the aspects are not important.

The restrictions simply represent an attempt to re-

duce the size of the initial benchmark to manageable

proportions.

It is emphasized that this benchmark is merely the

�rst in a sequence of ever-more comprehensive bench-

marks. Later benchmarks will relax the above restric-

tions on the scope of comprehensiveness imposed on

this benchmark. Speci�cally, the next version of the

benchmark is intended to include queries that involve

aggregation.

3 The Benchmark Database

Schema

3.1 Criteria

A suitable database schema for a semantic benchmark

sati�es four criteria.

� The schema should be natural. That is, it

should correspond to a reasonable, though possi-

bly greatly simpli�ed, segment of the real world.

This both reduces the need to explain the model

and enhances the ability to recognize verball pit-

falls in the path to the query instances.

� The schema should be simple. This will aid in

making the benchmark easy to understand. This

criterion restricts the number of relation schemas

and the number of attributes of the individual

schemas. Additionally, the names of the relations

and of the attributes should be short, as they will

be referenced repeatedly.

When an expansion is proposed, the bene�ts

should be carefully compared with the added

complexity.

� The schema should allow for comprehensiveness

within the chosen scope. Using the schema, it

should be possible formulate queries of all the

types that appear reasonable.

This indicates a need for at least two related re-

lation schemas (for natural-join queries).

QQ-2

� A schema that has already been used frequently

is preferred over a new schema. This guarantees

that many existing queries can be adapted easily

to the benchmark.

� For clarity, schema and attribute names must

start with capital letters.

3.2 The Schema

The database schema consists of three valid-time re-

lation schemas, Emp, Skills, and Dept. They are de-

�ned as follows.

Relation Emp uses the attributes Name, Salary, and

Dept for recording the salaries of employees and the

departments where they work. In addition, it con-

tains attributes Gender and D-birth which indicate

the gender and date of birth of an employee. While

the name, salary, and department of an employee

varies over time, both Gender and D-birth are time-

invariant.

Relation Skills records the association of employ-

ees with skills via the two attributes Name and Skill.

The skills of an employee may vary over time. For

example, employees are considered to have the skill

\driving" only during those interval(s) when they hold

valid licenses.

Relation Dept records the association of employ-

ees, as managers, with departments, and it contains

three attributes, Department, recording a department

name, Manager, recording the manager of the depart-

ment, and Budget, recording the budget of the depart-

ment.

Attributes Name, Dept, Department, Skill, and

Manager are of type textString; attribute Gender is

one of F (female) and M (male); Salary and Budget

are of type integer; and D-birth is a user-de�ned

time value which may be compared with valid times.

The relation schemas obey the following snapshot

functional and multivalued dependencies:

For Emp:

Name ! Salary

Name ! Dept

Name ! Gender

Name ! D-birth

For Skills:

Name !! Skill (and Name 6! Skills)

For Dept:

Department! Manager

Manager ! Department

Department! Budget

Note that Name is the primary key of Emp (it is

the only candidate key). For Skills, there is no

non-trivial key. For Dept, each of Department and

Manager is a candidate key, and Department is se-

lected as the primark key.

Each of the relation schemas are in snapshot Boyce-

Codd normal form.

It is emphasized that the notion of key does not

capture correspondence between attribute values and

the real-world objects they represent. As one conse-

quence, it is possible in this schema, e.g., for a person

to change Name attribute value over time.

The attribute Manager of Dept is a foreign key for

the attribute Name of Emp. Thus, a tuple is allowed to

exist in the Dept relation only if, for each non-empty

snapshots of this tuple, the Manager attribute value

exists as a Name value of some tuple in the simultane-

ous snapshot of the Emp relation.

4 The Benchmark Data

4.1 Criteria

� For clarity, the database instance should ide-

ally accord with all and only those constraints

which are explicitly stated in the de�nition of the

database schema.

� For simplicity and ease of typing, attribute val-

ues should be short and salary values should be

multiples of $10,000.

� Transitions (i.e., timestamp values) occur only at

the beginning of the month, and all dates should

be in the time interval from 1/1/81 to 12/31/88

(because the digits 8 and 9 are relatively hard to

distinguish). Time intervals are all speci�ed by

the inclusive starting and ending events. Also for

clarity, relation instance names should start with

lowercase letters.

� The data should include a \hole in the history" of

some entity. For example, the database may be

designed to contain a whole in the employment of

some employee.

� The data should include asynchronous behavior

of attributes. For example, the department and

salary of employees may change independently.

4.2 The Data

Three instances, emp, skills, and dept, are de�ned

over the Emp, Skills, and Dept relation schemas, re-

spectively. The contents of these instances is described

below.

QQ-3

There are two employees, identi�ed by ED and DI

in the following.

ED worked in the Toy department from 2/1/82 to

1/31/87, and in the Book department from 4/1/87

to the present. His name was Ed from 2/1/82 to

12/31/87, and Edward from 1/1/88 to the present.

His salary was $20K from 2/1/82 to 5/31/82, then

$30K from 6/1/82 to 1/31/85, then $40K from 2/1/85

to 1/31/87 and 4/1/87 to the present. ED is male

and was born on 7/1/55. Several skills are recorded

for ED . He has been quali�ed for typing since 4/1/82

and quali�ed for �ling since 1/1/85. He was quali�ed

for driving from 1/1/82 to 5/1/82 and from 6/1/84 to

5/31/88.

DI worked in and managed the Toy department

from 1/1/82 to the present. Her name is Di through-

out her employment. The budget of the Toy depart-

ment was $150K from 1/1/82 to 7/31/84, $200K from

8/1/84 to 12/31/86, and $100K from 1/1/87 to the

present. Her salary was $30K from 1/1/82 to 7/31/84,

$40K from 8/1/84 to 8/31/86, then $50K from 9/1/86

to the present. DI is female and was born on 10/1/60.

DI has been quali�ed for directing from 1/1/82 to the

present.

The present time (i.e., the value of now) is 1/1/90.

5 Classi�cation of Benchmark

Queries

A classi�cation of benchmark queries will be based on

a comprehensive taxonomy of queries. First, critria for

such a taxonomy are outlined. Next, the taxonomy it-

self is presented. As the taxonomy is too �ne-grained,

categories are then merged into an adequate number

of groups which can subsequently be used for classi�-

cation.

5.1 Criteria

Three criteria for an appropriate taxonomy of bench-

mark queries are suggested.

� The taxonomy should be schema and instance

independent. This criterion helps ensure that

the taxonomy will persist when the benchmark

database schema evolves as new versions appear.

Ideally, this will allow for an incremental mode

of work, where only new queries need to be cat-

egorized and existing queries do not need re-

categorization.

� The taxonomy should provide comprehensive cov-

erage of benchmark queries. Comprehensiveness

is desirable to avoid holes and point to many cat-

egories of queries.

� The taxonomy should be useful when structuring

the presentation of benchmark queries. Most im-

portantly, it should provide su�cient structure.

Thus, taxonomies that have only few categories

and that map many queries to single categories

are problematic. If the number of categories is

excessive for presentation purposes, classes of cat-

egories may be identi�ed with individual sections.

5.2 The Taxonomy

The taxonomy is characterized as having a projection

(output) and a selection component, much like SQL.

Then each component is covered in turn. Finally, the

full taxonomy is summarized and a notation for nam-

ing individual categories is de�ned.

5.2.1 Top-level Taxonomy

At the top level, the taxonomy is divided into two or-

thogonal parts, namely a part where queries are cat-

egorized according to their output component and a

part where the categorization is based on the selec-

tion component. Thus, a category is described by two

components, as illustrated in Figure 1.

f< output component >g � f< selection component >g

Figure 1: Top-level Description of Benchmark Taxon-

omy

This top-level design reects the SQL template (i.e.,

SELECT : : :FROM : : :WHERE : : :). The �rst component

categorizes the contents of the SELECT clause, and

the second component categorizes the contents of the

WHERE clause. No component is needed to reect the

FROM clause where tuple variables are de�ned. The two

components are orthogonal only in the same sense that

the WHERE and SELECT clauses of a particular query are

orthogonal.

5.2.2 Output-based Taxonomy

The output-based taxonomy is intended to reect the

part of queries where the format of the resulting tuples

is speci�ed. The taxonomy is described in Figure 2

and is explained in the following.

The idea is to distinguish between queries based on

the format of the result tuples. A tuple may include

QQ-4

8

>

>

<

>

>

:

explicit-attribute component

none

projected

complete

9

>

>

=

>

>

;

�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

valid-time component

none

8

>

>

<

>

>

:

type

event

interval

element

9

>

>

=

>

>

;

�

8

<

:

value

derived

imposed

9

=

;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Figure 2: Output-based Taxonomy

an explicit-attribute component and a valid-time com-

ponent, each of which are considered next.

If present, the explicit-attribute component, may

contain all attributes in the argument relation (mul-

tiple relations are discussed below) or it may contain

a subset of the attributes in the argument relation.

In the �rst case, the explicit attribute component is

\complete," and in the second, it is \projected."

To exemplify, consider a tuple telling that Ed is in

the Book department from 1/1/82 to 12/31/84. Here

\Ed" and \Book" constitute the explicit-attribute

component, and \1/1/82" and \12/31/84" is the valid-

time component. If the argument relation contained

an attribute \Salary" in addition to the Name and

Department attributes, this result is projected.

If several relations are used in a query, the argu-

ment relation is the Cartesian product of these, i.e.,

the schema is the concatenation of the schemas of the

relations used in the query.

The valid-time component of a tuple may be of

three types. First, it may be an event, i.e., a single

time value (e.g., 3/1/83). Second, it may be an inter-

val, i.e., a sequence of consecutive time values (e.g.,

as above). Third, it may be an element, i.e., a set of

time values which may be described by a set of inter-

vals (e.g., 1/1/82 to 12/31/84, 2/1/85 to 3/31/85, and

5/1/86 to 5/31/86).

Orthogonally, the value of a valid-time component

may be derived or imposed. A derived value is com-

puted solely in terms of the valid-time components of

the tuples in the argument relation. An imposed value

is computed by explicit assignment in the query.

Note that at least one of the two components must

be present in the result of a query. This part of the

taxonomy results in 20 mutually exclusive categories.

The distinctions above are based on the schema of

result relations. It is possible also to distinguish be-

tween the cardinalities of result relations, e.g., between

set-valued and single-tuple valued results.

5.2.3 Selection-based Taxonomy

The selection component is divided into two parts, one

for valid-time selection and one for selection not in-

volving valid time. See Figure 3.

f< valid-time selection >g

�

�f< non-temporal selection >g

�

Figure 3: Top-level Selection-based Taxonomy

Both parts are based on the same observation. In

general, a selection predicate is built from atomic se-

lection predicates using logical operators (e.g., and,

or, and implies) and parenthesis. Both parts cat-

egorize queries based on the atomic predicates used

in the queries. As several types of atomic predicates

may be used in the same query, queries generally fall

into multiple categories (as indicated in Figure 3 by

the Kleene star, \

�

"). We examine each part of the

selection-based taxonomy in turn.

Atomic valid-time selection predicates are assumed

to be of the form

arg

1

op arg

2

;

where op is a some comparison operator (e.g.,

precedes, and contains). It is assumed that arg

1

is the valid time of the data, and restrictions are im-

posed based on the type of the comparison operator,

on the origin of arg

2

, and on the type of arg

2

. Figure 4

outlines the categories.

Three types of comparison operators are identi�ed.

First, a comparison operator may be duration-based.

For example the operator spanExceeds returns true if

the duration of the �rst argument is equal to or larger

than the duration of the second argument. Second,

comparison operators may be based on ordering. Op-

erators in this category include precedes and meets.

The �rst applies to all timestamps and evalutes to

true if the largest time in the �rst argument is smaller

QQ-5

8

>

>

<

>

>

:

type of comparison operator

duration-based

ordering-based

containment-based

9

>

>

=

>

>

;

�

8

>

>

<

>

>

:

type of arg

2

event

interval

element

9

>

>

=

>

>

;

�

8

>

>

<

>

>

:

origin of arg

2

explicitly supplied in query

user-de�ned attribute value

computed from other valid times

9

>

>

=

>

>

;

Figure 4: Valid-time Selection-based Taxonomy

than the smallest times in the second argument. Op-

erator meets appears to be useful only for events and

intervals. Two timestamps meet if they are not sepa-

rated by any event (i.e., may be coalesced). Operators

based on containment include = (identity), overlaps,

and contains.

The second argument (arg

2

) may be an event, an

interval, or an element. Also, it may come from three

sources. First, it may be supplied directly in the query,

as a constant. Second, it may be the value of a user-

de�ned time attribute in an argument tuple. Note that

this is only possible for events if �rst normal form is

required. Third, like the �rst argument, the second

argument may be computed from valid times in the

argument tuples.

If the three types of categories are completely or-

thogonal, this part of the taxonomy will contribute

with a total of 27 categories. However, it may be de-

bated whether intervals and elements may be used as

values of user-de�ned attributes (resulting in non-1NF

relations).

The �nal part of the selection-based taxonomy cate-

gorizes queries based solely on the part of the selection

component that involves only ordinary, non-temporal

selection.

Many possibilities for categorization exist. Below,

in Figure 5, we distinguish between four signi�cant

types of atomic selection predicates. First, an at-

tribute may be compared with a constant, supplied

by the user. Second, attribute values, both in the

same relation, may be compared. Third, a primary

key value may be compared with a matching foreign

key value. Fourth, arbitrary attributes of possibly

distinct relations may be compared. In the �gure,

� ::= < j > j � j � j = , i.e., a combination of equality

and/or the one of the two inequality operators. If we

distinguish between situations where only equality is

involved and situations where inequality is involved,

this give 8 categories.

5.3 Overview and Naming of Cate-

gories

Each query has a single output component, zero or

more valid-time selection components (one per such

operator), and zero or more non-temporal selection-

based components (one per such operator). The tax-

onomy is summarized in Figure 6. There, the names

introduced in the taxonomy are used along with punc-

tuation in order to name a category.

To exemplify the use of Figure 6 for naming cate-

gories, consider the query \When was Ed Manager of

the Toy Department." This query is in the category

shown next (with no valid-time selection).

(None, Element, Derived) // (=, Constant) (=,

Constant)

It may be observed that the taxonomy gives rise to

a large number of categories. For example, assuming

a single non-temporal operator and no valid-time op-

erators, there are 20 � 8 = 160 categories. Adding a

single valid-time operator while assuming orthogonal-

ity yields an additional 4320 categories!

As a result, it becomes necessary to create classes

of categories which then may be used for clasifying the

benchmark queries.

One approach would be to name a class of cate-

gories of queries, by simply replacing one or more of

the entries with the Kleene star (*"), e.g.,

(None, Element, Derived) / (*,*,*) / (=, Constant)

The above query category would be in this class.

In the next section, we de�ne the classes to be used in

the benchmark.

5.4 Forming Classes from Categories

The idea is to remove distinctions from the compre-

hensive taxonomy until a suitable number of classes is

obtained. Figure 7 is thus a reduced version of Fig-

ure 6.

The second and third lines concern output. Only

the prescence or absence of explicit attributes and

QQ-6

8

>

>

>

>

<

>

>

>

>

:

non-temporal attribute value selection

att � Constant

att

1

� att

2

att

k

� att

fk

att(rel

1

) � att(rel

2

)

9

>

>

>

>

=

>

>

>

>

;

�

8

<

:

comparison operator, �

only equality (=)

inequality (<>)

9

=

;

Figure 5: Non-temporal Selection-based Taxonomy

<category> ::= <output> `/'

�

<v-t selection>

	

* `/'

�

<non-t selection>

	

*

<output> ::= `('

�

None

�

�

Projected

�

�

Complete

	

`,' /� explicit-attribute component

�

None

�

�

/� no valid-time attribute

�

Event

�

�

Interval

�

�

Element

	

`,' /� type of valid-time attribute

�

Derived

�

�

Imposed

	 	

`)' /� value of valid-time attribute

<v-t selection> ::= `('

�

Duration

�

�

Ordering

�

�

Containment

	

`,' /� operator type

�

Event

�

�

Interval

�

�

Element

	

`,' /� argument type

�

Explicit

�

�

User-de�ned

�

�

Computed

	

`)' /� argument origin

<non-t selection> ::= `('

�

`='

�

�

`<>'

	

`,' /� operator type

�

Constant

�

�

Single

�

�

Foreign

�

�

Arbitrary

	

`)' /� argument types

Figure 6: Overview of the Taxonomy used for Naming Categories

<class-name> ::= <reduced output> `/'

�

<reduced v-t selection>

	

*

<reduced output> ::= `('

�

None

�

�

Proj/Comp

	

`,' /� explicit-attribute component

�

None

�

�

Not empty

	

`)' /� valid-time attribute component

<reduced v-t selection> ::= `('

�

Duration

�

�

Other

	

`,' /� comparison operator type

�

Event

�

�

Interval

�

�

Element

	

`,' /� argument type

�

Computed

�

�

Other

	

`)' /� argument origin

Figure 7: Overview of the Classi�cation of Queries

QQ-7

timestamps are distinguished, leading to three cate-

gories. The last three lines concern valid-time selec-

tion (non-temporal selection is disregarded). Com-

parison operators may be duration-based or not; ar-

guments be of either event, interval, or element type;

and the arguments may or may not derive from valid

times of tuples.

6 The Benchmark Queries

6.1 Overview

The structure of this section is based on Figure 7.

There are three sections, each of which contains ten

sections. The three top-level sections classify queries

according to the output. Thus, the output from a

query may have either only an explicit-attribute value

component (O1), only a valid-time component (O2),

or it may have both (O3).

Each top-level section contains the same ten sec-

tions. These divide queries based on a single, distin-

guished valid-time selection predicate

1

. The predicate

is of the format arg

1

op arg

2

where op is a compar-

ison operator which may (or may not) be duration-

based. One argument is the valid time of tuples in

the argument relation. The other argument may be of

event, interval, or element type; orthogonally, it may

(or may not) be computed from existing valid times

in the argument relation. This results in a total of ten

classes (the combination of duration-based predicates

and event arguments is omitted).

(S1) (Duration, Interval, Computed)

(S2) (Duration, Interval, Other)

(S3) (Duration, Element, Computed)

(S4) (Duration, Element, Other)

(S5) (Other, Event, Computed)

(S6) (Other, Event, Other)

(S7) (Other, Interval, Computed)

(S8) (Other, Interval, Other)

(S9) (Other, Element, Computed)

(S10) (Other, Element, Other)

6.2 Explicit-attribute Output

This section involves queries which return only

explicit-attribute values|no valid-time values are

present in the result.

1

A query may contain several selection predicates, but it is

classi�ed according to a single predicate.

6.2.1 Class O1.S1 (Duration, Interval, Com-

puted)

Query Q 2.1.1: Which departments had managers

who served for the shortest continuous period?

Answer: \Toy"

Category: (Projected, None) / (Duration, Interval,

Computed) /

Here is a case where zero spans should be ignored.

Query Q 2.1.2: Who worked continuously in the

Book department for as long as Di did?

Answer: \Ed" and \Edward"

Category: (Projected, None) / (Duration, Interval,

Computed) / (=, Constant) (=, Constant)

Di never worked in the Book department, so this

should return everyone that ever worked in the Book

department. Here is a case where zero spans are sig-

ni�cant.

Query Q 2.1.3: Who worked continuously in the

Toy department for as long as Di did?

Answer: \None"

Category: (Projected, None) / (Duration, Interval,

Computed) / (=, Constant) (=, Constant)

Query Q 2.1.4: Who worked continuously in

a department longer than their current manager

worked in that department?

Answer: \None"

Category: (Projected, None) / (Duration, Interval,

Computed) (Containment, Event, Explicit) /

Query Q 2.1.5: Who had the same salary for the

longest continuous time period?

Answer: \Di"

Category: (Projected, None) / (Duration, Interval,

Computed) /

Query Q 2.1.6: Who worked for a manager in a

department for a period as long as that manager

managed that department?

Answer: \Di"

Category: (Projected, None) / (Duration, Interval,

Computed) /

Query Q 2.1.7: Which managers served continu-

ously longer than some other manager?

Answer: \Di"

Category: (Projected, None) / (Duration, Interval,

Computed) /

QQ-8

6.2.2 Class O1.S2 (Duration, Interval, Other)

Query Q 2.2.1: Which employees had the same

salary for a single period of at least three years?

Answer: \Di"

Category: (Projected, None) / (Duration, Interval,

Explicit) /

Query Q 2.2.2: Who worked for the same manager

for at least �ve years continuously?

Answer: \Ed" and \Di"

Category: (Projected, None) / (Duration, Interval,

Explicit) /

Query Q 2.2.3: Which employees have stayed in

the same department for the past 5 years?

Answer: \Di"

Category: (Projected, None) / (Duration, Interval,

Explicit) (Containment, Event, Explicit) /

Could also be classi�ed as (Containment, Interval,

Explicit.)

Query Q 2.2.4: For all departments which have not

changed managers AND their budgets for the last

18 months, list their names, the managers and the

budgets.

Answer: \(Toy, Di, 100K)"

Category: (Complete, None) / (Duration, Interval,

Explicit) (Containment, Event, Explicit) /

Query Q 2.2.5: Who worked in the Toy department

and earned at least 40K for the last two years?

Answer: \Edward" and \Di"

Category: (Projected, None) / (Duration, Interval,

Explicit) / (=, Constant) (<>, Constant)

Query Q 2.2.6: Who had at least three raises in a

continuous �ve-year period?

Answer: \Ed" and \Di"

Category: (Projected, None) / (Duration, Interval,

Explicit) /

Query Q 2.2.7: Who had the most raises in a con-

tinuous �ve-year period?

Answer: \Ed" and \Di"

Category: (Projected, None) / (Duration, Interval,

Explicit) /

6.2.3 Class O1.S3 (Duration, Element, Com-

puted)

Query Q 2.3.1: Who worked in the Book depart-

ment for as long as Di did?

Answer: \Ed" and \Edward"

Category: (Projected, None) / (Duration, Element,

Computed) / (=, Constant) (=, Constant)

Di never worked in the Book department, so this

should return everyone that ever worked in the Book

department.

Query Q 2.3.2: Who worked in the Toy department

for as long as Di did?

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Computed) / (=, Constant) (=, Constant)

Query Q 2.3.3: Who worked in a department longer

than their current manager worked in that depart-

ment?

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Computed) (Containment, Event, Explicit) /

Query Q 2.3.4: Which managers managed which

departments, longer than Di managed the Toy de-

partment?

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Computed) / (=, Constant) (=, Constant)

Query Q 2.3.5: Who had the same salary for the

longest total time?

Answer: \Di"

Category: (Projected, None) / (Duration, Element,

Computed) /

Query Q 2.3.6: Who worked for a manager in a

department for as long as that manager managed

that department?

Answer: \Di"

Category: (Projected, None) / (Duration, Element,

Computed) /

Query Q 2.3.7: Which departments had managers

who served for the shortest total time?

Answer: \Toy"

Category: (Projected, None) / (Duration, Element,

Computed) /

Query Q 2.3.8: List all employees in the Book de-

partment who received salaries of over 40K longer

than Edward did.

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Computed) / (=, Constant) (<>, Constant) (=,

Constant)

Query Q 2.3.9: Who worked in the Toy department

for at least as long as the total time that the Toy

department was NOT managed by Ed?

Answer: \Di"

Category: (Projected, None) / (Duration, Element,

Computed) / (=, Constant) (<>, Constant)

QQ-9

Query Q 2.3.10: Find the names of employees that

have been in a department named Toy for a shorter

period than has DI.

Answer: \Ed" and \Edward."

Category: (Projected, None) / (Duration, Element,

Computed) / (=, Constant) (=, Constant)

The employee ED has been in a department named

Toy for a period which is shorter than that of DI. The

categorization is with respect to Figure 6. \(Projected,

None)" indicates that only part of the attributes of the

argument relation are present in the result and that

there is no valid-time component. Next, \(Duration,

Element, Computed)" indicates that a duration based

predicates is used on element-valued arguments which

are both derived from the valid-times of stored facts.

Finally, \(=, Constant) (=, Constant)" indicates that

there are two non-temporal selection predicates that

test for equality of an attribute value with a constant

(i.e., the person must be DI and the department must

have name Toy).

Query Q 2.3.11: Find the current name and de-

partment name for the persons which made $40K

for a longer period than DI did.

Answer: \(Edward, Book)."

Category: (Projected, None) / (Duration, Element,

Computed) (Containment, Event, Explicit) / (=,

Constant)

In this query, there are two valid-time selection based

predicates. The one used for categorization compares

the duration of time when a person makes $40K with

the period of time that DI makes $40K. The other se-

lects the name and department that overlap with the

current time of qualifying persons.

6.2.4 Class O1.S4 (Duration, Element, Other)

Query Q 2.4.1: Whomanaged the Book department

for at least two years?

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Explicit) / (=, Constant)

Query Q 2.4.2: Which employees had the same

salary for at least three years?

Answer: \Di"

Category: (Projected, None) / (Duration, Element,

Explicit) /

Query Q 2.4.3: Who worked for the same manager

for at least �ve years?

Answer: \Ed" and \Di"

Category: (Projected, None) / (Duration, Element,

Explicit) /

Query Q 2.4.4: Who worked in a department for

less than 6 months total?

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Explicit) /

Query Q 2.4.5: Who had a position in the Toy

department and a salary of 50K for at least two

years?

Answer: \Di"

Category: (Projected, None) / (Duration, Element,

Explicit) / (=, Constant) (=, Constant)

This query and the next illustrate the dependence on

complete understanding in formulating a query. The

syntax is almost the same, but the interpretation of

\and" is di�erent. In the above, \and" becomes tem-

poral intersection while in the next query, it is merely

logical conjunction.

Query Q 2.4.6: Who had a position in the Toy

department and a position in the Book department

for at least two years?

Answer: \None"

Category: (Projected, None) / (Duration, Element,

Explicit) / (=, Constant) (=, Constant)

Query Q 2.4.7: Who worked for the same manager

for total time of at least �ve years?

Answer: \Ed" and \Di"

Category: (Projected, None) / (Duration, Element,

Explicit) /

6.2.5 Class O1.S5 (Other, Event, Computed)

Query Q 2.5.1: Find Ed's skills when he joined the

Book department

Answer: \typing," \�ling" and \driving."

Category: (Projected, None) / (Containment,

Event, Computed) / (=, Constant)

The employee with name Ed joined the Book depart-

ment on 4/1/87, when he was quali�ed for typing, �l-

ing and driving.

The category \(Containment, Event, Computed)"

indicates that a containment based predicate is used to

select skill data containing an event-valued argument

(i.e. 4/1/87) which is derived from the valid-times

of stored facts (begin of the valid-times Ed was at the

Book department). Finally, \(=, Constant)" indicates

that there are only non-temporal selection predicates

that test for equality of an attribute value with a con-

stant (i.e., the name of the person is Ed both in em-

ployee and in skills data, and the department of the

person in employee data is Book).

QQ-10

Query Q 2.5.2: Find the name and the budget of

Ed's departments when he joined them

Answer: \(Toy, $150K)" and \(Book, |)."

Category: (Projected, None) / (Containment,

Event, Computed) / (=, Constant) (=, Foreign)

Ed joined the Toy department on 2/1/82, when the

budget was $150K, and the Book department on

4/1/87. No information about the Book budget is

available.

The valid-time selection is categorized as \(Con-

tainment, Event, Computed)" since it checks whether

the valid-times of selected budget data contain an

event-valued argument computed from employee data

(the date Ed joined a department). A non-temporal

selection predicate | in the category \(=, Constant)"

| is used to select the department names and the peri-

ods in which Ed was in a department. A non-temporal

predicate | in the category \(=, Foreign)" | is used

to select the budget of that department, via the join

condition dept.Department=employee.Dept.

Query Q 2.5.3: Find all the data and the skills

of the employees of the Toy department when it

opened

Answer: \(Di, $30K, Toy, F, 10/1/60, directing)."

Category: (Complete, None) / (Containment, Event,

Computed) / (=, Constant) (=, Foreign)

The Toy department opened on 1/1/82. On that date,

only Di worked in it. She was quali�ed for directing

only.

The result is composed of all the non-temporal

attributes retrieved from the relations employee and

skills according to the output category \(Complete,

None)". In both relations, data are selected if their

valid-times contain the event \opening of the Toy de-

partment", according to two selection clauses in the

category \(Containment, Event, Computed)". Addi-

tional non-temporal conditions are imposed to the se-

lected data in either relations: \(=, Constant)" indi-

cates the selection of the employees working in the Toy

department; \(=, Foreign)" indicates the selection of

the skills of such employees. Another predicate of the

class \(=, Constant)" is used to determine the event

\opening of the Toy department" as the beginning of

the temporal element in which Toy data are stored in

relation dept.

Query Q 2.5.4: Find the names of the employees

who had been working in the Toy department be-

fore the budget was decreased

Answer: \Ed."

Category: (Projected, None) / (Ordering, Event,

Computed) (Ordering, Interval, Computed) / (=,

Constant) (<>, Constant)

The budget of the Toy department was decreased on

1/1/87. Ed is the only employee who had been working

in it before that date.

The temporal selection predicate used for catego-

rization is \(Ordering, Event, Computed)". It indi-

cates that an ordering based predicate is used to se-

lect employee data with valid-times preceding an event-

valued argument (i.e. 1/1/87) which is derived from

stored facts. A predicate in the category \(=, Con-

stant)" is used to select an employee working in the

Toy department. The other temporal predicate | cat-

egorized as \(Ordering, Interval, Computed)" | se-

lects two adjacent versions of department data, testing

if their valid-time intervals meet. Furthermore, non-

temporal predicates are used to determine such ver-

sions. \(=, Constant)" also indicates that the two ver-

sions must have the same department name: \Toy."

\(<>, Constant)" indicates that a test must be ef-

fected on the decreasing value of the budget data be-

tween the two versions.

Query Q 2.5.5: Find Ed's skills when his salary

increased from $30K to $40K

Answer: \typing," \�ling" and \driving."

Category: (Projected, None) / (Containment,

Event, Computed) (Ordering, Interval, Computed)

/ (=, Constant)

Ed had typing, �ling and driving skills when his salary

was increased from $30K to $40K on 2/1/86.

The query is categorized as \(Containment, Event,

Computed)" since it selects skills data having valid

times containing the event 2/1/86 which is computed

from other data. Such an event is determined con-

sidering the two consecutive versions of data for the

employee \Ed", and extracting the beginning of the

second versions. The versions can be determined as

follows: a �rst predicate in category \(=, Constant)"

selects one Ed's version (with salary $30K); two pred-

icates in the categories \(=, Constant)" and \(Order-

ing, Interval, Computed)" select the Ed's version (with

salary $40K) that follows the �rst one. A third non-

temporal predicate \(=, Constant)" selects Ed's data

in relation skills.

6.2.6 Class O1.S6 (Other, Event, Other)

Query Q 2.6.1: Find the current Toy department

data

Answer: \(Toy, Di, $100K)."

QQ-11

Category: (Complete, None) / (Containment, Event,

Explicit) / (=, Constant)

The current manager and budget of the Toy depart-

ment are Di and $100K, respectively.

The temporal selection predicate \(Containment,

Event, Explicit)" selects the department data whose

valid-time includes the explicit event \now." A non-

temporal predicate in the category \(=, Constant)" se-

lects Toy data.

Query Q 2.6.2: Find the skills for which Ed was

quali�ed after 1/1/83

Answer: \�ling" and \driving."

Category: (Projected, None) / (Ordering, Event,

Explicit) / (=, Constant)

Ed was quali�ed for �ling on 1/1/85 and for driving

(for the second time in his career) on 6/1/84. The

valid-time selection predicate \(Ordering, Event, Ex-

plicit)" compares the valid-time of Ed's skills with the

explicitly supplied event 1/1/83. The non temporal

predicate selects Ed's data in the skills relation.

Query Q 2.6.3: Find Di's salary on her 25

th

birth-

day

Answer: \$40K."

Category: (Projected, None) / (Containment,

Event, User-de�ned) / (=, Constant)

The date of Di's 25

th

birthday is 10/1/85. At that

time her salary was $40K.

The valid-time selection embedded in the query is

categorized as \(Containment, Event, User-de�ned),"

since it selects employee data whose valid-time con-

tains an event computed from the user-de�ned time

attribute D-birth. Two non-temporal selections in the

category \(=, Constant)" are used to select employees

whose name is \Di" (once to select her D-birth and

once to select her Salary).

Query Q 2.6.4: Find the departments Ed worked

in before and not after 1/1/88

Answer: \Toy."

Category: (Projected, None) / (Ordering, Event,

Explicit) / (=, Single)(=, Constant)

Before 1/1/88 Ed worked only in the Toy department

(from 2/1/82 to 1/31/87).

The query can be answered in two steps. At �rst,

the names of all the departments Ed worked in are se-

lected by means of a \(=, Const)" non-temporal predi-

cate. In the second step, each name is used to �nd out

the temporal element in which Ed worked in such a

department by means of a \(=, Single)" non-temporal

predicate. Finally, the department name is retrieved

only if the temporal element precedes the event-valued

constant 1/1/88 according to an \(Ordering, Event,

Explicit)" temporal selection predicate.

Query Q 2.6.5: Find the name and date of birth of

the women who were working in the Toy depart-

ment on 1/1/83

Answer: \(Di, 10/1/60)."

Category: (Projected, None) / (Containment,

Event, Explicit) / (=, Constant)

The only woman working in Toy department on

1/1/83 was Di. Di was born on 10/1/60.

The categorization of the query as \(Containment,

Event, Explicit)" indicates that employee data are se-

lected if their valid-times contain the event 1/1/83,

explicitly supplied in the query. Furthermore, the non-

temporal clause selects only female employees working

in the Toy department.

Query Q 2.6.6: Who worked in their current de-

partment longer than their current manager?

Answer: \None"

Category: (Projected, None) / (Containment,

Event, Explicit) /

6.2.7 Class O1.S7 (Other, Interval, Com-

puted)

Query Q 2.7.1: Find the names of all employees

that changed departments while DI was working

in a department called Toy.

Answer: \Ed" and \Edward"

Category: (Projected, None) / (Containment, Inter-

val, Computed) (Duration, Element, Computed) /

(=, Constant) (=, Constant)

Query Q 2.7.2: Find the skills ED did not acquire

while he was working in the BOOK department.

Answer: \Driving", \Directing", \Filing" and \Typ-

ing"

Category: (Projected, None) / (Containment, Inter-

val, Computed) / (<>, Constant)

Query Q 2.7.3: Of the skills at some time possessed

by ED, list those he did not acquire while he was

working in the BOOK department.

Answer: \Driving", \Filing" and \Typing"

Category: (Projected, None) / (Containment, Inter-

val, Explicit) (Containment, Interval, Explicit) /

(<>, Constant)

Query Q 2.7.4: Find the manager and department

of anyone who let a skill lapse for more than a

month while their salary was less than $30K.

QQ-12

Answer: \(Di, Toy)."

Category: (Projected, None) / (Containment, Inter-

val, Computer) (Duration, Interval, Explicit) / (=,

Constant) (=, Constant)

Query Q 2.7.5: Find the name of anyone who reac-

quired a skill.

Answer: \Ed."

Category: (Projected, None) / (Ordering, Inter-

val, Computed) (Ordering, Interval, Computed) /

(<>, Constant)

Query Q 2.7.6: Find the name and sex of all em-

ployees that started work anywhere before ED ac-

quired the skill driving for the 2nd time.

Answer: \(Ed, M) and (Di, F)."

Category: (Projected, None) / (Ordering, Interval,

Computed) (Ordering, Event, Computed) / (Se-

quence, Constant)

Query Q 2.7.7: Who worked in a department for

a given manager for at least the period when that

manager managed that department?

Answer: \Di"

Category: (Projected, None) / (Containment, Inter-

val, Computed) /

Query Q 2.7.8: What was the highest salary earned

by Ed before changing his name to Edward?

Answer: \40K"

Category: (Projected, None) / (Ordering, Interval,

Computed) / (=, Constant) (=, Constant)

6.2.8 Class O1.S8 (Other, Interval, Other)

Query Q 2.8.1: Find the name and skills of all peo-

ple who worked for the BOOK or TOY department

last year.

Answer: \(Edward, Typing), (Edward, Filing), (Ed-

ward, Driving), (Ed, Typing), (Ed, Filing), (Ed,

Driving) and (Di, Directing)."

Category: (Complete, None) / (Containment, Inter-

val, Explicit) / (=, Constant) (=, Constant)

Query Q 2.8.2: Find the name and current skills

of all people who worked for the BOOK or TOY

department last year.

Answer: \(Edward, Typing), (Edward, Filing) and

(Di, Directing)."

Category: (Complete, None) / (Containment, Inter-

val, Computed) (Containment, Interval, Explicit)

/ (=, Constant) (=, Constant)

Query Q 2.8.3: Find the name of all people who

reported to DI before last year.

Answer: \Ed"

Category: (Complete, None) / (Ordering, Interval,

Explicit) / (<, Constant)

Query Q 2.8.4: Find the manager of anyone who

acquired a skill between 1983 and 1987 inclusive.

Answer: \Di."

Category: (Projected, None) / (Containment, Inter-

val, Computed) / (=, Constant)

Query Q 2.8.5: Find the name of anyone who lost

a skill in the last four years.

Answer: \()."

Category: (Projected, None) / (Containment, Inter-

val, Explicit) / (=, Constant)

Query Q 2.8.6: Find the name and department of

anyone who changed their name or salary between

July 1987 and June 1988 inclusive.

Answer: \(Ed, Book)."

Category: (Projected, None) / (Containment, Inter-

val, Computed) / (=, Constant)

Query Q 2.8.7: Which employees stayed at their

�rst salary for less than one year?

Answer: \Ed"

Category: (Projected, None) / (Containment, Inter-

val, Explicit) /

Query Q 2.8.8: List the names, managers and bud-

gets of all departments with budgets of less than

200K during any period between Jan 1, 1985 and

Dec 31, 1989?

Answer: \(Toy, Di, 100K)"

Category: (Complete, None) / (Containment, Inter-

val, Explicit) / (<>, Constant)

Query Q 2.8.9: Who worked in the Toy department

and earned at least 40K in the last two years?

Answer: \Edward" and \Di"

Category: (Projected, None) / (Containment, Ele-

ment, Explicit) / (=, Constant) (<>, Constant)

6.2.9 Class O1.S9 (Other, Element, Com-

puted)

Query Q 2.9.1: Find the names of departments that

had a budget greater than $90K during the period

when Di managed them.

Answer: \Toy".

Category: (Projected, None) / (Containment, Ele-

ment, Computed) / (=, Constant) (=, Constant)

(=, Foreign)

The employee with name Di has managed the Toy de-

partment since 1/1/1982 and during that period the

QQ-13

budget was always greater than $90K. The category

\(Containment, Element, Computed)" indicates that

a containment based predicates is used on element-

valued arguments which are both derived from the

valid-times of stored facts. The non-temporal selection

predicates test for equality between the employee name

and \Di", the equality between the same attribute and

the foreign key of the Dept relation and the compari-

son between the department budget and the amount of

$120K.

Query Q 2.9.2: Find Ed's salary during the periods

he worked in the same department as Di's.

Answer: $20K, $30K, $40K.

Category: (Projected, None) / (Containment, Ele-

ment, Computed) / (=, Constant) (=, Single) (=,

Constant)

The second non-temporal selection predicate belonging

to the class \(=, Single)" test the equality between the

department of Ed and Di.

Query Q 2.9.3: Find the names of the departments

which Ed worked in earning $40K.

Answer: \Toy",\Book".

Category: (Projected, None) / (Containment, Ele-

ment, Computed) / (=, Constant) (=, Constant)

The predicates belonging to the class \(=, Constant)"

indicate the selection of the employee Ed and test the

equality between his salary and the amount of $40K.

Query Q 2.9.4: Find Ed's name after he left the

Toy department.

Answer: \Edward".

Category: (Projected, None) / (Ordering, Element,

Computed) / (=, Constant) (=, Constant)

An ordering based predicate is used to select the name

of employeee Ed with valid-time following the period

he worked for the Toy department.

Query Q 2.9.5: Find Ed's skills when he worked in

the Toy department.

Answer: \driving",\�lling",\typing".

Category: (Projected, None) / (Containment, Ele-

ment, Computed) / (=, Constant) (=, Foreign)

(=, Constant)

The non-temporal predicate of the class \(=, Con-

stant)" indicates the selection of the employee with

name Ed; \(=, Foreign)" indicates the selection of the

skills of such employee and \(=, Constant)" indicates

the selection of the Toy department.

Query Q 2.9.6: Who ever worked in a department

longer than their manager while in that depart-

ment?

Answer: \None"

Category: (Projected, None) / (Containment, Ele-

ment, Computed) /

Query Q 2.9.7: What new skills did Ed hold after

he had changed his name to Edward?

Answer: \None"

Category: (Projected, None) / (Ordering, Element,

Computed) / (=, Constant) (=, Constant)

Query Q 2.9.8: What were Toy's departmental bud-

gets when it was managed by Di?

Answer: \150K", \200K" and \100K"

Category: (Projected, None) / (Containment, Ele-

ment, Computed) / (=, Constant) (=, Constant)

6.2.10 Class O1.S10 (Other, Element, Other)

Query Q 2.10.1: Which managers managed which

departments between Jan 1, 1982 and Dec 31,

1989?

Answer: \(Di, Toy)"

Category: (Projected, None) / (Containment, Ele-

ment, Explicit) /

6.3 Valid-time Output

This section involves queries which return only valid-

time values|no explicit-attribute values are present

in the result.

6.3.1 Class O2.S1 (Duration, Interval, Com-

puted)

Query Q 3.1.1: Find the times when persons with

a shorter employment in the Toy department than

DI were employed in the Book department.

Answer: \f [4/1/87 - now]g"

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant)

Query Q 3.1.2: Find the employment periods of

persons that made 40K for a longer time than when

DI made 40K.

Answer: \f [2/1/82 - 1/31/87], [4/1/87 - now]g"

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant)

Query Q 3.1.3: Find the starting times in the Book

department of persons which possessed the Filing

skill for a longer time than DI.

Answer: \f 4/1/87g"

QQ-14

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant)

Query Q 3.1.4: Return the times when persons

employed a shorter time than DI acquired a skill.

Answer: \f 1/1/82, 4/1/82, 6/1/84, 1/1/85, g"

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant)

Query Q 3.1.5: Find the employment periods of

persons employed shorter time than DI.

Answer: \f [2/1/82 - 1/31/87], [4/1/87 - now]g"

Category: (None, Element, Derived) / (Duration,

Element, Computed) /(=, Constant)

Query Q 3.1.6: When did someone get a raise more

quickly than Di's �rst raise?

Answer: \06/01/82" and \09/01/86"

Category: (None, Event, Derived) / (Duration, In-

terval, Computed) (Ordering, Interval, Computed)

/ (= ,Constant)

Query Q 3.1.7: When was the longest period when

no one was hired or left employment?

Answer: \02/01/82{01/01/90"

Category: (None, Interval, Derived) / (Duration, In-

terval, Computed) /

Query Q 3.1.8: When was the longest period when

no one received a raise?

Answer: \06/02/82{07/31/84"

Category: (None, Interval, Derived) / (Duration, In-

terval, Computed) /

Query Q 3.1.9: When was the longest period when

a department was without a manager?

Answer: \04/01/87{01/01/90"

Category: (None, Interval, Derived) / (Duration, In-

terval, Computed) /

6.3.2 Class O2.S2 (Duration, Element, Other)

Query Q 3.2.1: Find employment periods in the Toy

department for persons that have worked there for

at least 8 years.

Answer: \f [1/1/82 - now]g"

Category: (None, Element, Derived) / (Duration,

Element, Explicit) /(=, Constant)

Query Q 3.2.2: Find the starting times of managers

which managed a department for at least 5 years.

Answer: \f 1/1/82g"

Category: (None, Element, Derived) / (Duration,

Element, Explicit) /(=, Constant)

Query Q 3.2.3: Find the rehiring dates of employees

with a gap in employment that exceeds 1 month.

Answer: \f 4/1/87g"

Category: (None, Element, Derived) / (Duration,

Element, Explicit) /(=, Constant)

Query Q 3.2.4: Find the times when persons pos-

sessed skills that they lost and regained more than

1 year later.

Answer: \f [1/1/82 - 5/1/82], [6/1/84 - 5/31/88]g"

Category: (None, Element, Derived) / (Duration,

Element, Explicit) /(=, Constant)

Query Q 3.2.5: Find budget periods that exceed 2

years.

Answer: \f [1/1/87 - now]g"

Category: (None, Element, Derived) / (Duration,

Element, Explicit) /(=, Constant)

Query Q 3.2.6: When did no one's salary change

for at least six months?

Answer: \06/01/82{07/31/84", \08/01/84{01/31/

85", \02/01/85{08/31/86"

Category: (None, Interval, Derived) / (Duration, In-

terval, Explicit) (temporal aggregate) /

6.3.3 Class O2.S3 (Duration, Element, Com-

puted)

Class remark : Most sensible queries are of similar

to "when did X have X.A longer than Y had Y.B?"

Query Q 3.3.1: When did somebody have the same

salary for the longest total time?

Answer: \09/01/86{01/01/90"

Category: (None, Element, Derived) / (Duration,

Element, Computed) (temporal aggregate) /

Query Q 3.3.2: When did anybody work for a man-

ager in a department for as long as that manager

managed that department?

Answer: \01/01/82{01/01/90"

Category: (None, Element, Derived) / (Duration,

Element, Computed) /

Query Q 3.3.3: When did one person hold a skill

for a longer period than another but earn a lower

salary?

Answer: \No time."

Category: (None, Element, Derived) / (Duration,

Element, Computed) /

Query Q 3.3.4: When did someone manage the Toy

department for longer than Di did?

Answer: \No time."

QQ-15

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant) (=, Con-

stant)

Query Q 3.3.5: When did anyone have a skill longer

than Ed had driving?

Answer: \No time."

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant) (=, Con-

stant)

Query Q 3.3.6: When did a department have at

least two employees longer than the Toy depart-

ment did?

Answer: \No time."

Category: (None, Element, Derived) / (Dura-

tion, Element, Computed) (Containment, Ele-

ment, Computed) / (=, Constant)

Query Q 3.3.7: Who worked in one department for

at least two years continuously and what was the

period of employment in that department?

Answer: \(Ed, 02/01/82{01/31/87), (Edward,

01/01/88{01/01/90), (Di, 01/01/82{01/01/90)"

Category: (Projected, Interval, Derived) / (Dura-

tion, Interval, Explicit) /

6.3.4 Class O2.S4 (Duration, Element, Other)

6.3.5 Class O2.S5 (Other, Event, Computed)

6.3.6 Class O2.S6 (Other, Event, Other)

Query Q 3.6.1: When did anybody have at least

the skills that Di currently has?

Answer: \No time."

Category: (None, Element, Derived) / (Contain-

ment, Event, Explicit) / (=, Constant)

6.3.7 Class O2.S7 (Other, Interval, Com-

puted)

Query Q 3.7.1: Find when the Toy budget de-

creased

Answer: \1/1/87."

Category: (None, Not Empty) / (Ordering, Interval,

Computed) / (=, Constant) (<>, Single)

The budget of the Toy department decreased on

1/1/87.

The required date is extracted when two consecutive

periods are found (i.e. selected via the predicate \(Or-

dering, Interval, Computed)") in the �rst of which the

budget of the Toy department was higher than in the

second one (as tested by \(<>, Single)"). The cate-

gory \(=, Constant)" indicates that Toy data are se-

lected in relation dept via a non-temporal predicate

testing the equality of the key with a constant. The

required date is extracted as the beginning of the valid-

time of the second period.

Query Q 3.7.2: Find when the name of an employee

was presumably changed

Answer: \1/1/88."

Category: (None, Not Empty) / (Ordering, Interval,

Computed) / (=, Single) (<>, Single)

Only ED's name changed from Ed to Edward on

1/1/88.

We can guess that employees with di�erent names

but with the same gender and date of birth are the

same person (also the salary and the department be-

fore and after the name change can be tested for equal-

ity, but their values could have been changed together

with the name). The retrieved event is the validity

beginning of the second of two consecutive employee

versions. Such versions are detected by means of the

following conditions: their valid-time intervals meet

(cf. \(Ordering, Interval, Computed)"), their time-

invariant attributes but the name are equal (cf. \(=,

Single)" used twice), their names are di�erent (cf.

\(<>, Single)").

Query Q 3.7.3: Find when the salary of a manager

increased

Answer: \8/1/84" and \9/1/86."

Category: (None, Not Empty) / (Ordering, Interval,

Computed) (Containment, Element, Computed) /

(=, Foreign) (=, Const) (<>, Single)

The only manager in our data is Di. Di's salary was

increased on 8/1/84 and on 9/1/86.

First, all the manager names (together with the

valid-times they were manager) are retrieved from the

relation dept by means of a simple projection. Then,

the data of each manager are selected in the relation

emp by means of a non-temporal predicate in the class

\(=, Foreign)" and a valid-time predicate in the class

\(Containment, Element, Computed)". In order to

�nd the desired events, two consecutive versions of the

data of a manager with increasing salary must be de-

tected. The desired dates are extracted as the begin

of the valid-time interval of the second version. A

version of the manager data is selected via the \(=,

Foreign)" predicate as a candidate to be the �rst de-

sired version. The second version is selected in rela-

tion emp if its valid-time interval is met by the valid-

time interval of the �rst version (temporal selection in

QQ-16

category \(Ordering, Interval, Computed)"), has the

same Name and has a greater Salary than the �rst

version (non-temporal selection with categories \(=,

Constant)" and \(<>, Single)"). Notice that, if the

name equality for the second version is tested with the

names retrieved from dept rather than with the name

in the �rst selected version, two predicates of the class

\(=, Foreign)" are used and \(=, Constant)" is no

longer present in the categorization.

Query Q 3.7.4: Find the periods in which Di earned

$40K while she was manager of the Toy depart-

ment

Answer: \8/1/84 { 8/31/86."

Category: (None, Not Empty) / (Containment, In-

terval, Computed) / (=, Constant)

DI has been manager of the Toy department since

1982. In this period, she earned $40K from 8/1/84

to 8/31/86.

The query selects the valid-time intervals | of

the employee data with name \Di" and salary $40K,

according to \(=, Constant)" non-temporal selection

| completely contained in another interval computed

from other data, according to a \(Containment, In-

terval, Computed)" predicate. Such an interval is the

valid time she was manager of the Toy department and

is selected from the relation dept via a non-temporal

predicate in the category \(=, Const)" concerning the

Manager attribute value.

Query Q 3.7.5: Find the acquisition dates of the

skills Ed had during the year he joined the Toy

department

Answer: \1/1/82" and \4/1/82."

Category: (None, Not Empty) / (Containment, In-

terval, Computed) / (=, Constant)

Ed joined the Toy department on 2/1/82. During

1982, he acquired a driving skill on the 1

st

of January,

and a typing skill on the 1

st

of April.

The year 1982 is computed from the beginning of the

temporal element Ed worked in the Toy department,

which is selected by means of non-temporal predicates

in the category \(=, Constant)." Hence, the Ed's

skills (selected by another \(=, Constant)" predicate)

whose valid-times overlap the computed year are re-

trieved according to a \(Containment, Interval, Com-

puted)" temporal selection predicate.

6.3.8 Class O2.S8 (Other, Interval, Other)

Query Q 3.8.1: Find the beginning of the period

which includes the year 1989 and in which Edward

had a constant salary.

Answer: \1/1/88."

Category: (None, Not Empty) / (Containment, In-

terval, Explicit) / (=, Constant)

Edward has got a constant salary since 1/1/88. As

this period includes 1989, 1/1/88 is the answer.

Assuming that valid-time intervals of employee data

with a constant salary can be extracted from the rela-

tion employee (it can be noticed that, if the relation

is stored by means of temporally homeogeneous tuples,

the employee histories must be coalesced after pro-

jection on salary in order to obtain maximal inter-

vals in which the salary has not been changed), those

concerning Edward can be selected via a \(=, Con-

stant)" predicate. The query retrieves the beginning of

the computed period which contain the explicit inter-

val 1/1/89 { 12/31/89, according to a \(Containment,

Interval, Explicit)" temporal predicate.

Query Q 3.8.2: Find the dates Ed acquired a skill

before or after years 1984{1985.

Answer: \1/1/82" and \4/1/82."

Category: (None, Not Empty) / (Ordering, Interval,

Explicit) / (=, Constant)

Before or after years 1984{1985, Ed acquired a skill

on 1/1/82 (driving) and on 4/1/82 (typing).

The beginning of the valid-times of Ed's skills are

selected if they precede or follow the explicit interval

\1/1/84 { 12/31/85," according to the category \(Or-

dering, Interval, Explicit)." A non-temporal predicate

in the category \(=, Constant)" is used to select Ed's

data in relation skills.

Query Q 3.8.3: Find ED's unemployment periods

when he was not 30 years old

Answer: \1/31/87 { 1/4/87."

Category: (None, Not Empty) / (Ordering, Inter-

val, User-de�ned) (Containment, Interval, User-

de�ned) / (=, Constant)

ED has been 30 years old from 7/1/85 to 6/30/86.

Before 7/1/85 or after 6/30/86, he was unemployed

from 1/31/87 to 1/4/87.

The query is categorized as \(Ordering, Interval,

User-de�ned)" because valid-times of data are selected

if they precede or follow an interval which is computed

from user-de�ned times stored in other data, that is

7/1/85 { 6/30/86. The other temporal predicate, in

the category \(Containment, Interval, User-de�ned),"

is used because valid-times qualify for the query also

when they overlap the interval 7/1/85 { 6/30/86 with-

out being completely contained in it. In this case,

only the portion of the qualifying intervals outside

QQ-17

7/1/85 { 6/30/86 must be retrieved. Non-temporal

predicates in the category \(=, Constant)" are used

to restrict employee to ED's data (Name="Ed" or

Name="Edward"), and to �nd out the periods in which

he was unemployed (e.g. testing for null values of his

department and salary; for the problem of coalescing

intervals, see the discussion of query Q 3.8.1). The

restriction to ED's data also allows the determination

of his date of birth which is used for the temporal se-

lection.

Query Q 3.8.4: Find the period in which Di worked

in the department in which she has been working

during the whole 1987

Answer: \1/1/82 { now."

Category: (None, Not Empty) / (Containment, In-

terval, Explicit) / (=, Constant)

Di worked in Toy department during 1987. She has

worked in that department from 1/1/82.

The category \(Containment, Interval, Explicit)"

indicates that a containment-based predicate is used

to select employee data whose valid-times contain the

user-supplied interval \1/1/87 { 12/31/87." As in

Query Q 3.8.1, we assume that periods in which an

employee worked in the same department can be deter-

mined. Di's data are selected via a \(=, Constant)"

non-temporal predicate. If the containment test suc-

ceds, the entire element-valued valid-time argument of

the predicate is retrieved.

Query Q 3.8.5: Find all the dates from 1/1/83

to 12/31/85 at which the Toy department budget

changed

Answer: \8/1/84."

Category: (None, Not Empty) / (Containment, In-

terval, Explicit) (Ordering, Interval, Computed) /

(=, Single) (<>, Single)

From 1/1/83 to 12/31/85, the Toy budget changed

only on 8/1/84.

In this query, there are two valid-time selection

predicates. The one used for categorization is \(Con-

tainment, Interval, Explicit)" and selects the dates of

interest by means of their containment in an interval

explicitly supplied in the query. The other one, \(Or-

dering, Interval, Computed)," is used to determine

two consecutive versions of department data, testing

if their valid-time intervals meet. The non-temporal

predicates are also used for their determination: the

two versions must have the same department name |

according to \(=, Single)" | and di�erent salary val-

ues | according to \(<>, Single)".

6.3.9 Class O2.S9 (Other, Element, Com-

puted)

Query Q 3.9.1: When did anybody have at least

the skills that Di had at the same time?

Answer: \None"

Category: (None, Element, Derived) / (Contain-

ment, Element, Computed) / (=, Constant)

Query Q 3.9.2: When was the budget for Toy de-

partment more than 100K?

Answer: \01/01/82{12/31/86"

Category: (None, Element, Derived) / (Contain-

ment, Element, Computed) / (=, Constant) (<>,

Constant)

Query Q 3.9.3: When was the last period when

Edward had driving, �ling and typing skills simu-

lataneously?

Answer: \01/01/88{05/31/88"

Category: (None, Event, Derived) / (Containment,

Event, Computed) (temporal aggregate) / (=,

Constant) (=, Constant)

Query Q 3.9.4: When did anybody have at least

the skills that Di had?

Answer: \No time."

Category: (None, Element, Derived) / (Contain-

ment, Element, Computed) / (=, Constant)

Query Q 3.9.5: When did Di earn less than Ed?

Answer: \No time."

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant) (=, Con-

stant)

Query Q 3.9.6: When did Ed work in Toy depart-

ment while the department was managed by Di?

Answer: \02/01/82{12/31/87"

Category: (None, Element, Derived) / (Duration,

Element, Computed) / (=, Constant) / (=, Con-

stant) (=, Constant)

Query Q 3.9.7: When did Edward have driving

skills?

Answer: \01/01/82{05/01/82" and \06/01/84{

05/31/88"

Category: (None, Element, Derived) / (Contain-

ment, Element, Computed) / (=, Constant) (=,

Constant)

QQ-18

6.3.10 Class O2.S10 (Other, Element, Other)

6.4 Explicit-attribute and Valid-time

Output

The output from queries in this section contains ex-

plicit attribute values with associated valid times.

6.4.1 Class O3.S1 (Duration, Interval, Com-

puted)

Query Q 4.1.1: Who, and when, were continuously

employed in the Toy department shorter than Di

was continuously employed in the Toy department?

Answer: \Ed from 01-Feb-1982 to 31-Jan-1987."

Category: (Projected, Interval, Derived) / (Dura-

tion, Interval, Computed) / (=, Constant) (=,

Constant) (=, Constant)

Query Q 4.1.2: Who, and when, were continuously

employed in the Toy department shorter than Di

was continuously employed in the Toy department,

and what are their gender and date of birth?

Answer: \Ed from 01-Feb-1982 to 31-Jan-1987."

Category: (Complete, Interval, Derived) / (Dura-

tion, Interval, Computed) / (=, Constant) (=,

Constant) (=, Constant)

Query Q 4.1.3: Who were continuously employed

in the Toy department shorter than Di was contin-

uously employed in the Toy department, and when

did this employment start?

Answer: \Ed from 01-Feb-1982 to 31-Jan-1987."

Category: (Projected, Event, Derived) / (Duration,

Interval, Computed) / (=, Constant) (=, Con-

stant) (=, Constant)

Query Q 4.1.4: Who were continuously employed in

the Toy department shorter than Di was continu-

ously employed in the Toy department, throughout

1984?

Answer: \Ed from 01-Jan-1984 to 31-Jan-1984."

Category: (Projected, Interval, Imposed) / (Dura-

tion, Interval, Computed) / (=, Constant) (=,

Constant) (=, Constant)

Query Q 4.1.5: Who were continuously employed

in the Toy department shorter than Di was con-

tinuously employed in the Toy department, by the

start of 1984?

Answer: \Ed on 01-Jan-1984."

Category: (Projected, Event, Imposed) / (Duration,

Interval, Computed) / (=, Constant) (=, Con-

stant) (=, Constant)

6.4.2 Class O3.S2 (Duration, Interval, Other)

Query Q 4.2.1: When was the Toy department's

budget constant and greater than $175K for more

than one year?

Answer: \$200K from 01-Jan-1984 to 31-Dec-1986."

Category: (Projected, Interval, Derived) / (Dura-

tion, Interval, Supplied) / (6=, Constant) (=, Con-

stant)

Query Q 4.2.2: When was the Toy department's

budget constant and greater than $175K for more

than one year, and who was the manager for that

time?

Answer: \$200K from 01-Jan-1984 to 31-Dec-1986,

managed by Di."

Category: (Complete, Interval, Derived) / (Dura-

tion, Interval, Supplied) / (6=, Constant) (=, Con-

stant)

Query Q 4.2.3: When did the Toy department's

budget exceed $175K and then continue unchanged

for a year?

Answer: \$200K at 01-Jan-1984."

Category: (Projected, Event, Derived) / (Duration,

Interval, Supplied) / (6=, Constant) (=, Constant)

Query Q 4.2.4: Who managed departments (and

when) whose budgets exceeded $175K and then

held constant for at year?

Answer: \Di, from 01-Aug-1984 to 31-Dec-1986."

Category: (Projected, Interval, Derived) / (Dura-

tion, Interval, Supplied) / (=, Constant) (=, For-

eign)

Query Q 4.2.5: What departments were in continu-

ous operation (and when) longer than the duration

between Ed's and Di's birthdates?

Answer: \Toy, from 01-Jan-1982 to present."

Category: (Projected, Interval, Derived) / (Dura-

tion, Interval, User-de�ned) / (=, Constant) (=,

Constant)

Values computed from attribute values of type user-

de�ned time don't quite �t the taxonomy. Also, the

books department is not included in the answer to the

last query, because it started operation on 01-Apr-87,

which is less than �ve years before now (01-Jan-1990).

6.4.3 Class O3.S3 (Duration, Element, Com-

puted)

Query Q 4.3.1: Who, when and for which depart-

ment did anybody work for as long as the length of

time that department's budget was below 200K?

QQ-19

Answer: \(Di, Toy, 01/01/82{01/01/90)"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) / (<>, Constant)

Query Q 4.3.2: Who and when did anybody work

in a department longer than their manager while

in that department?

Answer: \None"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) /

Query Q 4.3.3: Who and when did anybody work

in a department longer than their current manager

worked in that department?

Answer: \None"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) / (Containment, Event,

Explicit) /

Query Q 4.3.4: For all employees who managed

any departments at least as long as Di managed

the Toy department, list their names, their gender,

their departments and their salary histories during

that time.

Answer: \(Di, F, Toy, ((30K, 01/01/82{07/31/84),

(40K, 08/01/84{08/31/86), (50K, 09/01/86{

01/01/90)))"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) / (=, Constant) (=,

Constant)

Query Q 4.3.5: List the names of departments,

the managers and the times when those depart-

ments had managers who served for the shortest

total time?

Answer: \Toy, Di, 01/01/82{01/01/90"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) /

Query Q 4.3.6: For all departments which had bud-

gets of at least 200K for a longer total time than

budgets of less than 200K, list their names, their

budgets and the times when the budgets were NOT

below 200K.

Answer: \None"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) / (<>, Constant) (<>,

Constant)

Query Q 4.3.7: What skills did Ed hold for as long

as the total time that he did NOT have driving

skills, and when did he have these skills?

Answer: \Typing, 04/01/82{12/31/87"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Computed) / (=, Constant) (<>,

Constant)

6.4.4 Class O3.S4 (Duration, Element, Other)

Query Q 4.4.1: Find who was a driver, and the

associated times, for a longer period than Ed, from

1/1/1982 to 12/31/1984.

Answer: \(Di, 1/1/1982 { 12/31/1984)"

Category: (Projected, Not Empty) / (Duration, El-

ement, Explicit) / (<>, Constant)

Query Q 4.4.2: Find who had been making the same

salary for the longest time in on Ed's birtday, and

the length of that time.

Answer: \(Di, 8/1/1984 { 7/1/1985)"

Category: (Projected, Not Empty) / (Duration, El-

ement, User-de�ned time) / (=, Constant)

Query Q 4.4.3: Find who was the oldest typist on

12/31/1985, and the time during which they had

they been a typist.

Answer: \(Ed, 4/1/1982 { 12/31/1985)"

Category: (Complete, Not Empty) / (Duration,

Element, Explicit) / (=, Constant), (=, Foreign)

Query Q 4.4.4: Find the names of employees in the

toy department who had worked less than Di in

that department as of 1/1/1985, and the amount

of the di�erence in time.

Answer: \(Ed, 1 month less)"

Category: (Projected, Not Empty) / (Duration,

Element, Explicit) / (=, Constant), (<>, Single)

Query Q 4.4.5: Find the working employees who

worked the least during 1987, and the times dur-

ing which they worked (as based on the Employee

relation).

Answer: \(Ed, 1/1/1987 { 1/31/1987 U 4/1/1987 {

12/31/1987)"

Category: (Projected, Not Empty) / (Duration, El-

ement, Explicit) / (Nothing)

Query Q 4.4.6: Who had at least two years of se-

niority in some department and what were the pe-

riods of such seniority?

Answer: \(Di, 01/01/82{01/01/90)"

Category: (Projected, Element, Derived) / (Dura-

tion, Element, Explicit) /

6.4.5 Class O3.S5 (Other, Event, Computed)

Query Q 4.5.1: List the names and ages of all em-

ployees at the time they received their �rst salary

increment.

Answer: \(Ed, 26 years & 11 months), (Di, 23 years

& 10 months)"

Category: (Projected, Interval, Derived) / (Contain-

ment, Event, Computed) /

QQ-20

Query Q 4.5.2: List the names and salary histories

of all female employees as of their 25th birthday.

Answer: \(Di, (30K, 01/01/82{07/31/84), (40K,

08/01/84{10/01/85))"

Category: (Projected, Element, Derived) / (Con-

tainment, Event, Computed) (Duration, Interval,

explicit) / (=, Constant)

Query Q 4.5.3: When and who ever changed their

names?

Answer: \(Ed, 01/01/88)"

Category: (Projected, Event, Derived) / (Contain-

ment, Event, Computed) /

Query Q 4.5.4: How old was Ed and what skills

did he have at the time he changed his name to

Edward?

Answer: \(32 years & 6 months, fDriving, Filing,

Typingg)"

Category: (Projected, Interval, Derived) / (Contain-

ment, Event, Computed) / (=, Constant) (=, Con-

stant)

Query Q 4.5.5: When did Ed acquire driving skills

and what other skills did he have at the time?

Answer: \(01/01/82, None), (06/01/84, Typing)"

Category: (Projected, Event, Derived) / (Contain-

ment, Event, Computed) / (=, Constant) (=, Con-

stant)

Query Q 4.5.6: Who and when was the �rst female

manager of the Toy department?

Answer: \(Di, 01/01/82)"

Category: (Projected, Event, Derived) / (Contain-

ment, Event, Computed) (temporal aggregate) /

(=, Constant) (=, Constant)

6.4.6 Class O3.S6 (Other, Event, Other)

Query Q 4.6.1: Find the name and salary histories

of employees whose date-of-birth was after 1/1/56.

Answer: \DI's" entire Name and Salary history

Category: (Projected, Element,Derived) / (Order-

ing, Event, User-de�ned) /

Query Q 4.6.2: Find the name and salary histories

of employees who were called \Ed" after 1/1/88.

Answer: \Empty Answer"

Category: (Projected, Element, Derived) / (Order-

ing, Event, User-De�ned) /

Query Q 4.6.3: Find the name and salary histo-

ries since their latest pay raise of employees whose

latest pay raise was in 1985.

Answer: \ED's Name and Salary history from

2/1/85 onwards"

Category: (Projected, Element, Derived) / (Con-

tainment, Event, Explicit) /

Query Q 4.6.4: Find the name and salary histories

of employees whose latest pay raise occurred after

the date-of-birth of every other employee.

Answer: \Both DI's and ED's enitre Name and

Salary history

Category: (Projected, Element, Derived) / (Order-

ing, Event, User-De�ned) /

Query Q 4.6.5: Find the name and salary histories

of employees whose latest pay raise occurred on the

date-of-birth of some other employee.

Answer: \Empty Answer"

Category: (Projected, Element, Derived) / (Con-

tainment, Event, User-De�ned) /

Query Q 4.6.6: Who and when had at least the

skills that Di currently has?

Answer: \None"

Category: (Projected, Element, Derived) / (Con-

tainment, Event, Explicit) / (=, Constant)

6.4.7 Class O3.S7 (Other, Interval, Com-

puted)

Query Q 4.7.1: Find the salary paid and the time it

was paid, of any toy department employee before

Ed worked there.

Answer: \(Di, $40K, 1/1/1982 { 7/31/1984)"

Category: (Projected, Not Empty) / (Ordering,

Interval, Computed) / (<>, Constant)

Query Q 4.7.2: Find the greatest salary paid to

Ed under $50K and the times during which it was

paid.

Answer: \($40K, 2/1/1985 { 1/31/1987)," \($40k,

4/1/1987 { present)"

Category: (Projected, Not Empty) / (Containment,

Interval, Computed) / (=, Constant)

Query Q 4.7.3: Find Ed's salary history.

Answer: \(Ed, $20K, 2/1/1982 { 5/31/1982),"

\(Ed, $30K, 6/1/1982 { 1/31/1985)," \(Ed, $40K,

2/1/1985 { 1/31/1987)," \(Ed, $40k, 4/1/1987 {

present)"

Category: (Projected, Not Empty) / (Containment,

Interval, Computed) / (=, Constant)

Query Q 4.7.4: Find the name, salary and the time

during which this occured, for drivers who made

less than $40K.

QQ-21

Answer: \(Ed, $20K, 1/1/1982 { 5/1/1982),"

\(Ed, $30K, 6/1/1984 { 1/31/1985)," \(Di, $30K,

1/1/1982 { 7/31/1984)"

Category: (Projected, Not Empty) / (Containment,

Interval, Computed) / (<>, Constant)

Query Q 4.7.5: Find the budget of the toy depart-

ment and the time at which Ed worked there.

Answer: \(2/1/1982 { 1/31/1987, $150K)"

Category: (Projected, Not Empty) / (Containment,

Interval, Computed) / (=, Constant), (=, Foreign

6.4.8 Class O3.S8 (Other, Interval, Other)

Query Q 4.8.1: Find the name, active skills and

period of all people who worked for the BOOK or

TOY department in the last two years.

Answer: \(Edward, Typing, 1-Apr-1982 to date),

(Edward, Filing, 1-Jan-1985 to date), (Edward,

Driving, 1-Jan-1982 to 1-May-1982), (Edward,

Driving, 1-Jun-1984 to 31-May-1988) and (Di, Di-

recting, 1-Jan-1982 to date)."

Category: (Complete, Element) / (Containment, In-

terval, Explicit) / (=, Constant) (=, Constant)

Query Q 4.8.2: Find the name, active skills and

relevant period of all people who worked for the

BOOK or TOY department in the last two years.

Answer: \(Edward, Typing, 1-Apr-1982 to date),

(Edward, Filing, 1-Jan-1985 to date), (Edward,

Driving, 1-Jun-1984 to 31-May-1988) and (Di, Di-

recting, 1-Jan-1982 to date)."

Category: (Complete, Element) / (Containment, In-

terval, Computed) (Duration, Interval, Explicit) /

(=, Constant) (=, Constant)

Query Q 4.8.3: Find the name and period of all

people who reported to DI before last year.

Answer: \(Ed, 1-Feb-1982 to 31-Jan-1987)"

Category: (Complete, None) / (Containment, Inter-

val, Computed) / (<, Constant)

Query Q 4.8.4: Find the manager and date of any-

one who acquired a skill between 1983 and 1987

inclusive.

Answer: \(Di, 1-Jun-1984) and (Di, 1-Jan-1985)."

Category: (Projected, None) / (Containment, Inter-

val, Computed) / (=, Constant)

Query Q 4.8.5: Find the name and dates of anyone

who had two raises in the period March 1982 to

March 1985 inclusive.

Answer: \(Ed, 1-Jun-1982, 1-Feb-1985)."

Category: (Projected, None) / (Containment, Inter-

val, Computed) / (=, Constant)

6.4.9 Class O3.S9 (Other, Element, Com-

puted)

Query Q 4.9.1: Find Ed's salary history when he

had a driving skill

Answer: \($20K, 2/1/82 { 5/1/82)," \($30K, 6/1/84

{ 1/31/85)" and \($40K, 2/1/85 { 1/31/87 [

4/1/87 { 12/31/87)"

Category: (Projected, Not Empty) / (Containment,

Element, Computed) / (=, Constant)

Ed has been quali�ed for driving from 2/1/82 to

5/1/82 and from 6/1/84 to 12/31/87 (after that, Ed-

ward nor Ed had). In those periods, he earned $20K

from 2/1/82 to 5/1/82, $30K from 6/1/84 to 1/31/85

and $40K from 2/1/85 to 1/31/87 and from 4/1/87

to 12/31/87.

A non-temporal \(=, Constant)" is used to se-

lect Ed's data in relation emp. Ed's salary data

are retrieved if their valid-times are contained in

an element-valued period computed from stored facts,

according to \(Containment, Element, Computed)".

Such period is computed by means of other \(=, Con-

stant)" predicates which select data with Name="Ed"

and Skill="driving" in relation skills.

Query Q 4.9.2: Find the salary history, during the

periods in which ED had a driving skill, of the

employees who earned less than $50K in 1989

Answer: \(|, 1/1/82 { 1/31/82)," \($20K, 2/1/82

{ 5/1/82)," \($30K, 6/1/84 { 1/31/85)," \($40K,

2/1/85 { 1/31/87)," \(|, 1/31/87 { 3/30/87)"

and \($40K, 4/1/87 { 5/31/88)."

Category: (Projected, Not Empty) / (Containment,

Element, Computed) (Containment, Interval, Ex-

plicit) / (=, Constant) (<>, Constant)

ED was quali�ed for driving from 1/1/82 to 5/1/82

and from 6/1/84 to 5/31/88. The only employee who

earned less than $50K in 1989 is ED again. While he

had the driving skill, his salary was $20K from 2/1/82

to 5/1/82, $30K from 6/1/84 to 1/31/85, $40K from

2/1/85 to 1/31/87 and from 4/1/87 to 5/31/88 (un-

known from 1/1/82 to 1/31/82 and from 1/31/87 to

3/30/87).

Two valid-time selection predicates are present in

the query. One | \(Containment, Interval, Explicit)"

| is used to select the objects of interest, whereas the

other | \(Containment, Element, Computed)" | is

used to select a portion of their data history. Objects

qualify if the salary is less that $50K (cf. \(<>, Con-

stant)") in their employee data selected by the tempo-

ral predicate \(Containment, Element, Computed),"

extracting the versions with valid-times overlapped by

QQ-22

the user-supplied interval \1/1/89 { 12/31/89". The

other non-temporal predicate is used to evaluate the

element-valued period in which ED had the driving

skill (cf. \(=, Constant)" testing for skills.Name

equal to \Ed" or \Edward"). Such period is used as

argument by the temporal predicate used for catego-

rization.

Query Q 4.9.3: Find the name and salary history

of the male employees in the periods they were

directed by a woman

Answer: \($20K, 2/1/82 { 5/31/82)," and \($30K,

6/1/82 { 1/31/85)."

Category: (Projected, Not Empty) / (Containment,

Element, Computed) / (=, Constant) (=, Foreign)

The only employee qualifying for the query is Ed, since

he had been directed by Di when he worked in the Toy

department from 2/1/82 to 1/31/87. His salary his-

tory in that period is: $20K from 2/1/82 to 5/31/82,

$30K from 6/1/82 to 1/31/85 and $40K from 2/1/85

to 1/31/87.

The objects of interest for this query are the male

employee which can be identi�ed by a \(=, Constant)"

predicate in the relation emp. The query is categorized

as \(Containment, Element, Computed)," since it se-

lects the data of the selectd objects having their valid-

times contained in an element-valued argument com-

puted from other stored facts. In order to �nd out such

an element, two temporal joins must be e�ected: one

between the relations emp and dept, to �nd out the de-

partment data of the selected employee, and the other

between the relations dept and emp again, to �nd out

the department manager data. The two joins can be

categorized as \(=, Foreign)" and \(Containment, El-

ement, Computed)", because the join attribute equality

and the overlap of the valid-times must be ensured.

The intersection of the valid-times of the histories

joined, with the �nal local restriction emp.Gender=F

on the manager data, gives the desired temporal ele-

ment.

Query Q 4.9.4: Find the department name, the

manager name and the periods, for which a de-

partment manager earned more than one third of

the department budget

Answer: \(Toy, Di, 1/1/87 { now)."

Category: (Projected, Not Empty) / (Containment,

Element, Computed) / (<>, Arbitrary)

The only stored information about department man-

agers is that Di has directed the Toy department from

1/1/82. She earned more than one third of the depart-

ment budget from 1/1/87 to the present (cf. $50K >

$100K/3).

For each department, the requested data are re-

trieved by means of a temporal join between relations

dept and emp. The categorizations of the tempo-

ral join conditions are the following: \(=, Foreign)"

for the equality emp.Name=dept.Manager, \(Contain-

ment, Element, Computed)" for the overlap of the

salary valid-times with the valid-times he/she was

manager, \(<>, Arbitrary)" for the further compari-

son between department budget and manager salary.

Query Q 4.9.5: Find the name and the salary his-

tory of the employees in the periods they earned

as much as their managers

Answer: \(Ed, $30K, 6/1/83 { 7/31/84)" and \(Ed,

$40K, 2/1/86 { 8/31/86)."

Category: (Projected, Not Empty) / (Contain-

ment, Element, Computed) (Containment, Inter-

val, Computed) / (=, Foreign) (=, Single) (<>,

Single)

The only relationship directed-director between em-

ployees which can be retrieved from the data is Ed-Di,

which held from 2/1/82 to 1/31/87 at the Toy de-

partment. Ed earned as much as Di from 6/1/83 to

7/31/84 ($30K) and from 2/1/86 to 8/31/86 ($40K).

The query retrieves salary histories of the em-

ployees who earned as much as the employee who

was the manager of the department they worked

in. Such employees, and the periods of interest,

can be selected via a cyclic temporal join between

emp and dept. As a matter of fact, \(=, For-

eign)" non-temporal predicates allow us to express

the join conditions dept.Department=emp.Dept and

emp.Name=dept.Manager as in Query Q 4.9.3, a \(=,

Single)" non-temporal predicate allows us to express

the furter join condition on salary equality between

employee and manager, whereas \(Containment, Ele-

ment, Computed)" temporal selection predicates allow

us to join data versions synchronized along valid-time.

An additional \(<>, Single)" condition is assumed in

the last join to ensure selected employees do not have

the same name as their managers.

Query Q 4.9.6: When did one person earn a lower

salary than another younger person, and who were

those persons?

Answer: \Ed and Di, 02/01/82{05/31/82, 08/01/84{

01/31/85, 09/01/86{01/31/87, 04/01/87{12/31/

87", \Edward and Di, 01/01/88{01/01/90"

Category: (Projected, Element, Derived) / (Con-

tainment, Element, Computed) /

Query Q 4.9.7: When and who had the same salary

for the longest time?

QQ-23

Answer: \09/01/86{01/01/90, Di"

Category: (Projected, Element, Derived) / (Con-

tainment, Element, Computed) /

Query Q 4.9.8: List Di's skills and salary histories

during the time she was a manager.

Answer: \(Directing, 01/01/82{01/01/90)" and

\(30K, 01/01/82{07/31/84), (40K, 08/01/84{

08/31/86), (50K, 09/01/86{01/01/90)"

Category: (Projected, Element, Derived) / (Con-

tainment, Element, Computed) / (=, Constant)

Query Q 4.9.9: List the names and salary histories

of all managers when they earned at least 36K.

Answer: \Di, ((08/01/84{08/31/86, 40K), (09/01/

86{01/01/90, 50K))"

Category: (Projected, Element, Derived) / (Con-

tainment, Element, Computed) / (<>, Constant)

6.4.10 Class O3.S10 (Other, Element, Other)

Query Q 4.10.1: Find the budget history in the

period from 1/1/82 to 12/31/84 and from 1/1/87

till now of the department Ed ever worked in

Answer: \(Toy, $150K, 2/1/82 { 7/31/84)," \(Toy,

$200K, 8/1/84 { 12/31/84)," \(Toy, $100K,

1/1/87 { now)," \(Book, | , 1/1/82 { 12/31/84)"

and \(Book, |, 1/1/87 { now)."

Category: (Projected, Not Empty) / (Containment,

Element, Explicit) / (=, Foreign) (=, Constant)

Ed worked in the Toy and in the Book department.

The budget history of the Toy department in the re-

quired period is: $150K from 2/1/82 to 7/31/84,

$200K from 8/1/84 to 12/31/84 and $100K from

1/1/87 till now. The budget history of the Book de-

partment in the same period is not available from the

stored data (we assume \nulls" to be retrieved).

The departments in which Ed ever worked can be

found by means of a \(=, Constant)" predicate on

the employee data. The collected values are then

used to select budget histories in the relation dept via

a \(=, Foreign)" predicate. Eventually, portions of

such histories are selected by means of a valid-time

predicate categorized as \(Containment, Element, Ex-

plicit)" since it exctracts data with valid-times con-

tained in the user-supplied temporal element \1/1/82

{ 12/31/84 [1/1/87 | now."

Query Q 4.10.2: Find the name and the budget

history in 1984 and 1987 of the department being

directed by Di

Answer: \(Toy, $150K, 1/1/84 { 7/31/84)," \(Toy,

$200K, 8/1/84 { 12/31/84)" and \(Toy, $100K,

1/1/87 { 12/31/87)."

Category: (Projected, Not Empty) / (Containment,

Element, Explicit) / (=, Constant)

In the periods from 1/1/84 to 12/31/84 and from

1/1/87 to 12/31/87, Di always directed the Toy de-

partment. The Toy budget was $150K from 1/1/84 to

7/31/84, $200K from 8/1/84 to 12/31/84 and $100K

from 1/1/87 to 12/31/87.

The query is categorized as \(Containment, El-

ement, Explicit)" since it selects data contained in

an element-valued time constant supplied by the user

(1/1/84 { 12/31/84 [1/1/87 { 12/31/87). \(=,

Constant)" indicates the non-temporal selection of the

department data where the manager is Di.

Query Q 4.10.3: Find the names of the department

where Ed was working at the beginning of the years

1986 and 1987, and the periods Ed worked there.

Answer: \(Toy, 2/1/82 { 1/31/87)."

Category: (Projected, Not Empty) / (Containment,

Element, Explicit) / (=, Constant)

On 1/1/86 and 1/1/87 Ed was working at the Toy

department. He has been working in that department

from 2/1/82 to 1/31/87.

The query can be answered in two steps. First, de-

partment names are selected if stored as data concern-

ing Ed by means of a \(=, Constant)" predicate test-

ing for the employee name. Second, the department

names are retrieved together with their valid times if

these contain the explicit element \1/1/86 [1/1/87",

by using a \(Containment, Element, Explicit)" valid-

time selection predicate.

Query Q 4.10.4: Find the name of the manager Ed

had on 1984's Christmas and on his 27

th

birthday,

and the dates he/she began to be manager of their

department,

Answer: \(Di, 1/1/82)."

Category: (Projected, Not Empty) / (Containment,

Element, User-de�ned) / (=, Constant) (=, Single)

(=, Foreign)

Ed's 27

th

birthday was 7/1/82. On 7/1/82 and on

12/25/1984, he worked in the Toy department, di-

rected by Di. Di started to direct this department on

1/1/82.

The query contains a \(Containment, Element,

User-de�ned)" valid-time predicate selecting data

whose valid-times contain an element-value argument

computed from a user-de�ned time attribute. As a

matter of fact, the element \7/1/82 [12/25/1984"

is computed by means of a date explicitly supplied in

the query and from the Ed's date of birth, selected via a

QQ-24

\(=, Constant)" predicate in relation employee. The

�rst argument used by the valid-time selection predi-

cate is the element-valued period in which Ed worked

in a department. This period can be evaluated from

Ed's data by means of a non-temporal selection pred-

icate \(=, Single)", which tests employee data for a

department name, once the department names have

been selected. Finally, if a department name quali-

�es, it is used | via a \(=, Foreign)" predicate and

together with the valid-time selection predicate | to

select the manager data (name and valid-time) in re-

lation dept.

Query Q 4.10.5: Find the department name, the

then manager, the modi�cation dates and the new

values of the budget for every budget change oc-

curred in 1984, 1986 and 1988.

Answer: \(Toy, Di, $200K, 8/1/84)."

Category: (Complete, Not Empty) / (Containment,

Element, Explicit) (Ordering, Interval, Computed)

/ (=, Single) (<>, Single)

No data are available about the Book department bud-

get. The Toy department budget changed on 8/1/84

and 1/1/87. Only the �rst date quali�es for the query.

The manager at this time was Di and the new budget

value was $200K.

The query is classi�ed as \(Containment, Element,

Explicit)" because it uses a valid-time predicate to

select data whose valid-times are contained in an

element-valued argument supplied in the query (i.e.

\1/1/84 { 12/31/84 [1/1/86 { 12/31/86 [1/1/88

{ 12/31/88"). Candidate data are snaphots of the

department data taken on budget changes. Budget

changes are detected by means of the comparison of

two consecutive department data versions. The �rst

one can be freely selected, whereas the second one is

the version of the same department (equality of the

key ensured by means of a \(=, Single)" predicate)

that follows the �rst one (as ensured by a temporal

\(Ordering, Interval, Computed)" predicate). The two

versions qualify | and the validity beginning of the

second one is selected as a candidate date | if their

budget values di�er, according to a \(<>, Single)"

predicate.

A On the Benchmark Taxon-

omy

Angelo Montanari Elisa Peressi Barbara

Pernici

In this appendix, we discuss some aspects about the

problem of identifying actual entities in the real world

within the proposed database instance.

First of all, it was said that our two employees are

identi�ed by ED and DI, respectively. Are those a sort

of surrogates or not?

If they are, how can we use them in formulating

queries and in results of queries? (They do not ap-

pear in the proposed taxonomy).

For instance, in the given examples, employee names

are allowed to change over time and it is assumed

that the system is responsible to mantain the links

between the tuples referring to the same real-world

entity. However there is no mean to distinguish in the

query result between a person who has changed name

from two di�erent persons. If we consider the query

Q 2.1.1 \Find the names of employees that have been

in a department named Toy for a shorter period than

has DI ", how can we establish that Ed and Edward

are two di�erent names of the same person, rather

than being the names of two di�erent persons?

A similar problem occurs if the user wants to know

something about the whole story of an employee for-

mulating a query knowing only his name at some point

in time. It would be reasonable that the system will re-

trieve all the tuples with the speci�ed employee name

and the tuples with the previous/successive names of

the same employee. But in this way we do not allow

the system to retrieve the tuples which refer to the

name the user has explicitly speci�ed, only.

We think that it would be useful to support both

kinds of queries:

� those where one refers to all the tuples referring

the same entity even if he speci�es only an at-

tribute value valid at some point in time (e.g.

Find the salary of the employee ED);

� those where one refers only to the tuples that pre-

cisely satisfy the selection predicate (e.g Find the

salary of the employee whose name is (or was)

\Ed").

The problem is that we need a way to distinguish

between the identi�er ED (whatever it is) and the

string \Ed" representing the name of an employee at

a given time, both in query formulation and query re-

sults.

B Comments on the Bench-

mark

Shashi K. Gadia Sunil S. Nair

The time format

QQ-25

We suggest the use of instants 0, 1, ..., NOW in-

stead of dates. This avoids unnecessary distaraction.

Identi�ers

For better readability We suggest relation names

start with lower case characters and attribute names

start with upper case characters.

Database instance

The database instance needs improvement. It

should also be listed in a tabular format.

Taxonomy

We do not endorse the taxonomy proposed in the

main body of this document. We feel it trivializes

the issues and is a major distraction. This does not

mean that we ourselves have a taxonomy which would

be acceptable to all. In our experience in temporal

databases, we have learnt some rules of thumb, and

that is all. Similarly, others may have their rules of

thumb. Giving these rules of thumb a coherent form

is desirable, but will be a challanging task. The basis

of such a taxonomy should be in structure of English

(a natural language). Instead, the proposed taxonomy

already assumes the temporal query languages to have

a speci�c form.

Important questions

1. Are and, or and not of English handled symmet-

rically?

2. How is [[r]] of our model incorporated in other

models?

Queries

We would like the following queries to be included

in the benchmark. The queries are natural queries

that might be asked against a temporal database.

Some of the queries bring out the features mentioned

above under \Imporatant Questions".

1. Give history of employees who have worked in the

Toy or Book department.

2. Give history of employees who worked in the Toy

and Book department.

3. Give Name and Salary history of employees dur-

ing the time that DI was working.

4. Give Name and Salary history of employees dur-

ing the time that DI was not working.

5. Give salary history of employees who were work-

ing at least during 1/1/87 to 31/12/89.

6. Give managers of John.

7. What were the departments that had managers

at least during 1/1/87 to 31/12/87?

8. Who were the managers at least during 1/1/87 to

31/12/87 and what departments did they man-

age?

9. Give information about employees during the

time there was someone managing any depart-

ment.

10. Give information from the Emp relation if there

were employees at least during 1/1/86 to 1/1/87.

C Comments on the Bench-

mark

Richard Snodgrass

I note a few inconsistencies that should be easy to �x.

� Did Ed manage the Book department from 01-

Apr-1987 to present? As the benchmark data

stands, this department didn't ever have a man-

ager, or a budget.

� In the valid-time selection-based taxonomy, there

is not a place for computed values from user-

de�ned time (an example of which appears as the

last query in class O3.S2).

� The output-based taxonomy distinction between

derived and imposed doesn't seem to identify

all the important possibilities. A more re�ned

substitute might be intersection (intersection of

underlying valid-time components), union (anal-

ogous), derived (computed in some other way

from the valid-time components), and imposed

(computed from values other than the underly-

ing valid-time components.)

D Proposal:

Calendar Date Standard for

Temporal Benchmarks

John Roddick

In use at the present time are a multitude of methods

for specifying the date. They can be categorised as:

� Arithmetically convenient but intuitively di�cult

(e.g., Julian Dates, VMSdates, etc.).

� Ambiguous (e.g., dd/mm/yy versus mm/dd/yy,

yymmdd versus ddmmyy, and dates with two

digit years).

QQ-26

� Arithmetically inconvenient, but intuitively easy

(e.g., \dd-mmm-yyyy," \ddmmmyyyy," and

\mmmmmmmmm dd, yyyy").

For the purpose of a benchmark formats in the lat-

ter category must be used as a benchmark must be,

above all, unambiguous. Formats in this latter set are

characterised by the

� easy recognition of the day, month and year com-

ponent,

� unambiguous representation of the data in each

component, and

� easy identi�cation as a date as opposed to some

other molecular datatype.

The following standard is suggested:

dd-mmm-yyyy

where dd = day of the month,

mmm = alpha month from the set \Jan, Feb,

Mar, Apr, May, Jun, Jul, Aug, Sep,

Oct, Nov, Dec," and

yyyy = year with leading century.

The set of alpha months is chosen as the �rst three

letters of the long form of the month name in English,

thus \Jul" is used in preference to \Jly." Four digit

years are adopted given the proximity of the turn of

the century. The hyphen separator is arbitrary but is

used to distinguish between the \/" common used in

dd/mm/yy family formats.

E Comments on the Benchmark

Christian S. Jensen

This appendix is structured as a list of observations

related to the development of the current version of the

TSQL Benchmark. It is hoped that these observations

may help produce an improved next version of the

benchmark.

It should be stated clearly in the scope of a

benchmark what types of data models, it is

relevant to. Object-oriented data models and rela-

tional data models have partially incompatible char-

acteristics. In particular, object-oriented models in-

clude the notion of identity while relational models do

not and are based completely on the notion of value.

Due to di�erences like this, it appears di�cult for one

benchmark to address all temporal data models.

Another important distinction among temporal

data models is where time enters a model. For exam-

ple, times are associated with tuples in some models

and with attribute values in other models.

The scope of the current benchmark is only re-

stricted explicitly in terms of types of queries and data

allowed.

Consensus benchmarks are useful for avoiding

issues related to conicts of interest. Like per-

formance benchmarks, semantic benchmarks possess

potentials for conicts of interest. Ignoring this as-

pect may result in benchmarks that are not accepted

by the community.

Benchmarks made by users and reecting spe-

ci�c applications complement generic bench-

marks made by researchers. User-developed

benchmarks are good alternatives to consensus bench-

marks developed by members of the research commu-

nity.

The speci�city of the benchmark database

schema must be chosen carefully. Several alter-

natives exist for the level of detail when de�ning a

database schema, and each has associated advantages

and disadvantages.

At one extreme, the schema may be indicated in-

directly by a description of what data is stored in the

database. With this approach, the number of relation

schemas and even the number of attributes may be

left to the interpretation of the user. When this type

of benchmark is applied to a query language, an ini-

tial task is to design an appropriate database schema

which may contain the data indicated in the bench-

mark. It appears to be bene�cial to leave schema

design to the individual models when applying the

benchmark to diverse models for which no common,

best database schema exists. On the other hand, it

may be more di�cult to propose queries for the bench-

mark if the schema is unclear. Further, it becomes

di�cult to compare data models based on the bench-

mark when queries are expressed in terms of di�erent

schemas.

Next, the database schema may be speci�ed in

terms of a design model, such as the E-R model (or

one of its extensions). Here, the user must �rst map

the design model (E-R model) schema into a schema

in the temporal data model at hand. The exact trans-

formation is left unspeci�ed and allows many models

to use the benchmark.

Another option is to de�ne the non-temporal as-

pects of the benchmark database schema. This was

QQ-27

the approach chosen in the current benchmark. Thus,

the number and names of relation schemas are speci-

�ed, and speci�c attributes are given for each relation

schema.

The desired level of detail of the schema and the in-

tended scope of the benchmark are clearly interdepen-

dent. Speci�cally, it may be argued that a mismatch

exists in the current benchmark where the database

instance (designed after the schema was frozen) indi-

cates the need for a data model with object-oriented

features such as identity (\DI" and \ED" may be per-

ceived as object identi�ers). In contrast, the schema

design perhaps appears to assume a purely value-

based data model.

A �nal alternative is to completely design the

database schema of the benchmark. This alternative

appears to be problematic because the benchmark is

intended to be used for comparing di�erent models

that do not use the same type of schema. This alter-

native restricts the scope to a narrow range of models.

A taxonomy of queries should help structure

the presentation of benchmark queries and

should help ensure a complete coverage of pos-

sibilities by suggesting a wide range of cate-

gories of queries. With a large benchmark, some

kind of structuring of the queries is desirable|a good

taxonomy must be useful in this respect. The taxon-

omy is also useful when dividing the task of proposing

queries among multiple contributors.

There is a mismatch in precision between a tax-

onomy based on a formal query language and

queries formulated in natural language. The

current taxonomy has a \formal" approach in that is

is inspired by formal query language constructs. Prob-

lems arise when the taxonomy is used for classifying

queries formulated in natural language. Speci�cally, it

has been observed that, when classifying natural lan-

guage queries, it is necessary to (mentally) map these

to some (imaginative) formal query language. Further,

it is very often the case that no single, most obvious

formal query language version exists of a natural lan-

guage query.

A detailed, covering, easy-to-use, semantic tax-

onomy is desirable. While the existing benchmark

is certainly detailed and extensive, it is neither easy

to use nor semantic in nature.

F Comments and Queries

Patrick P. Kalua Edward L. Robertson

First, a general comment on the formulation of queries

is presented. Then, several queries that did not �t the

classi�cation schema are listed.

General Comment : English easily allows the

specialization from elements to intervals through the

word \continuous", but it unfortunately has no sim-

ple, natural way of expressing the reverse generaliza-

tion. Hence we must include elements { discontinuous

blocks of time { unless continuity is explicitly required.

Class 01.S11 (None)

Query: What skills did Ed and Edward

have in common?

Answer: \Driving", \Filing" and \Typing"

Category: (Projected, None) / (Duration,

Element, Computed) / (=, Constant) (=,

Constant)

Class 02.S11 (None)

Query: How long was Ed's salary at least

40K?

Answer: \4 years 9 months"

Category: (None, Element, Derived) / (Du-

ration, Element, Computed) / (=, Con-

stant) (<>, Constant)

Class 03.S11 (None)

Query: When, how much and by whom

was the highest salary by a female em-

ployee earned?

Answer: \09/01/86{01/01/90, 50K, Di"

Category: (Projected, Element, Derived)

/ (Duration, Element, Computed) / (=,

Constant)

Query: When and for which department

was the budget at least 200K?

Answer: \(08/01/84{01/01/90, Toy)"

Category: (Projected, Element, Derived)

/ (Duration, Element, Computed) / (=,

Constant)

QQ-28

