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Abstract. Graph and cartographic visualization have the common objective to
provide intuitive understanding of some underlying data. We considestagm

that combines aspects of both by studying the problem of fitting planahgrap
on planar maps. After providing an NP-hardness result for the gedecision
problem, we identify sufficient conditions so that a fit is possible. We ig¢ne
ize our techniques to nonconvex rectilinear polygons, where we alsesgithe
problem of effective distribution of the vertices inside the map regions.

1 Introduction

Geographic maps often contain relational information leefventities in the map, such
as roads connecting cities in a country; see Fig. 1. Regehtye has been increased
interest in visualizing non-geographic data with the hdlthe map metaphor. In this
setting, fitting the data and showing various connectiori@éen the data points be-
comes a non-trivial problem. With this in mind, we study thelgem offitting planar
graphs on planar mapsubject to natural requirements, such as avoiding edgsiogs
and guaranteeing that edges between points in the same regiain in that region.

Fitting planar graphs on planar maps is related to clustamayity [6]. In cluster-
planar drawing we are given the graph along with a clusteaimd the goal is to find
disjoint regions in the plane for the clusters for a validnglaealization of the given
graph. The realization is valid if all the vertices in a givdaster are placed in their
corresponding region, and there are no edge-crossingsgerredion crossings (i.e.,
edges that cross a region more than once).

In our setting (fitting graphs on maps), we are given both taplyand the regions
in the plane, and must draw the clusters in their correspanoggions. The regions
form a proper partition of the plane, such that the adjacdratyween two clusters is
represented by a common border between their regions.

Fenget al. define c-planarity as planarity for clustered graphs [7}. €lastered
graphs in which every cluster induces a connected subgcaplanarity can be tested
in quadratic time. Algorithms for creating regions in them in which to draw c-planar
graphs have also been studied. Eagteal. [5] present an algorithm for constructing c-
planar straight-line drawings of c-planar clustered gsaphwhich each cluster is drawn
as a convex region, while Angeliet al. [1] show that every such graph has a c-planar
straight-line drawing where each cluster is drawn insidevas-aligned rectangle.

Many visualizations take advantage of our familiarity wittaps by producing
map-like representations that show relations among atbstencepts. For example,
treemaps [12] represent hierarchical information by meduspace-filling tilings, allo-
cating area in proportion to some metric. GMap [9] uses ttoggehic map metaphor
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Fig. 1. (a) A map of Germany; (b) a state-based clustering of cities; (c) amgatar map of the
cluster-graph; (d) a straight-line plane fitting of the graph on the map.

to visualize relational data by combining graph layout arabf clustering, together
with the creation and coloring of regions/countries.

Also related is work on contact graphs, where vertices greesented by simple
polygons and adjacencies are represented by a shared Ibpueteveen the corre-
sponding polygons. For example, every maximally planaplgtzas a contact represen-
tation with convex polygons with at most six sides, and gibesiare also necessary [4].
Of particular interest areectilinear duals where the vertices are represented by simple
(axis-aligned) rectilinear polygons. Itis known tidatides are sometimes necessary and
always sufficient [8]. If the rectilinear polygons are régdtd to rectangles, the class of
planar graphs that allows sugdctangular dualss completely characterized [2].

Our Contributions: We first consider the question of testing whether a givenglan
clustered graph fits in a given planar map and show that thisidegroblem is NP-

hard, even in the case where the map is made of only rectarrgglans and each region
contains only one vertex. Then we provide sufficient condgithat ensure such afit is
always possible, and show how to generalize to rectilinear just rectangular) maps.



In particular, we describe an efficient algorithm for distiting vertices appropriately
in the case of maps with non-convex polygons.

2 Preliminaries

Let G = (V, E) be a planar clustered graph, with vertex Bgpartitioned into disjoint
setsV = {V4,...,Vi}. Let E;, for eachi, 1 < i < k be the set of edges ¢f between
two vertices ofV; and letE;,;., be the set of all the remaining edgesiof We call
G; = (Vi,E;), 1 <i <k, aclusterof G, the edges oF;, 1 < i < k, theintra-cluster
edgesand the edges af;,,;..- theinter-cluster edgesA cluster-graphof G is the graph
Ge = (Ve, Ec) whereV contains a vertex; for each cluster7; of G, 1 < i < k
and the edgév;,v,;) € Ec, 1 < i,j < k if there exists an edgé, w) in G, so that
vertexu belongs to clustey; and vertexw belongs to clustefy;. SetV is referred to as
clusteringof GG, which is said to beonnectedf each ofG;, 1 < i < k, is a connected
graph. Adrawing of a clustered grapl’ = (G, V) is a planar straight-line drawing
of G where each clusteF; is represented by a simply-connected closed redipthat
contains only the vertices ¢f; and such that if there is an edgb&etween two vertices
of G, then the drawing oé is completely contained i®;. An edgee and a regionk
have anedge-region crossing the drawing ofe crosses the boundary & more than
once. A drawing of a clustered graphcigplanarif there are no edge crossings or edge-
region crossings. If a clustered graphhas a c-planar drawing then we say that it is
c-planar.

A polygonal mapV/ is a set of interior-disjoint polygons on a planed@aal graph
Gy of M is a graph that contains one vertex for each polygoi/ofTwo vertices of
G s are connected by an edge if its corresponding polygons hage-drivial common
boundary. Given a planar gragh,;, a polygonal mapV/, such thatG,,; represents
the dual graph of\/, is called acontact mapof G ;. Assume that we are given a map
M, a planar clustered grapti = (G, V) so thatM represents a contact map of the
cluster-graphG¢. In this paper we are interested in determining whether eaddter
G, of C' can be drawn inside its corresponding polygonMf) so that there are no
edge crossings and there are no edge-region crossingsdrsgeh a drawing exists we
say that clustered grapHi has aplanar fittingon mapM . If the resulting drawing is
straight-line we talk abougtraight-line planar fitting
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Fig. 2. (a) A graph with disconnected clusters that has no straight-line planar fi(h@ non
c-planar graph; (c) a clustered graph and a rectangular map with patdole embeddings, and
without straight-line planar fitting.



Necessary Conditions:It is natural to consider all planar graphs, regardless ef th
clustering they come with, but there are several necessarglitions, in addition to
planarity, without which there can be no planar fitting. Thietfnecessary condition
is the connectivity of the clusters. This necessity can lostilated with the grapli’;
minus an edge partitioned into two clusters so that one ofselisconnected. It is easy
to see that this graph does not have a straight-line platiagfin any map representing
the cluster-graph (e.g., two adjacent rectangles); see2fag.

The second necessary condition is c-planarity. Even if t@lyis planar and its
clusters are connected, the resulting cluster graph neebenc-planar; see Fig. 2(b).
Fortunately, there is a simple characterization of c-pléyéor the case when the clus-
ters are connected which can be tested in quadratic tim&lig]characterization states
that a graptG = (V, E) with a connected clustering = {4, ..., V}} is c-planar if
and only ifG is planar and there exists a planar drawing-oBuch that for each, all
the vertices and edges 6f\ G(V;) are in the outerface of the drawing G{V;).

The third necessary condition is compatibility of the grapid map embeddings.
Specifically, the embedding ¢f and hence the embedding of the cluster-gr&phare
given, and they areompatiblewith the given planar mag/, that is, the dual of\/
must represent the same graph(as and it must have the same embedding&s.
Otherwise there is no straight-line planar fitting; see E{g@).

Given these necessary conditions, in the rest of the paperowsider only con-
nected c-planar graphs that have an embedding compatithiehve given map.

3 Fitting on a Rectangular Map
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Fig. 3. Wheel maps cw (a) and ccw (b). A clustered graph and map with ng fit (c

In this section we address the problem of deciding whethemaected c-planar
graph G has a straight-line planar fitting on a given rectangular mépassuming
compatible embeddings &f and M. We first show that this is not always possible. To
construct the example we usevéaieel mapwhich contains a rectangle surrounded by
four “thin rectangles” (with aspect ratio of at least 4); 6@ 3(a)—(b). A thin rectangle
is horizontalif its smaller dimension is its height and itvgrtical otherwise.

Let {V4, ..., Vi} be the set of clusters @¥ and let(v;,v;) be an edge off such
thatv; € Vi, v; € V;, 1 <14, 5 < k. Call the common boundary between the polygons
representing/; andV; in M, the door for the edge(v;, v;). In wheel maps for each
thin rectangle, we can distinguish antry door(one that contains a complete side of
the rectangle) and axit door(one that contains a complete side of a neighboring thin
rectangle). We call a wheel majockwise (cw) wheethen going from the entry door



to the exit door in each rectangle requires a clockwise walkugh the wheel; see
Fig. 3(a). Acounterclockwise (ccw) whe& defined analogously; see Fig. 3(b). Let
v; € V; be a vertex ofy and letR; be the rectangle representiiigin M. In a straight-
line planar fitting ofG, we say that; is placednear a doorof R; when the distance
betweerw; and its closest point on the door is less than the smallerdidie.

Lemma 1. LetW be a wheel map an@ its dual graph. In a straight-line planar fitting
of GG, all vertices in the thin rectangles lie near the entry doansall lie near the exit
doors. There exists a straight-line planar fitting in eaclsea

Proof: Consider first an arbitrary straight-line planar fittidgof G on W. We first
show that each vertex inside a thin rectangle must be plaeadane of the two doors.
Consider the rightmost vertical rectangkeof 1/7. The vertex inside it has two edges
incident to the vertices in the two horizontal rectangldsud'if the vertex inside it is
not near neither of its doors, then the vertices in both thizbotal rectangles must be
placed near the door adjacent/fi In this case, there is no feasible placement of the
vertex in the leftmost vertical rectangle from where boté Wertices in the two hori-
zontal rectangles are visible. Similar arguments showithedch of the thin rectangles,
the vertex must be placed near one of the two doors. If in orteeothin rectangles,
the vertex is placed near the entry door (resp. exit dooex the previous argument
confirms that this placement will force the placement ofladl vertices inside the thin
rectangles near the corresponding entry doors (resp. exitsjl
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Fig. 4. Straight-line planar fittings on wheel maps.
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On the other hand, it is easy to find a valid fit where the vestinside thin rectan-
gles are all near entry doors (or all near exit doors); see4ig O

The next lemma shows that fitting a planar clustered graphaamgatible map is
not always possible.

Lemma 2. There exist planar clustered gragh and compatible rectangular maj/,
so that there is no straight-line planar fitting 6f on M.

Proof: Consider a rectangular mag made of two wheel maps joined together by a
thin horizontal rectangle, calledtaidge see Fig. 3(c). Letz be the dual of\: two
4-wheels connected by a path of length two. We showdhdbes not have a straight-
line planar fitting onM/. Let us assume that there exists a straight-line planardiffi

of G on M. Then by Lemma 1, all the vertices inside the thin rectangfdsoth the
wheels must be placed near the doors. But then, there is sblegosition for the
vertex that represents the bridge. In particular, if planedr one of the doors of the



bridge it cannot “see” its neighbors in the other wheel ame viersa. As the bridge is
thin by construction, there is no place for the vertex repméag the bridge so that it
sees its neighbors in both wheels. a

3.1 Fitting is NP-Hard

We show that deciding if a given planar graph fits inside amiviap is NP-hard, even
for rectangular maps, with a reduction from Planar-3-SATiclwhis known to be NP-
complete [11].Planar-3-SATis defined analogously to 3-SAT with the additional re-
striction that the vertex-clause bipartite gra@h for a given formulal’ (there is an
edge(z;, C;) in G if and only if z; or z; appears irC};) is planar. Knuth and Raghu-
natan [10] showed that one can always find a crossing-freeigaof the graphG  for

a Planar 3-SAT instance, where the variables and clauses@esented by rectangles,
with all the variable-rectangles on a horizontal line, arithwertical edge segments
representing the edges connecting the variables to theedai’he problem remains
NP-complete when such a drawing is given.

Theorem 1. LetG be a planar clustered graph and I&8f be a rectangular map, com-
patible withG. Deciding ifG admits a straight-line planar fitting o/ is NP-hard.

Proof: We reduce an instance of Planar 3-SAT to an instgi&e\/) of our problem.
Let F:= (... C,, be an instance of a planar 3-SAT where each literal in eaclsela
is a variable (possibly negated) frobh = {x1,...,z,}. Let I'r be the given planar
rectilinear drawing for this instance, as defined in [10brRrl » we first construct the
rectangular map\/, then takeG as the dual ofA/, where each vertex constitutes a
separate cluster. We represent each literal by a wheel ma&f ia positive (negative)
literal is a cw (ccw) wheel. From the two possible vertex agunfations inside each
wheel we take the one in which the corresponding literal m&sua true value when
the vertices inside the thin rectangles of the wheel lie tireaexit doors and the literal
assumes a false value when they lie near the entry doorkeéJdnli'», we use a distinct
wheel for each literal in each clause. For each variablee draw the wheels for all
the (positive and negative) literals forappearing in different clauses in a left-to-right
order, according to the ordering of the edges incident tactiveesponding vertices in
I'r. In order to maintain consistency, we ensure that a trusgfalalue to an instance
of each literalz would imply a true (false) value for each other instance ahd a false
(true) value for each instance of This is done by means of thin rectangular bridges
between two consecutive literals; see Fig. 5.

(@ (b) © (d)

Fig. 5. Representation of variables.



For each claus€ = (xz+y -+ 2) of F with the corresponding vertex lying above the
variables in/» we draw vertical rectangle§’, lyC and(¢ from the topmost rectangles
of the wheels forr, y andz, respectively, attached near the exit door. (The case when
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Fig. 6. Clause representation.

the vertex lies below the variables i is analogous.) Then we draw a rectangléor
the clause and attach these three thin rectariglet’ and/{’ to R. For z we attach
the vertical rectanglé¢ to the bottom ofR, while for each ofz andy, we attach
horizontal rectangles t& that also touch the vertical rectanglﬁsandl,f coming from

x or y, respectively. We attach these thin rectangle&tm such a way that the three
visibility regions do not have a common intersection, wiagech two of them have a
common intersection; see Fig 6. Specifically, we adjust titghaof ¢ and attach it in
a position ofR such that its visibility region is only in the left half @t. We also adjust
the heights of the horizontal rectangles adjacenft@nd lf and adjust the vertical
distance between them, so that their visibility regions doimtersect in the left half of
R and they do intersect in the right half. Finally we fill up dktunused regions in the
map with the appropriate number of rectangles.

Lemma 3. F is satisfiable if and only if7 has a straight-line planar fitting o/.

Proof: Assume first that there exists a straight-line planar fitfingf G on M. We now
show thatF’ is satisfiable, i.e., there exists a truth assignment fothallvariables of

F such that for each clauseé = (z,y, z) of F, at least one of, y andz is true. Let
W, be the wheel fore. If the vertices inlV,. are placed near the entry doors, then by
the arguments in Lemma 1, we can show that the vertd iis placed far from the
door adjacent to the rectanglefor C. Thus this vertex can see only the highlighted
visibility region insideR in Fig. 6. On the other hand, if the verticeslii, are placed
near the exit doors, then the vertexIfn can be placed near the door adjacent to the
rectangleR for C' and can see the entire interior Bf This is true for each of the three
literals. Since the visibility regions of the three litesddave no common intersection, it
must be the case that the vertices in the wheel for at leasefane, andz are placed
near the exit door. We make each such literal true. Note tistassignment will not
have conflicts, because of the way all the wheels for a pdaticariable are attached
with each other during the construction. Furthermore,dBsignment will satisfy.



Conversely ifF is satisfiable, then for each clauSe= (z,y, z) of F, at least one
of z, y andz is true. Without loss of generality, assume thas true. Then we place
the vertices in the wheel af near the corresponding exit doors. With this placement,
the vertex in$’ can be placed near its door adjacent to the rectaRdtar C' so that it
can see the entire interior &. Then we place the vertex fét in the intersection of the
visibility regions ofy andz. This placement will ensure that we can place the vertices in
the wheel fory andz either near entry doors or exit doors and will still be ableltce
all the vertices in all the rectangles from this wheeRavithout violating linearity of
the edges. This yields the desired straight-line planamgditf G on M. ad

The proof of Lemma 3 completes the NP-hardness proof. Figustrates a 3-
SAT formula, its planar 3-SAT realization using the additib conditions of Knuth
and Raghunatan [10] and the corresponding instance for #pefitting problem (the
rectangles to fill up the holes are not shown).
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Fig. 7. Planar 3-SAT instance and corresponding map fitting instance.

3.2 Sufficient Conditions for Fitting

The counterexample of Lemma 2 relies on two fagtsghere exists a vertex in some
cluster (the bridge) that is connected to vertices in twéedént clusters (the wheels),
2. its cluster-graph contains two cycles. In contrast to théssivow the following:

Lemma 4. LetG be a planar clustered graph whelg, V4, . . ., V}, induce the clusters
of G. Suppose each cluster@fis biconnected. Let/ be a rectangular map compatible
with G. If (a) for each vertex of G, all the vertices adjacent to through an inter-
cluster edge lie on the same cluster,(6f each connected component of cluster-graph
G ¢ contains at most one cycle, théhhas a straight-line planar fitting o/ .

Proof:

(a) We first assume that for each verieaf GG, all the vertices adjacent tothrough an
inter-cluster edge lie on the same cluster. Rgtand R; be two incident rectangles
of M and letG; andG; be the clusters corresponding to theims 4,5 < k. Let
Vi, 50, € Viandu;, ..., v, € V; be the incident to each other vertices of
V; and Vj, respectively, taken in the order they appear in the outendary of



G; and G, respectively. For eack;, 1 < ¢ < k, we defineO; to be the oval
inscribed inR;. We definep;, p; andp;, p/; to be points oD; andO;, respectively,
such that the straight-line segmepip; andp;p;. cross the common border &;
andR;, without crossing each other. Next we place verticgs. . ., v;, of V; and
Vi, .., 05 0f V; onO; andO;, between pointg;, p; andp;, p;-, respectively, so
that all the inter-cluster edges induced by these vertmess the common border
of R; and R;. As a result of the above procedure we have placed some of the
vertices of the outer boundary 6f; on the ovalO;, 1 < i < k. Since each placed
vertex is adjacent to a unique cluster, its position is uelgdefined. We distribute
the rest vertices of the boundary 6f on O;, so that the order of the vertices in
total is the same as in the boundary(®f. Since the resulting drawing of the outer
boundary ofGG;, 1 < i < k is convex, we can apply the algorithm of “drawing
graph with a prescribed outer face” [3] to complete the dnavaf each cluster.

(b) We now assume that each connected componertofontains at most one cycle.
Let vy,..., v, be the vertices o7, that represent clustes,, ..., G respec-
tively.

Intuitively the proof is based on the achievement of theofsihg goals:

(1) We show thatz ¢ has a planar fitting ofi/.

(2) We blow up the drawing ofi¢, so that the edges d@f are represented by
strips of widthe > 0 without creating edge-region crossings; see Fig. 8(a).
For each vertex; of G¢, we draw a small circleirc(G;) centered at it in the
intersection of the strip-edges that are adjacent to

(3) We draw the boundary df; on the circlecirc(G;), i = 1,...,k, so that the
inter-cluster edges, when drawn straight-line, do notcresther the bound-
aries of the clusters, nor each other; see Fig. 8(b).

(4) Since the boundary of each is a convex polygon we can apply the algorithm
for “drawing graph with a prescribed convex outer face” [8]complete the
drawings of the clusters; see Fig. 8(c).
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Fig. 8. (a) Drawing of G~ where each edge is represented by a strip of width 0. (b) Place-
ment of the boundary vertices of the clusters on corresponding cifcleStep 4 of the proof of
Lemma 4.




For the first step of the proof, we show tl@t = (V¢, E¢) has a planar fitting on
M . Consider first the case whé# is atree and let; € Vi be the root of7 . We
prove that even if the position af; is fixed in its corresponding rectangi® , we
can place the remaining vertices@§: in their corresponding rectangles so that the
resulting straight-line drawing is a planar fitting@f on M. Letw,, ..., vy be the
children ofv; and letRs, ..., Ry be the corresponding rectanglesidt We place
v9,...,vy insideRy, ..., Ry, respectively so that the straight-line edges, v;),

2 <4 < f cross the common boundary &f and R;. We continue with children
of v, ..., vy, recursively.

Assume now that each connected componeiit of= (Ve, E¢) contains at most
one cycle. We show how to draw a single connected compong6atg d_etuvy, ..., v,, €
Ve induce the unique cycle af- and letR,, ..., R,, denote the corresponding
to them rectangles, so th&, and R,,, are adjacent. We placg, 0 < i < m in-
side R; such that for any point € R(; 1) mod m,» S€gMeNpv; crosses the common
boundary ofR; and R(; ;1) moam- Since this was the unique cycle 6%, the re-
moval of vertices, .. ., v, give several trees. We root these trees at the vertices
Vg, - - -, Um, t0 Which they are adjacent and apply the procedure describe first
part of the proof. This completes the construction of plditéing of G- on M.

In the rest of the proof we show how to accomplish st&p Since the grapld is
c-planar, by [6], there exists a drawidd ) of G, where all the vertices of clusters
Gy,...,Gi_1,Gi11,...,Gy appear on the outer face 6f;. Letv be a vertex of
G that lie onG;’s boundary; see Fig. 9(a). Let, ..., v, be all the neighbors of

i
v

arc(u})

arc(v)
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Fig. 9. lllustration for the proof of Lemma 4.

v; that represent the clusters to which vertes adjacent. As, we have mentioned,
vi,..., v, appear on the outer face 6f;. Assume thavi,..., v, are given in
the clockwise order they appear I(G¢). We denote byirc(v) a circular arc of
circ(G;) that is included between the straight-line segments| andwv;, v} , as
one travels fromy{ to v}, in the clockwise direction; see Fig. 9(b). SlnE(aGc) is

a straight-line planar drawmg we have the following olaton.
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Observation 1. Letwv; be a vertex of7 - andG; be a cluster of7 that corresponds

tov;. Letut,.. u}C be the vertices of the boundary@f traversed in the clockwise
direction. The circular arcsirc(u}), ..., arc(uj, ) appear clockwise around the
cire(G5) in this specific order and are internally disjoint; see Figb®

Let nowG; andG; be two clusters o€;. Assume that they are connected by mul-
tiple inter-cluster edges. L@t; ye ul (resp. uf - ul ) be the vertices of the
boundaryG; (resp.G;) in the clockW|se direction that ‘are involved in the inter-
cluster edges betweeH; andG;; see Fig. 10(a). The edgésfi,ulj), (ulﬂufj)

XifS

G

(b) (©

Fig. 10. (a) The bounding edges between clustérsand G; are drawn with fat blue ink. (b)
A clustered graplG with clusters identified by gray curves. (c) A skeletS8(G) of graphG
depicted in figure (b).

are called thdoundingintra-cluster edges. In order to accomplish a drawingrof
we first construct a drawing of iskeleton TheskeletonS(G) of G is a graph that
is constructed as followind1) take the boundaries of each clustg¢rand connect
them by all the bounding inter-cluster edgé€y), substitute the paths of the bound-
aries by edges; see Fig. 10(b)—(c). We assumedli@t) is an embedded graph,
with the embedding which preserves the embedding.c€onsider a planar draw-
ing I'(S(@)) so that the vertices of each clus@rN S(G) are drawn on the circle
cire(G;) in the order they appear on the boundary®f Such a drawing exists,
sinceG is c-planar. But for an arbitrary placement of the vertidgeis, not true that
the edges o8 (G) can be drawn straight-line without creating crossings.tNex
show how to place the vertices 8{G) NG, on the circlecirc(G;) so that the edges
of S(G) do not cross each other, when drawn straight-line. For eatls (G)NG;,
we placev in the middle of circular ararc(v). We next show that this results in
no crossings between the inter-cluster edgesalet G,,v € Gy, w € G, and
s € Gy, so that(u,v) and(w, s) are two inter-cluster edges; see Fig. 11(a). Next
we consider several cases based on whether the clUsies,, G. and G4 are
distinct or not.
Case 1.The clusterss,,, Gy, G, G4 are pairwise distinct. A crossing between the
edgequ,v) and(w, s) is impossible, since each of tlig,, G, G., G4 liein a
distinct rectangle of map/.
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arc(w)

Fig. 11.(a) Two edges of7, with the end vertices belonging to distinct clustéts, Gy, G, G.
(b) Case2 of the proof,G, = G.. (c-d) Case’ of the proof,G, = G. andG, = Gg.

Case 2:Two of the non adjacent cluste€s,, Gy, G, G4 coincide. Assume that
G, = G.. Recall thatw is placed on the middle of circular segmemt:(w)
andw in the middle of circular segment-c(u). By Observation 1, the circular
segmentsirc(u) andarc(v) are internally disjoint; see Fig. 11(b). Therefore
the edgesu, v) and(w, s) do not cross each other.

Case 3:G, = G. andG, = G4. Letv, andv, be the vertices of7 - that corre-
spond to&,, andGy, respectively. First, note thét, v) and(w, s) are bounding
edges ofG and form a cycleu, w, s,v in I'(S(G)). Without lost of generality
assume that if we traverse this cycle in this specific orden thappear before
w and s beforev on the boundary o7, and G, respectively. By Observa-
tion 1, the circular segmentrc(u) appears beforearc(w) in the clockwise
order aroundtire(G,). Since bothu andw are adjacent t@7, arc(u) and
arc(w) meet at a point lying on the line through andwv,,. Similarly, arc(s)
appears beforerc(v) in the clockwise order aroundrc(Gy) and meet at the
line throughv, andw,. Thus, any edgegu, v) and(w, s) are separated by the
horizontal line through,, andv, and therefore do not cross.

We have constructed a planar straight-line drawin§ @¥). We complete the proof
explaining how to draw the rest vertices of the boundarigbeftlusters ofy and
the inter-cluster edges ¢f. For each clustef;, i = 1,.. ., k, connect straight-line
the already placed vertices 6f;, N S(G) in the order they appear on the boundary
of G;. They form a convex polygon. Place the rest vertices of thentary ofGG;
on the respective sides of this convex polygon. Draw theirgst-cluster edges
straight-line. It is easy to see that they do not create srgsssince they lie either
in triangles or convex quadrilaterals created by the bougndiges of=.

O

4 Fitting Graphs on Rectilinear Maps

It is known that only a restricted class of planar graphs @nelalized by rectangular
maps. For general maximal planar graphs, 8-sided polygbstdpes) are necessary
and sufficient for contact maps [8]. In this section, we agstimat the input is a recti-

12



linear map, together with a c-planar gra@ghwith planar embedding and cluster-graph
G¢. The first condition that we require is that the subgraph @ediby the inter-cluster
edges is a matching. From Lemma 4 it follows that this coadits sufficient for rect-
angular maps. Now, we will extend this to L-shapes and T-sbay/e cannot directly
apply the strategy of Section 3 because now we have to dealowiicave corners of
the regions in the map. We therefore impose our second éonditone of the clusters
contains éboundary chordi.e. a non-boundary edge between two boundary vertices.
To be able to apply the algorithms for drawing graph with aprié&ed convex outer
face [3], we partition the polygons into convex pieces. 8ithe polygons form a contact
map, for each common boundary of adjacent polygons thetégast one edge between
the two corresponding clusters. We now impose our last tiondithere are at least
two inter-cluster edges between adjacent clusters. Wehesskedoubly-interconnected
clusters Note that the common boundary of two adjacent polygonsistsngf at most
two concave corners. We place the vertices next to the contitmondary on both sides
of the concave corners. This ensures that the cycle sparytbé boundary vertices of
the cluster is completely within the corresponding polygmad there are at most two
concave corners along the cycle. beindb be the vertices at these corners; see Fig. 12.
We choose a third boundary vertexying oppositea andb. Straight-line cuts between
a, ¢ andb, ¢ define 3 convex regions. Now we compute @mr-path and a, c-path
without any shortcdtso that we can place the vertices on these two paths on the two
cuts betweem, ¢ andb, c. Note that such a path should not contain any other boundary
vertex, already placed elsewhere. We therefore find thabes pasuch a way that they
do not contain any boundary vertex.
Consider the shortest patin the dual graph of a cluster between the two inner faces
containingb andc. We will now find an ordered set of verticés= vy, vy,...,vy = cin
the input graph “following” this dual path Starting fromb, we find the next vertices on
this set one after another such that all the internal vexfieson the common boundary
between two consecutive facesio®n such a common boundary there are at least two
vertices and both of them cannot be a boundary vertex sihegwise that would induce
a chord edge. We will then choose a non-boundary vertex ordhenon boundary.
Note that consecutive vertices on this set might be noneadjain the input graph.
However, we may assume that all consecutive pairs of vartioethis set are adjacent
by means of an original or a dummy edge since from the corgiruthe assumption
of such a dummy edge would not violate planarity. Thus theyaathought of forming
ab, c-path. Furthermore note that this path contains no shootctransitive edge. The
reason is that with the successive choice of vertices we akéng a jump of one face
at a time along and a shortcut edge would also induce a shortcut fack which is
a contradiction sincé is a shortest path on the dual graph. In the same way we can
find another such path betweerandc. Together with these two paths we now have
three cycles that describe convex areas, assuming thaatbayisjoint. (In case they
are not, they have a common subpath towatdsy ac, d-path. We then draw the, d-
path,b, d-path andc, d-path on three segments 120 degree apart from each other with
a common endpoint at, again forming three convex polygons). Hence we are able
to apply the algorithm in [3] directly. The same idea can bpliad for an L-shaped

4 Shortcutof path P is an edge between vertices nonadjaceri®in
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polygon where the straight-line segment splitting thisygoh into two convex parts
are between the concave corner and its opposite corner gbtiigon. This yields the
following theorem.

Fig. 12. lllustrating how vertices on the boundary oflashape are placed and how the cluster
is partitioned by two paths such that it fits into three adjacent convex padygith the paths as
common boundaries.

Theorem 2. For doubly-interconnected clustered c-planar graphs witéitching inter-
cluster edges, such that there is no boundary chord in arstefithere exists a straight-
line planar fitting on any compatible map with rectangular,dr T-shaped polygons.

Fitting a planar grapltz on a rectilinear map with L- or T-shaped polygons may
force a very irregular distribution of the vertices and f&oéthe graph, which in turn,
may affect the resolution. Next we want to find a balanceditigion of vertices and
faces inside the L-shaped polygons of a map. First, we censii@ distribution inside
only one polygon partitioned in two pieces by a straighelout; then we use this result
to find a balanced distribution inside all the L-shaped pohgyof a map.

Shortest Path Separators We first consider the balanced distribution for a particular
L-shaped polygon (the local problem). Given an L-shapegigmi with a straight-line
cut partitioning it into parts of ared; and A,, and the corresponding clustéf, we
first compute an extended graph placing a dummy vertex in feaeh LetP be a path

in the extended graph and denoteltyP) and R(P) the two parts induced b¥ in the
extended graph. Then the sizeddf) and R(P) give the summations of the numbers
of vertices and faces in the two parts of the original gragluaed byP. We want to
find a shortest patl? between two given verticesandt of P containing no boundary
vertex that minimizes the imbalangé, /A, — |L(P)|/|R(P)||.

Lemma 5. The values ofL(P)| for all shortest paths” between fixed boundary ver-
ticess andt of a plane graphG' can be enumerated i@ (n?) time.

Proof: We prove this lemma constructively. We first remove all tharmary vertices
from the graph. We then start by computing the shortest gedhss to ¢ by a standard
method like Dijkstra’s algorithm, that can slightly be extied to compute all shortest
paths betweer andt. The output of this algorithm is a subgra@h of G consisting of
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vertices and edges that lie on at least one of the paths. Tdreshpaths on this graph
imply an orientation for the edges 6f,, where each path betweerandt is oriented
towardst; see Fig. 13(a). Sinc€'s consists of directed shortest paths frerto ¢, G

is a directed acyclic graph (In fact it is atrdigraph withs as the unique source and
as the unique sink). Furthermore, any directed pati jnis a shortest path between its
two end-points since it is a subpath of a shortest path. Weidenan embedding a¥
whereG, is drawnupward i.e. each edge @f is drawn upward. In such an embedding
for a vertexv of G5, we can define a leftmost shortest path froro ¢ in G, denoted

by left(v), where each edge:, w) of the path is the leftmost outgoing edge incident to
u. We now give a dynamic programming algorithm that finds andchegrates, for each
vertexv of G, the value ofl L(P)| for possible paths® formed by any shortest path
from s to v, followed by the patlief¢(v), where one of these subpaths might be empty
if v is one ofs or ¢t. We call each such pathfeasible pattfor v. We keep these values
for a vertexv in a list denoted by ALU E'S(v). Fig. 13(a) shows a feasible pakhfor

a vertexv and the highlighted region definég P).

lefi(v)

(©

Fig. 13. (a) The directed acyclic grapfis, (b)—(c) illustration for the algorithm for finding a
suitable shortest path separator.

We consider the vertices 6f, in a topological order. Initially, we s8f ALU E'S(s)
to be a singleton set, consisting of the valug bfleft(s))|. Consider now the case
when we address a vertexof G, other thans. We construcl ALU ES(w) by start-
ing with an empty set and for each incoming edgew) of w, inserting an integer
corresponding to each integerWALU ES(v). For each incoming edge, w) of w,
we compute these entries¥ALU ES(w) in one of the following two cases.
Case 1w is onleft(v). In this case each feasible path fois also a feasible path for
w. Furthermore each feasible path fopassing through is also a feasible path far,
see Fig. 13(b). For each integer VALUES(v), we thus insert to VALU ES(w).
Case 2:w is not onleft(v). In this case, the edge, w) is to the right ofieft(v).
We find a feasible path foo from a feasible path fov, followed by the edgév, w),
followed by the patfie f¢(w). Moreover, each feasible path ferpassing through can
be found in this way; see Fig. 13(c). Lebe the number of vertices between the paths
left(v) and (v, w).left(w), including those orde ft(v), but not onle ft(w). For each
integerz € VALUES(v), we thus insert: + y to VALUE S (w).
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We thus compute the setSALU ES(v) for each vertex of G5. We now have the
following lemma.

Statement 1 For each vertexw of G, VALU ES(w) enumerates the values|df(P)|
for all feasible pathsP for w.

Proof: The claim is true fos since the only feasible path feisieft(s) and|L(left(s))| €
VALUES(s). For a vertexw other thars, each feasible path faw is formed by a path
from s to v, followed by the edgév, w), followed byleft(w) for a vertexv with an
outgoing edge tav. All such paths are addressed in the dynamic programmingt alg
rithm that compute¥” ALU ES(w) for each vertexw of G. O
Since each shortest pathéhis a directed path iG/; and by definition, is a feasible
path fort, VALUES(t) enumerates the value oE(P)| for each shortest patR in
G. The implementation can be done in timign?), maintaining for each vertex the
VALUES(v) in the range between 1 and O

Distributing Vertices Nicely in More General Maps Next, we address the global
problem: finding cuts in all the clusters simultaneouslyttet we minimize the max-
imum imbalance over all clusters. Here for a given pa@indt¢ in a cluster, we define
w(s,t) = ||A1/A2 — |L(P)|/|R(P)]|| to be the smallest imbalance imposed by short-
est paths frons to ¢. Clearly, the choice of andt in one polygon may influence the
choice ofs andt in others, but we show next that this influence is limited. $hared
boundary between a particular polyggnhand its adjacent polygons in a map induces
a set of intervals as we circularly walk across the boundéai§.cSince the dual of M
preserves the embedding of the input graph, these inteovatse boundary of) nat-
urally define a set of intervals on the outer vertices of thustelr corresponding tQ.
Each inter-cluster edge incident to an outer vertex of thetel must pass through the
corresponding interval of the boundary @favoiding edge-region crossings. We now
have the following lemma.

Lemma 6. Let L and L’ be two adjacent L-shaped polygons in the map and’lend
C’ be the two corresponding clusters. Then the choice of th# egd-point of a cut in
C' and the choice of the left end-point of a cutihdepend on each other if and only if
thet-corner of L and thes-corner of L’ are internal points of the same interval in the
boundary ofZ and L'.

Proof: Suppose andt denote the two end-points of a cut@fsuch thats lies near the
s-corner ofL andt lies near the-corner ofL. Similarly defines’ andt’ for L'. Assume
without loss of generality that the concave cornefa$ its ¢t-corner. Then one can see
that the only polygon that can influence the choicéisfthe one that shares an interval
of the boundary with containing the concave cornércorner) ofL. Thus in order for
s’ to influence the choice df it is necessary that’ shares an interval of its boundary
that contains theé-corner of L. Now, depending on whether the concave cornet’aé

its s-corner oft-corner, the choice of can be influenced by the choice ofn one of
the following two ways.

(a) The concave corner @f is itst-corner and the-corner ofL’ coincides with the-
corner ofL. In this case, the-corner of L’ and thet-corner ofL is a common point,
which is an internal point of the common boundaryloand L’; see Fig. 14(a).
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(b) The concave corner df is its s-corner and the common boundary betwdeand
L' contains this point. Thus thiecorner of L and thes-corner of L’ are internal
points of this common boundary in this case too; see Fig.)14(b

L/

¢ 7 . o

Fig. 14. The two cases for the dependency between the choice of end-pointsuté & two
L-shaped polygons.

Thus in both the case, for the choicetah C and the choice of in C’ depends
on each other only if thé-corner of L and thes-corner of L’ are internal points of the
same interval in the boundary éfand L’. We will now show that if this is indeed the
case, the choices of the two end-points of the cut§'iandC’ are in fact dependent.
We again assume that the concave cornef &f its t-corner. In case it is the-corner
of L, we can show the dependency between the choices in a sinalar w
Case 1: The concave corner of./ is its t-corner. In this case, the choices ofand s’
must be such that eithérands’ are adjacent or if there is no such edge, one can insert
(t,s") without introducing any crossings.

Case 2: The concave corner of.’ is its s-corner. In this case, the choice ofands’
must be such that lies to the right of all the neighbors ofin C” andt lies to the left
of all the neighbors of’ in C'. O

Lemma 6 gives a necessary and sufficient condition for twbdpsd polygons to
influence the choice of the end-points of the cuts of eachroliiés dependency can
be expressed in the directé@pendency graplv = (P, Ep), whereP is the set of
all L-shaped polygons and fdr, L’ € P, there is a directed edge fromto L' in Ep
when the choice of the right end-point of a cut/ininfluences the choice of the left
end-point of a cut in’. We can represent each edde L') of graphD by drawing a
directed line from the-corner ofL to thes-corner of L/, with all edges pointing to the
right; henceD is acyclic. Since the choice afcorner and-corner of a polygon may
affect the choice in at most one polygon each, the maximurregegf a vertex inD is
two and each component 6f is either a single vertex or a path. The following theorem
shows that we can minimize the cluster imbalance.

Theorem 3. Let G be a connected c-planar graptic be the cluster-graph off and
M be a rectilinear map of7. with six-sided polygons such thaf represents the con-
tact map ofG'¢. Then one can split the regions @(n*) time into convex shapes and
distribute the vertices and faces of the clusters withinéigéons such that the maximum
imbalance is as small as possible.
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Proof: We use the dependency graph to find cuts in all the clusterdtsineously such
that the maximum smallest imbalance for the clusters ismized. For this purpose,
we refine this dependency graphto capture all possible cuts. Before that we need to
define the notion of compatible pairs of vertices in two adfcclusters. Informally,
compatible pair of vertices are those that influence depeyden two clusters. More
formally, letC andC’ be two clusters with some inter-cluster edge between them su
that the choice of one end-point of the cutindepends on the choice of one end-point
of a cutinC” and vice versa. Let andL’ be the two L-shaped polygons corresponding
to C' andC’ respectively. Without loss of generality, assume that tdmeave corner of.

is itst-corner. Then the compatible parts betwéeandC’ are defined in the following
two cases.

Case 1: The concave corner of.’ is its t-corner. In this case, the compatible pairs of
vertices between’ andC’ are all pairgt, s’) such that is a vertex inC, s’ is a vertex
in C" and eithert ands’ are adjacent or if there is no such edge, one can ifsett)
without introducing any crossings.

Case 2: The concave corner of/ is its s-corner. In this case, the compatible pairs of
vertices between andC” are all pairs(t, s’) such that is a vertex inC, s’ is a vertex
in C’, s’ lies to the right of all the neighbors ofin C’ andt lies to the left of all the
neighbors ofs’ in C'.

We will refine the dependency graph as follows. We consideh eamponent of
D independently and find an optimum path for that componentsiai with the case,
where the component is a single vertexin that casel is partitioned into two convex
pieces and we have to choose the best pait). We create an artificial source and
sink 7', and add an edge froi$i to each possible candidateand an edge from each
possible candidate to 7. The choice of possible candidates for s and t is done as
described in the previous section. Then we insert edggs for the different pairss
andt with weightsw(s,t) which has been defined above. A bottleneck shortest path
computation looking for the path with the smallest maximelgit (imbalance) on it
gives the best cut for this single component.

In the case, where the component consists of a path of lemmgthoo more, the
direction of edges of the path gives an order of the verticeprésenting L-shaped
polygons) on this path. Specifically, there is exactly ongexel, in the path with no
incoming edge and exactly one vertex with no outgoing edge. Once again we create
an artificial source and sink7’, and add an edge fros to each possible candidate
of the cluster forL,, and analogously from the each possible candidafehe cluster
for Ly to T'. For each edgéL, L) of the path, we also insert an edge between each
compatible pail(t, ') wheret is a vertex inL ands’ is a vertex in’. Set the weight
of each such edgg, s’) to be zero. Finally for each vertdx on the path, leC be the
corresponding cluster. We insert eddest) with weightw(s, t) between all possible
candidates fos andt found in a similar way as described in the previous sectitre T
bottleneck shortest path computation fréito 7" once again delivers the desired result,
namely the path with the minimal largest weight on an edge.

The bottleneck shortest path computation in both the cades©(nlogn) time
using a variant of Dijkstra algorithm. Thus, determining tmbalance for each pait
t in each cluster dominates the running time. Since there eat mos(n?) possible
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s,t pairs and computing(s,t) for each of them také(n?) time, the total running
time isO(n?). O

5 Conclusions and Future Work

We showed that fitting planar graphs on planar maps is NP-Hdrel proof involves
skinny regions; it is natural to ask whether the problem bezpeasier if all regions are
“fat”. We presented necessary and sufficient conditiongHerconstruction of planar
straight-line fitting on rectangular map, for a c-planampdrawith biconnected clusters.
The presented sufficient conditions are tight, meaninguiaéditing them makes it pos-
sible to construct counterexamples. It is natural to sthéycase where the clusters are
not necessarily biconnected. Finally, we gave a rathericest set of sufficient condi-
tions for fitting planar graphs on maps with non-convex regidt would be interesting
to investigate whether these conditions can be relaxedo©the most interesting ques-
tions is to study the vertex resolution of the constructeih§s. To find a bound on the
vertex resolution remains open.
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