
Stork: Secure Package Management for VM

Environments

by

Justin Angelo Cappos

A Dissertation Submitted to the Faculty of the

Department of Computer Science

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

In the Graduate College

The University of Arizona

2 0 0 8

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the

dissertation prepared by Justin Angelo Cappos

entitled Stork: Secure Package Management for VM Environments

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy.

Date: April 14, 2008

John. H. Hartman

Date: April 14, 2008

Chris Gniady

Date: April 14, 2008

Larry L. Peterson

Date: April 14, 2008

Beichuan Zhang

Final approval and acceptance of this dissertation is contingent upon the candidate’s

submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it be accepted as fulfilling the dissertation requirement.

Date: April 14, 2008

Dissertation Director: John. H. Hartman

2

STATEMENT BY AUTHOR

This dissertation has been submitted in partial

fulfillment of requirements for an advanced degree at The

University of Arizona and is deposited in the University

Library to be made available to borrowers under rules of the

Library.

Brief quotations from this dissertation are allowable

without special permission, provided that accurate

acknowledgment of source is made. Requests for permission

for extended quotation from or reproduction of this

manuscript in whole or in part may be granted by the head of

the major department or the Dean of the Graduate College

when in his or her judgment the proposed use of the material

is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

SIGNED: __JUSTIN ANGELO CAPPOS_________

3

ACKNOWLEDGEMENTS

First, I would like to thank the undergraduates who assisted with the development

of Stork including Matt Borgard, Mario Gonzalez, Petr Moravsky, Jude Nelson,

Duy Nyugen, Peter Peterson, Collin Reynolds, Kelland Thomas, Mike White, and

Byung Suk Yang. A special mention goes to Scott Baker, Jeffry Johnston, Jason

Hardies, Jeremy Plichta, and Justin Samuel for their excellent contributions.

I would also like to thank all of the administrators who use Stork. Your patience,

comments, and bug reports have made Stork popular and robust.

I am indebted to the creators of the services Stork uses including Vivek Pai,

KyoungSoo Park, Sean Rhea, Ryan Huebsch, and Robert Adams for their efforts in

answering countless questions. I would also like to thank Steve Muir, Faiyaz

Amhed, and Marc Fiuczynski at PlanetLab Central for their efforts throughout the

development of Stork.

Of course, none of this would be possible without the guidance of my advisor, John

Hartman. His direction and advice was instrumental to shaping Stork.

I would like to thank my family and friends for their assistance. I appreciate the

support my parents provided me throughout my graduate studies. I would also like

to thank Wenjun Hu for her understanding and encouragement.

4

5

Table of Contents

List of Figures . 13

List of Tables . 16

Abstract . 19

Chapter 1. Introduction . 20

1.1. Security . 22

1.2. Virtual Machines . 25

1.3. Research Questions . 26

1.4. Importance . 28

1.5. Scope . 29

1.6. Map . 30

Chapter 2. Stork . 31

2.1. Examples . 32

2.1.1. GUI Package-based Configuration Management 34

2.1.2. Command Line Package-based Configuration Management . . 35

2.1.3. Repository Uploads . 35

2.1.4. Pushing Repository Notifications 36

Table of Contents—Continued

6

2.1.5. Selective Content Updates . 36

2.1.6. Enacting Package-based Configuration Management Instructions 37

2.1.7. Installing a Package . 37

2.1.8. Multiple Package Types and Dependencies 37

2.1.9. Removing a Package . 38

2.1.10. Updating a Package . 39

2.2. Component Overview . 40

2.3. Configuration Management Tools . 45

2.3.1. Stork File Types . 45

2.3.2. Groups . 48

2.3.3. groups.pacman . 49

2.3.4. packages.pacman . 50

2.3.5. GUI . 53

2.3.6. storkutil . 55

2.4. Repository . 57

2.4.1. Protecting Files . 57

2.4.2. Handling Uploaded Data . 61

2.4.3. Pushing Notifications . 65

2.4.4. Repository Support for Efficient Transfers 66

2.5. Client Tools . 67

Table of Contents—Continued

7

2.5.1. Functionality Managers . 68

2.5.2. stork . 72

2.5.3. pacman . 84

2.5.4. stork receive update . 85

2.5.5. Bootstrapping on PlanetLab 86

2.6. Nest . 89

2.6.1. stork nest . 89

2.7. Example Walkthroughs . 91

2.7.1. GUI Package-based Configuration Management 92

2.7.2. Command Line Package-based Configuration Management . . 93

2.7.3. Repository Uploads . 94

2.7.4. Pushing Repository Notifications 97

2.7.5. Selective Content Updates . 98

2.7.6. Enacting Package-based Configuration Management Instructions 99

2.7.7. Installing a Package . 99

2.7.8. Multiple Package Types and Dependencies 101

2.7.9. Removing a Package . 103

2.7.10. Updating a Package . 104

2.8. Related Work . 106

2.8.1. Package Managers . 107

Table of Contents—Continued

8

2.8.2. Software Installers . 111

2.8.3. Software Update Systems . 112

2.8.4. Configuration Management Systems 113

2.9. Conclusion . 114

Chapter 3. Security . 115

3.1. Map . 119

3.2. Attacks . 120

3.2.1. Attack Descriptions . 120

3.2.2. Attack Themes . 123

3.3. Background . 126

3.3.1. Package Manager Popularity 127

3.3.2. Package Formats . 128

3.3.3. Package Installers . 128

3.3.4. Dependency Resolvers . 130

3.3.5. Package Repository . 133

3.3.6. Security Philosophy . 133

3.4. Attack Feasibility . 135

3.4.1. Impersonate a Repository . 137

3.4.2. Repository Key . 139

3.4.3. Package Key . 141

Table of Contents—Continued

9

3.4.4. Developer Key . 142

3.5. Attack Effectiveness . 145

3.5.1. Slow Retrieval . 145

3.5.2. Endless Data . 145

3.5.3. Replay Old Metadata . 148

3.5.4. Extraneous Dependencies . 149

3.5.5. Depends on Everything . 150

3.5.6. Unsatisfiable Dependencies . 150

3.5.7. Provides Everything . 151

3.5.8. Use Revoked Keys . 152

3.5.9. Escalation of Privilege . 153

3.6. Securing APT and YUM . 156

3.7. Principles of Secure Package Management 158

3.7.1. Design Principles . 158

3.7.2. Concepts and Examples . 160

3.8. Security Architecture in Stork . 163

3.8.1. Trusted Packages . 164

3.8.2. Signature Wrappers . 167

3.8.3. Communicating with Repositories 170

3.8.4. Self-certifying path names . 171

Table of Contents—Continued

10

3.8.5. Dependency Resolution . 173

3.8.6. Tags . 176

3.8.7. Missing TP Files . 178

3.9. Attack Effectiveness in Stork . 183

3.9.1. Slow Retrieval . 183

3.9.2. Endless Data . 183

3.9.3. Replay Old Metadata . 184

3.9.4. Extraneous Dependencies . 184

3.9.5. Depends on Everything . 185

3.9.6. Unsatisfiable Dependencies . 185

3.9.7. Provides Everything . 185

3.9.8. Use Revoked Keys . 186

3.9.9. Escalation of Privilege . 187

3.10. Related Work . 188

3.11. Conclusion . 190

Chapter 4. Sharing . 191

4.1. Map . 193

4.2. Examples . 194

4.2.1. Duplicate Downloads . 194

4.2.2. Duplicate Package Files . 195

Table of Contents—Continued

11

4.3. Benefits of Sharing . 196

4.3.1. The Benefit of Removing Duplicate Downloads 196

4.3.2. The Benefit of Sharing Package Files 198

4.3.3. Summary . 203

4.4. Sharing Overview . 204

4.5. Sharing Mechanism . 206

4.5.1. VServers . 206

4.5.2. PlanetLab . 208

4.6. Client Tools . 211

4.6.1. Communication with the Nest 211

4.6.2. Nest Transfer Specialized Plug-in 213

4.6.3. Shared Package Specialized Plug-in 214

4.7. Nest . 216

4.7.1. Share Functionality Manager 216

4.7.2. Nest Cache . 217

4.7.3. Prepare Functionality Manager 219

4.7.4. Sharing a Prepared Package 221

4.8. Walkthrough . 222

4.8.1. Duplicate Downloads . 222

4.8.2. Duplicate Package Files . 224

Table of Contents—Continued

12

4.9. Sharing Trade offs . 226

4.10. Related Work . 229

4.10.1. Network Bandwidth . 229

4.10.2. Disk . 230

4.10.3. Memory . 231

4.11. Conclusion . 233

Chapter 5. Conclusion . 234

5.1. Future Work . 236

Appendix A. Definitions . 238

References . 245

13

List of Figures

Figure 2.1. Stork Overview. Clients (bottom) install packages using the

stork client tools. A VM (bottom right) installs packages with the client

tools in a shared manner by using the nest on the same physical machine.

Repositories (middle) host the packages and metadata created by the

administrators (top). 43

Figure 2.2. Example groups.pacman There are two simple groups Test

and Production and one composite group Both. Test contains all of the

clients that are on two physical machines. Production contains a VM

named VM test. The composite group Both contains the all clients either

in Test or Production. 51

Figure 2.3. Example packages.pacman VMs in the group Both will install

emacs version 2.2 and remove vi. VMs in the group Test will update

foobar to the latest version. All clients under the administrator’s control

will update firefox. 52

Figure 2.4. Files on a Stork Repository. This diagram represents the

files on a Stork repository. Arrows show the file that the secure hash

corresponds to. The contents of the files do not correspond literally to

the contents of the actual files. They are edited for clarity and space. . 64

List of Figures—Continued

14

Figure 2.5. Example master configuration file. This file is an example

master configuration file for the stork client tools. All of the client tools

(pacman, stork, and stork receive update) use the same configuration

file. The options specified here do things like set up BitTorrent, change the

verbosity level, choose the repository, and choose the transfer methods and

package types that are supported. The signature is removed for clarity. 73

Figure 2.6. Example TP File. This file specifies what packages and en-

tities are trusted. Only packages allowed by a TP file may be installed.

FILE actions are used to trust individual packages. USER actions allow

hierarchical trust by specifying a entity whose TP file is included. Keys

and hashes are shortened for readability. The signature is contained in

an XML layer that encapsulates this file and is not shown. 76

Figure 2.7. Example build script using storkutil. This script builds

a package containing an administrator’s program, adds the package to

the administrator’s TP file, and instructs the Test group to update the

package. The upload can be done using curl or other tools but is not

shown for brevity. 95

List of Figures—Continued

15

Figure 3.1. Example TP File. This file specifies which packages and en-

tities are trusted. Only packages allowed by a TP file may be installed.

FILE actions are used to trust individual packages. USER actions dele-

gate trust by specifying a entity whose TP file is included. Public keys

and hashes are shortened for readability. 166

Figure 3.2. Example TP File for Missing Packages. This TP file is

used to provide examples of how the package manager cannot know the

correct action to take when a TP file is missing. Public keys and hashes

are shortened for readability. 180

16

List of Tables

Table 2.1. Package-based configuration management files: This table

shows the different types of files managed by the package-based config-

uration management tools. The type of file and purpose in Stork are

described. 46

Table 2.2. Files hosted by Stork repositories: This table shows the

different types of files hosted by Stork repositories. The type of file,

purpose in Stork, and how the file is protected are described. In some

cases files are protected by the signature of a private key. In other cases,

the requester knows the secure hash of the file when requesting it and

can check that its contents match. In addition, the file may be treated as

immutable by the repository and so a non-malicious repository will not

overwrite it. Many of the files are placed together with the other files of

the same type in a single tarball. 58

Table 3.1. This table lists attacks, with a description and the theme of the

attack. The security themes are numbered (1) Don’t trust the reposi-

tory (2) The trusted entity with the most information should be the one

that signs (3) Prevent key misuse to prevent the installation of untrusted

packages. 121

List of Tables—Continued

17

Table 3.2. The usage information shows the average popularity of desktop

Linux distributions from multiple sources as reported by DistroWatch [25].

The server numbers are reported from Netcraft [52] (Cobalt numbers are

omitted because the distribution is not listed). Distributions without a

package installer listed typically use tar to unpack files but do not provide

the functionality found in package installers. 129

Table 3.3. This table lists attacks, a short description of the attack, and what

the attacker requires to launch an attack. The first three attacks require

only the ability to impersonate a repository. The next four attacks require

both the ability to impersonate a repository as well as the compromise the

entity’s key that is used to sign repository metadata. The last two attacks

require the ability to impersonate a repository, the repository metadata

key, and an entity’s key trusted to sign packages. 136

Table 3.4. This table lists attacks, a description of the attack and the result

of a successful attack. 146

Table 3.5. The correspondence between the examples and choice of how the

package manager handles missing TP files is shown. Each example is cor-

rectly handled by one of the ways to deal with missing TP files and wrong

in the others. The packages omitted or additional packages installed are

listed. 182

List of Tables—Continued

18

Table 4.1. Disk Used by Popular Packages. This table shows the disk

space required to install the 10 most popular packages installed by VMs on

a sampling of PlanetLab physical machines. The Standard column shows

how much per-VM space the package consumes if nothing is shared. The

Shared column shows how much per-VM space the package requires when

installed files are shared. 199

Table 4.2. Memory Used by Popular Packages. Packages that are

shared allow VMs to share process memory. The Standard column shows

how much memory is consumed by each process when nothing is shared.

With shared processes, the first process will consume the same amount as

the Standard column, but additional processes only require the amount

shown in the Shared column. 202

19

Abstract

Package managers are a common tool for installing, removing, and updating

software on modern computer systems. Unfortunately existing package managers

have two major problems. First, inadequate security leads to vulnerability to

attack. There are nine feasible attacks against modern package managers, many of

which are enabled by flaws in the underlying security architecture. Second, in

Virtual Machine (VM) environments such as Xen, VMWare, and VServers, different

VMs on the same physical machine are treated as separate systems by package

managers leading to redundant package downloads and installations.

This dissertation focuses on the design, development, and evaluation of a package

manager called Stork that does not have these problems. Stork provides a security

architecture that prevents the attacks other package managers are vulnerable to.

Stork also is efficient in VM environments and reduces redundant package

management actions. Stork is a real system that has been in use for four years and

has managed half a million VM instantiations.

20

Chapter 1

Introduction

There are many ways to manage software on modern computer systems. One of the

most popular is the use of a package manager [5, 6, 7, 63, 72, 76, 81, 90, 92]. A

package manager is a privileged program that manages the installation, update, and

removal of software on the system. Software that is meant to be managed by a

package manager is placed into an archive called a package. In addition to

containing software, packages also have package metadata that provides information

about the package, including the other packages on which this package depends to

function (called dependencies). Packages are made available via a server called a

package repository. Repositories are conceptually similar to web servers, except

their primary purpose is to serve packages instead of web pages.

Most package managers download files from the repository, resolve package

dependencies, and verify cryptographic signatures. Dependency resolution takes a

requested package and returns a list of packages that must be installed to have all

packages on the system have all of their dependent packages installed.

21

Cryptographic signatures are verified on a package or package metadata to detect

tampering by an attacker.

However, package managers are not a panacea. There are several aspects of package

management existing package managers do not handle well, including security and

VM environments. First this chapter discusses the problems security and VM

environments cause for package management. Then a package manager Stork is

presented which solves these problems. Following that the contributions of this

dissertation are outlined. Next, the importance and scope of the dissertation are

described. This chapter concludes with a map of the other chapters of the

dissertation.

22

1.1 Security

The first area in which existing package managers are lacking is security. There are

problems with cryptographic signatures, key revocation, delegation of trust, and

interactions with the repository.

Existing package managers do not handle cryptographic signatures well. Existing

package signatures require that the package is downloaded before the signature can

be verified. This means that the package metadata cannot be validated using the

package signature unless the package is downloaded. The only way to verify that all

of the package metadata on the repository is correct is to download all of the

packages. As a result, package metadata is not verified using the package signature.

This means that an attacker can create its own package metadata and package

signatures do not prevent this attack.

Some package managers use an alternative approach to signatures on packages.

Instead the package managers have the repository administrator sign the package

metadata. This means that if an attacker tampers with package metadata it will be

detected because the signature on the package metadata will not match.

Unfortunately this places a high degree of trust in the repository administrator.

This is problematic because the repository administrator is an intermediary and is

usually not the person that packaged the software. As a result, the repository

23

administrator is signing metadata for packages for which she has no first-hand

knowledge if the package is valid or has been tampered with. Each repository

usually holds many different packages from different sources. The repository

administrator signs package metadata for all of these sources. If the repository

administrator incorrectly signs package metadata then the repository

administrator’s key must be revoked. This removes trust in all package metadata

the repository administrator signed regardless of the source.

Further complicating the issue, it is common for a package or package metadata to

be signed and later the signer would like to revoke the signature. For example, if a

group releases a package and discovers a security hole, the group would like

administrators to only install the fixed version. Unfortunately, trust revocation is

not handled well in existing package managers. There is no mechanism to remove

the trust of individual packages, instead the key which signed the package must be

revoked. Furthermore, if a key is compromised, there is no automatic mechanism for

revoking the key. The revocation must be done manually or by overloading some

existing mechanism (such as installation of package that as part of the install

process revokes a key).

Another security problem is that trusting package signatures is typically a very

coarse-grained operation in which a key is either trusted or not. In other words, a

key is either trusted to sign anything or the key is not trusted. This is problematic

24

because administrators will use packages from different projects that are created by

different developers. Because trust is a coarse-grained operation a developer from

one project can sign packages from another project and the package manager will

trust the package. This allows an attacker that can compromise one project’s key to

use this to install malicious versions of packages for any project.

In addition there are implicit trust assumptions that negatively impact security.

Existing package managers implicitly trust the repository. Unfortunately, this allows

an attacker to be trusted if the attacker can intercept and alter traffic to and from

the repository.

25

1.2 Virtual Machines

Another area that is not handled well by modern package managers is

virtualization. Modern virtual machine (VM) environments such as Xen [8],

VMWare [83], and VServers [43, 45], can run multiple “operating system” virtual

machines on a single physical machine. This isolates VMs to provide the illusion

that different VMs on a single physical machine each run on their own physical

machine. Unfortunately this isolation leads to inefficient use of network bandwidth,

disk space, and memory by package managers.

First, VMs are treated by package managers as if the VMs are separate physical

machines. This means that when multiple VMs on the same physical machine

install a package, the package is downloaded multiple times. This wastes network

bandwidth due to the redundant download of packages from the repository.

Second, when a package is installed in different VMs on the same physical machine,

its files are stored separately on disk. This is inefficient because it consumes extra

disk space. In addition, some virtual machine monitors (VMMs) are able to share

memory between multiple instances of the same software. If there are separate

copies of the software running then the VMM is not able to share memory which

leads to increased memory usage.

26

1.3 Research Questions

The core contributions of this dissertation are:

• Building a real system for package management called Stork [15, 16, 51, 69, 76]

that solves the above problems. Stork does dependency resolution, supports

multiple transfer protocols, and has rudimentary package-based configuration

management facilities. Stork provides a complete solution to the problem of

package management and has clients that are VMs as well clients that are

normal systems. Stork is in everyday use — the main Stork repository serves

a package roughly once every 20 seconds. Stork is used daily by

administrators at about two dozen institutions. The package-based

configuration management utilities are used to manage VMs on hundreds of

failure prone, globally distributed, physical machines. Stork has been

leveraged as a building block in the construction of other services. Stork has

been used for 4 years and has managed half a million VM instantiations.

• A security architecture that avoids the security flaws in existing package

managers is presented. Vulnerabilities in existing package managers including

key revocation, escalation of privilege attacks, lack of appropriate metadata

protection, and repository trust are analyzed. Upon uncovering these

vulnerabilities, commonalities between vulnerabilities is discussed.

27

Unfortunately, many of the security problems in existing package managers are

architectural in nature so the security problems cannot be fixed with patches.

• This dissertation demonstrates the complexities and benefits of package

managers sharing packages between VMs. Two architectures are implemented

to demonstrate the effects of different architectures for sharing packages. One

architecture is built on the principle of keeping the implementation simple.

The other architecture is built to try to minimize the trusted code base. This

work illustrates the trade-offs presented by these techniques between ease of

implementation and security.

28

1.4 Importance

It is important to solve these problems in package management because the

underlying factors that caused these problems are increasing. VMs are becoming

more prevalent with all major desktop operating systems supporting operating

system virtualization. The number and complexity of attacks on the Internet is also

increasing which further underscores the importance of protecting software

installation mechanisms. These trends imply that if the problems with package

management are not addressed, the situation will continue to deteriorate.

29

1.5 Scope

Stork can be used for different types of clients including desktop systems and VM

environments. Stork also can be used to manage different security environments

including clients on an isolated LAN or clients on the Internet. This dissertation

evaluates Stork in two environments. To understand the effectiveness of sharing

packages in VM environments Stork is evaluated on PlanetLab [62]. PlanetLab is a

collection of research machines that provides operating system VMs to researchers.

To understand the security of Stork, this dissertation focuses on the security issues

likely to face clients connected to the Internet.

30

1.6 Map

The remainder of this dissertation is laid out as follows:

Chapter 2 discusses Stork, introducing the major components, the architecture, and

the features of Stork. Chapter 3 describes security issues in other package managers

and how security was provided in Stork. Chapter 4 discusses how to efficiently share

packages in VM environments. Chapter 5 concludes the paper and describes future

work. The appendix contains Chapter A which defines the terms used in this

dissertation.

31

Chapter 2

Stork

This chapter provides a description of Stork. First, some examples are provided to

demonstrate Stork’s feature set and show how Stork is used in practice

(Section 2.1). An overview of the different components of Stork is presented in

Section 2.2. Then follows a detailed description of the components that comprise

Stork: the package-based configuration management tools (Section 2.3), repository

(Section 2.4), client tools (Section 2.5), and nest (Section 2.6). These components

are described in sufficient detail to understand their function and purpose, however

the security and sharing aspects of these components are described in more detail in

Chapters 3 and 4. This chapter elaborates on the examples given in Section 2.1 to

demonstrate how the described functionality is provided (Section 2.7). Section 2.8

discussed related work and Section 2.9 concludes.

32

2.1 Examples

This section provides examples that demonstrate Stork’s feature set. These

examples are revisited in Section 2.7 to explain how the described functionality is

provided.

These examples describe scenarios involving clients that are managed by Stork.

There are two types of clients Stork manages: VMs and systems. The term VM is

used to describe a operating system virtual machine. The term system is used to

describe a computer that does not run VM software. The generic term client is used

to describe either a VM or a system. The examples in this section focus on systems.

How VMs perform similar actions is covered in Chapter 4.

The examples in this section can be viewed as either as separate examples of

independent actions or as one big example of how Stork works end-to-end. The first

examples describe an administrator that creates package instructions using a GUI

(Section 2.1.1) or command line tools (Section 2.1.2) to control the package actions

enacted by systems. After the administrator creates files containing the package

instructions, these files are uploaded to a Stork repository. A brief description of

how the repository handles uploaded files is described in Section 2.1.3 (with security

related details deferred to Chapter 3). The repository notifies clients that there is

new content on the repository (Section 2.1.4). The clients download updated

33

information from the repository to have a local and current copy of the repository’s

metadata (Section 2.1.5). Security concerns related to handling data retrieved from

the repository are deferred to Chapter 3. The next example (Section 2.1.6)

describes how a system uses the package instructions from the administrator to

decide which package actions to perform. The final four sections describe how

different package actions are performed. These sections provide examples of package

installation without dependencies (Section 2.1.7), package installation with

dependencies and different file types (Section 2.1.8), package removal

(Section 2.1.9), and package update (Section 2.1.10).

These smaller examples fit into an overall process. The end goal of this process is

for the administrator to change the packages installed on the systems she manages.

The steps are:

1. The administrator uses the GUI (Section 2.1.1) or the command-line tools

(Section 2.1.2) to perform package-based configuration management. This

process uploads files to the repository.

2. The repository makes the uploaded files available for download (Section 2.1.3).

3. The repository notifies the systems that updated files are available

(Section 2.1.4).

4. The systems receive the notification and download the updated files

34

(Section 2.1.5).

5. If the administrator’s package instructions pertain to the system, the package

instructions are enacted (Section 2.1.6).

6. Depending on the administrator’s package instructions, the systems may enact

package installation (Sections 2.1.7 and 2.1.8), removal (Section 2.1.9), or

update (Section 2.1.10).

2.1.1 GUI Package-based Configuration Management

Consider a system administrator that manages thousands of clients at several sites

around the globe. The system administrator has just finished testing a new security

release for a fictional package foobar. She decides to have all systems that are used

for testing update foobar. The administrator clicks on a GUI to add the package to

the “testing group” (explained later), then clicks to synchronize with the repository.

Within minutes all of the testing systems that are online have followed her package

instructions and have updated the foobar package. As an offline testing system

comes online, the system automatically updates its copy of foobar as instructed.

35

2.1.2 Command Line Package-based Configuration Management

A similar motivation with the same result as the previous example involves software

testing. To test software, a developer builds the software and then tests it on a

group of systems. To automate this process, whenever the developer builds the

software the software is automatically deployed to the systems she has been

allocated for testing.

2.1.3 Repository Uploads

Administrators need the ability to upload packages and other metadata such as

package instructions to a repository. In this example, an administrator uploads a

package and some metadata to a Stork package repository. The repository makes

the data available for download by the clients.

While this example focuses on a single administrator, mutually distrustful

administrators may securely share a Stork repository. This is described in

Chapter 3.

36

2.1.4 Pushing Repository Notifications

Clients must have current metadata from the repository to perform actions such as

installing a package or enacting the administrator’s package instructions. All Stork

clients that use a repository subscribe to a publish-subscribe channel for that

repository. Whenever the repository’s contents change, the repository pushes out a

file that describes the change using the publish-subscribe channel.

2.1.5 Selective Content Updates

A repository stores different types of files. There are packages, package metadata,

and several other types of metadata (described in detail later). Clients must have

updated metadata to follow package instructions. However, in addition to a client

knowing an update has occurred, it is helpful to know what type of metadata has

changed. A stork client can detect which type of metadata on the repository is

different from its local metadata and download only that type of metadata. This

helps to prevent clients from downloading extraneous information.

37

2.1.6 Enacting Package-based Configuration Management Instructions

A Stork client enacts the package instructions from the administrator.

Administrators may be selective with regards to which clients apply the package

instructions (for example, only installing a package on a subset of clients). Each

client uses the administrator’s package instructions to decide which of the package

instructions apply to it. The client then performs the package actions for those

package instructions.

2.1.7 Installing a Package

Suppose that an administrator wants to install a fictional package foobar on a

system. She is unsure what other software foobar may need to run. She requests

the installation of foobar and the necessary packages are downloaded from the

repository and installed.

2.1.8 Multiple Package Types and Dependencies

There are different package formats used by different package installers. For

example, RPM installs RPM packages and tar is used for tarballs. The package

38

formats are also distinctly different with tarballs being a simple archive of files and

RPMs having dependency information, an optional signature, and other information

about the package.

In different situations either tarballs or RPMs are more appropriate. For instance, if

a distributor is packaging a complex piece of software with multiple dependencies

for a wide variety of scenarios, the RPM format seems more appropriate than a

tarball. However, if an administrator wants to quickly and easily deploy a script to

all of the machines she manage, using a tarball seems more appropriate.

Stork supports multiple package types allowing a packager to choose the type of

package that is best suited for the software she is deploying. An administrator can

use RPMs for some tasks and tarballs for others and the packages are both managed

using Stork. As a result, Stork allows RPM dependencies to be met using tarballs

which provides better flexibility and functionality in dependency resolution.

2.1.9 Removing a Package

In addition to installing packages, an administrator may also remove packages using

Stork. This removes the software from the system cleanly.

39

2.1.10 Updating a Package

Installation adds a package if no version of the package exists. However, it is

common for an administrator to want to update the existing version of a package to

a newer version. Stork supports the update of packages to serve this purpose.

40

2.2 Component Overview

Stork consists of four main components:

• Configuration management tools for packaged-based configuration

management. These allow an administrator to control many clients

collectively, indicate trust in packages, and upload packages and metadata to

the repository.

• A repository that serves packages and metadata to clients. The repository is

designed so that administrators that do not trust each other can share a

repository.

• A set of client tools that are used in each client to manage its packages by

interacting either directly with the repository or through the nest.

• A nest that coordinates sharing between VMs. The nest avoids duplicate

downloads and shares packages between VMs on the same physical machine.

The package-based configuration management tools are used by an administrator to

control the packages installed on the administrator’s clients by creating package

instructions. The package-based configuration management tools are usually run on

the administrator’s desktop system (which may or may not be managed using

41

Stork) and allow the administrator to easily manage clients remotely. The

administrator can manage a collection of clients under her control using an

abstraction called a group. For example, an administrator can arrange some of her

clients into a group and then specify that a group should install a specific package.

This will cause all clients in that group to install the package. The package-based

configuration management tools create files that contain the package instructions

and describing what package actions a client should take. These files are made

available to the clients by uploading them to a package repository.

A Stork package repository hosts the package instructions that describe what

package actions a client should perform. A Stork package repository also hosts

packages, package metadata, and files that are used to indicate trust in packages

and entities. A Stork package repository is designed to host content from

administrators of different clients that may be mutually distrustful (described in

detail in Chapter 3). When information is uploaded to the repository, the repository

sends out a notification to the clients it serves using a publish-subscribe system.

Each client runs the client tools component of Stork. The client tools manage

packages and listen for notifications from the repository. Upon receiving a

notification the client updates the local copy of the repository metadata by

downloading any new metadata. If there are package instructions from the

administrator that manages this client, the client tools perform the requested

42

package action. An administrator can also manually manage packages on a client

using the client tools. Packages may be installed, removed, or updated. When a

package is installed or updated, the client tools decide which packages are needed to

meet the dependencies of the package requested by the administrator. These

packages are then downloaded and installed.

In some cases the clients are VMs on the same physical machine. In this case, the

nest runs on the physical machine and acts as a cache for downloaded files. When

the client tools want to download a file, the client tools do not contact the

repository directly. Instead the client tools ask the nest for the file. If the nest has

not downloaded the file, the nest downloads the file and places the file in a cache.

When a file that is requested is in the cache, the nest shares that file with the VM.

When the client tools install a package, the client tools ask the nest to unpack the

package and share the files in the package. This way, if client tools in another VM

install the same package, the files in the package are securely shared between the

VMs by the nest. The nest is described in detail in Chapter 4.

Figure 2.1 shows the different components in Stork. The leftmost administrator

uploads a package to a package repository. The middle administrator is uploading

files that have package instructions for the clients she manages. The rightmost

administrator is logged directly into a VM and is managing the VM using the client

tools. The repositories in the middle of the diagram notify the clients they serve of

43

baz.rpm

client
tools

baz.rpm

abc.tar.gz

client
tools

baz.rpm
zap.rpm

foo−1.0.rpm

abc.tar.gz client
tools

System X

VM B

Nest

VM A

VM

Physical Machine A

Administrators

Repositories

Clients

Disk

nest

ProgramsDisk Programs

cache

install bar
VM Bsystem X

remove zap

install xyz

foo−1.1.rpm

Figure 2.1. Stork Overview. Clients (bottom) install packages using the stork

client tools. A VM (bottom right) installs packages with the client tools in a shared

manner by using the nest on the same physical machine. Repositories (middle) host

the packages and metadata created by the administrators (top).

44

updated content by pushing out a message via a publish-subscribe system. The

clients at the bottom of the figure will download the updated information from the

repository. The client on the left is a system that is running the client tools and has

several packages installed. The client of the right hosts multiple VMs on its physical

machine. VM A and VM B have both installed a package baz.rpm through the nest

and so it is shared between both VMs. The nest has a cache that it uses to ensure

that duplicate downloads do not occur. The nest may either be in its own VM or

inside the VMM (this is explored in Chapter 4).

These components are now described in detail.

45

2.3 Configuration Management Tools

The package-based configuration management tools allow an administrator to

manage her clients without contacting the clients directly. Client management is

performed by the creation of different types of files (described in Section 2.3.1).

Package-based configuration management is done with the aid of an abstraction

called a group (Section 2.3.2). There are two files that contain the package

instructions used to manage groups of clients: groups.pacman (Section 2.3.3) and

packages.pacman (Section 2.3.4). These files are created by the tools for

package-based configuration management: the Stork GUI and the command line

tool storkutil. The GUI (Section 2.3.5) is mostly geared toward administrators

that want to quickly get up and running and don’t mind that some of the

functionality (and complexity) of Stork is hidden from them. storkutil

(Section 2.3.6) is meant to be used on the command line and is more appropriate for

scripts and power users.

2.3.1 Stork File Types

This section provides a quick overview of the types of files Stork uses. The majority

of these files can be created by the package-based configuration management tools.

Each type of file is covered in more detail in the section that describes the

46

File Type Purpose

Packages (RPM, tar.gz) The software to be installed on clients

Package Metadata Information about packages including dependencies

Public Key Used to verify the authenticity of signed files

Private Key Used to sign a file to testify to its authenticity

Master Configuration File Configuration file for the Stork client tools

Trusted Packages (TP) Specifies what packages and entities an administrator trusts

Pacman Groups Specifies which clients belong to which groups

Pacman Packages Specifies which packages the groups of clients should install

Table 2.1. Package-based configuration management files: This table shows

the different types of files managed by the package-based configuration management

tools. The type of file and purpose in Stork are described.

component that uses the file. An overview of this section is shown in Figure 2.1.

The packages (for example, the foobar.rpm) contain the software that may be

installed on the client. Stork supports packages in RPM and tarball format.

Package metadata describes a package. The client uses the package metadata to get

information about the available packages without downloading the packages.

Package metadata may include a list of URLs that point to the package. This allows

a Stork repository to support packages that are hosted on other servers.

An administrator’s public key is distributed to all of the clients she administers and

is used by the client tools. The corresponding private key is used by the

47

administrator to sign a file to testify to its authenticity. Each repository also has a

public key it gives to the clients that use the repository and a private key the

repository uses to sign metadata. By checking the signature of the downloaded

metadata, the client can verify that the file came from the repository. More

discussion about this can be found in Chapter 3.

The master configuration file is a configuration file used by the client tools. The

master configuration file is created by the administrator and used to control the

settings of the clients she manages. It indicates things such as the transfer method,

repository URLs, and types of packages to use.

The administrator’s trusted packages file (TP file) indicates which packages the

administrator considers to be candidates for installation. The TP file does not cause

those packages to be installed, but instead indicates trust that the packages have

valid contents and could be installed. For example, while the administrator was

testing the latest release of foobar she could add it to her trusted packages file.

Then the administrator could request the installation of the new version of foobar

on a testing client. However, this does not mean that other clients that the

administrator manages will install the new version of foobar. The administrator

must request that the new version of foobar be installed before foobar is installed.

There are two files that contain the package instructions that are used for

48

package-based configuration management: groups.pacman and packages.pacman.

These files are described in detail after a discussion about the underlying

abstraction, a group.

2.3.2 Groups

An important abstraction for managing clients is a group. A group is a logical

association of multiple clients defined by the administrator of those clients. The fact

that groups are purely a logical organization is very important: the clients in a

group do not need to be connected in any way and a single client can be a member

of multiple groups. Groups simplify configuration management by allowing package

operations to be specified on collections of clients.

There are three types of groups: simple, composite, and query result. Simple groups

allow administrators to manage a collection of clients as if the collection of clients

was a single client. One can declare that systems 1, 2, and 3 are part of group G

and then can say that package X should be installed on group G. This results in

systems 1, 2, and 3 installing package X. Simple groups can also specify that all

clients of a certain type or on a certain physical machine belong to a group. There

is no limit to the number of clients in a group.

Composite groups are created by performing an operation on existing groups. The

49

supported operations for composite groups are UNION, INTERSECT,

COMPLEMENT, and DIFFERENCE. Composite groups do not have clients

directly included. Instead, the clients in the group depend on the operation and the

membership of the other groups. For example, composite group H may be defined

as the UNION of group I and group J and will contain all of the clients appearing in

either group I or group J. Groups I and J can be any types of groups, including

composite groups.

Query result groups are computed based on some property of the clients. PlanetLab

is a major user base of Stork and therefore the management tools provide support

for building groups from the result of CoMon [59] queries. For example, a group

contains all physical machines with more than 1GB free disk space could be created

using the CoMon query select=’gbfree > 1’.

Query result groups are evaluated when the group is created. The list of machines

returned by the CoMon query is created as a simple group. This means that only

simple and composite groups are written to the underlying files.

2.3.3 groups.pacman

The groups.pacman file is the first part of the package instructions and defines

which clients belong to which groups. Simple groups can select clients based upon

50

different attributes. The NAME attribute selects clients by hostname. The SLICE

attribute selects VMs by VM name. Attributes accept wild cards so that

SLICE="ABC*" will select any VM whose name begins with ABC.

Composite groups are written with a tag that indicates the operation to be

performed and the other groups to use as arguments. Composite groups may not

select clients by attribute because individual clients cannot be added to a composite

group directly. The four types of composite groups are UNION, INTERSECT,

DIFFERENCE, and COMPLEMENT.

Figure 2.2 shows two simple groups Test and Production. Test contains all of the

clients that are on two physical machines. Production contains all VMs named

VM test. There is also a union composite group Both that contains the all clients in

either Test or Production.

2.3.4 packages.pacman

The packages.pacman file is the second part of the package instructions and

specifies what package actions the clients in a group should perform. The supported

package actions are to update, install, or remove packages. This allows

administrators to specify package instructions that will be carried out on groups of

clients. For example, the administrator may specify that a particular package

51

<GROUPS>

<GROUP NAME="Test">

<INCLUDE NAME="planetlab1.arizona.net"/>

<INCLUDE NAME="planetlab2.arizona.net"/>

</GROUP>

<GROUP NAME="Production">

<INCLUDE SLICE="VM_test"/>

</GROUP>

<UNION NAME="Both" GROUP1="Test" GROUP2="Production"/>

</GROUPS>

Figure 2.2. Example groups.pacman There are two simple groups Test and

Production and one composite group Both. Test contains all of the clients that

are on two physical machines. Production contains a VM named VM test. The

composite group Both contains the all clients either in Test or Production.

52

<PACKAGES>

<CONFIG GROUP="Both">

<INSTALL PACKAGE="emacs" VERSION="2.2"/>

<REMOVE PACKAGE="vi"/>

</CONFIG>

<CONFIG GROUP="Test">

<UPDATE PACKAGE="foobar"/>

</CONFIG>

<CONFIG>

<UPDATE PACKAGE = "firefox"/>

</CONFIG>

</PACKAGES>

Figure 2.3. Example packages.pacman VMs in the group Both will install emacs

version 2.2 and remove vi. VMs in the group Test will update foobar to the latest

version. All clients under the administrator’s control will update firefox.

should be installed on all VMs on a physical machine, while another package should

only be installed on clients used for a specific task (and thus in a specified group).

Figure 2.3 shows an example packages.pacman file. This file specifies package

instructions for the groups Both and Test. The final action does not specify a group

and is performed by any client using this file.

Using the files in Figures 2.2 and 2.3 as an example, if the client is a VM called

VM test and so is in the Production and Both groups, the client will install emacs

version 2.2, remove vi, and update firefox.

53

2.3.5 GUI

The GUI provides common package-based configuration management functionality.

This includes operations such as selecting groups of clients, requesting the

installation of packages on clients, and trusting new packages. The GUI also has

some features to better support administrators that manage VMs on PlanetLab.

The GUI doesn’t contain the actual code to do the cryptographic operations or

create files but instead calls functionality in storkutil.

When started, the GUI asks for a username and password that will be used to

authenticate with the repository, as well as the location of a private key (with

optional password). The private key is used to sign configuration files. The

corresponding public key is what the clients use to verify that the signatures on

downloaded configuration files are legitimate.

After the GUI verifies the repository login information and the validity of the

private key, the administrator can begin configuring her groups and the package

actions for those groups. The GUI retrieves the latest package instructions from the

repository and displays any groups and package actions that were previously

defined. The administrator can add a new group, by clicking on the “add group”

button and giving the group a name. Then the administrator may proceed to either

add clients to form a simple group or form a composite group by choosing an

54

operation and source groups.

In addition to creating, modifying, and deleting groups, an administrator may

define package actions for a group; that is, specify packages that should be installed,

updated, or removed for all clients in the group. To install or update a package, the

administrator may specify the name of the package and let the clients find a version

of the package that is trusted. Alternatively, the administrator may provide a local

copy of the package and then the GUI will add trust of this package to the

administrator’s TP file and upload the package to the repository.

If any changes are made in the GUI, an icon shows that the changed package

instructions must be uploaded to the repository for the changes to have effect. The

administrator can then sync with the repository, which means that the new package

instructions will be uploaded to the repository. If a new package has been added,

the administrator’s TP file and the package will also be uploaded.

In order to provide better support to administrators of VMs on PlanetLab [62], the

GUI interacts with PlanetLab’s central database. A PlanetLab administrator

accesses VMs in collections called slices. The GUI retrieves information about the

slices the administrator has access to and the public keys for each of these slices

from PlanetLab’s central database. When the administrator requests that a VM is

added to a slice, the GUI contacts PlanetLab’s central database to request the VM

55

addition. The GUI also sets the startscript (described in Section 2.5.5) to

bootstrap the client tools on the VMs. This allows an administrator to interact

solely with the Stork GUI once her PlanetLab account is enabled, rather than

needing to go back and forth between PlanetLab’s website and the Stork GUI.

2.3.6 storkutil

The command line tool storkutil also provides the functionality needed for

package-based configuration management of clients. storkutil is commonly

integrated into the build process of software to automate the creation of package

instructions.

Using storkutil also allows finer control over how actions are performed compared

with the GUI. For example, an administrator that uses the GUI and wants to add

packages has the individual packages added to her TP file. Administrators that use

storkutil may instead choose to delegate trust to other entities for sets of packages.

storkutil generates, signs, and updates the necessary files based upon the

administrator’s request. For example, to add a new group named EXAMPLE CLIENTS

with every VM on A.example.com:

storkutil pacgroups include EXAMPLE CLIENTS A.example.com

56

Then, to add more VMs to the same group:

storkutil pacgroups include EXAMPLE CLIENTS B.example.com

C.example.com D.example.com E.example.com

Finally, to say that all of the clients in the new group should install the package

foobar:

storkutil pacpackages group EXAMPLE CLIENTS install foobar

The command line tool storkutil takes care of updating the administrator’s files

as well as signing the files with the administrator’s private key. If the file does not

exist, storkutil creates it. The one thing that the GUI does that storkutil

doesn’t is upload the files to the repository. Uploading the files to the repository is

something that can be scripted with other tools, if desired (for example, using curl).

57

2.4 Repository

The basic purpose of a Stork repository is to receive uploaded files from

administrators and serve those files to clients. It is important to understand how

files are protected from tampering (Section 2.4.1), to understand how the repository

handles uploaded files (Section 2.4.2). A Stork repository also provides push-based

notifications (Section 2.4.3) and creates torrent files to support BitTorrent transfers

(Section 2.4.4).

2.4.1 Protecting Files

This section describes Stork’s security mechanisms for protecting files in enough

detail to understand how the repository handles uploaded files (protection is

revisited in Chapter 3). First, there is a description of how tampering is detected.

Then follows a discussion of a mechanism that allows any party (including the

repository) to detect tampering. This mechanism also disambiguates files with the

same name but different contents.

A Stork repository hosts different types of files that are protected and stored in

different ways (as Figure 2.2 shows). Stork uses several mechanisms to detect if an

attacker has tampered with files. The two basic mechanisms are public/private key

58

File Type Purpose Protection Tarball

Master Configuration File Configuration file for the Stork client tools Signed and Embedded

Public Key

Yes

Trusted Packages (TP) Specifies what packages and entities an admin-

istrator trusts

Signed and Embedded

Public Key

Yes

Pacman Groups Specifies which clients belong to which groups Signed and Embedded

Public Key

Yes

Pacman Packages Specifies which packages the groups of clients

should install

Signed and Embedded

Public Key

Yes

Packages (RPM, tar.gz) The packages to be installed on clients Embedded Secure Hash

and Immutable

No

Package Metadata Information about packages including depen-

dencies

Embedded Secure Hash

and Immutable

Yes

Root Repository Metadata Information about what content is on the

repository

Signed (Repository) No

Table 2.2. Files hosted by Stork repositories: This table shows the different

types of files hosted by Stork repositories. The type of file, purpose in Stork, and how

the file is protected are described. In some cases files are protected by the signature

of a private key. In other cases, the requester knows the secure hash of the file when

requesting it and can check that its contents match. In addition, the file may be

treated as immutable by the repository and so a non-malicious repository will not

overwrite it. Many of the files are placed together with the other files of the same

type in a single tarball.

59

pairs and secure hashes. Perhaps the easiest way to understand why different

protection mechanisms are needed is to look at two examples of types of files a

repository serves: a package and a groups.pacman file. A package is a file that does

not change. An administrator may upload newer versions (which are different files)

but the contents of an existing package do not change as a result. Since a package is

immutable, a secure hash is appropriate for protection. To see why, suppose there is

a client that knows the secure hash of the contents of a given package. If the client

tries to download that package one month later the client can know that the

package has not been tampered with by checking the secure hash. The secure hash

of a file that does not change serves as a way to verify the contents for all time.

In contrast, consider an administrator’s groups.pacman file. This file is updated by

the repository whenever an administrator changes the groups that clients belong to.

A client that knows the secure hash of the contents of an earlier version of the

groups.pacman file cannot use this information to validate a new version. This is

because the administrator’s groups.pacman changes, so the secure hash changes.

Instead of using a secure hash for protection, the administrator’s groups.pacman is

signed by the administrator’s private key. The clients can use the administrator’s

public key to check if the file has been tampered with. The rationale behind this

will be discussed in Chapter 3.

Signatures and secure hashes are useful to detect tampering. However they require

60

the party that wishes to check for tampering to know the secure hash or

corresponding public key. Stork embeds the secure hash or public key in the file

name or URL (as in self-certifying path names [48]). Embedding the secure hash or

public key in the file name or URL allows any party to check if a file has been

tampered with. This also allows a party to request files that can be verified using a

specific public key or files that have a specific secure hash. The ability to request a

file with a specific secure hash disambiguates files with the same name but different

contents.

Packages and package metadata are stored on a Stork repository at URLs

containing their secure hashes. These items are considered to be immutable. Any

party can verify that a file has not been tampered with by checking the secure hash

of the retrieved data. This allows a Stork repository to check that uploaded

packages and package metadata is valid. This is also used by the client to validate

that information retrieved from a Stork repository is correct.

Several files in Stork have public keys embedded in their names instead (including

the master configuration file, TP file, groups.pacman file, and packages.pacman

file). Using an embedded public key, a Stork repository can verify the file is

unmodified by checking that the file is correctly signed and that the public key in

the file name corresponds to the private key that signed the file.

61

Some files are not immutable and may be changed by the administrator.

Administrators may upload an updated file to a Stork repository and the file will be

included if it is correctly signed. Replaying outdated files is prevented by a

timestamp in the signed file.

More details about the protection of files in Stork is described in Chapter 3.

2.4.2 Handling Uploaded Data

A package repository’s main task is to serve files much like a normal web server. A

package repository differs from a web server in that it serves up packages and

metadata instead of web content. However, a Stork repository is also different from

other package repositories in the way it handles uploaded content. A Stork

repository is intended to host content uploaded by many different administrators.

These administrators need not cooperate or even trust each other not to be

malicious. Packages and metadata are accessed in a way that allows the repository

to be shared without implicitly trusting other administrators (described in detail in

Chapter 3). This leads to design differences with other package repositories

including how different types of uploaded data are handled.

It is important to note that a client does not rely on a package repository to

perform actions for its security. Even when the repository is malicious, a client has

62

strong security guarantees. However, the security and efficiency of a Stork client is

improved by a repository that is well-behaved. As with other security details, this is

deferred to Chapter 3.

Administrators may upload package metadata. The package metadata is placed in a

file named by the secure hash of contents of the package metadata. This is so that

any party that knows the file name of the package metadata can test the file for

tampering. This file is then archived in the tarball that contains the other package

metadata. This prevents clients from needing to download a separate small file for

the metadata of each package.

Administrators may also upload packages to a Stork repository. The package is

placed in a directory named by the secure hash of its contents, so that any party

that has the URL of the package can verify that the package has not been tampered

with. The package metadata is extracted from the package and is processed in the

same way as uploaded package metadata.

A Stork repository also allows administrators to upload other types of files. TP,

groups.pacman, packages.pacman, and master configuration files must be signed

before being uploaded. A Stork repository will only store a signed file for which the

secure hash in the filename matches the public key, the file’s signature is verifiable

by the public key, and the timestamp is newer than any existing signed file of the

63

same name. These checks improve efficiency and security and are described in more

detail in Chapter 3. After this file has been validated it is placed into a tarball with

the other files of the same type. This is also described in more detail in Chapter 3.

A Stork repository uses a file called the root repository metadata to indicate the

current repository state. The root repository metadata is signed by the repository’s

private key so that clients can authenticate that the root repository metadata came

from the repository. The root repository metadata consists of the secure hashes and

sizes of the tarballs that contain the other types of metadata. By downloading the

root repository metadata, a client can tell what content on the repository is new

and download only that content. This is described in more detail in Section 2.5.2.3.

The layout of the files on a Stork repository is shown in Figure 2.4. The root

repository metadata contains the locations, secure hashes, and sizes of the other

tarballs. The tarballs contain the TP files, package metadata, pacman files, and

master configuration files. TP files contain the secure hashes of the package

metadata. The package metadata contains the secure hash of the package itself.

More detail is provided about the protection of files in Chapter 3.

64

allow foo.rpm 3426ae...32

...

Joe’s signature
package
metadata
tarball

6c6870...a3
568214...f2

...

3426ae...32 filename:’foo.rpm’

size:’56242’

...
hash:’74b5a1...c3’

alpha VM_A VM_B

...

Joe’s signature

groups.pacman

alpha install foo.rpm
...

Joe’s signature

packages.pacman

...

pacman tarball

joe.d3...00.packages
joe.d3...00.groups
bob.5f...32.packages

Use BitTorrent, FTP

...

Joe’s signatureroot metadata file

fe83a4...04

a31487...c4

tarball secure hashsize

Repository signature

c302df...f8

df891e...0f
master config file

package metadata
TP files
pacman files

12110

1967258

38295
154773

TP tarball

...

joe.d3...00.tp
bob.5f...32.tp
sam.fc...1f.tp

TP file

package metadata

...

joe.d3...00.conf
bob.5f...32.conf
sam.fc...1f.conf

master config file tarball

master configuration file

package

zap−1.1.tar.gz

bar.1.0.rpm

foo.rpm

Figure 2.4. Files on a Stork Repository. This diagram represents the files on

a Stork repository. Arrows show the file that the secure hash corresponds to. The

contents of the files do not correspond literally to the contents of the actual files.

They are edited for clarity and space.

65

2.4.3 Pushing Notifications

A Stork repository notifies clients when the repository contents have changed. This

is done by pushing notifications through a publish/subscribe system [30]. In a

publish/subscribe system, a subscriber registers its interest in an event and is

subsequently notified of events generated by publishers. One such publish/subscribe

system is PsEPR [12]. The messaging infrastructure for PsEPR is built on a

collection of off-the-shelf instant messaging servers running on PlanetLab. PsEPR

publishes events (XML fragments) on channels that clients subscribe to. Behind the

scenes PsEPR uses overlay routing to route events among subscribers.

However, simply receiving a notification that content has changed does not address

the important question of what content has been changed. This is especially difficult

to address when clients may miss messages or suffer other failures. To provide

clients with information about what has changed, the repository pushes out the root

repository metadata. As is described in Section 2.5.2.3, this allows the client tools

to download only the updated tarballs.

66

2.4.4 Repository Support for Efficient Transfers

A Stork repository makes its packages and tarballs containing the metadata

available for download through HTTP. However, Stork also supports other transfer

types to allow an administrator to use the transfer protocol she prefers. Some

transfer mechanisms are simple for the repository to handle (like CoBlitz and Coral

which require no special handling) and others (like BitTorrent [22]) require

modifications.

To support BitTorrent downloads, a Stork repository runs a BitTorrent tracker and

a modified version of the btlaunchmany daemon provided by BitTorrent. The

btlaunchmany daemon monitors a directory for a new or updated package or

tarball. When a new file is uploaded to a Stork repository it is placed in the

monitored directory. The btlaunchmany daemon creates a torrent file and seeds the

new file. Unique naming is achieved by appending the secure hash of the seeded file

to the name of the torrent. The secure hash must be added because the tarballs do

not have the secure hash in the file name and the secure hash of package is in the

directory path, not the package itself. The torrent file is placed in a public location

on a Stork repository for subsequent download by the clients through HTTP. Once

a client has downloaded the torrent, the client may use BitTorrent to download the

file.

67

2.5 Client Tools

The purpose of the client tools is to manage packages, enact package actions based

upon package instructions, and listen for notifications from the repository. The

client tools can be run via administrator package instructions or be run manually by

an administrator.

The client tools are comprised of stork, pacman, and stork receive update. The

stork tool performs dependency resolution, downloads packages from the

repository, and installs, updates, and removes packages. pacman (not to be confused

with the package manager Pacman [7] for Arch Linux) is responsible for enacting

the package actions in the package instructions. stork receive update is

responsible for receiving notifications from a Stork repository pushed out over a

publish / subscribe system.

Before delving into the client tools, this section first describes an abstraction called

a functionality manager (Section 2.5.1). This is important to understand because

multiple components of the client tools (and the nest) use functionality managers.

Then follows a description of the stork tool (Section 2.5.2) and the functionality

managers stork uses to transfer files (Sections 2.5.2.3 and 2.5.2.4) and manage

packages (Sections 2.5.2.5 and 2.5.2.6). The description of the client tools continues

with pacman (Section 2.5.3) and stork receive update (Section 2.5.4). This

68

section concludes with a discussion of PlanetLab specific functionality that is used

to bootstrap the client tools (Section 2.5.5).

2.5.1 Functionality Managers

Stork uses an abstraction called a functionality manager to provide extensibility.

The purpose of a functionality manager is to hide the complexity of how something

is done and instead have the programmer specify what the result should be.

Functionality managers hide the complexity inherent in the multiple ways of

performing an action (for example, multiple transfer methods for file retrieval). This

means the functionality manager also must decide which way to perform an action.

The different ways an action can be performed are implemented by specialized

plug-ins.

For example, the transfer functionality manager may be called to download a file.

The configuration options specify the preference of which specialized plug-in should

be used by the functionality manager to perform the download. The specialized

plug-in that was chosen may use the transfer protocol BitTorrent to download the

file, for example.

Functionality managers leverage specialized plug-ins for low-level functionality.

However, a functionality manager can provide more complex functionality to the

69

rest of the system than is provided by the specialized plug-ins it accesses. For

example, the “package” functionality manager performs dependency resolution by

requesting individual package information from the package specialized plug-ins.

The package functionality manager decides which packages should be used to satisfy

a dependency, resolves unmet dependencies of these packages, and detects conflicts.

Since the package functionality manager performs dependency resolution, files in

tarballs can be used to fulfill RPM file dependencies even though tarballs and

RPMs are handled by separate specialized plug-ins. Handling dependency resolution

within the functionality manager instead of individually in each specialized plug-in

provides better interoperability among specialized plug-ins.

Functionality managers can handle failures. They detect and recover from

specialized plug-in failures whenever possible. When a failure occurs in a specialized

plug-in, the functionality manager utilizes other appropriate specialized plug-ins to

retry the operation.

The failure handling ability of a functionality manager is useful for supporting

third-party specialized plug-ins. Many of the specialized plug-ins Stork uses access

prototypes created by other researchers. The research prototype code is more likely

to have faults than popular commercial code [16]. A functionality manager’s failure

handling prevents prototype failures in a specialized plug-in from negatively

impacting the administrators using Stork.

70

A specialized plug-in performs an action in a specific way. For example, there are

transfer specialized plug-ins for BitTorrent, CoBlitz, and even for nest

communication. The upper level interface for each specialized plug-in is uniform

and implements only a few simple methods. For example, the transfer interface

implements four methods: init transfer program(), close transfer program(),

retrieve files(), and transfer name(). The init and close methods are called

before the specialized plug-in is used the first time and after the specialized plug-in

is used the last time, respectively. The transfer name() method returns a string

containing the name of the transfer protocol. The retrieve files() method does

the retrieval in a way specific to the underlying protocol the specialized plug-in

implements.

The functionality managers that Stork uses are:

Transfer The transfer functionality manager is used by stork, pacman, and the

nest to download files. The transfer specialized plug-ins implement a protocol for

retrieving data. Transfer specialized plug-ins are responsible for retrieving a

particular object given a URL for that object. There are specialized plug-ins that

support transfer types including CoBlitz [57], BitTorrent [22], Coral [33], HTTP,

HTTPS, FTP, and transfers through the nest. This functionality manager is

described in detail in Section 2.5.2.3.

71

Package The package functionality manager manages packages on a client. This is

used by stork to install, remove, and update packages as well as query information

about installed packages and perform dependency resolution. Different specialized

plug-ins understand different package types or perform actions in different ways.

There are package specialized plug-ins that install RPM and tar package formats in

an unshared manner and RPMs in a shared manner. These are described in

Section 2.5.2.5 and revisited in Chapters 3 and 4.

Share The share functionality manager shares files between VMs on the same

physical machine. It is used by the nest to share between clients. Share specialized

plug-ins are implemented for different architectures that share files in different ways.

These specialized plug-ins protect files from modification, map content between

VMs, and authenticate client VMs. Currently Stork supports share specialized

plug-ins for PlanetLab and Linux VServers. This functionality manager is described

in detail in Section 4.7.1.

Prepare The prepare functionality manager is used by the nest to unpack packages

without installing them. A package is unpacked without installation when it is

being “prepared” for sharing with VMs. A prepare specialized plug-in is specific to

a package type, similar to a package specialized plug-in. A prepare specialized

plug-in differs from a package specialized plug-in in that package install scripts are

not run and databases that track installed packages are not updated. This is

72

because the package is not installed in the nest, it is unpacked only to share the files

within. There only exists one specialized plug-in for this functionality manager and

it unpacks RPMs. Sharing tarball packages could be supported but is not at this

time. RPM sharing was implemented before tarball sharing because RPMs are used

in 89% of the packages installed by multiple administrators. The prepare

functionality manager is described in more detail in Section 4.7.3.

2.5.2 stork

This section describes the stork package manager. stork can be run from the

command-line by an administrator. The syntax of stork is similar to apt [5] and

yum [92]. stork is a package manager that enacts package actions securely.

Section 2.5.2.1 describes the master configuration file used by stork. Section 2.5.2.2

discusses the overall process of how package installation, update, and removal work

at a high level. The steps used are dependency resolution and trust verification

(described in detail in Chapter 3), data transfer by the transfer functionality

manager (Sections 2.5.2.3 and 2.5.2.4), and package actions by the package

functionality manager (Sections 2.5.2.5 and 2.5.2.6).

73

Lots of logging

veryverbose

noplckeys

bittorrenttrackerhost=stork-repository.cs.arizona.edu

bittorrenttrackerport=6880

bittorrentuploadrate=0

bittorrentseedlookuptimeout=30

repositorypackagedir = *_packages_*

repositorypackageinfo = stork-repository.cs.arizona.edu/packageinfo

tagprefrules=%ARCH%<PlanetLabV4<PlanetLabV3

username = exampleadministrator

publickeyfile = /usr/local/stork/var/keys/default.publickey

packagemanagers = nestrpm, rpm, tar

transfermethod= nest,bittorrent,coblitz,coral,http,ftp

nestport=648

Figure 2.5. Example master configuration file. This file is an example master

configuration file for the stork client tools. All of the client tools (pacman, stork, and

stork receive update) use the same configuration file. The options specified here

do things like set up BitTorrent, change the verbosity level, choose the repository, and

choose the transfer methods and package types that are supported. The signature is

removed for clarity.

74

2.5.2.1 Master Configuration File The behavior of stork is in large part controlled

by the master configuration file. The master configuration file contains the

configuration settings for stork, pacman, and stork receive update. One of the

main reasons a single configuration file is used by different tools is so that the

common functionality used by the client tools has the same settings. For example,

the transfer functionality manager’s preferences for transfer protocol should be used

by all of the client tools that transfer files.

Figure 2.5 shows an example master configuration file. The options determine the

repository to use, the verbosity of output, and the transfer protocol to use (among

other things). The functionality managers use the options specified in the master

configuration file to determine which specialized plug-ins to try first. The example

master configuration file shows the transfermethod option set to nest, bittorrent,

coblitz, coral, http, ftp. This is the order in which the transfer functionality

manager uses these specialized plug-ins.

2.5.2.2 Package Actions stork installs, updates, and removes packages

(collectively these are called package actions). To perform package actions, stork

begins by reading the master configuration file and updating metadata from the

package repositories. If there is a new master configuration file after the client

updates the metadata from the package repository, stork repeats this process.

75

stork obtains a consistent set of metadata by building a customized repository view

(described in Chapter 3). Once stork has current and consistent package metadata,

TP files, and a master configuration file, stork has the necessary information to

perform package actions.

Install: stork performs several steps to install a package. Installation of a package

involves dependency resolution, trust verification, download, and installation.

The first step is dependency resolution. This involves finding a set of packages to

install so that that every package has all of its dependencies fulfilled. Dependency

resolution is performed by the package functionality manager, which is described in

Section 2.5.2.5.

The process of resolving dependencies is intertwined with trust verification.

Candidate packages that are not trusted will be dismissed from consideration. Trust

is specified through the use of a trusted packages (TP) file. Figure 2.6 shows an

example TP file. This file specifically allows emacs-2.2-5.i386.rpm, several

versions of foobar, and customapp-1.0.tar.gz to be installed. Each package listed

in the TP file includes the hash of the package metadata for the package. Only a

package whose metadata matches the secure hash of a line in the TP file can be

installed. The TP file trusts the stork entity to know the validity of any packages

that start with “stork” or “arizona”. The TP file also trusts the planetlab-v4

76

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>

<TRUSTEDPACKAGES>

<!-- Trust some packages that the administrator specifically allows -->

<FILE PATTERN="emacs-2.2-5.i386.rpm" HASH="aed...732" ACTION="ALLOW"/>

<FILE PATTERN="foobar.rpm" HASH="16b...470" ACTION="ALLOW"/>

<FILE PATTERN="foobar.rpm" HASH="394...7fd" ACTION="ALLOW"/>

<FILE PATTERN="customapp-1.0.tar.gz" HASH="234...341" ACTION="ALLOW"/>

<!-- Allowing the ’stork’ entity lets stork packages be installed -->

<USER PATTERN="stork*,arizona*" USERNAME="stork" PUBLICKEY="RFw...eS" ACTION="ALLOW"/>

<!-- Allow access to the planetlab Fedora Core 4 packages -->

<USER PATTERN="*" USERNAME="planetlab-v4" PUBLICKEY="MAw...AQ" ACTION="ALLOW"/>

</TRUSTEDPACKAGES>

Figure 2.6. Example TP File. This file specifies what packages and entities are

trusted. Only packages allowed by a TP file may be installed. FILE actions are used

to trust individual packages. USER actions allow hierarchical trust by specifying a

entity whose TP file is included. Keys and hashes are shortened for readability. The

signature is contained in an XML layer that encapsulates this file and is not shown.

77

entity to know the validity of any package (this entity has a list of hashes of all of

the Fedora Core 4 packages). More information about how TP files provide security

in package management can be found in Chapter 3.

Once satisfactory trusted candidates have been found to resolve all of the

dependencies, stork downloads the packages from a repository. Downloading is

done by the transfer functionality manager described in Section 2.5.2.3.

After the packages are downloaded, the packages are installed using the package

functionality manager described in Section 2.5.2.5. The packages must be installed

in a specific order if there are dependencies. If package A has a dependency on

package B, then package B must be installed before package A. This is important

for two reasons. First, if package installation fails it leaves the packages on the

client in a state in which there are no installed packages with unresolved

dependencies. Second, package A may have an install script that runs a program

that may need package B to be installed to work correctly.

Remove: Package removal is much less complex than installation. Before removing

a package, the package functionality manager first checks to see if other packages

depend upon the package to be removed. If there are dependencies that would be

broken by removal of the package, then stork reports the conflict and exits. stork

removes an installed package by deleting the package’s files and running the

78

uninstall scripts for the package.

Update: Updating replaces an existing package with the preferred version (usually

the most recent). If the package is not installed, update operates identically to

installation. If the package is already the preferred version, then update reports this

and exits. A package is updated to a preferred version by a process identical to

installation until the step when the package installation is set to occur. At that

time, the existing version is removed and the preferred version is installed (with the

appropriate uninstall and install scripts executing). This updates the existing

package with the preferred version.

2.5.2.3 Transfer Functionality Manager The transfer functionality manager

downloads files from a Stork repository. The transfer functionality manager hides

the complexity of different transfer protocols. It automatically fails over to other

transfer protocols when failures occur. The transfer functionality manager also

provides a function to synchronize the files in a directory on the repository with a

directory on the client. This means that any file on the repository that differs from

the client’s version will be downloaded. This functionality is provided in the transfer

functionality manager using the file transfer interface provided by a transfer

specialized plug-in.

Each transfer specialized plug-in implements a retrieve files function that takes

79

several parameters including the name of the repository, source directory on the

repository, a list of files, and a target directory to place the files in. A successful call

to retrieve files returns a list of the files that were successfully retrieved. An

exception is thrown when a failure occurs. The exception indicates which files the

specialized plug-in has correctly retrieved and which have failed.

The order of preference of transfer specialized plug-ins is specified via an ordered

list in the master configuration file. The transfer functionality manager always

starts by trying the first transfer specialized plug-in in the list. If this transfer

specialized plug-in should fail or return an invalid file, then the transfer

functionality manager moves on to the next transfer specialized plug-in in the list.

The result is that the transfer functionality manager downloads files using the

preferred transfer specialized plug-in in the common case, and fails over to other

specialized plug-ins when necessary.

In addition to retrieving files, the transfer functionality manager builds upon the

transfer specialized plug-ins to support the synchronization of entire directories.

Directory synchronization mirrors a directory hierarchy from the repository to the

client. The directory synchronization functionality is used by the client tools to

obtain all of the metadata tarballs from the repository.

To synchronize the metadata tarballs, the arizonatransfer functionality manager

80

obtains the current root repository metadata (the file that the repository publishes

periodically using PsEPR). The root repository metadata contains a list of the

metadata tarballs that comprise the repository’s current state and the secure hashes

and sizes of those tarballs. The arizonatransfer functionality manager compares

the secure hashes in the root repository metadata file to those of the most recent

copies of these tarballs on disk. If a secure hash does not match, then the tarball is

downloaded using a transfer specialized plug-in.

2.5.2.4 Transfer Specialized Plug-ins There are seven transfer specialized plug-ins:

CoBlitz [58], BitTorrent [22], Coral [33] HTTP, FTP, HTTPS, and nest. The first

six transfer specialized plug-ins communicate with the repository to retrieve data

and are described below. The nest specialized plug-in is used by VMs and

communicates with the nest instead. If the nest has already transferred a file, the

file is shared with the VM instead of being downloaded again. The nest specialized

plug-in is described in Chapter 4.

CoBlitz The CoBlitz specialized plug-in retrieves files using CoBlitz. CoBlitz uses

a content distribution network (CDN) called CoDeeN [85] to support large files

transfers without modifying the client or server. Each system in the CDN runs a

service that is responsible for splitting large files into chunks and reassembling

them. This approach not only reduces infrastructure and the need for resource

81

provisioning between services, but can also improve reliability by leveraging the

stability of the existing CDN. CoBlitz demonstrates that this approach can be

implemented at low cost, and provides efficient transfers even under heavy load.

Coral The Coral specialized plug-in uses the Coral peer-to-peer content distribution

network that consists of volunteer sites that run CoralCDN. The CoralCDN sites

automatically replicate content as a side effect of accessing it. A file is retrieved via

CoralCDN simply by making a small change to the hostname in an object’s URL.

Then a peer-to-peer DNS layer transparently redirects browsers to nearby

participating cache systems, which in turn cooperate to minimize load on the origin

web server. One of the system’s key goals is to avoid creating hot spots. It achieves

this through Coral [33], a latency-optimized hierarchical indexing infrastructure

based on a novel abstraction called a distributed sloppy hash table (DSHT).

BitTorrent The BitTorrent specialized plug-in uses BitTorrent to retrieve files.

BitTorrent identifies content by URL and is designed to integrate seamlessly with

the web. Its advantage over HTTP is that systems that download the same file

simultaneously also upload portions of the file to each other. This greatly reduces

the load on the server and increases scalability. Nodes that upload portions of a file

are called seeds. BitTorrent employs a tracker process to track which portions each

seed has and helps a client locate seeds with the portions it needs. BitTorrent

balances seed loads by having its clients preferentially retrieve unpopular portions,

82

thus creating new seeds for those portions.

HTTP, HTTPS, and FTP The HTTP, HTTPS, and FTP specialized plug-ins

communicate using the popular web protocols.

nest A VM may download files using a shared component called the nest. This is

described in Chapter 4.

2.5.2.5 Package Functionality Manager The package functionality manager

performs operations on packages while hiding the differences between package types.

The package functionality manager also implements dependency resolution.

Dependency resolution is necessary because a requested package must have its

dependencies resolved before it can be installed. Dependencies exist because a

package relies on functionality in other packages. For example, consider the

installation of the foobar package. Suppose foobar depends on the installation of a

few other packages, such as openssl and glibc, to operate correctly. In order to

install foobar, the stork tool must determine whether openssl and glibc are

already installed on the client and if not, locate candidate versions that satisfy the

dependencies. The candidate versions of those packages may themselves have

dependencies that must be installed. Those dependencies are resolved in the same

way as the dependencies for the requested package until either all dependencies are

83

met or it is determined that there is a dependency that cannot be met. Dependency

resolution has security implications and is described in more detail in Chapter 3.

2.5.2.6 Package Specialized Plug-ins This section describes the different package

specialized plug-ins used by Stork. There are two plug-ins that install packages in

an unshared manner that are described below. The plug-in that installs packages in

a shared manner is described in Chapter 4.

stork rpm. Stork uses the rpm tool to install RPM packages. The RPM database is

maintained internally by the rpm package installer, and Stork’s RPM package

specialized plug-in uses rpm to query the package database and to execute the

install, update, and remove package actions. All of the scripts that run when

packages are added or removed are run by rpm itself.

stork tar. Tar packages are treated differently because Linux does not maintain a

database of installed tar packages, nor is there a provision in tar packages for

executing install and uninstall scripts. The stork tar specialized plug-in allows

administrators to bundle four scripts, .preinstall, .postinstall, .preremove,

.postremove that are executed at the appropriate times during package installation

and removal. To support querying existing packages and removing packages,

stork tar maintains a package database that contains the names and versions of

the tar packages that are installed. This package database mimics the RPM

84

database provided by the rpm tool.

2.5.3 pacman

The second component of the client tools is pacman. pacman runs in the client and

supports package-based configuration management. pacman enacts the changes on

the client that the administrator requested using the package instructions. pacman

does this through the following steps:

1. pacman uses the transfer functionality manager to update the metadata

tarballs from the repository.

2. pacman uses the groups.pacman and packages.pacman files that contain the

administrator’s package instructions. The groups.pacman file is used to

decide which groups this client belongs to. The packages.pacman file is used

to define what package actions the clients in each group should take.

3. In order to enact the requested package actions, pacman calls stork.

When pacman receives a groups.pacman file, it processes the file to determine which

groups the client belongs to. Once pacman determines which groups the client

belongs to, pacman then looks at the packages.pacman file to determine what

package actions it should perform on the client.

85

The packages.pacman file specifies which package actions should be performed on a

specific group. This makes it easy, for example, to specify that a particular package

should be installed on all VMs on a physical machine, while another package should

only be installed on clients used for a specific task (and thus was placed in a

specified group by the administrator). Once pacman determines the groups the

client is in, pacman performs the package actions specified for those groups in the

packages.pacman file. If there are contradictory actions (such as a client is asked to

install and remove the same package), the client logs an error and ignores the

actions on that package.

Although pacman can be run manually, typically it is run by stork receive update

in response to an update of the root repository metadata. A change to the root

repository metadata indicates that the repository contents have changed which in

turn may change the packages.pacman and groups.pacman.

2.5.4 stork receive update

The third and final component of the client tools is the stork receive update

daemon. The stork receive update daemon runs on each client and keeps the

root repository metadata up-to-date for each Stork repository used by the client.

The root repository metadata is received from a Stork repository using both

86

pushing by the repository and downloading from the repository. A pushed message

is received from a publish/subscribe system, PsEPR [12]. A Stork repository will

push a root repository metadata with a new timestamp every two minutes even if

no new data is available to notify clients that the repository is alive and PsEPR is

working. This file is received by the stork receive update daemon. If

stork receive update doesn’t receive a root repository metadata file within a five

minute period, it downloads the root repository metadata file from the repository.

Whenever a secure hash of a tarball listed in the root repository metadata file is

changed, stork receive update runs pacman. This is because if a repository

tarball has changed there is a change to the packages.pacman, groups.pacman, TP

files, or package metadata. A change to any of these may mean that pacman must

make a change to the locally installed files.

2.5.5 Bootstrapping on PlanetLab

New VMs on PlanetLab do not have the Stork client tools installed and so do not

run pacman or stork receive update and thus cannot automatically enact package

instructions. Administrators that use VMs on PlanetLab create groups of VMs in a

collection called a slice. Slices are often short-lived and span many physical

machines, so requiring the administrator to log in and install the Stork client tools

87

on every VM in a slice is impractical.

Stork makes use of a special script called the startscript to automatically install

the Stork client tools in all of the VMs in a slice. The startscript is an attribute

that is set on a slice and is distributed by PlanetLab’s central database to the

VMM. The startscript for a VM is run whenever the VM is instantiated. The

startscript is also run on existing VMs whenever the attribute changes. The

Stork startscript communicates with the nest on the physical machine and asks

the nest to share the Stork client tools with it. If the nest process is not working,

the startscript instead retrieves the relevant RPMs securely from the main Stork

repository.

Some administrators also wanted the ability to easily turn off Stork updates while

running experiments. To provide this functionality a stopscript was added. The

stopscript stops the stork receive update daemon which prevents updates.

stork receive update can be restarted by setting the slice to run the startscript

again.

Another complication for the VMs in a PlanetLab slice is the distribution of the

administrator’s public key. pacman and stork require the public key of a controlling

administrator for authentication. Rather than leave the key distribution to the

administrator, Stork leverages PlanetLab’s access control infrastructure to

88

distribute keys. Every PlanetLab administrator that can log into a slice must

upload a SSH public key to PlanetLab Central. These keys are distributed securely

by PlanetLab Central to all of the VMMs to control login for slices. Stork uses

PlanetLab’s SSH login keys for signing and authenticating files. This prevents an

administrator from needing to manually distribute her public key.

89

2.6 Nest

This section briefly describes the nest to demonstrate how it fits into Stork as a

whole. Since the main purpose of the nest is to share files, the majority of the

description and discussion about the nest is in Chapter 4.

The Stork nest enables sharing between VMs on the same physical machine. The

nest improves efficiency in package management by VMs by two mechanisms. First,

the nest operates as a shared cache for VMs, allowing metadata and packages to be

downloaded once and used by many VMs. Second, the nest performs package

installation on behalf of the VMs, securely sharing read-only package files between

multiple VMs that install the package. The nest functionality is implemented by the

stork nest daemon.

2.6.1 stork nest

The stork nest daemon is responsible for maintaining connections with its client

VMs and processing requests that arrive over those connections (typically via a

socket, although this is configurable). A client must first authenticate itself to the

stork nest. The authentication persists for as long as the connection is established.

Once authenticated, the daemon then fields requests for file transfer and sharing.

90

The nest retrieves files using the transfer functionality manager. Before a file

transfer is initiated, the nest checks a cache to see if the nest has already

downloaded the requested file. If so, the file is shared with the client instead of

being downloaded again. Sharing files from the nest’s cache is performed using the

share functionality manager as described in Section 4.7.1.

The share functionality manager is also used to share packages between VMs.

Packages are unpacked (but not installed) in the nest and the package files are

securely shared with the requesting VMs. Unpacking the files in a package is done

using the prepare functionality manager described in more detail in Section 4.7.3.

Typically, a single instance of the stork nest runs on each physical machine that

supports VMs and serves all of the VMs on that physical machine. However, if no

nest is running or the nest process fails, the nest transfer specialized plug-in will fail

to transfer files. In this case, the transfer manager will fail over to the next highest

priority transfer specialized plug-in. Similarly, when installing shared packages using

the package functionality manager if a failure occurs in the nest package specialized

plug-in, the package will be installed without being shared.

91

2.7 Example Walkthroughs

Now that the different components of Stork have been explained in detail, the

examples from Section 2.1 are revisited. The steps that are performed by different

components are described. This is provided to clarify the interactions of

components and demonstrate how the actions by individual components work

toward the overall result.

The examples that were described fit into an overall process. The end goal of this

process is the administrator changes the packages installed on the systems she

manages. The steps are:

1. The administrator uses the GUI (Section 2.7.1) or the command-line tools

(Section 2.7.2) to perform package-based configuration management. This

process uploads files that contain the package instructions to the repository.

2. The repository makes the uploaded files available for download (Section 2.7.3).

3. The repository notifies the systems that updated files are available

(Section 2.7.4).

4. The systems receive the notification and download the updated files

(Section 2.7.5).

92

5. If the administrator’s package instructions pertain to the system, the package

instructions are enacted (Section 2.7.6).

6. Depending on the administrator’s package instructions, the systems may enact

different package actions including: package installation (Sections 2.7.7 and

2.7.8), removal (Section 2.7.9), or update (Section 2.7.10).

Some of the walkthroughs omit failure handling steps to avoid clutter. However, it

is important to remember that there are steps that may differ if failures occur or

different master configuration file options are used. For example, in some cases

there will be clients that do not receive a PsEPR notification. This could occur

because PsEPR failed to deliver the message or perhaps because the client is down.

If PsEPR fails then stork receive update checks for updates every 5 minutes. If

the client was down then when it restarts pacman will run. Either way pacman will

start and obtain new root repository metadata. Regardless of how pacman is run,

the client will perform the same steps from that point onward.

2.7.1 GUI Package-based Configuration Management

Summary: An administrator wants to update a package foobar on systems that are

used for testing. Assume that the group Test already exists but that foobar has

93

not been uploaded or added to the administrator’s TP file. The administrator uses

the GUI to perform package-based configuration management.

1. The administrator clicks on the packages area next to the Test group and

chooses the package action “update”. Next to the package field, the

administrator clicks “browse” and selects foobar.

2. The administrator clicks to synchronize with the repository.

3. The GUI calls storkutil to update the packages.pacman file. storkutil

then signs the administrator’s packages.pacman file using the administrator’s

private key.

4. The GUI calls storkutil to update the administrator’s TP file to trust

foobar. storkutil then signs the file using the administrator’s private key.

5. The GUI authenticates with the repository using the administrator’s

credentials and uploads the administrator’s packages.pacman file, TP file,

and foobar.

2.7.2 Command Line Package-based Configuration Management

Summary: An administrator wants to deploy code automatically as part of a build

process. The administrator has already assigned clients to a group Test and wants

94

the package she builds added to the clients in the Test group.

An example of how this may be done is in Figure 2.7. This script creates a package

with the administrator’s code. The package is added to the TP file and the

packages.pacman file is changed so that the clients will update the package. The

files are then uploaded to the repository. This is identical in end result to the

walkthrough in the previous section in which the administrator used the GUI.

2.7.3 Repository Uploads

Summary: An administrator uploads files to a repository. In this walkthrough an

administrator uploads foobar.rpm, a TP file, and a packages.pacman file to the

repository. Each file upload is treated as a separate action by the repository.

1. The administrator authenticates with the repository.

2. The administrator uploads foobar.rpm to the Stork repository.

3. The repository places foobar.rpm in a directory named by the secure hash of

the package contents. foobar.rpm is now available for download from that

location.

4. The repository extracts the package metadata from foobar.rpm and stores it

in a file whose name is the secure hash of the contents.

95

Build and package the code into foobar.rpm

...

Add the package to the administrators TP file.

storkutil addfile foobar.rpm

Instruct the clients in the Test group to update the package

storkutil pacpackages group Test update foobar.rpm

upload the package, TP file, and packages.pacman file

...

Figure 2.7. Example build script using storkutil. This script builds a package

containing an administrator’s program, adds the package to the administrator’s TP

file, and instructs the Test group to update the package. The upload can be done

using curl or other tools but is not shown for brevity.

96

5. The repository updates the package metadata tarball to include the new

package metadata file that was extracted from foobar.rpm.

6. The repository updates the root repository metadata to have the new file size

and secure hash of the package metadata tarball. The new root repository

metadata is signed using the repository’s private key.

7. The repository pushes out the new root repository metadata via PsEPR.

The administrator now uploads the TP file. There is no need to re-authenticate

because the session is still active.

1. The administrator uploads the TP file to the Stork repository.

2. The signature on the TP file is verified using the administrator’s public key

that is embedded in the file name. The new file replaces the existing file if the

signature is valid and the timestamp is newer.

3. The repository updates the tarball on the repository that contains the TP files

to include the new TP file.

4. The repository updates the root repository metadata to include the new file

size and secure hash of the TP tarball. The new root repository metadata is

signed using the repository’s private key.

97

5. The repository pushes out the new root repository metadata via PsEPR.

The handling of the packages.pacman file is similar to the handling of the TP file

except that the packages.pacman file is added to the pacman tarball on the

repository instead of the TP tarball.

2.7.4 Pushing Repository Notifications

Summary: A repository has new content and pushes a notification to clients.

1. A Stork repository has updated content and as a result has created a new root

repository metadata file. The repository signs the root repository metadata.

2. The repository uses the publish/subscribe system PsEPR to push out the new

root repository metadata to the clients.

3. The clients are running stork receive update and therefore obtain the new

root repository metadata pushed out over PsEPR.

4. The stork receive update daemon wakes up the pacman daemon.

pacman is now ready to download the updated repository metadata.

98

2.7.5 Selective Content Updates

Summary: A client receives a PsEPR notification from the repository and

downloads only the changed metadata tarballs. This walkthrough assumes that the

TP file, pacman, and package metadata tarballs have changed and the master

configuration file tarball is the same as the version on the client.

1. stork receive update receives a new root repository metadata file from a

PsEPR update and provides this to pacman. pacman calls the transfer

functionality manager to synchronize the directory containing the repository

metadata tarballs with the local copy.

2. To do the synchronization, the transfer functionality manager checks the

secure hashes of the copies of the local tarballs for this repository.

3. The transfer functionality manager compares the hashes of the local tarballs

to the secure hashes listed in the root repository metadata.

4. The tarballs containing the TP files, pacman files, and package metadata have

different secure hashes than are listed in the root repository metadata. These

tarballs are downloaded using the preferred transfer specialized plug-in.

The metadata from the repository is now synchronized on the client. pacman

processes the files and enacts any new package instructions.

99

2.7.6 Enacting Package-based Configuration Management Instructions

Summary: pacman is run on a client with a packages.pacman file that instructs the

Test group to install a package foobar.

It is important to note that this action is performed by every client the

administrator manages because this is the step in which a client determines if the

package instructions apply to it. Different clients will perform different actions

depending on what groups the client is in. Additionally, a client that reboots or is

newly created will run pacman when starting and at that time will enact actions for

the groups the client is in.

1. pacman parses the groups.pacman file to determine which groups the client is

in.

2. pacman enacts the pending package actions for this client. If this client is in

the Test group, pacman invokes stork to update foobar.

2.7.7 Installing a Package

Summary: stork is run to install foobar. Suppose that foobar is a RPM without

any dependencies.

100

1. stork uses the transfer functionality manager to synchronize the directories

containing the metadata tarballs on the repositories the client uses. Since

pacman also does this, having stork perform this action may download the

root repository metadata unnecessarily, but is necessary when stork is run

manually or multiple updates happen in a short time period.

2. The package functionality manager verifies that the specified version of

foobar is not already installed. If foobar is installed, stork prints a message

and exits.

3. stork calls the package functionality manager to search the package metadata

for foobar. If no candidate is found then stork exits and logs an error

message that the package cannot be found. Multiple candidates may be

returned if the package metadata contains several versions of foobar, however

in this example a single version of foobar is returned.

4. stork verifies that the administrator trusts the candidate version of foobar

(Chapter 3).

5. The package functionality manager checks and discovers that foobar does not

depend on other packages.

6. Stork calls the transfer functionality manager to retrieve foobar.

7. Stork now has a local copy of foobar. The package functionality manager

101

queries the package specialized plug-ins to find one that can install the

package. The stork rpm specialized plug-in is selected to install RPM

packages. Because foobar is a RPM package, stork rpm can process it. The

package manager builds a transaction list and passes it to stork rpm,

instructing it to install foobar.

8. The stork rpm specialized plug-in installs foobar.

2.7.8 Multiple Package Types and Dependencies

Summary: A Stork administrator instructs stork to install foobar. foobar

depends on glibc which is installed. foobar also has a dependency on xyz.tar,

however, xyz.tar is not installed.

1. stork uses the transfer functionality manager to synchronize the directories

containing the metadata tarballs on the repositories the client uses.

2. The package functionality manager verifies that foobar is not already

installed by asking the package specialized plug-in.

3. The package functionality manager searches the package metadata and finds

the metadata for foobar.

4. stork verifies that the administrator trusts foobar (described in Chapter 3).

102

5. stork now has the candidate foobar. However, foobar depends on glibc

and xyz.tar.

6. The package functionality manager discovers that glibc is already installed

by asking the package specialized plug-in. The glibc dependency is resolved

and so need not be considered further.

7. The package functionality manager discovers that xyz.tar is not installed by

asking the package specialized plug-in.

8. The package functionality manager searches the package metadata and finds

the metadata for xyz.tar.

9. stork verifies that the administrator trusts xyz.tar (described in Chapter 3).

10. stork now has the candidates foobar and xyz.tar. xyz.tar has no

dependencies so there are no unresolved dependencies.

11. Stork calls the transfer functionality manager to retrieve foobar and xyz.tar.

12. There are now local copies of foobar and xyz.tar. Because foobar is

dependent on xyz.tar, xyz.tar must be installed first. The package

functionality manager queries the package specialized plug-ins and determines

that the package specialized plug-in that handles tarballs (stork tar) can

install xyz.tar.

103

13. stork tar is instructed to install xyz.tar by the package functionality

manager and does so.

14. The package functionality manager queries the package specialized plug-ins

and determines that stork rpm can install foobar.

15. stork rpm is instructed to install foobar by the package functionality

manager and does so.

2.7.9 Removing a Package

Summary: stork is run to remove foobar.

1. The package functionality manager queries the stork rpm specialized plug-in

to see if foobar is installed. If foobar is not installed, stork prints a message

and exits.

2. The package functionality manager checks to see if any installed packages

depend on foobar. The package functionality manager does this by querying

the stork rpm specialized plug-in. If packages depend on foobar, stork

prints a message and exits.

3. The package functionality manager builds a transaction list and passes the

transaction list to stork rpm, instructing stork rpm to remove foobar.

104

4. The stork rpm specialized plug-in removes foobar.

2.7.10 Updating a Package

Summary: stork is run to update foobar. Suppose that foobar is a RPM without

any dependencies and that an existing, out-of-date copy of foobar is installed.

1. stork uses the transfer functionality manager to retrieve the current metadata

tarballs from the repositories it uses.

2. The package functionality manager verifies that the preferred version of

foobar is not already installed. If the preferred version of foobar is installed,

stork prints a message and exits.

3. stork calls the package functionality manager to search the package metadata

for foobar. If no candidate is found then stork exits and logs an error

message that the package cannot be found. Multiple candidates may be

returned if the package metadata contains several versions of foobar, however

in this case a single version of foobar is returned.

4. stork verifies that the administrator trusts the candidate version of foobar

(Chapter 3).

105

5. stork now has a candidate for foobar. The package functionality manager

checks and discovers that foobar does not depend on other packages.

6. Stork calls the transfer functionality manager to retrieve foobar.

7. Stork now has a local copy of foobar. The package functionality manager

queries the package specialized plug-ins to find one that can install the

package. The stork rpm specialized plug-in is selected to install RPM

packages. Stork builds a transaction list and passes the list to stork rpm,

instructing stork rpm to remove the existing foobar and install the preferred

version of foobar.

8. The stork rpm specialized plug-in removes the existing version of foobar and

installs the new version of foobar.

106

2.8 Related Work

This section describes related work that manages software on clients. In particular,

package managers (Section 2.8.1), software installers (Section 2.8.2), software

update systems (Section 2.8.3), and configuration management systems

(Section 2.8.4) are discussed.

A package manager [56] serves as a central mechanism to manage the software on a

client. Package managers use a standard format and normally use a single

installation database for all installed software.

In contrast, a software installer [73] is bundled separately for each piece of software.

Each software installer may have a different format for software installed on the

same client. Each software installer usually manages installations separately.

Unlike package managers and software installers that may be used to install and

remove software, a software update system is used by a piece of software to update

the version of the software that is running on a client to the latest version. A

software update system does not install a version when one does not exist or remove

a piece of software.

The focus of a configuration management system is to change the configuration of

clients that are running software. Most configuration management systems are

107

geared toward creating custom configuration files and other low level operations

rather than changing the packages installed on a client.

Related work that is related to security or sharing is discussed in Sections 3.10 and

4.10 respectively.

2.8.1 Package Managers

Most package managers are comprised of two components called a package installer

and a dependency resolver. The package installer manages the installation of the

files in a package on a client, and typically keeps a database to track the packages

that are installed. There is usually one package installer per client. The package

installer is usually standardized for the distribution; RPM [68] and DPKG [26] are

examples of package installers.

A dependency resolver handles communication with repositories as well as retrieving

packages that a package needs to operate (this process is called dependency

resolution). Dependency resolvers use a package installer to perform the actual

package installation, removal, or update. Administrators usually interact with a

dependency resolver rather than invoking a package installer directly. While

dependency resolvers and package installers work together to form a package

manager, it is common to refer to a package manager using only the dependency

108

resolver’s name. Example dependency resolvers include APT [5], YUM [92], and

stork.

2.8.1.1 Package Installers Two popular package installers are RPM and DPKG.

Instead of using RPM or DPKG, many dependency resolvers operate on tarball

based formats and provide limited package installer functionality themselves.

RPM is a package installer that operates on packages in the RPM format. The

RPM package installer is a command line tool that is “capable of installing,

uninstalling, verifying, querying, and updating computer software packages” [68].

The RPM package installer is used by many dependency resolvers including

YUM [92], YaST [90], APT-RPM [6], Urpmi [81], and stork [76].

DPKG [26] operates on packages in the DEB format. Similar to the RPM package

installer, DPKG installs, removes, updates, and queries packages. The DPKG and

RPM package installers are similar, the major difference being how the packages are

built [54, 55]. The DPKG package installer is used by the dependency resolver

APT [5].

Many of the other package installers manage packages that are essentially just

tarballs with an install script and some package metadata. Some examples of this

are ebuild [29] (which is used by emerge [63]) and the tarball support for stork [76],

109

Pacman [7], and Slaktool [72].

2.8.1.2 Dependency Resolvers There are many dependency resolvers including

APT [5], APT-RPM [6], emerge [63], Pacman [7], pkg add [13], Slaktool [72],

stork [76], Urpmi [81], YaST [90], and Yum [92]. Most dependency resolvers are

very similar in terms of the functionality they provide. All of the dependency

resolvers retrieve, configure, and install packages on a client and resolve

dependencies. Many of the dependency resolvers have GUI-based front ends in

addition to a command line tool. The GUI-based front ends access the same

underlying functionality as the dependency resolver but present a different interface

to the administrator.

APT was one of the first dependency resolvers and was created to use the package

installer DPKG. However, APT has also been ported to use other package installers,

including RPM (where it is named APT-RPM).

The emerge dependency resolver is part of a package manager that is explicitly

called Portage [63]. Portage is a framework that is meant to support multiple

architectures and package formats across different distributions. There are

implementations of Portage for Mac OS X, FreeBSD, and Solaris.

Pacman is a dependency resolver primarily used in Arch Linux. Pacman uses zipped

110

tarballs as packages.

The pkg add dependency resolver (commonly called Ports) is used on BSD clients

to manage packages. One of the main aims of Ports is to be portable, and Ports is

used on a variety of different operating systems.

Slaktool is the dependency resolver used in Slackware. Slackware distributes

packages in source format and compiles software on the client as part of the

installation process.

The stork dependency resolver is discussed in this dissertation. stork is unique for

its security and sharing functionality (as are described in Chapters 3 and 4).

Another uncommon characteristic of stork is that stork supports multiple package

installers (tarball and RPM) on the same client.

Urpmi is a dependency resolver used in Mandriva Linux. Urpmi uses RPM to

perform package installation.

YaST is the dependency resolver for SuSE distributions. YaST is a popular,

graphical utility for package management. YaST uses RPM to perform package

actions.

The YUM dependency resolver is used on many distributions including RedHat,

Fedora, and CentOS. YUM was developed at Duke and uses RPM to perform

111

package actions.

Dependency resolvers are discussed in more detail in Chapter 3 with APT and

YUM used as examples of different security philosophies for package management.

2.8.2 Software Installers

In contrast to a package installer that installs each piece of software on a client, a

software installer is tailored to the particular software component it installs.

Software installers are most popular on Windows and Mac OS X systems.

There are many software installers including InstallShield [41], Wise [88], and

StuffIt [77]. A software installer maintains its own record of the files that are

installed. In many cases software installers also include an uninstall program for the

purpose of removing the software. Software installers provide similar functionality

to package managers in that they install software on a client. However, software

installers do not typically perform dependency resolution. As a result, many

software installers recommend bundling all of the necessary software with the

installer.

112

2.8.3 Software Update Systems

A software update system is used to update an installed piece of software to the

latest version. Software update systems do not support the installation or removal

of the software, only update. Software update systems are in most cases run

automatically by the software to check to see if a newer version of the software is

available (often when the software starts). Software update systems are often

created specifically for a piece software instead of being reused for multiple pieces of

software. Popular programs that use software update systems are Mozilla

Firefox [32], Adobe Acrobat [1], Microsoft Office [50], Skype [71], and Adium [2].

A few software update systems update multiple different software applications

distributed by the same vendor, examples of which are WindowsUpdate [35, 86] and

the Apple software updater [47].

Software update systems do not support dependency resolution and are only useful

when the software they update has already been installed. This limits the

applicability of software update systems.

113

2.8.4 Configuration Management Systems

There are many configuration management systems that focus on configuring a

client. The goal of configuration management systems differs from tool to tool, but

the commonality is that the administrator uses a configuration management system

to change the configuration of the software on a client. This often involves editing

configuration files, starting and stopping software, or monitoring a running software

program. Configuration management systems typically rely on package managers

(or similar functionality) to install the software that will be configured. Some

examples of configuration management systems are Cfengine [18], SmartFrog [37],

Red Hat Network [67], GrADS [10], Plush [3], and AppManager [4].

While Stork provides some rudimentary package-based configuration management,

other configuration management systems provide much more control over the

configuration of a client. Stork’s advantage over other configuration management

systems is that the configuration management in Stork is tailored to package

management and so does not present the administrator with functionality that is

not necessary for package-based configuration management. Of course, the

drawback of Stork’s approach is that the administrator cannot do more than

manage packages without using another configuration management system.

114

2.9 Conclusion

This chapter provided a description of the components that comprise Stork. The

package-based configuration management tools are used by an administrator to

manage packages on clients. The repository serves administrator uploaded packages

and metadata to clients. The client tools enact the administrator’s package

instructions and perform package management. The nest shares files between VMs

on the same physical machine to improve the efficiency of package management.

Details describing how security and sharing are provided are deferred to Chapters 3

and 4 where they are explored in more detail.

115

Chapter 3

Security

Package managers provide a privileged, central mechanism for the management of

software on a client. Since package managers update software on a client, package

management security is essential to the overall security of the client. Package

managers provide security by verifying signatures on data that is downloaded from

a repository. Data is signed by an entity. An entity possesses a private key and

public key and makes decisions about what packages or metadata should be trusted.

Administrators, developers, projects, repositories, and distributions are all examples

of entities because they may sign packages and package metadata to help clients

authenticate the data the client downloads.

Despite signatures added by entities, there are many ways for an attacker to

circumvent security in package managers. Nine attacks on package managers are

described and shown to be feasible on the popular package managers APT [5] and

YUM [92]. These attacks may be used to install malicious packages on clients,

prevent clients from getting security updates, and exhaust resources on clients

116

(commonly causing mail delivery to stop, databases to be corrupted, and logging to

fail). Unfortunately, fixing many of these problems requires fundamental changes in

the security architectures of existing package managers.

The nine attacks are examined and three common themes can be drawn.

1. Package managers should not trust the repository. This means that both the

data retrieved from a repository and the protocol used when communicating

with a repository must be scrutinized by the package manager. Failure to

scrutinize repository interactions allows a man-in-the-middle attacker or

attacker that controls a repository to wreak havoc on a client whose package

manager uses the repository.

2. The entity with the most information should be the one that signs. This

means that an entity should not sign a package simply because the package

was previously signed by another entity. Since the entity that builds a package

has the most information about the package, that entity should be the one

that signs to certify that the package metadata is valid. This argues that the

developer or developers that maintain the package should sign the package,

not the distributor.

3. The package manager must prevent key misuse to prevent the installation of

untrusted packages. Thus, the package manager needs an effective way of

117

determining if a key is revoked. Preventing key misuse also means that an

entity must be able to restrict the trust given to another entity. For example,

if an entity is trusted to sign packages for a specific project, the entity should

not be automatically trusted to sign packages for another project.

The underlying themes of these attacks describe in what areas of package managers

must be defended in order to retain security. However, these themes do not describe

how the necessary security mechanisms should be provided. To that end, three

design principles for security in package management were developed for Stork.

1. Using selective trust delegation, administrators can trust an entity (such as a

developer) to know the validity of a limited subset of packages. In addition,

selective trust delegation can be used to prevent exposing the project entity’s

private key to individual developers. Selective trust delegation also provides a

natural mechanism for key revocation.

2. Having customized repository views means that each client “sees” a different

repository, which is actually an amalgamation of the trusted packages on all

repositories the client is using. Customized repository views prevent malicious

entities from compromising the security of clients that do not trust the entity.

3. If the repository is treated as an untrusted entity, then even a root and private

key compromise of a package repository does not compromise the security of

118

the repository’s clients. This is because the client’s package manager

scrutinizes the interactions with the repository.

This chapter presents the security architecture of Stork that follows these design

principles. Besides the mechanisms used to directly support these design principles,

dependency resolution is also discussed as it mitigates certain kinds of attacks.

Stork is then analyzed and shown not to be vulnerable to the attacks that impact

other package managers.

119

3.1 Map

This chapter explores package management security by first examining attacks that

package managers may be vulnerable to and the common themes behind these

attacks (Section 3.2). Then background information is provided about existing

package managers to understand why the package managers are vulnerable to attack

(Section 3.3). Section 3.4 discusses the feasibility of an attacker gaining the

necessary requirements to launch the attacks described. Section 3.5 describes the

result of these attacks on existing package managers. Section 3.6 discusses how

existing package managers can prevent these attacks. Unfortunately many of these

attacks exploit flaws in the security architecture of existing package managers and so

cannot be easily fixed. Principles for designing a security architecture that protects

against these attacks are then discussed (Section 3.7). Then the implementation of

this security architecture in Stork is described (Section 3.8). The attacks in

Section 3.2 are revisited in Section 3.9 to illustrate how Stork prevents the attacks

from being effective. Section 3.10 discusses related work and Section 3.11 concludes.

120

3.2 Attacks

This section describes nine attacks to which package managers may be vulnerable.

Then these attacks are examined and underlying themes are discussed. A summary

of the attacks and the themes can be found in Table 3.1.

3.2.1 Attack Descriptions

The nine attacks are as follows:

1. Slow Retrieval: In this attack, a package manager tries to download a file from

a repository. An attacker slows the retrieval so that the communication lasts

for many hours or even days. The attacker does this by sending back a few

bytes of data a minute — just enough to keep the connection open. The goal

is to make the package manager “pause” so the client will not contact other

repositories to retrieve package updates.

2. Endless Data: In this attack, an attacker returns an infinite stream of data in

response to any request. The goal is to make the client’s package manager

continue to download data and exhaust resources such as disk space and

network bandwidth.

121

Attack Name Description Theme

Slow

Retrieval

An attacker slows repository communication so that package managers will

“pause” and will not contact other repositories to retrieve package updates.

(1)

Endless Data An attacker that controls a repository (or man-in-the-middle attacker) returns

an endless stream of data in response to any file request.

(1)

Replay Old

Metadata

An attacker provides old metadata that is correctly signed. (1)

Extraneous

Dependency

An attacker changes the metadata for a package to indicate it depends on a

package or packages of the attackers choice.

(2)

Depends on

Everything

An attacker changes the metadata for a package to indicate it depends on

everything.

(2)

Unsatisfiable

Dependencies

An attacker causes a package manager to ignore valid packages because forged

metadata indicates unsatisfiable dependencies.

(2)

Provides

Everything

An attacker changes the metadata for a package to indicate it provides any

dependency the administrator requests.

(2)

Use Revoked

Keys

An attacker uses a revoked key to get administrators to install packages (3)

Escalation of

Privilege

An attacker compromises a key trusted for signing a specific group of packages

and then gets administrators to accept signed malicious versions of other

packages.

(3)

Table 3.1. This table lists attacks, with a description and the theme of the attack.

The security themes are numbered (1) Don’t trust the repository (2) The trusted

entity with the most information should be the one that signs (3) Prevent key misuse

to prevent the installation of untrusted packages.

122

3. Replay Old Metadata: An attacker records old metadata from a repository.

When a package manager requests metadata from the repository the attacker

returns the old metadata. The attacker’s goal may be to have the package

manager install outdated packages with security vulnerabilities.

4. Extraneous Dependency: An attacker changes the package metadata for a

target package to include an additional dependency. The attacker may use an

extraneous dependency attack to have a package manager that installs the

target package also install a package with a security vulnerability.

5. Depends on Everything: An attacker changes the package metadata to indicate

that a package depends on many other packages. This will cause a package

manager to download many packages to resolve the dependency. The depends

on everything attack wastes the client’s network bandwidth and disk space.

6. Unsatisfiable Dependencies: An attacker changes the package metadata for a

package so that the target package depends on a package that does not exist.

This prevents the package manager from installing the target package.

7. Provides Everything: An attacker changes the package metadata for a package

to indicate that the package provides every dependency. This means that the

package will be considered to fulfill any dependency of another package. An

attacker may use this to have a package installed more frequently.

123

8. Use Revoked Keys: An attacker that has compromised an entity’s key signs

packages and / or metadata so that clients install malicious packages. Another

entity that has the authority to revoke the key is attempting to do so. The

attacker is trying to have clients accept the malicious information before the

clients notice that the key has been revoked.

9. Escalation of Privilege: An attacker compromises the key of an entity trusted

to sign a specific group of packages. The attacker modifies a package that is

not in that group and then uses the entity’s key to sign the package. The

attacker provides the package to the package manager on a client to see if the

package manager accepts a package signed by an incorrect (but trusted) entity.

3.2.2 Attack Themes

The previous section described attacks on package managers. This section draws

correlations between vulnerabilities. If there are commonalities between

programming and design errors in package managers, then perhaps developers can

avoid these issues. The attacks described throughout this section (depicted in

Table 3.1) have three common themes:

1. Package managers should not trust the repository. Package managers should

scrutinize both the data retrieved from a repository and the communication

124

with the repository. The slow retrieval and endless data attacks would work if

the package manager does not scrutinize the communication with the

repository. The replay old metadata attack would be effective if the package

manager does not check that the metadata returned from a repository is

current.

2. The entity with the most information should be the one that signs. This

means that an entity should not sign a package simply because the package

was previously signed by another entity. For example, many repositories

re-sign all of the package metadata provided by developers. One problem with

this is that all of the package metadata will be signed by a single entity’s key,

which presents problems when a package should no longer be trusted. Since

the repository entity signed the package, the repository entity’s key must be

revoked. Since the repository entity was trusted for all of the package

metadata, if the repository entity’s key is revoked then all packages should not

be trusted.

In addition, if the entity with the most information is the one that signs, the

entity that builds a package should sign the package metadata. This is true

because the entity that builds the package has the most information about the

validity of the package. The extraneous dependency, depends on everything,

unsatisfiable dependencies, and provides everything attacks are effective if the

125

package metadata can be modified by an attacker. An attacker can modify the

package metadata but not the package when the package metadata is

unprotected or the package metadata is signed by an entity other than the

developer and that entity’s key is compromised. If the package metadata is

signed by the developer, then the only way the package metadata can be

altered is with the developer’s key.

3. The package manager must prevent key misuse to prevent the installation of

untrusted packages. This means that the package manager needs an effective

way of determining if an entity’s key is revoked. The use revoked keys attack

exploits the difficulty of revoking an entity’s key before the entity’s key is used

by the attacker. Preventing key misuse also means that there must be able to

be restrictions on the trust given to an entity. For example, if an entity is

trusted to sign packages from a specific project, the entity should not be

automatically trusted to sign packages for any other project. Failure to have

selectivity in the amount of trust given to an entity can lead to escalation of

privilege attacks.

126

3.3 Background

The previous section presented attacks against package managers and the

underlying themes of those attacks. This section provides background information

on existing package managers that is necessary to understand existing package

managers’ vulnerability to attack.

Most package managers can be split into two basic components: a package installer

and a dependency resolver. A package installer is a low-level component that

removes, installs, and updates the packages on a client. Example package installers

are RPM [68] and DPKG [26]. A dependency resolver is a high level component

that handles communication with repositories as well as dependency resolution.

Example dependency resolvers include stork [76], APT [5], and YUM [92]. Since

dependency resolvers and package installers work together to form a package

manager, it is common to refer to a package manager using only the dependency

resolver’s name. Since most dependency resolvers only support a single package

installer (with Stork’s support of tarballs and RPMs a notable exception), it is clear

from referring to the dependency resolver which package installer is meant.

Before the characteristics of package managers are looked at in detail, this section

provides some statistics on which package managers are popular. Popularity is

important because the more popular software is, the more clients will be

127

compromised if a vulnerability exists. This chapter focuses on popular package

managers with diverse characteristics. Other package managers are categorized in

Section 3.10 based upon similarity to the popular package managers.

3.3.1 Package Manager Popularity

Since package installers and dependency resolvers are tied to a specific distribution

of Linux, the popularity of distributions has a high correlation with package

installer and dependency resolver popularity. According to DistroWatch [25] and

Netcraft [52] (shown in Table 3.2), DEB and RPM file formats are overwhelmingly

the most popular. As a result the corresponding package installers DPKG and RPM

are also popular. As for dependency resolvers, on the desktop APT/APT-RPM

(45.2%) is clearly the most popular, with YUM (6.2%), emerge (6.9%), and YaST

(10.7%) all having significant market share. For servers, YUM (52%) is the clear

leader with APT (25%) also having strong market share.

APT/DPKG and YUM/RPM are the most popular package managers and, as will

be discussed later, APT and YUM use different philosophies to provide package

management security. Other package managers tend to be “APT-like” or

“YUM-like” in their security model. This majority of this chapter focuses on

APT/DPKG and YUM/RPM and later in Section 3.10 package managers are

128

categorized as like either APT or YUM.

3.3.2 Package Formats

Package formats consist of an archive containing files and, in the case of RPM and

DEB, additional metadata. For a given RPM or DEB package, the additional

metadata contains information about the other packages the package needs to

operate (the package’s dependencies), functionality the package possesses (what

dependencies the package provides), and various other information about the

package itself.

In RPM there is space for only a single signature. DEB packages have no standard

field for signatures (and DEB files are not usually signed) but extensions exist to

support signatures [24, 27].

3.3.3 Package Installers

The package installer is normally tied to a specific package format. The role of the

package installer is to unpack the files from the package to the appropriate location,

track installed packages, and install, remove, or update packages. The package

installer keeps a database that records which packages are installed. Most package

129

Distribution Desktop Server Package Package Dependency

Usage Usage Format Installer Resolver

Red Hat Enterprise 0.9% 34% RPM RPM YUM

Debian GNU/Linux 8.9% 25% DEB DPKG APT

Ubuntu 24.1% N/A DEB DPKG APT

Fedora 5.0% 16% RPM RPM YUM

SUSE Linux Enterprise 0.8% 11% RPM RPM YaST

openSUSE 9.9% N/A RPM RPM YaST

Gentoo Linux 4.5% 2% SRC ebuild emerge

PCLinuxOS 5.6% N/A RPM RPM APT-RPM

Mandriva Linux 2.6% 2% RPM RPM urpmi

CentOS 1.2% 2% RPM RPM YUM

Linux Mint 2.5% N/A DEB DPKG APT

Sabayon Linux 2.4% N/A SRC ebuild emerge

Slackware 2.2% N/A TGZ slaktool

KNOPPIX 2.2% N/A DEB DPKG APT

Arch Linux 1.9% N/A TGZ pacman

MEPIS Linux 1.9% N/A DEB DPKG APT

Table 3.2. The usage information shows the average popularity of desktop Linux

distributions from multiple sources as reported by DistroWatch [25]. The server

numbers are reported from Netcraft [52] (Cobalt numbers are omitted because the

distribution is not listed). Distributions without a package installer listed typically

use tar to unpack files but do not provide the functionality found in package installers.

130

installers also provide a signature verification mechanism to detect package

tampering or corruption. There is typically only one package installer per client and

the package installer is normally standardized for the distribution.

RPM [68] is both the name for a package installer and the format of the package

files that the package installer uses. The package installer is command line driven

and is “capable of installing, uninstalling, verifying, querying, and updating

computer software packages” [68]. While RPM is sometimes used standalone, it is

common to run a dependency resolver like APT-RPM or YUM on top of RPM.

DEB packages are used by a package installer called DPKG [26]. DPKG performs

similar actions as the RPM package installer, allowing the installation,

uninstallation, and querying of computer software packages. There are subtle

differences between DPKG and RPM [54], but the differences are interesting

primarily from a functionality and ease of use standpoint rather than a security

standpoint.

3.3.4 Dependency Resolvers

The dependency resolver gathers information about packages available on package

repositories. Almost all dependency resolvers automatically download requested

packages as well as any additional packages that are needed to resolve the

131

dependencies of the requested packages (hence the name “dependency resolver”).

For example, a requested package foo may depend on libc and bar. If libc is

already installed, then libc is a dependency that has been resolved (so no package

must be added for this dependency). If there is no installed package that provides

bar, then bar is an unresolved dependency and a package that provides bar must be

installed before foo may be installed. The dependency resolver may be able to

locate a package that provides bar on a repository. Note that this does not need to

be a package with the name bar. A package may provide virtual dependencies of

another name. This is useful if a package needs a program that provides some

functionality but it doesn’t matter what the program is (such as an email client or

web browser).

A package that is chosen to fulfill dependencies may have unresolved dependencies

of its own. Packages are continually added to the list of packages to be installed

until either the package manager cannot resolve a dependency (and produces an

error) or all dependencies are resolved. Dependency resolution is described in more

detail in Section 3.8.5.

The actual installation is done by the dependency resolver calling the package

installer. It is common for multiple dependency resolvers [6, 76, 81, 92] to support a

single lower-level package installer (RPM). It is possible (but uncommon) for

different administrators that use the same distribution to use different dependency

132

resolvers.

One popular dependency resolver is APT. APT is a dependency resolver originally

created to use the package installer DPKG in Debian. However, APT has also been

ported to use other package installers, including RPM [6] (where it is named

APT-RPM). APT automates the retrieval, configuration, and installation of

packages by resolving dependencies. APT also handles communication with

repositories. To address security concerns with APT (particularly with signatures),

the secure-APT project [70] was created. Recent versions of APT use the changes

added for secure-APT. This work focuses on the newer versions of APT with the

secure-APT changes and ignores older versions since older versions are known to be

insecure.

Another popular dependency resolver is YUM [92]. YUM is used to install and

remove packages on clients with RPM package installers. YUM performs automatic

dependency resolution and repository communication.

YUM and APT both include auto-update mechanisms. When enabled, these

auto-update mechanisms update older versions of installed packages with newer

versions of the packages as newer versions become available, typically within 1 day

of the new packages being added.

133

3.3.5 Package Repository

Package repositories are usually just web servers used to provide packages and

package metadata. The package metadata is the metadata in the package format

that is extracted and stored separately. Often the package metadata for all packages

on a repository are put into a single tarball.

Package repositories store packages, package metadata, and the root repository

metadata file. The root repository metadata file is called different things in APT

(Release) and YUM (repomd.xml) but the contents are similar. The root

repository metadata provides the location and secure hashes of the tarball that

contains the package metadata and may also refer to the location of the packages.

It is common for a distribution or large organization to have multiple repositories

that host the same data for redundancy and load balancing purposes. These

additional repositories are called mirrors. Mirrors typically contain exactly the same

content as the main repository and are updated via rsync or a similar tool.

3.3.6 Security Philosophy

APT and YUM use different techniques to provide security. APT focuses on

securing the repository metadata rather than signing packages. An APT repository

134

optionally provides a signature for the Release file (root repository metadata) in a

file called Release.gpg. This allows APT to verify that the Release file is signed

by the repository key and therefore came from the repository. The Release file

contains the secure hashes of the package metadata on the repository. The package

metadata contains secure hashes of the packages themselves. The packages are not

usually signed.

Instead of signing the repository metadata, YUM uses signatures on packages to

provide security. A YUM distribution maintainer signs all of the packages on the

repository. YUM verifies package signatures after downloading packages. YUM does

not sign package metadata.

To verify the identity of a repository or mirror, YUM uses HTTPS in Red Hat

Enterprise Linux. Other distributions of APT and YUM do not support HTTPS on

their publicly available repositories and mirrors.

135

3.4 Attack Feasibility

This section examines the attacker’s requirements to launch the attacks described in

Section 3.2 on APT and YUM. There are two basic questions this section tries to

answer. First, what resources does an attacker require to launch an attack? Second,

is it possible for attackers to obtain the necessary resources to launch these attacks?

There are increasing requirements of resources that allow a greater number of

attacks (Table 3.3). The first requirement is that the attacker must be able to

impersonate a repository to launch a basic attack (Section 3.4.1). Once the attacker

is able to impersonate a repository, the second requirement is to sign metadata,

allowing more severe attacks (Section 3.4.2). If an attacker is able to impersonate a

repository and sign metadata, then the third requirement is to sign packages,

allowing the most severe attacks (Section 3.4.3).

An alternative avenue of attack is to compromise a developer key, allowing the

attacker to submit arbitrary packages to the repository through the legitimate

update channels without the need to compromise the repository itself

(Section 3.4.4). This does not require any compromise other than a developer key

and allows the launch of any attack.

The feasibility of obtaining the requirements to launch these attacks is now

136

Attack Name Description Requirement

Slow

Retrieval

An attacker slows repository communication so that package managers will

“pause” and will not contact other repositories to retrieve package updates.

Repository

Endless Data An attacker that controls a repository (or MITM attacker) returns an endless

stream of data in response to any file request.

Repository

Replay Old

Metadata

An attacker provides old metadata that is correctly signed (perhaps to prevent

new packages from being considered)

Repository

Extraneous

Dependency

An attacker changes the metadata for a package to indicate it depends on a

package or packages of the attackers choice.

Repository

Key

Depends on

Everything

An attacker changes the metadata for a package to indicate it depends on

everything.

Repository

Key

Unsatisfiable

Dependencies

An attacker causes a package manager to ignore valid packages because forged

metadata indicates unsatisfiable dependencies

Repository

Key

Provides

Everything

An attacker changes the metadata for a package to indicate it provides any

dependency the client requests.

Repository

Key

Use Revoked

Keys

An attacker uses a revoked key to get clients to install packages Revoked Key

Escalation of

Privilege

An attacker compromises a key trusted for signing a specific group of packages

and then gets clients to accept signed malicious versions of other packages.

Package Key

Table 3.3. This table lists attacks, a short description of the attack, and what

the attacker requires to launch an attack. The first three attacks require only the

ability to impersonate a repository. The next four attacks require both the ability to

impersonate a repository as well as the compromise the entity’s key that is used to

sign repository metadata. The last two attacks require the ability to impersonate a

repository, the repository metadata key, and an entity’s key trusted to sign packages.

137

described.

3.4.1 Impersonate a Repository

The attacks against package managers require an attacker to provide traffic on the

behalf of a repository. There are three ways this can be done: man-in-the-middle

(MITM) attacks, control of a repository, or control of a mirror.

In MITM attacks, the attacker intercepts traffic between two communicating parties

and provides its own data instead. These attacks are relatively simple to

launch [36, 91] and there are toolkits available that automate the process [28, 80].

When an insecure protocol such as HTTP is used, a MITM attacker is equivalent to

an attacker that can control a repository through direct compromise. Using a secure

protocol such as HTTPS can prevent MITM attackers from masquerading as a

repository, however with the exception of Red Hat Enterprise Linux, HTTPS is not

widely used.

A repository is typically very similar to a web server, and attacks that compromise

web servers, such as software exploits, may allow the attacker to modify content on

the repository. Given the success of worms written to exploit bugs in Linux [46, 66],

a direct, exploit-based compromise of the repository is also a possibility.

138

Third-party developers often set up their own repositories to provide software that

is not included in the distribution. An attacker could exploit this common practice

by setting up its own repository purporting to provide third-party software and try

to lure administrators to use the repository. However this only affects the subset of

administrators that use this software.

Another avenue of attack is for an attacker to obtain control of a mirror. To

evaluate the feasibility of controlling a mirror of a popular distribution, YUM and

APT mirrors were set up. A fictitious company (Lockdown Hosting) with DNS

registration and a fictitious administrator (Jeremy Martin) were created to control

the mirrors. A dedicated server was leased through The Planet

(www.theplanet.com).

Setting up a public mirror for Debian, Ubuntu, CentOS, and Fedora involved

acquiring the packages and metadata, creating an account on the distribution’s

website, and then notifying the distribution maintainers that the mirror is online.

Ubuntu took over a month to check our mirror due to acknowledged but unspecified

internal delays, but after checking our mirror approved it within a day. Debian and

CentOS listed the mirror within a few hours; Fedora listed the mirror in minutes.

With Fedora, a few minutes after the mirror was officially listed, the mirror began

receiving requests from Fedora clients. We believe this is the result of most Fedora

139

clients using MirrorManager [31] to dynamically select mirrors. MirrorManager has

clients send requests to a central server that farms them out based upon the client

IP, geographic location, country, etc. One interesting thing to note is that mirror

administrators can specify an IP address range to which the mirror should serve

packages. In fact, targeting a subnet means that clients in that subnet will use only

that mirror. This allows easy targeting of attacks (to a specific country or

organization) and reduces the number of other parties that will consume resources

on the mirror.

3.4.2 Repository Key

While an attacker may be able to impersonate a repository, this may or may not

mean that the attacker is able to create forged packages or metadata on the

repository. Some repositories use a private key to sign the root repository metadata

that is published by the repository. If the repository keeps its private key offline or

is a mirror of another repository that does all of the signing, a compromise of the

repository may not imply a compromise of the repository entity’s key. A MITM

that does not possess the repository entity’s key also cannot sign package metadata.

In YUM and many APT distributions there is no repository key to compromise.

Any attacker with control of a repository can launch these attacks without having to

140

compromise additional keys. If the repository signs package metadata, and has its

key online then the attacker that has compromised the repository can forge package

metadata. Similarly, an attacker that controls a third-party repository and lures an

administrator into adding the repository key to her keyring can launch these attacks.

One item of interest is that since the root repository metadata and the signature of

the root repository metadata file are in separate files, the root repository metadata

and its signature are not downloaded and verified atomically. This means that in

some cases the signature and root repository metadata file will not match (for

example, as the files are updated) even in the absence of attackers. These false

positives may help to mask attacks.

Note that even when the root repository metadata is signed and an attacker does

not have the private key, an attacker can still launch package metadata attacks if

the attacker can convince the repository to host a package the attacker created.

This means that developers can trivially launch these attacks.

Although the root repository metadata is unsigned, one may argue that if the

packages are signed, then the package metadata is protected from tampering. While

YUM does not sign the root repository metadata, most YUM distributions do sign

the packages themselves. One might assume that the package signature is used to

verify the package metadata. This is not the case. The repository is trusted to

141

generate accurate package metadata that reflects the contents of the package. This

package metadata is used by the dependency resolver to decide which packages

should be downloaded. Thus, the dependency resolver is explicitly trusting the

repository to provide accurate information. The only way to be sure that the

repository provided accurate package metadata is to use the package metadata from

the downloaded and verified package. This means that, in practice, the package

signature is not used to verify the package metadata! As a result, package metadata

retrieved from the repository about any package is (at best) only protected by the

secure hash in the root repository metadata (signed using the repository key) and

not the developer that packaged the software.

3.4.3 Package Key

In addition to keys used to sign the root repository metadata, some YUM-based

distributions sign the packages themselves. If the key used to sign packages is

compromised then an attacker can sign any package.

However, it is important to consider what happens when the dependency resolver

decides a package that is unsigned or signed by an untrusted key must be installed

to resolve dependencies. If an administrator willingly installs unsigned packages,

then the result is equivalent to a private key compromise. With YUM, when an

142

administrator tries to install a package that is signed with a key that is not in her

keyring, YUM will return an error if the gpgkey option is not set. If the gpgkey

option is set, YUM will look for GPG keys at the URLs specified (often on the same

repository) and ask the administrator if the administrator wants to install these keys

in order to verify the package. So, if an attacker can provide its own key when the

administrator requests the URL listed in the gpgkey option, all the attacker must

do is provide the administrator a package with a signature the administrator cannot

verify. The administrator will be prompted to add the attacker’s key to her keyring!

In APT distributions and YUM distributions that do not sign packages, there is no

package key to compromise. Repository and repository key compromises imply the

ability to launch any attacks that would otherwise require a package key

compromise.

3.4.4 Developer Key

In addition to considering the feasibility of attacks that circumvent the security

mechanisms of package managers, it is important to consider how packages are

legitimately updated on repositories. If an attacker can introduce malicious content

onto a repository through legitimate channels then the attacker can also launch

attacks.

143

The following describes the developer’s package update process, using Debian as an

example. To update packages, a developer uploads a package signed by her private

key to a repository. If the signature is valid, corresponds to a key in the list of

developers, and the package is correctly formatted, the package file is put into a

pool of packages that form the daily update. All of the packages in the daily update

have new package metadata generated for them. The root repository metadata file

is signed automatically by a single Debian key that all Debian clients have in their

keyring. The daily update is then pushed to hundreds of mirrors around the world

that serve as package repositories.

There are several items of interest. First, the packaging and update process is fully

automatic. From the description of security practices on the main Debian site [23],

the only thing an attacker must do is compromise a developer’s key to upload

malicious packages.

Second, any developer can upload an updated version of any package. This means

that you are implicitly trusting every Debian developer’s key even if you don’t use

the software that developer maintains. This means that the distribution developer

who is trusted to maintain gnuchess is also trusted for the glibc package.

Considering that in November of 2007 there were more than 2448 keys listed in the

Debian developer database, there are a significant number of keys that must be

secure for the distribution to remain secure. Further compounding the problem,

144

there are keys that are as short as 768 bits and as old as 1993!

In addition to trusting developers that work on a distribution, it is important to

consider third-party developers (developers that do not work on packages in the

distribution). If an administrator wants to verify third-party software before

installation, then the administrator must add the third-party developer’s key to her

keyring. Depending on the security measures undertaken by the third-party

developers, this private key may be more or less secure than the administrator’s

distribution’s private key. However, a third-party developer’s key always represents

another avenue of attack.

As a recent attack [75] has shown, it is feasible for package repositories to be

poisoned with malicious versions of packages. An attacker obtained the password for

a developer account. This account was used to upload a modified version of the

SquirrelMail package with a flaw that allowed a remote attacker to execute arbitrary

code. Interestingly, if the account compromised had access to the project website,

the attacker would have been able to change the MD5 hash listed for the package

and the attack may have gone unnoticed.

145

3.5 Attack Effectiveness

The previous section studied the feasibility of the attackers gaining the necessary

access to launch these attacks on APT and YUM. This section studies the result of

launching these attacks. A summary of the result of these attacks can be seen in

Table 3.4.

3.5.1 Slow Retrieval

A simple attack is to allow the client to open a connection but then send data at a

very slow rate. The attacker keeps the connection open for as long as possible. This

prevents the client from installing updates from other repositories. APT and YUM

don’t log or print any useful information to help an administrator discover an attack

has taken place. Other than “pausing” when the package manager tries to contact a

repository, there is no output to indicate the problem.

3.5.2 Endless Data

Another attack is to return an endless stream of data to the client whenever files are

requested (an attack described in other work [82]). This attack has an odd effect on

146

Attack Name Description Result

Slow

Retrieval

An attacker slows repository communication so that package managers will

“pause” and will not contact other repositories to retrieve package updates.

DoS

Endless Data An attacker that controls a repository (or MITM attacker) returns an endless

stream of data in response to any file request.

DoS / Crash

Replay Old

Metadata

An attacker provides old metadata that is correctly signed (perhaps to prevent

new packages from being considered)

Install An Out-

dated Package

Extraneous

Dependency

An attacker changes the metadata for a package to indicate it depends on a

package or packages of the attackers choice.

Install Any Signed

Package

Depends on

Everything

An attacker changes the metadata for a package to indicate it depends on

everything.

DoS / Crash

Unsatisfiable

Dependencies

An attacker causes a package manager to ignore valid packages because forged

metadata indicates unsatisfiable dependencies

DoS / Outdated

Package

Provides

Everything

An attacker changes the metadata for a package to indicate it provides any

dependency the client requests.

Install Any Signed

Package

Use Revoked

Keys

An attacker uses a revoked key to get clients to install packages Install Any Pack-

age

Escalation of

Privilege

An attacker compromises a key trusted for signing a specific group of packages

and then gets clients to accept signed malicious versions of other packages.

Install Any Pack-

age

Table 3.4. This table lists attacks, a description of the attack and the result of a

successful attack.

147

YUM and APT. Surprisingly, when YUM is given a repomd.xml file of unlimited

size, YUM fills the disk and then exits silently with a 1 exit code — leaving the huge

file on disk. Since no information is logged or printed about the error, this makes

discovering the problem complicated (especially if YUM runs via auto-update).

APT is also vulnerable to this attack, but the size of the retrieved file is assumed to

fit in a C unsigned long. This means that APT will willingly download up to 4 GB

of data on 32-bit architectures for each file. If APT is compiled on a 64-bit

architecture, then APT will happily try to download files greater than 18,000,000

TB! Interestingly, APT could prevent this type of attack in the case when the

repository entity’s key is not compromised since the root repository metadata and

package metadata provide the data sizes of the files to be downloaded.

The endless data attack works to prevent clients from getting package updates from

other repositories. However, this attack also consumes large amounts of disk space

on the client as well as network bandwidth and CPU. Exhausting resources,

especially disk space, on a client machine can have disastrous effects. For example,

on Fedora and Ubuntu this prevents logging, corrupts databases, and halts mail

delivery.

The damage caused by filling the file system can be mitigated by using a separate

filesystem for the cache directory used by APT or YUM. However, this attack still

148

prevents updates from other package repositories from being installed.

3.5.3 Replay Old Metadata

Some APT repositories sign the root repository metadata to prevent tampering by

an attacker. The signature prevents an attacker that cannot sign the root repository

metadata from substituting arbitrary metadata. However, the signature does not

prevent an attacker from replaying old metadata. An attacker may, for example,

capture the root repository metadata from a date when a vulnerable package was

released. At some time in the future, well after the problem has been fixed, the

attacker may replay the captured metadata, causing clients that request the package

to install the vulnerable version.

In APT, even though the metadata is signed to prevent tampering, there is no

protection against replaying old metadata. APT ignores the date listed in the

metadata file. The date in the root repository metadata could be older than the

previous root repository metadata file, or a date in the future, and there is no

complaint. In fact, APT overwrites the existing root repository metadata file and

metadata with the files it is downloading. This means that unless the administrator

retains the old root repository metadata file and metadata manually, the

administrator has no way to check what the previous state of the repository was.

149

For YUM repositories and APT repositories that do not sign the root repository

metadata, there is no need to replay metadata. Since no entity’s signature protects

the root repository metadata, an attacker can create metadata of its choosing.

3.5.4 Extraneous Dependencies

This attack is launched by an attacker that rewrites the dependency information of

a package to say that the package also depends on another package. For example,

an attacker can say that every package depends on some “extraneous” package of

the attacker’s choice.

This attack works on both APT and YUM. Neither APT nor YUM verify that the

dependencies listed in a downloaded package matches the package metadata that

was retrieved from the repository! The only restriction in the choice of extraneous

package is that if package signatures are checked then the resulting package must be

correctly signed. Even when signatures are used this attack can result in existing

packages being downgraded to vulnerable versions or new, vulnerable packages

being installed.

150

3.5.5 Depends on Everything

Another potential attack involves returning package metadata that states that a

requested package has a huge number of package dependencies. In APT and YUM,

all of these packages are downloaded before any signatures are checked.

In addition to consuming disk and network resources on the client, this attack can

be used by an attacker that controls a repository to launch an attack on other

repositories. To launch an attack on other repositories, the attacker’s repository can

advertise a new version of a package that depends on the entire set of distribution

packages and that the attacker’s repository hosts none of the distribution’s

packages. Assuming the client is configured to use multiple repositories, the client

will download all the distribution’s packages from other repositories.

3.5.6 Unsatisfiable Dependencies

To prevent installation of a package, an attacker can return a list of dependencies

that indicate that the package has unresolvable dependencies. This prevents APT

and YUM from installing the package, while to the administrator it appears that

the repository or packager was in error, instead of an attack.

Note that the attacker need not be able to correctly sign the package. Packages are

151

not downloaded until after dependency resolution and signatures cannot be checked

without the package. This means the client will not download the package and

therefore will not check the signature.

3.5.7 Provides Everything

Another potential attack involves returning metadata that indicates a package

resolves a huge number of virtual dependencies. Any time a package is needed to

resolve a virtual dependency, this package will be considered. This package’s

metadata can be created by an attacker to cause the package to be installed over

other packages that provide the same virtual dependency.

If there is a real package with the same name as a virtual dependency, the real

package is always preferred. This allows an attacker to create a package httpd on

its repository that will be preferred over any of the packages from the distribution

that provide this virtual dependency (such as apache). When there are multiple

packages that provide the same virtual dependency, APT resolves dependencies on

virtual dependencies by choosing the package whose name comes first alphabetically.

YUM chooses the package whose name has the shortest length. So an attacker can

create a file named a.deb or a.rpm that will be preferred over all other packages.

This attack can be used by attackers in different ways. If package signatures are

152

used then an attacker can use this as another method to install extraneous

packages. In some situations this is more effective than the extraneous dependencies

attack because this will cause package installation for dependencies on other

repositories. If package signatures are not used or the attacker has compromised the

package signing key, then an attacker can have a malicious package of the attacker’s

choice be installed more frequently. Clients that want to install other software will

have the malicious package installed as well. This attack can also be used to launch

depends-on-everything attacks if the package that provides everything has a huge

dependency list.

3.5.8 Use Revoked Keys

One common need in any program that uses public key cryptography is a

mechanism for revoking keys. Package managers are no exception. There are two

issues to consider: the number of keys and the method of revocation.

Unfortunately, the popular APT and YUM distributions that use signatures use a

few keys to sign everything. In Debian and Ubuntu, all of the root repository

metadata files are signed by the same key. In Fedora every package is signed by the

same key. There is no way to retroactively revoke trust in a signed item, without

revoking trust in all items signed by that key. Considering that there are many

153

cases in which security vulnerabilities in a released package are later discovered,

revoking trust in a previously signed package is important.

The typical mechanism for revoking a key is by a notification in an ad hoc,

out-of-band manner that a key should be revoked [17, 38, 42]. For example, such

notification might take the form of a security announcement via email from an

organization such as CERT [17, 38]. The administrator then manually removes the

key from her keyring.

A package manager is designed to update packages rapidly and often automatically,

which is at odds with the comparatively slow process of manual key revocation. Key

revocation creates a race between the revoker (who is trying to remove trust in the

compromised key) and the attacker (who is trying to use the key before it is

revoked). Since key revocation is a slow manual process while updating packages is

rapid, this gives the attacker a strong advantage.

3.5.9 Escalation of Privilege

YUM uses a set of trusted public keys to verify package signatures. To add a new

public key for package verification, the administrator adds the key to her keyring.

However, checking if a package’s signing key is in an administrator’s keyring is a

true/false question — the key is either there or it is not. This means that an

154

administrator that wants to verify Apache project packages with the Apache

project’s public key will also implicitly (and silently) trust a gcc RPM signed by the

Apache key.

YUM has a mechanism to mitigate these types of attacks. An administrator can

specify that a repository should be used for a specific package or packages using the

configuration option includepkgs. Similarly, a repository can be prevented from

being used for specific packages with the exclude configuration option. However,

this doesn’t prevent an attacker that is trusted as a third party developer associated

with one repository from infecting a client with malicious versions of a distribution’s

packages if the attacker can put its malicious packages on another repository the

client uses. This is because the keys in the administrator’s keyring that are used to

verify packages are not tied to a repository or a set of packages. In order for an

administrator to be able to use the includepkgs mechanism, the developer is

required to set up a separate repository (a non-trivial commitment of time and

resources).

An escalation of privilege attack exposes the tension between key management and

package management. To understand the tension, consider an administrator that

obtains and verifies Apache project’s key but isn’t planning on installing apache

packages soon. If the administrator doesn’t add the Apache project’s key, then the

administrator will need to verify the key is correct if the administrator decides to

155

install Apache later (an administrative pain). If the Apache project’s key is added,

then a compromise of the Apache key can impact the security of the client even if

apache packages aren’t installed.

156

3.6 Securing APT and YUM

There are several simple actions that mitigate the effectiveness of many of the

attacks:

1. Validate repository communication. By checking that file sizes and data rates

are reasonable when communicating with the repository, APT and YUM could

limit the effectiveness of endless data and slow retrieval attacks.

2. Track signature times. APT (and YUM if it adds metadata signing) should

refuse to accept older versions of signed data. This would limit the

effectiveness of the replay old metadata attack by only allowing attackers to

“freeze” the metadata at a certain date rather than replaying older metadata

than the version the client has previously downloaded.

3. Use HTTPS. HTTPS makes it more difficult for an attacker to launch any of

the attacks because a man in the middle will not be able to easily masquerade

as a repository.

4. Guard mirrors. Delegating control of a mirror for a distribution should be

treated with utmost caution. This will make it harder for an attacker to

control a repository.

5. Sign metadata and packages. Signing both metadata and packages makes it

157

more difficult for an attacker to launch most types of attacks.

6. Check that metadata is correct. Once APT or YUM has decided to install a

package, it should download the package, verify the package’s signature, and

verify that the metadata in the package matches the package metadata

provided by the repository. This will help to prevent the depends on

everything attack and extraneous dependencies attack when the attacker

cannot correctly sign the package.

These measures will increase the difficulty in launching many types of attacks.

However, within the architectures of APT and YUM there is no way to fix key

revocation, escalation of privilege, provides everything, and unsatisfiable

dependencies attacks. The security architectures of APT and YUM are

fundamentally inadequate to address these issues.

158

3.7 Principles of Secure Package Management

Several areas must be addressed to provide package management security. This

section discusses three principles for secure package management that provide this

functionality. Then, examples of how these principles should be applied in practice

are given.

3.7.1 Design Principles

Selective trust delegation allows an entity to trust another entity’s signature only

for specific packages. This allows an administrator to prevent escalation of privilege

attacks by delegating the minimum amount of trust necessary. A hierarchical model

is used in which an administrator may trust a project leader or distributor, that in

turn trusts individual developers. This is fundamentally different from having the

distributor sign a package simply because the developer signed the package. The

distributor signaling trust in the developer is different because the distributor never

signs the package, but instead signals trust in the individual developer’s key. The

distributor can revoke trust in the developer rather than requiring an administrator

to revoke trust in the distributor’s key. This provides a natural mechanism for key

revocation and also removes the necessity of revoking a key to remove trust in a

package.

159

Having customized repository views means that each client “sees” a different

repository, which is actually an amalgamation of package metadata across all of the

repositories the client is using. However, only package metadata signed by entities

the client trusts is included. Since package metadata from untrusted entities is not

included, package metadata from untrusted entities cannot impact the security of

the package manager. This allows repository administrators to permit entities to

freely add their own packages without compromising the security of the clients that

do not trust those entities. Repository administrators then only need to worry about

traditional problems for servers, such as preventing attackers from gaining root

access and monitoring the disk space usage of individual entities, instead of being

concerned with the validity of the contents of the packages or the package metadata.

Contrary to popular belief, there are subtle ways that package repositories are

trusted by the package manager on a client. For example, package repositories are

implicitly trusted to allow file downloads. Package repositories are also trusted to

provide accurate and timely package metadata for the packages on the repository.

Unfortunately, in many cases a man-in-the-middle can exploit these trust

assumptions. By treating all interactions with the repository (and everyone in

between) as though the interactions are with an untrusted entity, package managers

can avoid these attacks.

160

3.7.2 Concepts and Examples

Selective delegation means that entities can choose to delegate trust to other

entities in fine-grained ways. As a simple example, if Alice knows Bob maintains the

foo package, Alice can trust foo packages that Bob trusts. This means that Alice

will not trust a package bar that Bob trusts.

An example of how this might be used in practice is that the foo project entity has

a key that is used to manage the project. Alice trusts the foo project entity to

know which foo packages are valid. The foo project entity trusts the current

developers on the project to know which foo packages are valid. A developer trusts

a foo package using her personal, private key.

At first glance this may seem the same as having a single project key for signing,

but there are several important differences. First of all, the project key is only used

when project membership changes and so can be kept off-line (in contrast to signing

every package with the project key). Second, no developer needs access to the

project’s private key. As developers come and go there is no need to change the

project key used to sign releases. Third, revocation of a developer’s key is as easy as

the project key removing delegation to that developer. Administrators whose clients

use the project’s packages need not be aware that the project’s membership has

changed. Fourth, trust of individual packages can also be revoked without revoking

161

the signing key.

Not every administrator must make their own trust delegation decisions.

Distribution maintainers would likely selectively delegate trust to projects, that

would further delegate trust to developers. Distribution maintainers would request

that the clients that use the distribution either trust the packages that the

distribution entity trusts or delegate trust to the distribution entity.

Another example of the usefulness of selective delegation is indicating that a package

is untrusted. There are several groups that monitor software vulnerabilities [17, 38].

Once a vulnerability is uncovered, these groups notify administrators that affected

packages should not be trusted. Instead, these groups could ask administrators to

delegate trust to them for knowing which packages to reject. An administrator can

add this entity as an authority that knows which packages should not be trusted.

As a result, the client will refuse to install a packages that is indicated as having a

security vulnerability even if other entities indicate the package is trusted.

A related principle to selective delegation is a customized repository view. A

customized repository view means that different clients that use the same repository

may have a different view of the packages on that repository. For example, perhaps

Alice trusts Bob to know about the foo packages, while Charlie does not. A client

that Alice manages will have Bob’s foo packages in its view of the packages in the

162

repository and a client Charlie manages will not.

Customized repository views extend to multiple repositories. A client may access

packages and metadata on multiple repositories. This information is amalgamated

to form a single, customized repository view with only data from the entities that

the client trusts. If some of the repositories are down or have been compromised,

the client will still be able to install packages from valid sources.

In providing customized repository views, it is important to keep track of the latest

version of the files that have been retrieved. The client should never accept an older

version of a file it has seen to protect against replay attacks.

To preserve security it is important to treat data coming from the repository as

untrusted. There are many subtle issues that are important to consider. For

example, dependency resolution is performed using package metadata. This

information must be validated so that maliciously-modified metadata cannot change

the behavior of package dependency resolution. Also, clients retrieve data from

repositories to install package updates including security updates. If a client is using

multiple repositories, it should not be possible for one of the repositories to prevent

the client from installing packages from other repositories.

163

3.8 Security Architecture in Stork

Stork prevents the attacks by following the three design principles for package

management security: selective trust delegation, customized repository views, and

explicitly treating the repository as untrusted.

This section begins with a description of a mechanism to provide selective trust

delegation called a trusted packages (TP) file. Then follows a description of

signature wrappers (a signature with additional fields) that provide resilience

against replay attacks to support customized repository views. Next, Stork’s

repository communication (which gathers the trusted packages files and package

metadata) is described. Then the use of self-certifying path names to support both

customized repository views and validate repository communication is described. A

discussion of how dependency resolution with backtracking improves security is then

provided. Tags are introduced to solve problems related to deciding which version of

a package should be used to resolve a dependency. The section concludes with a

discussion of how missing TP files are handled.

164

3.8.1 Trusted Packages

The primary architectural security difference between Stork and existing package

managers is the addition of a new type of file called a trusted packages file (or TP

file). TP files are used to provide selective trust delegation and also aid in

supporting customized repository views. An example TP file can be seen in

Figure 3.1.

An entity’s TP file indicates which packages the entity considers valid. The TP file

does not cause those packages to be installed, but instead indicates trust that the

packages have valid contents and are candidates for installation. It is common for

the distributor of a package to have multiple versions of the same package listed in

her TP file so that clients can install older (perhaps more stable) versions of the

package.

A trusted packages file allows an entity to delegate trust and specify individual

package files that the entity trusts. In order to trust a package, the package name

and the hash of the package’s metadata are added to the trusted packages file. This

is not the same as adding the hash of the package to the trusted packages file as the

metadata may now be verified independently of the package. Since the package

metadata contains a secure hash of the package, the package is still protected from

tampering.

165

To delegate trust to an entity, the entity’s name and public key are specified along

with the packages and dependencies the entity is allowed to provide. This

information is added to the trusted packages file. An entity can be trusted to know

which packages to install (using ALLOW), which packages not to install (using DENY),

or both (using ANY).

Lines in a trusted packages file are processed in order. The first line that a package

matches classifies the package as either available for installation (allowed) or

removes it from consideration (denied). Any packages that are unmatched are

automatically rejected (there is an implicit <FILE PATTERN="*" ACTION="DENY"/>

at the end). Thus, the order of lines in a TP file is important when determining

which packages are candidates for installation.

Figure 3.1 shows a TP file without a signature wrapper. This TP file rejects any

packages that the CERT entity rejects. This TP file specifically allows

emacs-2.2-5.i386.rpm, several versions of foobar, and customapp-1.0.tar.gz to

be installed if the package metadata matches the secure hash listed. It also trusts

the Apache entity for packages named apache*. Additionally, the shown TP file

indicates that the TP file of the Stork entity is used to determine trust of any

package whose name starts with stork or arizona.

A common usage scenario is for an administrator to delegate trust to the

166

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>

<TRUSTEDPACKAGES>

<!-- Refuse any packages the CERT entity says are bad -->

<USER PATTERN="*" USERNAME="CERT" PUBLICKEY="MFwwD...4wEAAQ" ACTION="DENY"/>

<!-- Trust some packages that the administrator specifically allows -->

<FILE PATTERN="emacs-2.2-5.i386.rpm" HASH="aed4...a732" ACTION="ALLOW"/>

<FILE PATTERN="foobar-1.01.i386.rpm" HASH="16b6...470" ACTION="ALLOW"/>

<FILE PATTERN="foobar-1.0.i386.rpm" HASH="3945...7fd" ACTION="ALLOW"/>

<FILE PATTERN="simple-1.0.tar.gz" HASH="2343...341" ACTION="ALLOW"/>

<!-- Trust the apache entity for apache packages -->

<USER PATTERN="apache*" PROVIDES="apache*,httpd" USERNAME="apache"

PUBLICKEY="MFw_...EAAQ" ACTION="ANY"/>

<!-- Trust the ’stork’ entity for stork and arizona packages -->

<USER PATTERN="stork*,arizona*" PROVIDES="stork*,arizona*" USERNAME="stork"

PUBLICKEY="MFww...AAQ" ACTION="ANY"/>

</TRUSTEDPACKAGES>

Figure 3.1. Example TP File. This file specifies which packages and entities

are trusted. Only packages allowed by a TP file may be installed. FILE actions are

used to trust individual packages. USER actions delegate trust by specifying a entity

whose TP file is included. Public keys and hashes are shortened for readability.

167

distributions and third party projects they use. The distribution’s TP file selectively

delegates trust to different projects for only the packages distributed by that

project. The project’s TP file delegates trust to the developers. The developer’s TP

files are used to trust individual packages.

3.8.2 Signature Wrappers

Stork uses signature wrappers to create the customized repository view that a client

sees. This is the set of good metadata from all repositories the client references,

including good information previously downloaded from the repositories. Package

metadata is checked for validity (described in Section 3.8.4) and newer versions of

files are selected. The resulting valid package metadata forms the customized

repository view.

Customized repository views are formed using files retrieved from the repositories

defined in the administrator’s master configuration file. The newest valid versions of

the packages.pacman, groups.pacman, and TP files are used. Additionally, only

the package metadata trusted by the administrator’s TP file (or TP files the

administrator trusts) is considered. The resulting package metadata and newest

versions of the other files comprise the client’s customized repository view.

Signature wrappers protect TP files, packages.pacman, groups.pacman, master

168

configuration files, and the root repository metadata from tampering, prevent the

replay of an older file than the package manager has previously used, and protect

against an attacker permanently returning the same version of a file. Signature

wrappers contain the timestamp, expiration time, signature, and a hash of the public

key that was used to generate the signature. The timestamp prevents older versions

of files from being considered over newer versions. The expiration time stops old

files from being used indefinitely. The signature protects the file from tampering.

The signature covers the expiration time and timestamp as well as the embedded

contents. The public key is included for reasons explained in Section 3.8.4.

The timestamp specifies when the file was created. By default, the timestamp is

generated from the time in seconds since the epoch. Clients track the latest version

of each file the client has seen and will never accept an older version, thus

preventing replay of old files.

Files can also be created with a negative timestamp. If a file has a negative

timestamp, it means that the entity’s key that signed the file should be treated as

invalid. Any client with a file that has a negative timestamp will reject any file

signed by the same entity’s key regardless of timestamp. This is an effective way for

an entity to indicate that its key has been compromised and that the key’s signature

should not be trusted. Negative timestamps were chosen to indicate a revoked key

(as opposed to a separate field in the signature wrapper) to preserve backwards

169

compatibility with the existing signature wrapper format.

The signature wrapper also has an expiration time. This is checked against the time

on the local client that uses the file. If the current number of seconds since the

epoch is greater than the expiration time, then the file is invalid.

The expiration time mechanism requires that clients have roughly synchronized

clocks. If this is a problem, an administrator can set a master configuration file

option on a client to disable expiration checking but retain the signature verification

and timestamp ordering. This allows administrators to permit clients with high

clock skew to operate but reduces security (as there is no protection against an

attacker continuously returning the same version of a signed file).

There are two comparisons that must be performed to determine which version of a

signed file should be used. The expiration time of each file’s signature wrapper must

be examined to see if the file has expired and the timestamps in the file’s signature

wrappers must be compared to see which is newer. The order of the timestamp and

expiration time comparisons may be relevant to which file is considered valid. For

example, suppose that there are two files: an older file that has an expiration time

in the future and a newer file that has already expired. If the expiration comparison

is done first, then the older file will be used because the newer file has expired. If

the expiration comparison is done after the timestamp comparison, neither file is

170

valid because the newest version has an expiration time in the past.

Stork performs the timestamp comparison first so that the file with the newest

timestamp will always be used. This helps to prevent replay of old metadata

because clients will never accept older files once the client has seen a newer file, no

matter the situation.

3.8.3 Communicating with Repositories

Instead of a simply opening a repository connection for file download and waiting

for download completion, Stork monitors the connection. If the connection is not

transferring data above a configurable minimum rate, the repository is treated as

dead and the connection is aborted. Stork also restricts the amount of data

downloaded from a repository. If a repository responds with more than the expected

amount of data or more than a configurable maximum then Stork drops the

connection.

Stork supports multiple data transfer protocols, including HTTPS. Using HTTPS

prevents man-in-the-middle attackers from masquerading as a repository.

171

3.8.4 Self-certifying path names

Along with signatures, Stork uses self-certifying path names [48] to detect

tampering. These identifiers are present in the URLs or file names of TP files,

packages.pacman, groups.pacman, master configuration files, packages, and

package metadata. Self-certifying path names allow any party, such as a repository

or nest, to check the validity of a file.

A package or package metadata is stored on a repository at a URL containing its

secure hash. All packages and package metadata are considered to be immutable.

Any entity can verify that a file has not been tampered with by checking the secure

hash of the retrieved data. This allows a repository to check that uploaded packages

and package metadata are valid. This is also used by the client to validate that

information retrieved from a repository is correct.

A TP file has a public key embedded in its name instead when the key will fit given

the filesystem restrictions on file name length. Using an embedded public key, a

repository can verify the file is unmodified by checking that the TP file is correctly

signed and that the public key in the secure identifier corresponds to the private key

that signed the file.

On some file systems, keys with many bits are too long to be embedded in the file

172

names. In this case the public key is placed in the signature wrapper and a secure

hash of the key is placed in the URL.

Since TP files are mutable, multiple valid copies of a TP file may be uploaded to a

Stork repository. In this case, the Stork repository keeps the version with the latest

timestamp. If any of the files specify that the key should be revoked (via a negative

timestamp), then the file with the negative timestamp is retained.

Having a Stork repository keep the newest version of a file is an optimization that

prevents attackers from replaying old copies of files. However, a repository that does

not perform this action still provides security assurances to the clients it serves.

Even if a repository colludes with an attacker to accept old files, Stork’s use of

expiration dates and timestamps limits the effectiveness of replaying old TP files.

This means that a malicious repository can only “pause” an existing TP file while

the TP file is within its expiration period and cannot cause a client to accept an

earlier version. However, a well-behaved repository improves the security of the

clients that use the repository by ensuring that new versions of files that are

uploaded are available to clients.

Other metadata files (packages.pacman, groups.pacman, and master configuration

files) are treated the same way as TP files. These files also have self-certifying path

names.

173

3.8.5 Dependency Resolution

Another aspect of package management that has security implications is

dependency resolution. An attacker may be able to block access to some repositories

but not others, which means that actions by an attacker (or repository failures) may

make some packages unavailable. Inability to access a package repository should not

prevent package installation when alternate trusted packages that fulfill the same

dependencies are available. If this is not the case then the failure of a few

repositories can deny packages to many clients. In addition, when an administrator

uploads a package to a repository it is possible that the administrator will forget to

add a dependent package. If the administrator does not specify which version of a

package should be added on a client, the administrator’s client should not be

prevented from installing another trusted version of the package.

For example, suppose there is a client that uses two repositories. The first

repository hosts the version of bar that is preferred by the administrator’s TP file

(preference is discussed in Section 3.8.6). The second repository also hosts a version

of bar that is also trusted. Suppose that the first repository is offline when the

client tries to install bar. The dependency resolution mechanism should install the

version of bar on the second repository. If the dependency resolution mechanism

does not install bar then an attacker that can block access to the first repository

174

can stop the client from installing bar. If the administrator specifies a version of

bar, that version will be the only one installed. If the administrator wants the

version of bar on the second repository to be installed only until the first repository

comes back online, the administrator can specify that bar should be updated in the

packages.pacman file.

In order to perform dependency resolution and handle unresolved dependencies, the

dependency resolution engine must support backtracking. Before explaining

backtracking in dependency resolution, classical dependency resolution (the process

used by APT, YUM, and other package managers) is first described. Classical

dependency resolution is a process that is given a package (or packages) and is

asked to provide a set of packages that when installed will have no unresolved

dependencies. The steps that a classical dependency performs are:

1. The outstanding dependency list is initialized to contain the packages that the

administrator has selected to have resolved.

2. The suggested packages list is initialized to be empty. The suggested packages

list will contain all of the packages that must be installed to resolve the

dependencies.

3. The first item in the outstanding dependency list is removed and set to be the

“current dependency”.

175

4. A package that satisfies the current dependency is chosen. If more than one

package qualifies the choice is based upon the tie-breaking criteria of the

package manager (typically something like shortest name or alphabetical). If

there is no package that meets the criteria then the package manager prints an

error and exits. The package that is chosen to meet the current dependency is

the “current package”.

5. The current package is added to the suggested packages list.

6. The dependencies of the current package are examined. Any dependency that

is not installed and is not resolved by a package in the suggested packages list

is added to the outstanding dependency list.

7. If the outstanding dependency list is non-empty then go to Step 3.

8. Return the suggested packages list.

The dependency resolution engine provided will resolve dependencies if each

dependency can be resolved by the preferred package. However, if the preferred

package cannot resolve a dependency, the dependency resolution process will fail.

By adding backtracking, the dependency resolution engine will resolve dependencies

if there exists a version of a package that can resolve each dependency and that

package can have its dependencies resolved.

176

In order to add backtracking, the dependency resolution algorithm must be modified

slightly in Step 4 to save the current state whenever there are multiple choices of

packages to resolve a dependency. Step 4 also must be changed to backtrack to try

other packages whenever the package chosen results in an unresolvable dependency.

When backtracking the suggested packages list and outstanding package lists must

be restored to the state they were in when the choice was made.

3.8.6 Tags

Another issue with dependency resolution is which package should be preferred to

resolve a dependency when multiple packages may do so. Originally in Stork,

packages were preferred based upon the order of the line that allowed the package in

the TP file (the order is still used as a tie-breaker for other preference mechanisms).

Preference based upon order in the trusted packages file works well for an

administrator that wants to add preferred versions of packages early in the trusted

packages file to override the package decisions made by other entities the

administrator trusts. However, there are two situations in which the order in the

TP file is problematic. First, if an administrator manages clients that use different

distributions, the administrator would like each client to prefer (or possibly to only

use) the packages from the distribution the client uses. Second, a project may have

many developers. The project entity would like to signal trust in all of the

177

developers and have the preferred version of the project’s package be the latest

version produced by any developer. If the preferred version is order based, then the

preferred version of the package will be the first version in the TP file of the first

developer trusted by the project entity.

To resolve the problems with order based dependency resolution preferences, Stork

provides tags. A tag is added to an entry in a TP file to signal that the package has

a specific property. For example, an entity can add a tag that signifies that a

package belongs to a specific distribution. An administrator can then specify that a

client should only install packages that have that tag (and are thus from that

distribution). Administrators can also list preferences for tags so that the packages

in one distribution will be preferred over another distribution, but both

distributions are acceptable. An administrator may want to use a single TP file for

clients that have different distributions. There administrator can specify that the

preferred tag is %ARCH%. The %ARCH% tag is replaced by the name of the client’s

distribution. The %ARCH% tag will ensure that the distribution’s packages are used

instead other versions of packages.

To support project entities in which preference should be decided based on the

order in which packages are added, timestamp tags were added. An entity that adds

a package can add a timestamp tag to a package. The package with the latest

timestamp tag will be preferred over other packages that fulfill the same

178

dependency. Timestamp tags allow a project key to delegate trust to different

developers and have the developer that puts the latest timestamp on a package have

that package version be preferred.

If tags are not used or more than one package has the same tag, then the preference

is determined by the order the packages are listed in the trusted packages file.

3.8.7 Missing TP Files

There are four logical things that the Stork package manager might do when a TP

file is missing. Unfortunately, each is wrong in some scenarios and right in others.

Given the information that the package manager has, it is not possible to make the

correct decision all of the time. As a result the package manager provides a choice

of behaviors to the administrator.

The four actions that the Stork package manager can take are:

1. Ignore. Ignore the fact that the TP file is missing. Treat the line that

delegates trust to the entity as though the line was not there.

2. Deny. Treat a missing TP file as though the missing TP file contains the

action <FILE PATTERN="*" ACTION="DENY"/>. This will act the same as

ignore for entities that are delegated trust using ALLOW. When the package

179

action was ANY or DENY then a package that matches the pattern will be

denied.

3. Denyall. Treat the line that includes the TP file as though the line is a DENY

for any package that matches the pattern. This will have the same effect as

Deny when the action was ANY or DENY. However, this will also prevent the

installation of packages that match an ALLOW line.

4. Exit. The package manager prints an error message and refuses to perform

any package management actions.

To illustrate that each of these is the wrong (and right) thing to do in some

scenarios, an example TP file is shown in Figure 3.2. Assume that there is no TP

file for the foo project or security-team entity on the client. The administrator

requests the installation of foo, bar, and baz. Suppose foo depends on bar and bar

depends on baz. Four examples are given to show how different answers can be

correct depending on the situation.

1. The TP files are missing because an attacker is trying prevent the client from

installing the packages (i.e. a denial-of-service attack). In this case, the

administrator wants a valid version of foo, bar, and baz installed, regardless

of the missing TP files. Since the administrator lists versions of foo, bar, and

baz in the TP file, these versions should be installed.

180

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>

<TRUSTEDPACKAGES>

<!-- Trust the ’security-team’ entity to know about bad foo packages -->

<USER PATTERN="foo*" USERNAME="security-team" PUBLICKEY="MFskx...j34XEjAQ" ACTION="DENY"/>

<!-- Trust a package that the administrator specifically allows -->

<FILE PATTERN="foo-1.0-1.rpm" HASH="28934...3974" ACTION="ALLOW"/>

<!-- Trust the ’bar’ entity for bar packages -->

<USER PATTERN="bar*" PROVIDES="bar*" USERNAME="bar" PUBLICKEY="MFskx...4XEjAQ" ACTION="ALLOW"/>

<!-- Trust a package that the administrator specifically allows -->

<FILE PATTERN="bar-1.0-1.rpm" HASH="835e6...d341" ACTION="ALLOW"/>

<!-- Trust a package that the administrator specifically allows -->

<FILE PATTERN="baz-1.0-1.rpm" HASH="b2346...ffde" ACTION="ALLOW"/>

</TRUSTEDPACKAGES>

Figure 3.2. Example TP File for Missing Packages. This TP file is used to

provide examples of how the package manager cannot know the correct action to take

when a TP file is missing. Public keys and hashes are shortened for readability.

181

2. The TP files are missing because an attacker is trying to prevent the client

from getting the security-team TP file. The security-team TP file may

deny the version of foo that the administrator has specified in the TP file due

to a security problem with foo. In this case, the administrator wants a valid

version of bar and baz installed but foo should not be installed.

3. The TP files are missing because an attacker is trying to get the client to

install the outdated version of bar in the administrator’s TP file. The attacker

may want the client to install the outdated version of bar because of security

problems with it that are resolved in the version of bar listed in the bar

project’s TP file. In this case, the administrator wants a valid version of baz

installed but bar and foo should not be installed.

4. The TP files are missing because an attacker is trying to get the client to

install baz without current versions of foo and / or bar. This may be the case

because the newest versions of foo and / or bar provide logging or attack

detection functionality that the attacker may trigger while attacking baz. In

this case the administrator doesn’t want any packages installed. The

administrator also is likely to want to be warned of the missing TP files

without any packages being installed if the administrator is running stork by

hand.

The examples given correspond to the different options as is shown in Table 3.5.

182

Package Manager Action

Ignore Deny Denyall Exit

Example 1 Correct Omitted foo Omitted foo and bar Omitted foo, bar, and baz

Example 2 Installed foo Correct Omitted bar Omitted bar and baz

Example 3 Installed foo and bar Installed bar Correct Omitted baz

Example 4 Installed foo, bar, and baz Installed bar and baz Installed baz Correct

Table 3.5. The correspondence between the examples and choice of how the package

manager handles missing TP files is shown. Each example is correctly handled by

one of the ways to deal with missing TP files and wrong in the others. The packages

omitted or additional packages installed are listed.

Each configuration option works perfectly for one example, but does the wrong

thing for the other examples. Since the Stork client tools cannot know what the

right answer is for the situation, there is a configuration option that controls the

behavior. An administrator can choose the option that specifies the behavior she

wants her client to have.

183

3.9 Attack Effectiveness in Stork

By following the principles for secure package management, Stork has worked to

mitigate the attacks that are effective on APT and YUM. This section revisits these

attacks to examine their effectiveness on Stork.

3.9.1 Slow Retrieval

Communication monitoring by the client prevents slow communications from

“pausing” the package manager. If a connection is too slow, the transfer is aborted

and the repository is treated as down.

3.9.2 Endless Data

Stork protects against endless data attacks. In some cases a Stork client does not

know the correct size of data it is downloading: when an attacker controls a

repository (and can arbitrarily set the size), and when retrieving the initial root

repository metadata. There are maximum file sizes for every type of file downloaded

as well as a maximum size for a repository as a whole.

In the case of an uncompromised repository, all files other than the root repository

184

metadata are of a known size. Stork verifies that the files it downloads do not

exceed that size.

3.9.3 Replay Old Metadata

Since the root repository metadata, TP files, package.pacman, groups.pacman, and

master configuration files have a signature wrapper, an attacker cannot replay older

files than the client has already seen. Also, the expiration time prevents files from

being used indefinitely.

3.9.4 Extraneous Dependencies

This attack cannot be launched by an attacker that compromises a repository since

the developer’s signature protects the package metadata. The key difference

between the Stork client and existing package managers is that, with Stork, the

developer’s key protects the package metadata, not the repository’s key.

185

3.9.5 Depends on Everything

Similar to extraneous dependencies, this attack cannot be launched by an attacker

that compromises a repository since the developer’s signature protects the package

metadata.

3.9.6 Unsatisfiable Dependencies

This attack is prevented for the same reason as extraneous dependencies: a

repository compromise does not imply the ability to forge package metadata.

However, if a package legitimately has unsatisfiable dependencies, the dependency

resolution mechanism will find a trusted version of the package and install that

version instead.

3.9.7 Provides Everything

This attack cannot be launched by an attacker that compromises a repository since

the developer’s signature protects the package metadata. The other consideration is

whether or not an attacker can cause a package the attacker is trusted to provide be

installed when not requested. In Stork an entity can prevent this attack by

186

restricting the package metadata signed by a specific entity to only provide certain

dependencies.

3.9.8 Use Revoked Keys

Delegation using a trusted packages file provides a mechanism for revoking trust in

a package or revoking trust delegated to an entity. Assuming that project keys are

used only to change the list of developers trusted to sign project files (as discussed

in Section 3.7.2), the most likely avenue for compromise is an individual developer

key. These can be revoked individually by the project key without involving other

entities. If a project key is compromised, a trusted packages file with a negative

timestamp can be created so that clients will not continue to use the compromised

key.

Unlike APT and YUM, the speed of revocation in Stork is the same as the speed of

trust. This means that individuals that revoke trust are not at a disadvantage

because of the inherent speed of the mechanism used to do so.

187

3.9.9 Escalation of Privilege

Trusted packages files allow very fine-grained trust decisions to be delegated to

other entities. This means that if an administrator trusts Apache to know about the

validity of apache packages but never installs an apache package, an Apache key

compromise will not compromise the security of the administrator’s clients. This

removes the administrator’s dilemma about whether to add keys the administrator

can verify when the package may not be needed (from Section 3.5.9). The simple

and secure answer for Stork administrators is to trust all of the project keys that

the administrator knows are valid but to trust them only for packages provided by

that project. By using selective trust delegation, only clients that install a given

project’s packages are at risk if that project’s key is compromised.

188

3.10 Related Work

There are many package managers for Linux including Slaktool [72], pacman [7],

YaST [90], Urpmi [81], and emerge [63]. These package managers have flaws similar

to those in APT and YUM. Slaktool and pacman do not attempt to provide

security and are widely known to be insecure. Urpmi and emerge have security

models very similar to YUM. YaST has a security model similar to APT when using

package signatures. The attacks in Section 3.2 effect Urpmi, emerge, and YaST in

similar ways to APT and YUM.

Popular BSD package managers are pkg add [13] and freebsd-update [60].

pkg add relies on administrator to check that detached signatures match the

provided tarball, however these signatures are unavailable in practice and so are not

widely used. freebsd-update signs the root repository metadata and does not sign

packages or use HTTPS making it similar to APT from a security standpoint.

Many dependency resolvers have nice front-ends, including GUIs in many

cases [44, 78]. These GUI-based tools are usually just a different interface to the

functionality provided by a command line dependency resolver and so are not

relevant from a security standpoint.

Another way to update software on an operating system is a software update

189

system. There is a recent study [9] of the security of software update systems.

Different software update systems have different properties, but many popular

software update systems have security problems in how they authenticate data and

communications. Regardless software update systems do not support dependency

resolution or selective delegation and as such are unacceptable for many situations.

There are a variety of ways to update and install software on modern operating

systems besides package managers. There are systems that ensure the authenticity

and integrity of software (including SFS-RO [48], SUNDR [49], Deployme [53],

Self-Signed Executables [89]), software installers [41, 88], and code signing

certificates [21]. These systems do not support selective delegation or protect

dependency information. These systems are meant for cases in which every

administrator knows the organization that is supposed to be distributing each piece

software and there are no software dependencies — unrealistic requirements for

many scenarios.

190

3.11 Conclusion

This chapter explored package management security by first examining nine attacks

that existing package managers are vulnerable to and the common themes behind

those attacks. Those attacks were shown to be feasible and allow attackers to install

malicious packages, prevent legitimate package updates, and crash the client. While

some attacks can be mitigated with simple patches to existing package managers,

many flaws are architectural in nature. Three design principles for constructing an

architecture that does not have these flaws were presented and implemented in

Stork. Stork is not vulnerable to the attacks that affect other package managers.

191

Chapter 4

Sharing

The popularity of virtual machine environments such as Xen, VMWare, and

VServers has created new challenges in package management. These systems

attempt to isolate different virtual machines so that they function as independent

systems. Unfortunately this isolation leads to inefficiencies in package management.

There are two major efficiency problems that VM environments create. First,

isolation leads multiple VMs that want the same package and reside on the same

physical machine to download the package separately. This wastes network

bandwidth. Second, multiple VMs on the same physical machine install the package

separately. This means there will be separate copies on disk which may also lead to

increased memory use.

This chapter describes how Stork uses the nest to break the isolation provided by

VM environments to improve efficiency. The nest improves efficiency by sharing files

between VMs. The nest downloads packages only once per physical machine and

securely shares installed packages between VMs. Sharing is evaluated by

192

constructing two different architectures for sharing. These architectures demonstrate

that the nest presents trade offs of security versus ease of implementation.

193

4.1 Map

This chapter describes how Stork improves the efficiency of package management in

VM environments by sharing files between VMs on the same physical machine.

First, some examples describe inefficiencies in VM environments that can be

resolved using sharing (Section 4.2). Then the potential benefits of sharing are

analyzed to determine if sharing is worthwhile (Section 4.3). Once the benefits of

sharing are established, Section 4.4 provides an overview of how Stork uses sharing

to improve efficiency. Section 4.5 discusses the underlying mechanisms for sharing

on different architectures. Section 4.6 revisits the client tools (previously described

in Section 2.5) to examine the VM’s actions to facilitate sharing. Section 4.7

describes the nest in detail, including the share (Section 4.7.1) and prepare

(Section 4.7.3) functionality managers. Section 4.8 walks back through the examples

provided in Section 4.2 to describe in detail how sharing works in practice.

Section 4.9 discusses different locations where the nest can reside and the

implications this has on security and ease of implementation. Section 4.10 examines

how the sharing provided by the nest in Stork differs from other techniques for

sharing. Section 4.11 concludes.

194

4.2 Examples

This section provides examples of inefficient actions performed by package managers

in VM environments. The underlying theme that these actions have in common is

that unnecessary duplication leads to inefficiency.

Later, in Section 4.8, these examples are revisited using Stork. Stork uses sharing to

remove unnecessary duplication, which makes the examples in this section more

efficient.

4.2.1 Duplicate Downloads

Suppose multiple VMs on the same physical machine are served by the same

package repository. When a VM wants to download metadata or a package, the VM

contacts the repository and downloads the file. This file may have already been

downloaded by a VM on the same physical machine. These duplicate downloads

unnecessarily consume network bandwidth.

However, this problem is not unique to files downloaded from a single repository.

Two VMs on the same physical machine may also use different package repositories

but download the same file from those repositories. Ideally, the duplicate downloads

would be prevented even if the file is downloaded from different repositories.

195

4.2.2 Duplicate Package Files

Multiple VMs on the same physical machine have installed the same package. Each

VMs has its own copy of the package on disk, leading to increased disk usage.

In addition, many operating systems and VMMs are able to reduce memory usage

when multiple instances of the same executable are running at the same time. If

each VM’s executable is in a separate file, the VMM may not detect that the

executables are the same. Since the executables are considered separate, the VMM

is not able to reduce memory usage.

196

4.3 Benefits of Sharing

As the examples have shown, there are two main areas in package management in

which sharing is beneficial. The first is removing duplicate downloads. Duplicate

downloads occur when multiple VMs download the same package or metadata.

Ideally, duplicate downloads would not occur and VMs on the same physical

machine share the same file that would have been retrieved by separate downloads.

The second area in package management in which sharing is beneficial is sharing the

files in packages between VMs. This means that there will only be a single copy of a

package’s files on disk no matter how how many VMs install the package. This

increases the efficiency of disk and memory usage.

4.3.1 The Benefit of Removing Duplicate Downloads

This section examines the benefit of preventing duplicate downloads. To better

understand the benefit, it is important to know how often different VMs on the

same physical machine will download the same data. If VMs on the same physical

machine never download the same data, then there is no potential benefit for

duplication removal because there are no duplicate downloads. If nearly all of the

files downloaded by VMs on the same physical machine is duplicated then the

197

impact of removing duplicate downloads is high.

To examine the frequency of common package selection, a snapshot of the

packages.pacman files on the main Stork repository was examined on February

12th, 2008. In the 91 package.pacman files on the main Stork repository,

administrators had 465 package actions. Of the 125 unique packages that had

package actions, 60 of those packages were selected by a single administrator.

However, the five most popular packages had actions from at least 10

administrators. On average, each package had 3.72 actions. These results

demonstrate that there is a significant overlap in package selection among

administrators. Since many administrators select the same packages there are many

duplicate package downloads. This means the removal of duplicate package

downloads will reduce the packages downloaded by 73%.

In addition to packages, package managers download metadata from a repository. It

is common for either a distribution or organization to use a single repository (as

Stork and PlanetLab do) or to have mirrors that are exact copies of a central

repository. Either way the downloaded metadata is the same for all VMs that use

the repository. If all VMs run the same operating system (as is the case in VServers

and PlanetLab), this makes it likely that the metadata downloaded by every VM

will be the same.

198

Thus, all VMs on a physical machine are likely to use the same repository or mirrors

and therefore download the same metadata. This means that if VMs share

metadata, there will be one metadata download per physical machine and all VMs

will share the same metadata. According to CoMon [59], on average there are more

than 50 VMs per PlanetLab physical machine so downloading metadata once per

physical machine should have about 1/50 of the cost of downloading metadata once

per VM.

4.3.2 The Benefit of Sharing Package Files

This section examines the benefit of sharing packages files. First, this section

examines disk space savings when sharing packages in VM environments. Then, this

section measures the memory savings provided by processes in shared packages that

are run at the same time in multiple VMs.

4.3.2.1 Disk Usage The first experiment measured the amount of disk space saved

on PlanetLab physical machines by installing packages in a shared manner versus

installing packages in VMs individually (Table 4.1). These measurements were

collected using the 10 most popular packages on a sample of 11 PlanetLab physical

machines. Some applications consist of two packages: one containing the application

199

Package Disk Space (KB) Percent

Rank Name Standard Shared Savings

1 scriptroute 8644 600 93%

2 undns 13240 652 95%

3 chord 64972 1216 98%

4 j2re 61876 34280 45%

5 stork 320 32 90%

6 bind 6884 200 97%

7 file 1288 36 97%

8 make 808 32 96%

9 cpp 3220 44 99%

10 binutils 6892 60 99%

Table 4.1. Disk Used by Popular Packages. This table shows the disk space

required to install the 10 most popular packages installed by VMs on a sampling of

PlanetLab physical machines. The Standard column shows how much per-VM space

the package consumes if nothing is shared. The Shared column shows how much

per-VM space the package requires when installed files are shared.

200

and one containing a library used exclusively by the application. For the purpose of

this experiment the packages are treated as a single package.

To test the benefit of sharing, each package was installed in multiple VMs. The

packages examined here are RPMs which have information describing which files are

documentation, configuration files, or application data. Application data and

documentation files were shared between VMs after checking to ensure that the files

are the same on each VM. Configuration files are not shared because they are likely

to be modified by a VM and shared files are unable to be modified. More

information about why configuration files are not shared is provided in the

discussion about the sharing mechanism in Section 4.5.

For all but one package, sharing reduced the per-VM disk space required to install a

package by over 90%. The actual disk savings depend on the number of VMs that

install the package. The first VM that installs a package has no space savings and

takes the standard amount of disk space. Every VM that installs the package

thereafter incurs only the shared size instead of the standard size.

One package, j2re, had savings of only 45%. This was because many of the files

within the package are themselves inside of archives. The post-install scripts extract

these files from the archives, and are run separately by each VM so the extracted

files are not shared between VMs. By repackaging j2re so that the extracted files

201

are part of the package, this issue can be avoided.

4.3.2.2 Memory Usage When two processes that use the same executable run at

the same time, the memory used is not double that of a single process using the

executable. This is because only one copy of the executable’s code and libraries are

stored in memory. These memory savings also occur when multiple VMs run

processes that use an executable that is shared between VMs.

Table 4.2 shows the amount of memory shared when different VMs run the same

executable. To examine the amount of memory saved, the primary application from

each package in Table 4.1 was run and its memory usage was analyzed. The pmap

command was used to dump the process’s address space. Using the page map data,

it is possible to classify memory regions as shared or private. This results in an

accurate assessment of how much of the virtual address space of the processes is

shared. However, the results do not necessarily correspond exactly to the amount of

memory shared as some pages in the virtual address space may not be resident in

memory (perhaps due to paging).

Another difficulty in measuring memory use is that the amount of memory used

may change as the process runs. Daemons were simply started and measured.

Applications that process input files (such as java and make) were started with a

minimal file that goes into an infinite loop. The remaining applications were asked

202

Package Application Memory (MB) Percent

Rank Name Name Standard Shared Savings

1 scriptroute srinterpreter 5.8 3.2 45%

2 undns undns decode 4.2 2.0 53%

3 chord adbd 7.6 2.3 70%

3 chord lsd 7.5 1.1 86%

4 j2re java 206.8 169.5 18%

5 stork stork 3.4 1.2 64%

6 bind named 36.7 32.1 12%

7 file file 2.6 1.3 50%

8 make make 2.5 1.1 54%

9 cpp cpp 2.5 1.2 52%

10 binutils objdump 3.3 1.4 59%

10 binutils strip 2.9 1.0 65%

10 binutils strings 3.4 1.7 50%

Table 4.2. Memory Used by Popular Packages. Packages that are shared

allow VMs to share process memory. The Standard column shows how much memory

is consumed by each process when nothing is shared. With shared processes, the

first process will consume the same amount as the Standard column, but additional

processes only require the amount shown in the Shared column.

203

to print their usage information and the memory used was measured before the

application exited.

The resulting measurements show that sharing typically reduces the memory

required by additional processes that use the same executable by 50% to 60%.

There are two notable exceptions: named and java. These processes allocate huge

data areas that are much larger than their text segments and libraries. Data

segments are private, so this outweighs any benefits in sharing text and libraries.

4.3.3 Summary

This section has shown there is considerable room for improving efficiency in package

management by sharing between VMs on the same physical machine. On average a

package is downloaded 3.72 times, demonstrating that preventing duplicate package

downloads will reduce package downloads by about 73%. Also, metadata downloads

can be reduced to one per physical machine instead of one per VM which reduces

the cost by a factor of 50. Disk space savings by sharing will typically be about an

order of magnitude (minus packages that unpack or build executables during the

post install scripts). The memory saved by sharing executables is about 50%. These

results show that sharing is worthwhile in VM environments.

204

4.4 Sharing Overview

As Chapter 2 discussed, Stork shares files using the nest. A nest process runs on

each physical machine that supports VMs. When the client tools run in a VM, the

client tools communicate with the nest on the physical machine to coordinate

sharing.

Before sharing occurs, the VM and the nest authenticate each other regardless of

the architecture. The VM can authenticate the nest because only the nest is allowed

to bind to a socket on a specified low numbered port due to protections provided by

the VMM. The nest authenticates the VM using sharing primitives which also

leverage protections provided by the VMM.

In order to prevent duplicate downloads, the client tools have a transfer specialized

plug-in that performs a nest “transfer” of files. However, the specialized plug-in does

not communicate with the repository, but instead asks the nest for the file. The nest

keeps a cache of previously downloaded files. If the nest has the file in its cache, the

nest shares the file with the VM. If the nest does not have the file in its cache, the

nest downloads the file, adds the file to the cache, and then shares the file with the

VM. The cache on the nest thus prevents duplicate downloads of the same file.

The nest also shares files in packages between VMs. To do this, the package

205

functionality manager used by stork has a package specialized plug-in that installs

shared RPM packages. Instead of the files in the package installing normally, the

nest overwrites the VM’s copy of the files with hard links to shared versions of the

files. The shared files are protected so that the VM cannot modify the file. This

allows multiple VMs to share the same package files without compromising security.

206

4.5 Sharing Mechanism

This section describes the mechanisms used to securely share files on VServers

(Section 4.5.1) and PlanetLab (Section 4.5.2) architectures. The different operations

necessary to share files are also discussed.

Sharing is performed between VMs on the same physical machine in different ways

on the PlanetLab and VServers architectures. However, the underlying functionality

that the VMM provides to the nest is similar. This functionality consists of four

different actions: binding a socket of the nest to a well known port so that a VM

can authenticate the nest, the ability to protect a file so that a VM cannot modify

it, the ability to share a directory between VMs, and the ability to share a file

between VMs.

4.5.1 VServers

On the VServers architecture, the nest runs in the VMM. The VMM has access to

the file system of each VM because the file system for a VM is a subdirectory in the

VMM’s file system.

The nest binds to a well known, low numbered port (< 1024) so that a VM can

authenticate the nest. A VM in the VServers architecture does not have the

207

permissions necessary to bind sockets to port numbers less than 1024. The nest is in

the VMM and so may bind a socket to a port less than 1024. Thus a VM can

authenticate the nest by connecting to the port since only the nest can bind a

socket to the port.

A file is protected by setting its IMMUTABLE LINKAGE INVERT BIT. This

prevents any VM from modifying the file (although a VM may unlink the file). A

VM does not have the appropriate permission to remove the

IMMUTABLE LINKAGE INVERT BIT. This bit is set on any file shared between

VMs to prevent an attacker from changing the file. Protected files may be removed

but not modified in place. A protected file may be modified by copying the file,

editing the copy, and then replacing the existing version of the file in the VM. This

results in the VM having a separate, unshared version of the file that is not

protected.

Sharing a directory between VMs is done using the mount command. The mount

command takes an option --bind that allows a directory in a file system to be

mounted as though it is a separate file system. This means that the nest can use the

mount command to share a directory between VMs. The nest is in the VMM and is

assumed to be trusted, so the nest is allowed to share whatever directories it

requests.

208

Sharing a file between VMs is straightforward on the VServers architecture. The

VMM (where the nest runs) has access to the file system of the VM. The nest can

share a file with a VM by hard linking the file into an appropriate location in the

VM’s file system.

4.5.2 PlanetLab

On the PlanetLab architecture, the nest runs in a VM. The nest uses a service

Proper [51] to perform privileged operations. Proper checks that an operation the

nest requests is allowed and only permits authorized actions.

As in the VServers architecture, the nest binds to a well known, low numbered port

(< 1024) so that a VM can authenticate the nest. A VM in the PlanetLab

architecture does not have the permissions necessary to bind a socket to a port

numbered less than 1024. The nest runs in a VM which means the nest cannot bind

a socket to a port numbered less than 1024. However, the nest can bind a socket to

a low numbered port through Proper. Proper checks that the slice of the nest VM

has permission to bind a socket to the specified port. The port that the nest uses is

well known so all VMs have this information. A VM knows that it is talking to the

nest by connecting to the port since Proper prevents other VMs from binding to

that port.

209

Protection of a file is accomplished by requesting that Proper set the NOCHANGE

bit for the file. This bit functions in an identical way to the

IMMUTABLE LINKAGE INVERT BIT described in the VServers architecture

section. Before Proper grants the request, Proper checks to see if the nest VM’s

slice has permission to set the NOCHANGE bit. The nest slice has been granted

this permission by PlanetLab’s administrators. Thus Proper will set the

NOCHANGE bit on the files in the nest VM when the nest requests the action. As

with VServers, an administrator that wants to change a protected file can copy the

file, edit the copy, and then replace the existing version.

Sharing a directory between VMs is also done using Proper. Proper uses the mount

--bind command to share a directory between VMs after checking that the action

is authorized. Before Proper grants the request, Proper checks to see if the nest’s

slice has permission to mount a directory between slices. This permission has been

granted to the nest’s slice by PlanetLab’s administrators. In addition to checking

that the nest slice is authorized to share directories, the VM that the nest is sharing

the directory with must authorize the sharing. This is performed by the VM

creating a specially named file in the directory to authorize the sharing. Proper

checks that this file exists in the directory and that the file contains the nest’s slice

name. Note that VServers did not require the VM to create a file to authorize the

nest to share a directory because the nest runs in the VMM and so is treated as

210

trusted.

Sharing a file between VMs is performed by first sharing the VM’s file system with

the nest. Once the nest has a shared copy of the VM’s file system, the nest can

share a file with the VM by creating a hard link to the file on the VM’s file system.

211

4.6 Client Tools

This section describes sharing from the perspective of the client tools. The section

begins with a description of the communication between the VM and the nest,

focusing on authentication (Section 4.6.1). Section 4.6.2 describes how the client

tools use a nest transfer specialized plug-in to coordinate sharing with the nest to

remove duplicate downloads. Section 4.6.3 discusses how the client tools use a

package specialized plug-in to install packages that are shared between VMs by the

nest.

4.6.1 Communication with the Nest

The client tools run in a VM and communicate with the nest to coordinate sharing.

Communication is performed over a socket. The communication begins with mutual

authentication of the VM and the nest. Once the VM has authenticated, the client

tools can request files from the nest’s cache as well as the installation of shared files

from a package.

Authentication involves several steps by both the VM and the nest. The steps are:

1. A VM opens a socket to the nest, which is listening on a well-known port. The

212

nest is the only service allowed by the VMM to bind to that particular port.

Thus the nest is authenticated to the VM.

2. The VM sends a message to the nest specifying the VM’s name. This begins

the process the nest uses to authenticate the VM.

3. The nest asks the VM to create a directory that the nest is allowed to share.

The directory name is chosen by the nest using a secure random number

generator.

4. The VM creates the directory. On the PlanetLab architecture the VM also

authorizes the nest to share the directory by creating a specially named file in

the directory with the nest slice name. In VServers the nest is in the VMM so

does not need additional authorization to share the directory.

5. The nest attempts to share the directory onto the nest’s file system.

6. If the nest can share the directory, then the nest has authenticated the VM

because only the VM knew the directory name to create and the sharing will

fail if the directory does not exist.

Once the VM and nest have authenticated each other, the client tools may request

two actions: sharecachedfile and sharepackage. These actions are used by the

VM to prevent duplicate downloads and provide secure sharing of packages.

213

• sharecachedfile Instructs the nest to share a file from its cache with the

VM. If the file does not exist in the cache, the file is downloaded before

sharing. The request includes a URL to the file and an optional secure hash of

the file.

• sharepackage Requests that the nest share the files inside of a package with

the VM. If the package has not been shared before, the nest prepares the

package first by unpacking and protecting the files. The nest then shares the

files in the package with the requesting VM.

4.6.2 Nest Transfer Specialized Plug-in

In addition to the specialized plug-ins that support BitTorrent, CoDeeN, Coral,

HTTP, HTTPS, and FTP, there is a nest transfer specialized plug-in. This transfer

specialized plug-in eliminates duplicate downloads by using a cache on the nest.

The nest transfer specialized plug-in provides an additional level of indirection so

that the nest performs transfers on behalf of the VMs. The VM sends a

sharecachedfile request to the nest for the files the VM wants downloaded. If the

requested file is in the nest’s cache, then the nest can share the file with the VM

without downloading the file again. Otherwise, the nest will invoke a transfer

specialized plug-in (such as BitTorrent, HTTP, etc) to retrieve the file. After the

214

nest retrieves the file, the nest adds the file to its cache and then shares the file with

the requesting VM.

4.6.3 Shared Package Specialized Plug-in

A special package manager, stork nest rpm, is responsible for performing shared

installation of RPM packages.

Installing a package that is shared by the nest is a two-phase process. In the first

phase, stork nest rpm installs the package in an unshared manner. This allows the

package to be installed atomically using the protections provided by rpm, including

executing any install scripts. In the second phase, stork nest rpm sends the Stork

nest a sharepackage request. This causes the nest to prepare the package for

sharing and share the package with the VM. The unshared versions of package files

that were installed by rpm are replaced by shared versions. Stork does not share

configuration files because these files are often changed by a VM. Stork also

examines files to make sure the files are identical prior to replacing a file with a hard

link to the shared version. The files may not be identical if a package patches or

compiles files as part of the installation process. There is a benign race condition in

which the VM could modify the file after the nest checks and the nest could hard

link over a file that differs. Since files in packages do not modify the underlying

215

documentation and executables, in practice this is not a problem.

Removal of packages that are installed using stork nest rpm requires no special

processing. stork nest rpm calls rpm to uninstall packages in the same way as

unshared package removals are handled. The stork nest rpm specialized plug-in

uses the rpm tool to uninstall the package, which unlinks the package’s files. The

hard link count of the shared files is decremented, but is still nonzero because the

shared files persist on the nest and in any other VMs that have installed the shared

package.

216

4.7 Nest

The nest shares files with VMs on the same physical machine. Whenever a VM

opens a connection with the nest, the nest first requires the VM to authenticate

(previously described in Section 4.6.1). Once the VM is authenticated, the VM may

request the sharedcachedfile and sharepackage operations both of which require

the nest to share files using the share functionality manager (Section 4.7.1).

sharedcachedfile is handled by the nest’s cache (Section 4.7.2). sharepackage is

first handled by the prepare functionality manager (Section 4.7.3) and then by

sharing the unpacked files with the VM (Section 4.7.4).

4.7.1 Share Functionality Manager

The share functionality manager enables sharing between VMs on the same physical

machine under the control of the nest. Specifically, a read-only file can be shared

such that an individual VM cannot modify the file, although the file can be unlinked.

The low level mechanisms used to build the sharing specialized plug-ins that are

used by the sharing functionality manager were previously discussed in Section 4.5.

In Stork, sharing is provided via the share functionality manager that hides the

details of sharing on different VM platforms. The sharing functionality manager is

217

used by the nest and provides four functions: init client, authenticate client,

share, and protect. init client is called when a VM opens a socket to the port

the nest is listening on. init client is used to initialize the per-VM state.

authenticate client is used by the nest to authenticate the VM with which it is

communicating (Section 4.6.1). The share routine shares a file or directory between

a VM and the nest. protect protects a file from modification by a VM.

There are different share specialized plug-ins for PlanetLab and VServers. These

share specialized plug-ins perform architecture specific tasks to support sharing and

protection on the platform (described in Sections 4.5.1 and 4.5.2).

4.7.2 Nest Cache

The purpose of the nest cache is to prevent the duplicate download of files. The

nest caches the files it downloads and provides the files to VMs rather than VMs

downloading the files multiple times. Some files that are downloaded by the client

tools are referenced by secure hash (as described in Chapter 3) while the root

repository metadata files are not. Files are handled differently by the nest cache

depending on whether or not the secure hash is specified with the URL.

When the VM issues a sharecachedfile request, the nest cache handles the

request differently if the VM provides the file’s secure hash with the request. The

218

only file that a VM requests without a secure hash is the root repository metadata.

The client tools do not know the secure hash of the root repository metadata since

the root repository metadata changes periodically. A file requested without a secure

hash is kept in the cache for 5 minutes. This means that each physical machine will

download the root repository metadata from a repository at most once every 5

minutes.

In addition to root repository metadata requests by VMs, when PsEPR updates are

pushed, the nest updates the nest’s cache with the root repository metadata

contained in the notification. Since the nest’s cache is updated by PsEPR every 2

minutes, this means that if PsEPR is pushing notifications that are received by the

nest, no VM will never need to download a root repository metadata file.

For all of the files other than the root repository metadata that are requested by a

VM, the secure hash is known. This is true because when a metadata tarball is

requested, the VM has the root repository metadata which contains the secure hash

of the tarball. For packages, the VM has the package metadata which contains the

secure hash of the package.

When the VM requests a file by secure hash, the file is provided from a cache that is

indexed by secure hash. A file is added to the cache by creating a directory with the

secure hash of the contents of the file and moving the file to the directory. This

219

allows the nest to check if the directory with a given secure hash exists to determine

if an file exists in the cache. When a VM asks for the file with that secure hash, the

file in that directory is shared into the VM’s file system.

Files that are indexed by secure hash do not need to be expired from the cache for

staleness reasons. This is true because the VM that requests the file knows the

exact version of the file it desires (because this is the version signed by an entity).

While it would be safe to remove some files from the nest cache (such as metadata

tarballs that are out of date), in practice the nest’s cache uses only a few MB of disk

space a day so this has not been needed. Future work includes detecting and

removing outdated files from the nest’s cache.

4.7.3 Prepare Functionality Manager

The prepare functionality manager is used by the nest to prepare a package for

sharing. When a VM issues a sharepackage request for a package the nest has not

prepared before, the nest first uses the prepare functionality manager to unpack the

package. If the nest has prepared the package before, the prepare functionality

manager has no work to do and returns. In order to share a package, the nest must

extract the files in the package. This extraction differs from package installation in

that no installation scripts are run, the package database that tracks which packages

220

are installed is not updated, and the package files are not moved to the proper

locations. This is because the package should not be installed in the nest. Instead,

files are extracted to a directory in preparation for sharing with VMs.

Prepare specialized plug-ins only implement one function, prepare. The prepare

function takes the name of a package and the destination directory where the

package should be extracted.

The nest supports sharing RPM packages using the stork rpm prepare specialized

plug-in. This works through the following steps:

1. The stork rpm prepare specialized plug-in checks if the package has already

been prepared. If it has, then nothing needs to be done so the prepare

specialized plug-in returns success.

2. If the package has not been prepared, then stork rpm prepare uses rpm2cpio

to convert the RPM package into a cpio archive that is then extracted.

3. stork rpm prepare queries the rpm tool to determine which files are

configuration files. Configuration files are often changed by a VM and so are

not shared by the nest. The configuration files are removed from the prepare

directory.

4. stork rpm prepare protects the files that were extracted so that the files

221

cannot be modified. This prevents a shared file from being modified by a VM.

4.7.4 Sharing a Prepared Package

After a package is unpacked in response to a VM’s sharepackage request, the

package’s files must be shared with the VM. The package specialized plug-in (in

Section 4.6.3) installed unshared versions of the package files. The nest replaces the

unshared version of an installed package file with a hard link to a shared version.

The nest compares the VM’s copy of a file with the nest’s copy of a file prior to

replacing a private copy with a hard link to the shared file. One instance in which

the files may not be identical is if a package compiles files as part of the installation

process. If the nest were to replace the file with the version the nest unpacked, this

may break the package.

222

4.8 Walkthrough

Now that the mechanisms for sharing files have been described in detail, the

examples presented in Section 4.2 are revisited. The steps that the VM and nest

perform are described.

4.8.1 Duplicate Downloads

Summary: VM A and VM B on the same physical machine download the same

package.

First, VM A requests the package from the nest and the nest does not have the

package in its cache.

1. VM A authenticates with the nest.

2. VM A sends a sharecachedfile request to the nest for the package. The

request includes the secure hash of the package that the client tools in VM A

obtained from the package metadata.

3. The nest checks its cache to find there is no directory with the name of the

secure hash.

223

4. The nest downloads the file from the URL provided in the sharedcachedfile

request and adds the file to the cache.

5. The nest protects the file.

6. The nest shares the file with VM A.

Now, VM B requests the package from the nest and the package is in the nest cache.

1. VM B authenticates with the nest.

2. VM B sends a sharecachedfile request to the nest for the package. The

request includes the secure hash of the package that the client tools in VM B

obtained from the package metadata.

3. The nest checks its cache to find a file with that secure hash exists in the

nest’s cache.

4. The nest shares the file with VM B.

This example works the same if VM A and VM B download the file from different

repositories. The example is the same for different repositories because the index of

the nest’s cache is done by secure hash. This means that the URL at which the file

resides is unimportant unless the file is missing from the cache.

224

4.8.2 Duplicate Package Files

Summary: VM A and VM B on the same physical machine install the RPM

package foobar. The package foobar has already been downloaded (as the previous

example described).

First, VM A installs the foobar package, which the nest has not previously

prepared.

1. The client tools in VM A uses the stork nest rpm package manager to install

an unshared version of foobar.

2. VM A authenticates with the nest.

3. VM A sends a sharepackage request to the nest for the package.

4. The nest checks and determines it has not previously prepared the package.

5. The nest uses the prepare functionality manager to unpack the package.

6. The prepare functionality manager uses the share functionality manager to

protect all of the files in the package.

7. The nest uses the share functionality manager to replace the files that are the

same on VM A and the prepared directory with a hard link to the file in the

225

prepared directory. This means that VM A now has a shared version of those

files.

8. The nest informs VM A that the package is now shared.

Now, VM B installs the foobar package.

1. The client tools in VM B use the stork nest rpm package manager to install

an unshared version of foobar.

2. VM B authenticates with the nest.

3. VM B sends a sharepackage request to the nest for the package.

4. The nest checks and determines it has prepared the package previously.

5. The nest uses the share functionality manager to replace the files that are the

same on VM B and the prepared directory with a hard link to the file in the

prepared directory. This means that VM B now has a shared version of those

files.

6. The nest informs VM B that the package is now shared.

226

4.9 Sharing Trade offs

Now that the client tools and nest have been described in detail, it is important to

revisit the different nest architectures to understand their trade offs. The nest

architectures for PlanetLab and VServers present different design decisions. The

methods for sharing in VServers and PlanetLab discussed in Sections 4.5.1 and 4.5.2

are significantly different and each have their strengths and weaknesses related to

security and implementation complexity.

A compromise of the nest on a physical machine may compromise the VMs the nest

serves. This is true because the nest has the ability to access the VMs’ file systems

for the purpose of replacing duplicate files with hard links to shared files. However,

the underlying architecture affects the result of a nest compromise.

PlanetLab isolates the nest VM from other VMs using Proper. Proper allows the

nest to access another VM’s file system only when authorized by the VM. This

means that a compromise of the nest does not imply a compromise of all VMs on

the physical machine. Only the VMs that use Stork are at risk.

On VServers, since the nest runs in the VMM the nest becomes part of the trusted

computing base. This means a compromise of the nest results in an attacker having

control of all of the VMs on the physical machine. This implies that if all else were

227

equal, the sharing architecture of Stork on the PlanetLab platform would provide

greater security than the VServers architecture.

However, the isolation and authorization provided by Proper on PlanetLab is not

without cost. The interactions with Proper on PlanetLab increase the complexity of

the PlanetLab sharing specialized plug-in substantially. Not only does the nest need

to communicate with Proper to perform actions, but the nest must act intelligently

when Proper fails to perform an operation. Given the limited information available

to the nest when running in a VM, acting intelligently on limited information is

difficult and greatly increases the amount of error handling code needed. The result

is that the PlanetLab sharing specialized plug-in is over twice the size (281 LOC) as

the VServers sharing specialized plug-in (115 LOC), not including the size of Proper

(5752 LOC) [61]. The implementation effort involved in Proper is also substantial.

In comparison, the nest is less than one quarter the size of Proper (1404 unique LOC

with 8736 LOC of libraries) if libraries used by other components of Stork are not

included. This means that the implementation effort to provide sharing through the

Stork nest on PlanetLab is substantially greater than in the VServers environment.

The architecture that provides the best security depends on the scenario. If all VMs

on a physical machine use the nest, there is little incentive to place the nest in a

VM because either way a compromise of the nest results in the compromise of all

VMs. In fact, since the implementation effort to run the nest in a VM is greater

228

than running the nest in the VMM, it is arguably less secure to have the nest in a

VM because more lines of code leave more opportunities for bugs. If only a few

VMs on a physical machine use Stork, putting the nest in a VM makes a great deal

of sense because a compromise of the Stork nest will not compromise the VMs that

do not use Stork.

229

4.10 Related Work

Most VMMs focus on providing isolation between VMs, not sharing. However

different techniques have been devised to mitigate the network bandwidth consumed

by downloading duplicate data (Section 4.10.1), as well as the disk (Section 4.10.2)

and memory (Section 4.10.3) inefficiencies of unshared packages.

Overall, Stork’s technique for reducing duplication cannot be replaced by a single

component. This is because the techniques described that prevent downloading

duplicate data do not provide disk or memory savings and vice versa. However,

there are also differences between how other work reduces duplication versus how

the Stork nest reduces duplication.

4.10.1 Network Bandwidth

A common technique to mitigate the network costs of duplicate data retrieval is to

use a proxy server [19, 65, 74, 87]. Proxy servers minimize the load on the server

providing the data and also increase the performance of the clients. If the proxy

server is not on the same physical machine, the data still must be transferred

multiple times over the network. The Stork nest provides the data to the VMs

without incurring network traffic much like each physical machine running its own

230

proxy server for packages. However, running a proxy server on each physical

machine server will not prevent the same file from being downloaded multiple times

from different repositories (as described in the example in Section 4.2.1). The Stork

nest prevents duplicate downloads regardless of source.

4.10.2 Disk

A good deal of research has gone into preventing duplicate data from consuming

additional disk space. For example, many file systems use copy-on-write

techniques [14, 20, 34, 39, 40, 79] which allow data to be shared but copied if

modified. This allows different “snapshots” of a file system to be taken where the

unchanged areas will be shared amongst the “snapshots”. However, this does not

combine identical files that were written at different locations (as would happen

with multiple VMs downloading the same package). This means that this research

would fail to provide any gains in package management efficiency. However, the

Stork nest could leverage this functionality to share the files inside of packages

without using protection mechanisms. Additionally, the nest could leverage this

functionality to share configuration files between VMs.

Some filesystem tools [11] and VMMs [43, 45] share files that have already been

created on a file system. They unify common files or blocks to reduce the disk space

231

required. This unification happens after the package has been installed; each VM

must download and install the package separately only to have a background

process detect and replace files with hard links to the shared version. Stork avoids

duplicate downloads and does not require a background process to discover

duplicate copies of package files.

Another technique for reducing the amount of storage space consumed by identical

components detects duplicate files and combines the duplicate files as they are

written [64]. This is typically done by using a hash of the file blocks to quickly

detect duplicates. Stork avoids the overhead of needing to check file blocks for

duplicates on insertion and avoids the need to download the block multiple times in

the first place. However, block-based de-duplication techniques have greater

potential for sharing than techniques that operate on the whole file.

4.10.3 Memory

There are many proposals that try to reduce the memory overhead of duplicate

memory pages. Disco [14] implements copy-on-write memory sharing between VMs

which allows not only a process’ memory pages to be shared but also allows

duplicate buffer cache pages to be shared. The sharing of package executables

provided by the nest in Stork is much less effective than Disco, but at a much lower

232

cost.

Stork allows VMs to share the memory used by shared applications and libraries.

VMware ESX Server [84] also allows VMs to share memory, but does so based on

page content. A background process scans memory looking for multiple copies of

the same page. Any duplicate copies are eliminated by replacing the copies with a

single copy-on-write page. This allows for more potential sharing than Stork, as any

identical pages can be shared, but induces overhead when scanning pages for

duplicates. Also Stork prevents memory duplication in the first place instead of

having processes create duplicate pages only to have the duplicate pages culled.

233

4.11 Conclusion

This chapter described how Stork uses sharing to make package management more

efficient in VM environments. Some examples that describe sharing in VM

environments were provided (Section 4.2) and later examined in detail (Section 4.8).

Then the benefits of sharing were analyzed to show that sharing can greatly reduce

the network bandwidth, disk space, and memory used in VM environments

(Section 4.3). Following that, an overview of sharing in Stork was provided in

Section 4.4. Different mechanisms for sharing in different architectures was provided

in Section 4.5. Then the VM (Section 4.6) and nest (Section 4.7) actions to

facilitate sharing were described. Section 4.9 provided a discussion of the different

locations where the nest can reside and the implications this has on security and

ease of implementation. Section 4.10 discussed related work that reduces duplicate

downloads or mitigates the inefficiencies of VMs that have an unshared package on

the same physical machine.

234

Chapter 5

Conclusion

Package managers are an important tool for managing software on modern

computers. However, care must be taken in the design of a package manager. There

are two areas that are not handled well by existing package managers: security and

VM environments. These areas are important because of the increasing number of

security threats and the increasing popularity of VM environments. This work

demonstrates how to provide secure package management and how to efficiently

operate in VM environments using sharing.

By identifying and classifying flaws in existing package managers, areas of attack

are identified. Unfortunately architectural flaws are the reason for vulnerability to

attack in many cases. The security architecture of Stork was designed to protect

against these attacks. As a result Stork protects clients against the attacks that are

effective on other package managers.

Virtual machine environments present an efficiency challenge for package managers.

The VMM software isolates different VMs on the same physical machine which

235

leads existing package managers to waste network bandwidth, disk space, and

memory because of duplication. Stork presents an architecture that uses sharing to

remove duplication in downloaded files and installed package files. Sharing

downloaded files saves network bandwidth for downloaded packages and package

metadata. Sharing installed package files saves disk space and memory.

Stork is a real system for package management that is secure and provides efficiency

in VM environments. Stork downloads files using multiple transfer protocols,

supports different package formats, does dependency resolution, and has simple

package-based configuration management facilities. Stork provides a complete

solution to the problem of package management and has clients that are VMs as

well clients that are normal systems. Stork is in everyday use — the main Stork

repository serves a package about once every 20 seconds. Stork has also been used

as a component when building other services. Stork is used daily by administrators

at two dozen institutions. The package-based configuration management utilities

manage VMs on hundreds of failure prone, globally distributed, physical machines.

Stork has been used for 4 years and has managed half a million VM instantiations.

236

5.1 Future Work

There are several optimizations that are being considered for future work:

The nest keeps a cache of files downloaded and provides files from the cache to VMs

on the same physical machine. The files that are downloaded without a secure hash

are flushed after a short time period. However, the files that are downloaded by

secure hash are not flushed. While it would be safe to remove some files that are

downloaded by secure hash from the nest cache (such as metadata tarballs that are

out of date), in practice the nest’s cache uses less than 10MB of disk space a day so

this has not been needed. Future work would focus on detecting and removing

outdated files from the nest’s cache.

There are subtle issues that the nest raises with respect to resource accounting.

Given that the nest is performing a transfer on the behalf of a VM, it seems logical

that the resources the nest consumes when performing that transfer should be

attributed to the VM. However, this is a non-trivial alteration to the VMM of

existing VM environments and so is left to future work.

The package-based configuration management tools provide an effective mechanism

for changing the configuration of a client. However, the package-based configuration

management tools do not provide feedback to the administrator about the actions

that occurred. Adding feedback about the state of the administrator’s clients would

greatly increase the usefulness of Stork’s package-based configuration management

tools.

237

238

Appendix A

Definitions

This chapter describes the terminology used throughout the remainder of the docu-

ment.

administrator An administrator is a party that controls a computer. The predomi-

nant use of the term administrator in this dissertation refers to the administrator

of a client. When used in a different context, administrator is preceded by a

qualifier that indicates what the administrator controls. For example, a package

repository is controlled by a repository administrator.

attacker An attacker is a party that attempts to subvert security mechanisms, per-

haps for malicious reasons.

client A client is a generic term for a system or VM that performs package manage-

ment.

client tools The client tools component of Stork runs on a client and manages

the packages installed on the client. The client tools are comprised of stork,

pacman, and stork receive update.

239

dependency A dependency is functionality that a package must have to operate.

Packages may have a dependency on another package, a virtual package, or a

specific file.

dependency resolver A dependency resolver is the component of a package man-

ager that administrators normally interact with. A dependency resolver per-

forms dependency resolution and downloads packages. The dependency resolver

instructs a package installer to install, remove, or update packages.

dependency resolution Dependency resolution is a process that, when given a

package, finds a collection of packages to install to meet all dependencies. Af-

ter installation, there are no packages installed on the client that have unmet

dependencies.

entity An entity possesses a public key and private key and makes decisions about

the trustworthiness of packages and metadata. Administrators, developers,

projects, repositories, and distributions are examples of entities.

group A group is a logical association of multiple clients defined by the administra-

tor of those clients for the purpose of simplifying package-based configuration

management. Groups are defined in the administrator’s groups.pacman file.

groups.pacman The groups.pacman file defines which clients belong to which groups

for the purpose of package-based configuration management.

240

functionality manager A functionality manager is an abstraction used in different

components of Stork to provide extensibility. A functionality manager hides

the complexity of how something is done. A functionality manager handles a

general type of operation (such as a file transfer) and uses specialized plug-ins

to perform operations in a specific manner (such as downloading files using a

specific protocol).

install Installing a package is performed by unpacking the files in the package on a

client so that the software can be used. If a version of the package is already

installed, this operation does nothing.

master configuration file The administrator’s master configuration file contains

the configuration options for the client tools component of Stork.

metadata Metadata is a generic term for information other than packages that is

downloaded from a repository. In Stork, metadata includes packages.pacman

files, groups.pacman files, TP files, package metadata, the root repository meta-

data, and master configuration files.

mirror A mirror is a copy of a repository usually created for load balancing or failure

handling. A mirror typically does not intentionally deviate from the repository

it copies and so does not sign metadata or packages itself.

nest The nest component of Stork coordinates sharing of packages between different

241

VMs on the same physical machine.

package A package is software that is bundled with information that describes the

software. The information bundled with a package is called package metadata.

package action A package action is an operation on a software package, typically

install, update, or remove.

package-based configuration management The package-based configuration man-

agement component of Stork allows an administrator to control clients collec-

tively without logging into each client separately.

package database A package database stores information about the packages cur-

rently installed on the client. A package database is managed by the package

installer and is used to assist in performing package actions on a client.

package instructions An administrator can create package instructions using the

package-based configuration management tools. These instructions are stored in

the groups.pacman and packages.pacman files. A client will perform package

actions based upon the administrator’s package instructions.

package installer A package installer is a program that installs, updates, or removes

a package from a client. A package installer tracks installed packages using a

package database.

242

package manager A package manager is a program that manages the installation,

update, and removal of software on a client. A package manager is typically

split into two subcomponents: a package installer and a dependency resolver.

The package manager is commonly referred to by the name of the dependency

resolver since most dependency resolvers only support one package installer and

administrators interact with the dependency resolver component.

package metadata Package metadata is information about a package. Different

package formats have different information. The package metadata typically

describes the package, lists the dependencies of the package, and lists what

dependencies the package provides.

packages.pacman The administrator’s packages.pacman file defines the package-

based configuration management actions that the clients in a group should

enact.

physical machine A physical machine is the hardware comprising a computer. Dif-

ferent VMs can run on a single physical machine.

provides The dependencies that a package can be used to resolve are the dependen-

cies that the package provides. The dependencies a package provides are listed

in the package metadata for the package.

remove Removing a package deletes the package files from the client and updates

243

the package database to indicate the package is no longer installed.

repository A repository (or package repository) is a web server that serves packages

and package metadata instead of web pages. In Stork, a package repository also

validates packages and metadata uploaded by entities.

root repository metadata The root repository metadata is the file on a repository

that describes the packages and metadata available on the repository.

slice A slice is a collection of VMs and related resources on PlanetLab with common

administration.

specialized plug-in A specialized plug-in supports a specific way of performing an

operation. Specialized plug-ins are used to support different ways of perform-

ing an action such as different communication protocols and different package

formats. Specialized plug-ins are used by functionality managers.

system A system is a computer that does not use virtual machine technologies.

In other words, a system is a classic desktop computer that is managed by a

package manager. There is one physical machine for each system.

tag A tag is a mechanism used in TP files in Stork to specify a preference when

multiple packages fulfill a dependency.

trusted packages (TP) file A trusted packages file is used to specify trust in pack-

ages and entities.

244

update As opposed to install, update changes an existing package to the preferred

version (usually the most recent) by removing the existing version and installing

the preferred version. If the package is not installed, this operation installs the

package.

virtual machine (VM) A virtual machine is an operating system virtualized en-

vironment as is provided by Xen, VMWare, PlanetLab, or VServers. To the

administrator of the VM, this is conceptually similar to a system.

virtual machine monitor (VMM) The software that manages and mediates the

actions of different VMs on the same physical machine is called a virtual machine

monitor (VMM). The VMM has complete control over the VMs on the physical

machine (analogous to root access on a multi-user operating system).

virtual dependency A virtual dependency is a dependency on a virtual package.

virtual package A virtual package represents functionality that is independent of

the package that provides the functionality. A virtual package is commonly used

when a package wants to specify a dependency, but that the dependency is not

on a specific piece of software but instead a type of functionality. For example,

there is a webbrowser virtual package that is provided by every package that is

a web browser. A package that needs a web browser to operate can depend on

the webbrowser virtual package.

245

References

[1] Adobe - Adobe Acrobat Family. http://www.adobe.com/products/acrobat/

?ogn=EN_US-gntray_prod_acrobat_family_home.

[2] Adium - Download. http://www.adiumx.com/.

[3] Albrecht, J., Tuttle, C., Snoeren, A. C., and Vahdat, A. PlanetLab

application management using Plush. SIGOPS Oper. Syst. Rev. 40, 1 (2006),

33–40.

[4] PlanetLab Application Manager. http://appmanager.berkeley.

intel-research.net/.

[5] Debian APT tool ported to RedHat Linux. http://www.apt-get.org/.

[6] APT-RPM. http://apt-rpm.org/.

[7] Arch Linux (Don’t Panic) Installation Guide. http://www.archlinux.org/

static/docs/arch-install-guide.txt.

[8] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,

A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and the Art of

Virtualization. In Proc. 19th SOSP (Lake George, NY, Oct 2003).

246

[9] Bellissimo, A., Burgess, J., and Fu, K. Secure Software Updates: Disap-

pointments and New Challenges. In 1st USENIX Workshop on Hot Topics in

Security (Vancouver, Canada, Jul 2006), pp. 37–43.

[10] Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I.,

Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C., Mellor-

Crummey, J., Reed, D., Torczon, L., and Wolski, R. The GrADS

Project: Software support for high-level Grid application development. The In-

ternational Journal of High Performance Computing Applications 15, 4 (2001),

327–344.

[11] Bolosky, W. J., Corbin, S., Goebel, D., and Douceur, J. R. Single

Instance Storage in Windows 2000. In Proc. 4th USENIX Windows Sys. Symp.

(Seattle, WA, Aug 2000), pp. 13–24.

[12] Brett, P., Knauerhase, R., Bowman, M., Adams, R., Nataraj, A.,

Sedayao, J., and Spindel, M. A shared global event propagation system

to enable next generation distributed services. In Proc. of the 1st Workshop on

Real, Large Distributed Systems (San Francisco, CA, Dec 2004).

[13] Installing Applications: Packages and Ports. http://www.freebsd.org/doc/

en_US.ISO8859-1/books/handbook/ports.html.

247

[14] Bugnion, E., Devine, S., Govil, K., and Rosenblum, M. Disco: running

commodity operating systems on scalable multiprocessors. ACM Transactions

on Computer Systems 15, 4 (Nov 1997), 412–447.

[15] Cappos, J., Baker, S., Plichta, J., Nyugen, D., Hardies, J., Borgard,

M., Johnston, J., and Hartman, J. Stork: Package Management for Dis-

tributed VM Environments. In Proc. 21th Systems Administration Conference

(LISA ’07) (Dallas, 2007).

[16] Cappos, J., and Hartman, J. Why It Is Hard to Build a Long Running

Service on Planetlab. In Proc. of the 2nd Workshop on Real, Large Distributed

Systems (San Francisco, CA, Dec 2005).

[17] CERT. http://www.cert.org/.

[18] Cfengine - an adaptive system configuration management engine. http://www.

cfengine.org/.

[19] Chankhunthod, A., Danzig, P. B., Neerdaels, C., Schwartz, M. F.,

and Worrell, K. J. A Hierarchical Internet Object Cache. In USENIX

Annual Technical Conference (1996), pp. 153–164.

[20] Chutani, S., Anderson, O. T., Kazar, M. L., Leverett, B. W., Ma-

son, W. A., and Sidebotham, R. N. The Episode file system. In Proceedings

248

of the USENIX Winter 1992 Technical Conference (San Fransisco, CA, USA,

1992), pp. 43–60.

[21] Introduction to Code Signing. http://msdn2.microsoft.com/en-us/library/

ms537361.aspx.

[22] Cohen, B. Incentives Build Robustness in BitTorrent. In Workshop on Eco-

nomics of Peer-to-Peer Systems (2003).

[23] Debian Developer’s Reference. http://www.debian.org/doc/

packaging-manuals/developers-reference/.

[24] debsigs - What is debsigs. http://linux.about.com/cs/linux101/g/debsigs.

htm.

[25] DistroWatch.com: Editorial: How Popular is a Distribution? http://

distrowatch.com/weekly.php?issue=20070827#feature.

[26] Debian – dpkg. http://packages.debian.org/stable/base/dpkg.

[27] man dpkg-sig. http://pwet.fr/man/linux/commandes/dpkg_sig.

[28] dsniff. http://monkey.org/~dugsong/dsniff/.

[29] ‘Gentoo Linux Documentation – Ebuild HOWTO’. http://www.gentoo.org/

proj/en/devrel/handbook/handbook.xml?part=2&chap=1.

249

[30] Eugster, P. T., Felber, P., Guerraoui, R., and Kermarrec, A.-M.

The Many Faces of Publish/Subscribe. ACM Computing Surveys 35, 2 (Jun

2003), 114–131.

[31] Infrastructure/Mirroring – Fedora Project Wiki. http://fedoraproject.org/

wiki/Infrastructure/Mirroring.

[32] Firefox web browser — Faster, more secure, & customizable. http://www.

mozilla.com/en-US/firefox/.

[33] Freedman, M. J., Freudenthal, E., and Mazières, D. Democratizing

content publication with Coral. In Proc. 1st NSDI (San Francisco, CA, Mar.

2004).

[34] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google file system. In

Proc. 19th SOSP (Lake George, NY, Oct 2003).

[35] Gkantsidis, C., Karagiannis, T., and VojnoviC, M. Planet scale soft-

ware updates. In SIGCOMM ’06: Proceedings of the 2006 conference on Appli-

cations, technologies, architectures, and protocols for computer communications

(New York, NY, USA, 2006), ACM, pp. 423–434.

[36] Godber, A., and Dasgupta, P. Countering rogues in wireless networks. In

2003 International Conference on Parallel Processing Workshops (Oct 2003).

250

[37] Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P.,

and Toft, P. Smartfrog: Configuration and automatic ignition of distributed

applications. Tech. rep., HP, 2003.

[38] GovCertUK. http://www.govcertuk.gov.uk/.

[39] Hitz, D., Lau, J., and Malcolm, M. File system design for an NFS file server

appliance. In Proceedings of the USENIX Winter 1994 Technical Conference (San

Fransisco, CA, USA, 17–21 1994), pp. 235–246.

[40] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satya-

narayanan, M., Sidebotham, R. N., and West, M. J. Scale and per-

formance in a distributed file system. ACM Trans. Comput. Syst. 6, 1 (1988),

51–81.

[41] InstallShield – Installation Tool. http://www.macrovision.com/products/

installation/installshield.htm.

[42] MMi Public Service Announcement – Malicious Installer Source Warning. http:

//www.modmyifone.com/forums/showthread.php?t=24323.

[43] Kamp, P.-H., and Watson, R. N. M. Jails: Confining the Omnipotent Root.

In Proc. 2nd Int. SANE Conf. (Maastricht, The Netherlands, May 2000).

[44] The KPackage Handbook. http://docs.kde.org/development/en/kdeadmin/

kpackage/.

251

[45] Linux VServers Project.

http://linux-vserver.org/.

[46] Linux/Lupper.worm. http://vil.nai.com/vil/content/v_136821.htm.

[47] Apple – Software Update. http://www.apple.com/softwareupdate/.

[48] Mazières, D., Kaminsky, M., Kaashoek, M. F., and Witchel, E. Sep-

arating key management from file system security. In Proc. 17th SOSP (Kiawah

Island Resort, SC, Dec 1999), pp. 124–139.

[49] Mazières, D., and Shasha, D. Building secure file systems out of Byzantine

storage. In PODC ’02: Proceedings of the twenty-first annual symposium on

Principles of distributed computing (New York, NY, USA, 2002), ACM, pp. 108–

117.

[50] Office Online Home Page - Microsoft Office Online. http://office.microsoft.

com/en-us/default.aspx.

[51] Muir, S., Peterson, L., Fiuczynski, M., Cappos, J., and Hartman, J.

Proper: Privileged Operations in a Virtualised System Environment. In Proc.

USENIX ’05 (Anaheim, CA, Apr 2005).

[52] Netcraft: Strong growth for Debian. http://news.netcraft.com/archives/

2005/12/05/strong_growth_for_debian.html.

252

[53] Oppenheim, K., and McCormick, P. Deployme: Tellme’s Package Manage-

ment and Deployment System. In Proc. 14th Systems Administration Conference

(LISA ’00) (New Orleans, LA, Dec 2000), pp. 187–196.

[54] Re: Differences of Debian vs. the Other Guys. http://lists.debian.org/

debian-devel/1998/06/msg00128.html.

[55] Comparing Linux/UNIX Binary Package Formats. http://kitenet.net/

~joey/pkg-comp/.

[56] Package Management System - Wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Package_manager.

[57] Park, K., and Pai, V. S. Deploying Large File Transfer on an HTTP Content

Distribution Network. In Proc. of the 1st Workshop on Real, Large Distributed

Systems (San Francisco, CA, Dec 2004).

[58] Park, K., and Pai, V. S. Scale and Performance in the CoBlitz Large-File

Distribution Service. In Proc. 3rd NSDI (San Jose, CA, May 2005).

[59] Park, K., and Pai, V. S. CoMon: A Mostly-Scalable Monitoring System for

PlanetLab. Operating Systems Review Special Issue on PlanetLab (Jan 2006).

[60] Percival, C. An Automated Binary Security Update System for FreeBSD.

pp. 29–34.

253

[61] Peterson, L., Bavier, A., Fiuczynski, M. E., and Muir, S. Experiences

building PlanetLab. In OSDI ’06: Proceedings of the 7th symposium on Oper-

ating systems design and implementation (Berkeley, CA, USA, 2006), USENIX

Association, pp. 351–366.

[62] PlanetLab. http://www.planet-lab.org.

[63] ‘Gentoo Linux Documentation – A Portage Introduction’. http://www.gentoo.

org/doc/en/handbook/handbook-x86.xml?part=2&chap=1.

[64] Quinlan, S., and Dorward, S. Venti: a new approach to archival storage.

In First USENIX conference on File and Storage Technologies (Monterey,CA,

2002).

[65] Rabinovich, M., Chase, J., and Gadde, S. Not all hits are created equal:

cooperative proxy caching over a wide-area network. Comput. Netw. ISDN Syst.

30, 22-23 (1998), 2253–2259.

[66] Symantec Security Response - Linux.Ramen.Worm. http://service1.

symantec.com/sarc/sarc.nsf/html/Linux.Ramen.Worm.html.

[67] Red Hat Network - About RHN. https://rhn.redhat.com/help/about.pxt.

[68] RPM Package Manager. http://www.rpm.org/.

[69] Samuel, J., Plichta, J., and Cappos, J. Centralized Package Management

Using Stork. ;login: (Feb 2008), 25–31.

254

[70] SecureApt - Debian Wiki. http://wiki.debian.org/SecureApt.

[71] Skype - free Internet calls and cheap calls to phones and mobiles. http://www.

skype.com/useskype/.

[72] Slackware Package Management. http://www.slacksite.com/slackware/

packages.html.

[73] Installation (computer programs) - Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Installer.

[74] squid : Optimising Web Delivery. http://www.squid-cache.org/.

[75] SquirrelMail Repository Poisoned with Critical flaw. http://www.beskerming.

com/commentary/2007/12/19/313/SquirrelMail_Repository_Poisoned_

with_Critical_flaw.

[76] Stork. http://www.cs.arizona.edu/stork.

[77] StuffIt InstallerMaker for Macintosh. http://my.smithmicro.com/mac/

stuffitinstallermaker/index.html?im-index.html.

[78] Synaptic Package Manager - Home. http://www.nongnu.org/synaptic/.

[79] Thekkath, C. A., Mann, T., and Lee, E. K. Frangipani: a scalable dis-

tributed file system. In SOSP ’97: Proceedings of the sixteenth ACM sympo-

255

sium on Operating systems principles (New York, NY, USA, 1997), ACM Press,

pp. 224–237.

[80] RSA Alert: New Universal Man-in-the-Middle Phishing Kit Discovered. http:

//www.rsa.com/press_release.aspx?id=7667.

[81] URPMI. http://www.urpmi.org/.

[82] Venema, W. Murphy’s law and computer security. In SSYM’96: Proceedings

of the 6th conference on USENIX Security Symposium, Focusing on Applications

of Cryptography (Berkeley, CA, USA, 1996), USENIX Association, pp. 19–19.

[83] VMWare Workstation. http://www.vmware.com/.

[84] Waldspurger, C. A. Memory resource management in VMware ESX server.

Operating Systems Review 36 (2002), 181–194.

[85] Wang, L., Park, K., Pang, R., Pai, V., and Peterson, L. Reliability

and Security in the CoDeeN Content Distribution Network. In Proc. USENIX

’02 (San Francisco, CA, Aug 2002).

[86] Windows Update. http://update.windows.com/.

[87] WinProxy. http://www.winproxy.com/index.asp.

[88] Software Packaging and Installation Authoring Tools – Altris, Inc. http://www.

wise.com/.

256

[89] Wurster, G., and van Oorschot, P. Self-Signed Executables: Restricting

Replacement of Program Binaries by Malware. In 2nd USENIX Workshop on

Hot Topics in Security (Boston, MA, Aug 2007).

[90] YaST - openSuSE. http://en.opensuse.org/YaST.

[91] Yuan, L., Kant, K., Mohapatra, P., and Chuah, C.-N. DoX: A Peer-

to-Peer Antidote for DNS Cache Poisoning Attacks. In 2006 IEEE International

Conference on Communications (Jun 2006).

[92] Yum: Yellow Dog Updater Modified. http://linux.duke.edu/projects/yum/.

