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Abstract. A touching triangle representation of a planar graphs consists of triangles represent-
ing vertices with pairs of adjacent triangles with non-empty common boundaries representing
the edges. We study the problem of recognizing planar graphs with proper touching triangle
representation, where the union of all triangles is itself a triangle without holes. It has been
conjectured that testing whether a planar graph is a proper touching triangle graph (TTG) can
be done in polynomial time. Here we provide a necessary condition for a biconnected outer-
planar graph to be a proper TTG and provide a slightly weaker sufficient condition. Together
these two also give a characterization for a more restricted class of outerplanar graphs.

1 Introduction

While the node-link representation is the most popular way of drawing planar graphs, many others represen-
tations have been considered. Contact representations have been studies as far back as Koebe’s 1936 “kissing
circles” representation [11]. Since then many other variants have been considered including triangle contact
representations [5, 9], and even cube contact representations in 3D [14, 7]. Here we study contact repre-
sentations of planar graphs, where vertices are represented by simple polygons and edges are represented
by non-trivial contact between the sides of two polygons. For practical, cognitive and aesthetic reasons, it
is desirable to limit the polygonal complexity (as measured by the number of sides of the polygons) and
the unused area in the representation (also known as holes). It is known that convex hexagons are always
sufficient and sometimes necessary for such representations of planar graphs [3, 6]. A natural problem is to
characterize classes of planar graphs that can be represented by polygons with fewer than six sides.

While there is no characterization of planar graphs that are representable by touching pentagons, Ueck-
erdt shows that Hamiltonicity of the planar graph is a sufficient condition [15]. The quadrilateral case is
well-studied and there is a complete characterization of the class of planar graphs that can be represented by
axis-aligned rectangles namely maximally planar graphs without filled triangles [4, 13, 12]. For the seem-
ingly simplest case of planar graph representable by touching triangles, there is much less known. If one
allows the outer-boundary of the representation to be of arbitrary complexity, then it is known that sev-
eral classes of planar graphs (e.g., grid graphs, outerplanar graphs) have such touching triangle representa-
tions [8, 1]. There is also a characterization for a restricted formulation of the problem, where if two vertices
are adjacent in the graph then the corresponding two triangles must share an entire side in the TTG repre-
sentation [8].

However, the most natural version of the problem is the one where we ask for the class of graphs that
have proper touching triangle representation (TTG), where the union of all triangles is itself a triangle with-
out holes. This is exactly the problem that we consider in this paper. In particular, we provide a necessary
condition for a biconnected outerplanar graph to be a proper TTG. We also provide a slightly weaker suffi-
cient condition. Together these also give a characterization for a more restricted class of outerplanar graphs.
To the best of our knowledge, the only other results about proper TTGs are in [10], where a fixed-parameter



tractable decision algorithm for 3-connected planar max-degree-∆ graphs is described, and where it it shown
that planar 3-connected cubic graphs are proper TTGs.

2 Preliminaries

Let O be a biconnected outerplanar graph (BOPG) with an outerface fo and a set FI of internal faces,
given by an outerplanar embedding of O. Let degO(v) denote the degree of a vertex v in O. A chain in
O is a path v1v2 . . . vf of O where degO(v1) > 2, degO(vf ) > 2 and each of the internal vertices v2,
. . ., vf−1 of the path has degree 2 in O. For any biconnected outerplanar graph O, it is always possible to
iteratively delete a chain from the graph until it has only one edge. This iterative deletion of chains gives a
peeling order of O. At each iteration this chain of vertices v1v2 . . . vf along with the edge (v1, vf ) forms
an internal face that corresponds to a leaf in the weak dual. Thus the peeling order can also be thought of
an ordering of the internal faces of O that iteratively constructs O. Formally, a peeling order of O is the
bijection f : {1, . . . , k} 1−1−−→

onto
FI , where k = |FI | is the number of internal faces in O. Let Oi denote the

subgraph of O induced by the faces f(1), . . ., f(i) for i ∈ {1, . . . , k}. Then the sequence of subgraphs O1,
O2, . . ., Ok = O is called the subgraph-sequence of O induced by f . A chord is an edge of O not on the
outerface fo. A chord-only face in O is a face that has no outer edge. The degree degO(f) of a face f in O is
the number of internal faces adjacent to f . Note that the degree of a face may be different than the number
of edges on its boundary.

A proper touching triangle representation RG, or proper TTG of a planar graph G = (V,E) is a set
T of triangles with an isomorphism T : V → T where the union of these triangles is a triangle and for
any two vertices u, v ∈ V the boundaries of T (u) and T (v) share a non-empty line-segment if and only if
(u, v) ∈ E. For convenience, we often denote by 4u the triangle representing a vertex u of G in RG, i.e.,
4u = T (u).

We now define three types of triangles present within a proper TTG representation of a biconnected
outerplanar graph; see Fig 1.

Definition 1. LetRO be a proper TTG representation for biconnected outerplanar graph O. A corner of a
triangle inRO is either an exterior corner (X-corner) when it is on the boundary ofRO or an interior corner
(I-corner), otherwise. An X-corner then is either an apex exterior corner (A-corner) when it is an apex of the
boundary ofRO or a non-apex exterior corner (B-corner), otherwise.

(a) Corner triangles have no I-corners and one or two A-corners; see Fig. 1(a).
(b) Side triangles have one I-corner and one or two A-corners; see Fig. 1(b).
(c) Point triangles have two I-corners and an X-corner; see Fig. 1(c).

(a) corner triangles (b) side triangles (c) point triangles

Fig. 1: Types of triangles in a proper TTG representation.
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Observation 2. LetO(V,E) be a BOPG with internal faces FI and outerface fo withD∗O andDO denoting
the strong and weak duals, respectively, of O, and let RO be its proper TTG representation. X-corners in
RO represent faces in the strong dualD∗O incident to the vertex inD∗O corresponding to fo. Correspondingly,
I-corners are the vertices of the weak dual DO, and hence, correspond distinctly to the |FI | internal faces
of O. Thus, there are at most |fo| X-corners and exactly |FI | I-corners inRO.

Proof. Consider the representation RO of O, which in itself forms a graph D∗ whose vertices are either
X-corners or I-corners and whose edges are the sides of the triangles. Observe that the weak dual of D∗ is
O. Moreover, after contracting each edge of D∗ connecting two X-corners (which corresponds to side of a
triangles along the outerboundary ofRO) yields D∗O, the strong dual of O.

Hence, X-corners correspond to faces in D∗O incident to f∗o , the vertex in D∗O corresponding to fo.
Incident triangles of X-corners represent endpoints of one or more consecutive edges in fo, which correspond
distinctly to subpaths partitioning fo. Thus, there are at most |fo| X-corners. Point, edge and corner triangles
(triangles with an X-corner) represent the vertices in fo. On the otherhand, I-corners are the vertices in D∗O
other than f∗o , namely the vertices of the weak dualDO. Thus, the I-corners correspond distinctly to the |FI |
internal faces of O. ut

Next we define the notion of a “charge” of a vertex of a planar graph, which gives our first necessary
condition for a planar graph to be a proper TTG.

Definition 3. The charge of a vertex v in a planar graph G is

ch(G, v) = max
{
degG(v)− 3, 0

}
.

The total charge ch(G) of G is the summation of the charges of all vertices of G. Each internal face can
provide at most one charge to an incident vertex. A total charge function ΠG : F ′ → V then allots a subset
F ′ of internal faces to their incident vertices so that each vertex v is alotted at least ch(G, v) faces.

Lemma 4. A planar graph is a proper TTG only if it has a total charge function.

Proof. Let G be a planar graph with a proper TTG representation RG as in Fig. 2. The degree of a vertex
v in G corresponds to the number of triangles adjacent to the triangle 4v representing v in R. Thus if
we consider R as a graph, then the face 4v has exactly deg(v) vertices. Each of these vertices is either
an X-corner or an I-corner. Since the triangle 4v has exactly three apexes, deg(v) − 3 of these corners
assume an 180◦ angle inside 4v. However, an X-corner cannot assume an 180◦ angle inside 4v; thus at
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Fig. 2: Illustration for Lemma 4.
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least deg(v)− 3 I-corners assumes 180◦ angles inside4v. By Observation 2, these I-corners correspond to
distinct internal faces of G. If we map these deg(v)− 3 internal faces to v, we find the desired total charge
function since no I-corner can assume more than one 180◦ angles from different triangles. ut

Observation 5. For a planar graph G with total charge function ΠG, any face-induced subgraph H on the
internal faces FH ⊆ FI , also has a total charge function ΠH , namely ΠG restricted to the faces of FH .

Proof. For each face fh ∈ FH , define ΠH(fh) = ΠG(fh) so that ΠH : F ′H → VH where F ′H ⊆ FH .
Suppose that vertex v has x fewer incident faces in FH than in FG, where |adjv(FH)| < |adjv(FG)|

so that x = |adjv(FG)| − |adjv(FH)|. Then, v must also have x fewer incident edges so that degH(v) =
degG(v)− x. Hence, the net charge of v in ΠH would then be

ch(ΠH , v) = ch(H, v)− |Π−1H (v)| = (degH(v)− 3)− (|Π−1G (v)| ∩ adjv(FH)|)
= (degG(v)− x− 3)− (|Π−1G (v)| − x)
= (degG(v)− 3)− |Π−1G (v)| = ch(G, v)− |Π−1G (v)| = ch(ΠG, v).

Since, ch(ΠG, v) = 0 given that ΠG is a total charge function for G, then ch(ΠH , v) = 0 showing that
ΠH is indeed a total charge function for H as claimed. ut

Together with Lemma 4, Observation 5 gives the following restriction for a planar to be a proper TTG.

Corollary 6. LetG be a planar graphG such that a face-induced subgraph ofG is not a proper TTG. Then
G is also not a proper TTG.

3 Assigned Peeling Order and Proper TTG Representations

We saw in the previous section how we can construct a biconnected outerplanar graph starting from an edge
and iteratively augmenting it with a chain. We want to use this peeling order of a biconnected outerplanar
graph to obtain a proper TTG.

Lemma 7. Let O be a biconnected outerplanar graph with a chain p = uv1 . . . vkw, and let H be the
subgraph of O obtained after deleting p. Let RH be a proper TTG representation of H with two triangles
4u and 4w representing u and w, where 4u is a corner or a side triangle sharing an X-corner with 4w.
Then the representationRO can be constructed fromRH by replacing the corner (or side) triangle4u with
a side (or a point) triangle4′u and k side triangles.

Proof. Let4u = 4abc and4w = 4cef with the common X-corner c. Since4abc is either a side or corner
triangle, it has at least one side along the boundary of RH and this side is incident to c. Assume then that
this side is ac. Then the common boundary of4abc and4cef is contained in the side bc of4abc. Assume
without loss of generality that this common boundary is contained in the side ce of4cef , thus making b, c
and e co-linear. Fig. 3(a) gives one such possibility for RH . Then RG can be obtained by first dividing the
side or corner triangle 4abc into the point or side triangle 4abd, respectively, and the side triangle 4adc
and finally if k > 1, then further dividing4adc into a set of side triangles; see Fig. 3(b)–(c). ut

We would like to compute a peeling order f ofO that will allow us to compute a sequence of proper TTG
representations RO1 , . . . ,ROk

for the subgraph-sequence O1, . . . , Ok of O induced by f . We begin with
a representation RO1 of O1 and repeatedly apply Lemma 7, leading to a final proper TTG representation
RO = ROk

of O = Ok. Note that each time a new chain is added, a corner or side triangle becomes a side
or a point triangle in the new representation (from the proof of Lemma 7). Hence, each chain being added
requires that one of the two endpoints of the chain is represented by a corner or a side triangle in the current

4



�u

�w

a

b

c

e
f

u w

�v

�w

�u

a

b
d

c

e
f

v

u w

�1

�w

�u

�k-1 �k�2…

…

a

b
d

c

e
f

vk-1

vk

v2
v1

u w

q1 q2 qk-2 qk-1

Fig. 3: AugmentingRH in (a) to obtainRG for k = 1 in (b) and for k > 1 in (c).

representation. Furthermore, point triangles remain unchanged in subsequent representations. This gives a
one-to-one mapping, defined next, between the chains (or equivalently, internal faces) and their associated
end-points in the peeling order.

Definition 8. An assigned peeling order for a biconnected outerplanar graph O(V,E) is a peeling order f
together with an injection ν : {f(3), . . . , f(k)} 1−1−−→ V where ν always assigns a face f of O to one of the
endpoints of the chain that forms f in the peeling order.

While every BOPG has a peeling order f , it may not be assignable. However, given an assigned peel-
ing order for a BOPG, obtaining its proper TTG representation is a straight-forward exercise of applying
Lemma 7.

Theorem 9. A biconnected outerplanar graph with an assigned peeling order is a proper touching triangle
graph.

Proof. Let O be a BOPG with k internal faces having an assigned peeling order f and ν. Let O1, . . ., Ok

be the subgraph-sequence induced by f . We show by induction that Oj has a proper TTG representation for
j ∈ {1, . . . , k}. If j = 1, then O1 = f(1) and it has a proper TTG representation R(O1); see Fig. 4(a). We
then obtain RO2 from RO1 by Lemma 7, where w.l.o.g. we assume that the corner triangle of RO1 is split
into side-triangles. Note then thatR(O2) has no point triangles; see Fig. 4(b).
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Assume then for i ∈ {2, . . . , k − 1}, there is a proper TTG representation R(Oi). Then R(Oi+1) can
be constructed from R(Oi) by applying Lemma 7. We show that the conditions of Lemma 7 hold. Let Vi
denote the vertex set of Oi for i ∈ {1, . . . , k}. Let Pi denote the set of vertices that have been assigned by ν
previously, whereas Si would denote the set of the remaining unassigned vertices. We maintain the invariant
that Pi and Si represent the point and side triangles, respectively in each ROi . We argue that the conditions
in Lemma 7 hold for eachROi , 2 ≤ i ≤ k. This is clearly true for i = 2.

Let ui+1, . . . , wi+1 be the chain forming the face f(i + 1) where ν assigns f(i + 1) to ui+1. Both
endpoints are in Oi where 4ui+1 and 4wi+1 are their representing triangles. Since ν is an injection, then
ui+1 has not been assigned by ν. Thus ui+1 /∈ Pi, and hence, ui+1 ∈ Si, i.e.,4ui+1 is a side triangle by the
induction invariant. Furthermore by Observation 2, the outeredge (ui+1, wi+1) of Oj , corresponds to some
X-corner x common in both the triangles4uj+1 and4wj+1 inR(Oj). Thus all the conditions of Lemma 7
are met. Since the construction in Lemma 7 only creates the one point triangle for ν(j), the invariant is also
maintained. Thus by induction, a proper TTG representationR(Ok) exists for O = Ok. ut

The proof of Theorem 9 gives an algorithm to construct a proper TTG representation of a BOPG given
an assigned peeling order. Fig. 5 illustrates the construction of such a proper TTG representation.
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Fig. 5: Example proper TTG construction sequence for a biconnected outerplanar graph O.
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4 Necessary Conditions for Proper TTG Representation

In this section we begin with a necessary conditions for proper TTG representation of chord-connected
outerplanar graphs, (which are BOPGs with the stronger property that all chords form a connected sub-
graph). We then use this result to give necessary conditions for proper TTG representation of biconnected
outerplanar graphs by means of a “chord-connected decomposition”.

Definition 10. The edges of a biconnected outerplanar graph O(V,E) are of two types: the outerface fo
and the chord-induced subgraph chord(O) of O. If chord(O) is connected, then O is chord-connected
(CC). The chord-connected decomposition decomp(O) ofO is the decomposition ofO into chord-connected
subgraphsH1, . . . ,Hk ofO, where (i)O =

⋃
Hi, (ii) chord(Hi) corresponds to a connected-component of

chord(O), and (iii)Hi contains both faces incident to each chord of chord(Hi) inO. Joining faces join(O)
are the faces common to two or more such chord-connected subgraphs in decomp(O).

Fig. 6 illustrates the chord-connected decomposition of a BOPG O. Let k be the number of chord-
connected subgraphs in the chord-connected decomposition of O. Then note that the weak dual T of O can
be partitioned into k subtrees, T1, . . . , Tk, where each subtree Tj , for j ∈ {1, . . . , k}, is the weak dual of
Hj . The common intersection for a pair of chord-connected subgraphs Hi and Hj forms a joining face.

Having chord-connected subgraphs allows us to characterize proper TTG realizability in terms of chord-
only faces. In particular, realizable chord-connected outerplanar graphs are fairly restricted as the next
lemma show.

Lemma 11. Let O be a chord-connected outerplanar graph with a proper TTG representation. Then there
are at most two chord-only faces in O.

Proof. LetRO be a proper TTG representation ofO. Then by Lemma 4,RO induces a total charge function
ΠO : F ′ → V , where F ′ ⊂ FI = {f1, . . . , fk} is the set of internal faces of O. Thus by the definition of
a total charge function, |FI | ≥

∑
v∈V ch(O, v)) = ch(O). We now show by a counting argument that this

implies at most two chord-only faces in O.
Take an arbitrary chord (u,w) of O. Let fp and fq be the two internal faces incident to (u,w). The

chord (u,w) partitions O into two disjoint subgraphs, say P and Q, where fp ∈ P and fq ∈ Q. Augment
P with the face fq to obtain P ′ and similarly augment Q with fp to obtain Q′. Clearly, P ′ ∩ Q′ = fp ∪ fq
and P ′ ∪ Q′ = O. We now claim that ch(O) = ch(P ′) + ch(Q′). Consider the charge of u. Since u
has three common edges in P ′ and Q′, it has degP ′(u) − 3 edges in P ′ \ Q′ and degQ′(u) − 3 edges in
Q′ \ P ′. Therefore, degO(u) = degP ′∩Q′(u) + degP ′\Q′(u) + degQ′\P ′(u); which implies that ch(O, u) =
ch(P ′, u) + ch(Q′, u). Similarly, ch(O,w) = ch(P ′, w) + ch(Q′, w). Since the only vertices common to
P ′ and Q′ are the vertices on the faces fp and fq and among these vertices only u and w has degree at least
three in both P ′ and Q′, this implies that ch(O) = ch(P ) + ch(Q).

Fig. 6: Chord-connected decomposition of a biconnected outerplanar graph.
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For any face fi ∈ FI , we can then define Oi to be the subgraph of O induced by the face fi and the
deg(fi) faces adjacent to fi in O. Then O = {Oi : deg(fi) > 1} forms a sufficient decomposition of
O such that for any pair of adjacent faces fp and fq in O, Op ∩ Oq = fp ∪ fq while

⋃
Oi∈O Oi = O.

Recursively applying the relationship in the previous paragraph, we see that ch(O) =
∑

v∈O ch(O, v) =∑
Oi∈O ch(Oi) =

∑
Oi∈O

∑
v∈Oi

ch(Oi, v) =
∑

f∈FI
degO(f)>1

∑
v∈f ch(f, v).

For any face fi ∈ FI , the chords in fi must be connected due to O being chord-connected. Hence,
the degO(fi) chords in fi must form either a cycle of length degO(fi) or a path of length degO(fi) − 1,
depending on whether fi is a chord-only face or not. In case fi is not a chord-only face, the path formed
by the chords will have degO(fi) − 1 internal vertices on the path each with degree 4 in O and two end-
vertices on the path, each with degree 3 in Oi. On the other hand, if fi is a chord-only face, then the cycle
formed by the chords in fi has degO(fi) vertices, each with degree 4 in Oi. Since all other vertices in
Oi have degree 2 and since only the degree-4 vertices of Oi contribute one charge each, this gives either
ch(Oi) = degO(fi) or ch(Oi) = degO(fi) − 1 depending on whether fi is a chord-only face or not. Thus
if k is the number of chord-only faces in O, then ch(O) =

∑
f∈FI

(degO(f) − 1) + k. Furthermore since
the weak-dual of O is a tree where each vertex represents an internal face of O and each edge represents a
chord of O, we have

∑
f∈FI

degO(f) = 2|C| = 2|FI | − 2. Since ΠO is a total charge function, this implies
that |FI | ≥ ch(O) = 2|FI |− 2+k, which gives k ≤ 2. Thus O can have at most two chord-only faces. ut

Corollary 12. Let O be a chord-connected outerplanar graph with a total charge function ΠO. Then ΠO

can assign empty charge to at most 2− k faces, where k is the number of chord-only faces in O.

The corollary can be proved by an argument similar to that of Lemma 11. Since a CC subgraph of a
biconnected outerplanar graph O is a face-induced subgraph of O, Lemma 11 together with Corollary 6
gives the following corollary.

Corollary 13. A biconnected outerplanar graphO is a proper TTG only if each chord-connected subgraph
of O has at most two chord-only faces.

The following two lemmas imply that the total charge as well as an existence of a total charge function
in a BOPG can be obtained using the chord-connected decomposition.

Lemma 14. LetO be a biconnected outerplanar graph with chord-connected decomposition decomp(O) =
{H1, . . . ,Hk}. Then the total charge of O is the sum of the total charges of each Hi in decomp(O), i.e.,
ch(O) =

∑
H∈decomp(O) ch(H).

Proof. We prove this by induction on k. Clearly, the claim holds for k = 1 when O is chord-connected.
Suppose the claim holds for k − 1. Take the chord-connected subgraph H1 ∈ decomp(O) and define O′ =⋃k

j=2Hj . Thus decomp(O) = decomp(O′)∪{H1}. Let f be the joining face shared byH1 andO′. The only
vertices in common between H1 and O′ are in f . Furthermore, each vertex of f has degree 2 either in H1 or
O′. Hence for each vertex v on f , either ch(H1, v) = 0 or ch(O′, v) = 0. Thus ch(O) = ch(O′) + ch(H1).
By induction hypothesis, ch(O′) =

∑k
j=2 ch(Hj). Therefore ch(O) =

∑k
j=1 ch(Hj). ut

Lemma 15. Let O be a biconnected outerplanar graph with k biconnected subgraphs H1, . . . ,Hk such
that all the faces of each subgraph are distinct except for one common face f of all the subgraphs. Then O
has a total charge function ΠO if and only if each Hi has a total charge function ΠHi such that ΠHi allots
a charge to f in at most one subgraph Hi.

Proof. First suppose without loss of generality that each chord-connected subgraph Hi has a total charge
function ΠHi such that ΠHi(f) = ∅ if i > 1. This induces a total charge function ΠO of O, where for each
face f ′ 6= f in Hi for some i ∈ {1, . . . , k}, f ′ is assigned according ot ΠHi and f is assigned according to
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ΠH1 . Conversely, if O has a total charge function ΠO, then it induces a total charge function ΠHi to each
chord-connected subgraph Hi, obtained from ΠO restricted to the faces of Hi. Since f can be assigned to at
most one Hi, at most one of these total charge function allots a chrge to f . ut

We now have the following definition that gives our last necessary condition for a biconnected outerpla-
nar graph to be a proper TTG.

Definition 16. LetO be a biconnected outerplanar graph with chord-connected decomposition decomp(O)
and joining faces join(O). Then O has a satisfiable joining ρ : join(O) → decomp(O) if each subgraph
H ∈ decomp(O) has zero, one, or two chord-only faces and at most two, one, or zero joining faces not
assigned to H by ρ, respectively.

Lemma 17. A biconnected outerplanar graph O has a total charge function only if O has a satisfiable
joining between its joining faces and chord-connected decomposition.

Proof. Assume O has a total charge function ΠO. Let decomp(O) and join(O) be the chord-connected
decomposition and joining faces ofO. Apply Lemma 15 repeatedly for each of the joining faces in join(O).
Observe that any joining face f can give a charge for at most one chord-connected subgraph. This gives a
function ρ : join(O) → decomp(O), where ρ maps each joining face to the chord-connected component
for which it provides the charge. By Corollary 12, for any chord-connected component H with zero, one or
two chord-only faces, the total charge function ΠH on H induced by ΠO leaves at most two, one or zero
faces unchrged, respectively. Since every joining face in H unassigned to H by ρ must be uncharged by
ΠH , ρ gives a satisfiable joining. ut

A satisfiable joining of a BOPG O(V,E) with k maximal chord-connected subgraphs can be found in
O(|V |+ k3) time by solving a maximum flow problem on a graph. See [2] for detailed proof. Summarizing
our results, we have the following theorem.

Theorem 18. A biconnected outerplanar graph O has a proper TTG representation only if it has a satisfi-
able joining.

5 A Sufficient Condition for a Proper TTG Representation

While having a total charge function is a necessary condition for a planar graph to be a proper TTG, it is
not a sufficient one. In this section, we describe a sufficient condition for a biconnected outerplanar graph
to have a proper TTG representation. We first introduce the notion of a “peeling-compatible” total charge
function.

Definition 19. A total charge function ΠO of a biconnected outerplanar graph is peeling-compatible for
a peeling order f if whenever the chains corresponding to two faces being added by f share a common
end-vertex v, one of the two faces are assigned by to v ΠO.

We now have the following lemma that together with Theorem 9 gives a sufficient condition for a bicon-
nected outerplanar graph to be a proper TTG.

Lemma 20. A biconnected outerplanar graph with a peeling order and peeling compatible total charge
function has a peeling assignment.

Proof. LetO be a biconnected outerplanar graph with a peeling order f on k internal faces. We first converts
f and a peeling compatible total charge function ΠO into a peeling assignment ν. Let O1, . . ., Ok be the
sequence of subgraphs ofO induced by f . For each step i, let ui, . . . , vi be the chain that forms the new face
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f(i). Then ΠO can assign f(i) to either ui or vi or neither endpoint. If ΠO did not assign f(i) to ui, then ν
assigns f(i) to ui. Otherwise ν assigns f(i) to vi.

We now show that ν gives a valid peeling assignment. Assume for a contradiction that ν is not a valid.
Assume w.l.o.g. that ν assigns f(i) to ui (possibly by renaming) for each step i. Then if ν is not a valid
peeling assignment, it cannot be an injection by Definition 19. Hence, there must exist some a pair of distinct
faces f(p) and f(q) that have been assigned to the same vertex by ν. Thus, since ν has assigned f(p) to up
and f(q) also to uq = up, then ΠO has assigned neither f(p), nor f(q), to up = uq. Thus the chains for
the two faces f(p) and f(q) share the common end vertex up = uq, but neither of them is assigned to it,
contradicting the peeling-compatibility of ΠO. ut

Given the algorithm in Lemma 20, we want to find a class of BOPG for which a peeling-compatible
total charge function can be computed. We first have the following lemma that shows that the necessary
condition for chord-connected outerplanar graphs in Lemma 11 is also sufficient.

Lemma 21. Let O be a chord-connected outerplanar graph with at most two chord-only faces. Then O has
a total charge function ΠO where

(i) ΠO keeps two, one, or zero specified faces uncharged, when O has zero, one, or two chord-only faces,
respectively;

(ii) chord-only faces are always charged by ΠO;
(iii) every vertex v in O is allotted exactly ch(O, v) charges; and
(iv) ΠO is peeling-compatible with a peeling order.

Proof. We prove this lemma by giving an algorithm for computing a desired charge function ΠO. While
we construct ΠO, we will find a peeling order f of O such that ΠO is peeling compatible with f . Note that
a peeling order of O is nothing but an ordering of the internal faces of O. Let fx and fy be two special
internal faces of O, where depending on the number of chor-only faces in O, these two faces can either be
both chord-only faces, or both specified uncharged faces or one chord-only face and one uncharged face.

The algorithm starts by first constructing the minimal chord-connected subgraph H containing the two
faces fx and fy. This is done by first finding a shortest path p in the chord-induced subgraph chord(O) of O
from a vertex vx on fx to a vertex vy on fy. Then H is the subgraph of O induced by all the faces incident
to each internal vertex of p along with fx and fy. Thus each chord in the chord-induced subgraph of H ,
is either on p or has at least one end-point in p. We now claim that if such a chord is not on p, then it has
exactly one end-point on p. Indeed, if a chord has both end-points on p, that would contradict p being the
shortest path. We now show how the algorithm gives the peeling order on H and how ΠO assignes the faces
in H . In particular, ΠO will not assign fx and fy to any vertex of H .

The peeling order starts by making fx the first face and fy the last face of H . The other faces of H are
ordered as follows. Let p = vx, v1, . . . , vl, vy. Then each face incident to vi is order before any face incident
to vi+1 for 1 ≤ i < l. Among the faces incident to a vertex vi, we order them such that each chain creating
a face must have endpoints that have already been added. Let f1 = fx, f2, . . . , fy gives this peeling order.
Also suppose Oi be the subgraph induced by the first i faces in this list. Adjoining each new face fi to form
a new chord with end-vertices ui and vi has the effect of increasing the degree of both ui and vi. However in
O2 the degree of u2 and v2 is 3 and each other vertex has degree 2; resulting in no charge. We then maintain
the invariant that for i > 3, when we are adding fi, the face fi−1 is still unchrged. Consider now the case
when we are adding fi. If (ui, vi) is on p, then according to the vertex ordering along p, one of them has
degree 2 inOi−1. Otherwise, exactly one of the two vertex is on p. Then again the vertex not on p has degree
2. Thus in both cases, at most one of ui and vi has degree > 3 in Oi, hence at most one extra charge has
been induced by the vertex common to fi−1 and fi. We assign fi−1 for that charge. In this way, when we
finish, we have assiged faces for each charge and fx, fy is still unchrged.
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Next we process the faces adjacent to a chord-only face. Suppose fx is a chord-only face. We add the
faces adjacent to fx in such an order that the first face is incident to vx and each subsequent face being added
is adjacent to face added immediately before. This ensures that except for the last face, the chain for each
face have one endpoint with degree 2. Thus only one extra charge is induced and the newly created face is
assigned for this charge. For the last face added, there are two extra charge induced and the newly created
face as well fx is then assigned for these two charges. Thus each chord-only face is charged by ΠO while
each specified uncharged face remains uncharged.

Finally, all the remaining faces are added in arbitrary order, provided that each face fi being added
creates a new chord (u, v) in Gi that is incident to some previous chord. Such a choice for selecting fi must
always be possible given that since O is chord-connected. This order of adding faces ensures that for each
face thus added, the corresponding chain has at least one end-point of degree 2 and hence at most one extra
charge is induced. This newly created face is then assigned for this charge.

At each step the above algorithm assigns exactly as many faces to a vertex as is the amount of extra
charge. Thus each vertex will be assigned exactly ch(O, v) faces. This immediately implies that TpiO is a
total charge function. Furthermore each chord-only face is charged by ΠO while each specified uncharged
face remains uncharged. Finally whenever a face is added with a common endpoint of the corresponding
chain with a previously added adjacent face, the common endpoint has degree > 3 (hence inducing an extra
charge) either the newly created face or the adjacent face is assigned to that vertex for the extra charge.
Therefore by definition ΠO is peeling compatible with the peeling order generated by the algorithm. ut

Together Lemma 20, 21 and Theorem 9 imply that a chord-connected outerplanar graph with at most
two chord-only faces is a proper TTG. This together with Lemma 11 gives the following theorem which
fully characterizes when chord-connected outerplanar graphs are proper TTG.

Theorem 22. A chord-connected outerplanar graph is a proper TTG if and only if it has at most two chord-
only faces.

However, there exist total charge functions that do not correspond to any assigned peeling order.

Lemma 23. There exists a biconnected outerplanar graph with a total charge function for which there is
no peeling order with a valid peeling assignment.

Proof. Consider graphO in Fig. 7. It has two faces f1 and f2 with a common incident edge (u, v). The chord
(u, v) splits O into two chord-connected subgraphs H1 and H2, containing f1 and f2, respectively. Both H1

and H2 have two chord-only faces and hence each has a total charge function ΠH1 and ΠH2 , by Lemma 21.
Then by Lemma 14, ch(O) = ch(H1) + ch(H2) and these two total charge function combined would give
a total charge function ΠO for O. However, we now show that there is no assigned peeling order for O. A
peeling order would start with a face from H1 or H2 and then proceed to H2 or H1, respectively. Assume

1
f

2
f f

v’v

u u’

Fig. 7: Lemma 23 example.
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without loss of generality that f2 is added after f1. Then f will be the face added to f2. Then u′ or v′ must
be assigned by ν. However, u′ and v′ are each incident to a chord-only face and adding the chord-only face
and each of its incident faces requires to assign each face a charge. Since u′ or v′ are already assigned, there
will be one face that cannot be assigned. ut

We now use Lemma 21 to give a sufficient condition for a general biconnected outerplanar graph to be
a proper TTG.

Theorem 24. Let O be a biconnected outerplanar graph with chord-connected decomposition decomp(O)
= H1, . . . ,Hk where at most one Hi has two chord-only faces and all the remaining Hi i 6= k have either
one or zero chord-only faces. Then O has a proper TTG representation.

Proof. Assume without loss of generality that H1 has two chord-only faces. Applying Lemma 21 we can
construct a peeling-compatible total charge function ΠH1 for H1. Then we repeatedly apply Lemma 21
to compute a peeling-compatible total charge function ΠHi for Hi with the additional restriction that for
i < j, the joining face between Hi and Hj is uncharged in ΠHj . Then the total charge function ΠOi for
Oi =

⋃k
i=1Hi is peeling compatible where the order in which faces are added to construct Oi via repeated

application of Lemma 21 gives a peeling order and the peeling compatibility of ΠOi is a result of every ΠHi

being peeling compatible. Therefore for Ok = O, ΠOk
gives a peeling compatible total charge function for

O, which can then give a peeling assignment by using Lemma 20. Once we get an assigned peeling order,
we can use the algorithm in Theorem 9 to obtain a proper TTG representation. ut

6 Conclusion and Open Problems

We gave a necessary condition and a slightly weaker sufficient condition for a biconnected outerplanar graph
to have a proper TTG representation. Unfortunately we do not yet have a complete characterization because
the sufficient condition is not necessary (and vice versa). For example, the graph in Fig. 8(a) does not satisfy
the sufficient condition since it has more than one CC-subgraphs each with two full-chord faces. Yet it does
have a proper TTG representation. We conjecture that the necessary condition is also not sufficient because
the graph in Fig. 8(b) satisfies the necessary condition but likely does not have a proper TTG representation.
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Fig. 8: (a) A graph and its proper TTG representations, (b) Another graph with a 4-sided TTG representation
that we conjecture does not also have a proper TTG representation.
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Thus the complete characterization for biconnected outerplanar graphs is still open. Naturally, the bigger
problems of recognizing and characterizing the class of planar graphs with proper TTG representation are
also open.
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