
Stork: Package Management for Distributed VM Environments

Justin Cappos, Scott Baker, Jeremy Plichta, Duy Nyugen,

Jason Hardies, Matt Borgard, Jeffry Johnston, John H. Hartman

Department of Computer Science

University of Arizona

Tucson, AZ, 85721

stork@cs.arizona.edu

Abstract

In virtual machine environments each application is of-

ten run in its own virtual machine (VM), isolating it from

other applications running on the same physical machine.

Contention for memory, disk space, and network band-

width among virtual machines, coupled with an inability

to share due to the isolation virtual machines provide,

leads to heavy resource utilization. Additionally, VMs

increase management overhead as each is essentially a

separate system.

Stork is a package management tool for virtual ma-

chine environments that is designed to alleviate these

problems. Stork securely and efficiently downloads

packages to physical machines and shares packages be-

tween VMs. Disk space and memory requirements are

reduced because shared files, such as libraries and bina-

ries, only require one persistent copy per physical ma-

chine. Experiments show that Stork reduces the disk

space required to install additional copies of a package

by over an order of magnitude, and memory by about

50%. Stork downloads each package once per physical

machine no matter how many VMs install it. The transfer

protocols used during download improve elapsed time by

7X and reduce repository traffic by an order of magni-

tude. Stork users can manage groups of VMs with the

ease of managing a single machine – even groups that

consist of machines distributed around the world. Stork

is a real service that has run on PlanetLab for over 4 years

and has managed thousands of VMs.

1 Introduction

The growing popularity of virtual machine (VM) en-

vironments such as Xen [3], VMWare [20], and

Vservers [11, 12], has placed new demands on package

management systems (e.g. apt [2], yum [25], RPM [19]).

Traditionally, package management systems deal with

installing and maintaining software on a single machine

whether virtual or physical. There are no provisions for

inter–VM sharing, so that multiple VMs on the same

physical machine individually download and maintain

separate copies of the same package. There are also

no provisions for inter–machine package management,

centralized administration of which packages should be

installed on which machines, or allowing multiple ma-

chines to download the same package efficiently. Finally,

current package management systems have relatively in-

flexible security mechanisms that are either based on im-

plicit trust of the repository, or public/private key signa-

tures on individual packages.

Stork is a package management system designed for

distributed VM environments. Stork has several advan-

tages over existing package management systems: it pro-

vides secure and efficient inter–VM package sharing on

the same physical machine; it provides centralized pack-

age management that allows users to determine which

packages should be installed on which VMs without con-

figuring each VM individually; it allows multiple physi-

cal machines to download the same package efficiently;

it ensures that package updates are propagated to the

VMs in a timely fashion; and it provides a flexible secu-

rity mechanism that allows users to specify which pack-

ages they trust as well as delegate that decision on a per-

package basis to other (trusted) users.

Stork’s inter–VM sharing facility is important for re-

ducing resource consumption caused by package man-

agement in VM environments. VMs are excellent for

isolation, but this very isolation can increase the disk,

memory, and network bandwidth requirements of pack-

age management. It is very inefficient to have each VM

install its own copy of each package’s files. The same is

true of memory: if each VM has its own copy of a pack-

age’s files then it will have its own copy of the executable

files in memory. Memory is often more of a limiting fac-

tor than disk, so Stork’s ability to share package files be-

tween VMs is particularly important for increasing the

number of VMs a single physical machine can support.

In addition, Stork reduces network traffic by only down-

loading a package to a physical machine once, even if

1



multiple VMs on the physical machine install it.

Stork’s inter–machine package management facility

enables centralized package management and efficient,

reliable, and timely package downloads. Stork provides

package management utilities and configuration files that

allow the user to specify which packages are to be in-

stalled on which VMs. Machines download packages us-

ing efficient transfer mechanisms such as BitTorrent [6]

and CoBlitz [16], making downloads efficient and reduc-

ing the load on the repository. Stork uses fail–over mech-

anisms to improve the reliability of downloads, even if

the underlying content distribution systems fail. Stork

also makes use of publish/subscribe technology to en-

sure that VMs are notified of package updates in a timely

fashion.

Stork provides all of these performance benefits with-

out compromising security; in fact, Stork has additional

security benefits over existing package management sys-

tems. First, Stork shares files securely between VMs.

Although a VM can delete its link to a file, it cannot

modify the file itself. Second, a user can securely spec-

ify which packages he or she trusts and may delegate this

decision for a subset of packages to another user. Users

may also trust other users to know which packages not

to install, such as those with security holes. Each VM

makes package installation decisions based on a user’s

trust assumptions and will not install packages that are

not trusted. While this paper touches on the security as-

pects of the system that are necessary to understand the

design, a more rigorous and detailed analysis of security

is deferred to future work.

In addition, Stork is flexible and modular, allowing

the same Stork code base to run on a desktop PC,

a Vserver–based virtual environment, and a PlanetLab

node. This is achieved via pluggable modules that iso-

late the platform–specific functionality. Stork accesses

these modules through a well defined API. This approach

makes it easy to port Stork to different environments

and allows the flexibility of different implementations for

common operations such as file retrieval.

Stork has managed many thousands of VMs and has

been deployed on PlanetLab [17, 18] for over 4 years.

Stork is currently running on over hundreds of Planet-

Lab nodes and its package repository receives a request

roughly every ten seconds. Packages installed in multiple

VMs by Stork typically use over an order of magnitude

less space and 50% the memory of packages installed

by other tools. Stork also reduces the repository load by

over an order of magnitude compared to HTTP–based

tools. Stork is also used in the Vserver[12] environment

and can also be used in non-VM environments (such as

on a home system) as an efficient and secure package in-

stallation system. The source code for Stork is available

at http://www.cs.arizona.edu/stork

2 Stork

Stork provides both manual management of packages on

individual VMs using command-line tools as well as cen-

tralized management of groups of VMs. This section de-

scribes an example involving package management, the

configuration files needed to manage VMs with Stork,

and the primary components of Stork.

2.1 An Example

Consider a system administrator that manages thousands

of machines at several sites around the globe. The com-

pany’s servers run VM software that allow different pro-

duction groups more flexible use of the hardware re-

sources. In addition, the company’s employees have

desktop machines that have different software installed

depending on their use.

The system administrator has just finished testing a

new security release for a fictional package foobar

and she decides to have all of the desktop machines

used for development update to the latest version along

with any testing VMs that are used by the coding group.

The administrator modifies a few files on her local ma-

chine, signs them using her private key, and uploads them

to a repository. Within minutes all of the desired ma-

chines that are online have the updated foobar pack-

age installed. As offline machines come online or new

VMs are created they automatically update their copies

of foobar as instructed.

The subsequent sections describe the mechanisms

Stork uses to provide this functionality to its users. Sec-

tion 5 revisits this example and explains in detail how

Stork provides the functionality described in this sce-

nario.

2.2 File Types

Stork uses several types of files that contain different in-

formation and are protected in different ways (Table 2.2).

The user creates a public/private key pair that authenti-

cates the user to the VMs he or she controls. The public

key is distributed to all of the VMs and the private key is

used to sign the configuration files. In our previous ex-

ample, the administrator’s public key is distributed to all

of the VMs under her control. When files signed by her

private key were added to the repository, the authentic-

ity of these files was independently verified by each VM

using the public key.

The master configuration file is similar to those found

in other package management tools and indicates things

such as the transfer method, repository name, user name,

etc. It also indicates the location of the public key that

should be used to verify signatures.

The user’s trusted packages file (TP file) indicates

which packages the user considers valid. The TP file

does not cause those packages to be installed, but instead

2



File Type Repository Client Central Signed and

Mgmt Embedded

User Private Key No No Yes No

User Public Key No† Yes Yes No

Master Configuration File No† Yes Yes No

Trusted Packages (TP) Yes Yes Yes Yes

Pacman Packages Yes No Yes Yes

Pacman Groups Yes No Yes Yes

Packages (RPM, tar.gz) Yes Yes Yes Secure Hash

Package Metadata Yes Yes Yes No

Repository Metahash Yes Yes No Signed Only

Table 1: Stork File Types: This table shows the different

types of files used by Stork. The repository column indi-

cates whether or not the file is obtained from the reposi-

tory by the clients. The client column indicates whether

or not the file is used for installing packages or deter-

mining which packages should be installed locally based

upon the files provided by the centralized management

system. The centralized management column indicates

if the files are created by the management tools. The

signed/embed column indicates which files are signed

and have a public key embedded in their name.

indicates trust that the packages have valid contents and

are candidates for installation. For example, while the

administrator was testing the latest release of foobar

she could add it to her trusted packages file because she

believes the file is valid.

There are two pacman files used for centralized man-

agement. The groups.pacman file allows VMs to be cat-

egorized into convenient groups. For example, the ad-

ministrator could configure her pacman groups file to

create separate groups for VMs that perform different

tasks. VMs can belong in multiple groups such as AL-

PHA and ACCOUNTING for an alpha test version of

accounting software. Any package management instruc-

tions for either the ALPHA group or the ACCOUNTING

group would be followed by this VM.

The packages.pacman file specifies what actions

should be done on a VM or a group of VMs. Packages

can be installed, updated, or removed. Installation is dif-

ferent from updating in that installation will do nothing

if there is a package that meets the criteria already in-

stalled while update ensures that the preferred version of

the package is installed. For example, when asked to in-

stall foobar, if any version of the package is currently

installed then no operation will occur. If asked to up-

date foobar, Stork checks to see if the administrator’s

TP file specifies a different version of foobar and if so,

replaces the current version with the new version.

The packages (for example, the foobar RPM itself)

contain the software that is of interest to the user. The

package metadata is extracted from packages and is pub-

lished by the repository to describe the packages that are

†In order to automatically deploy Stork on PlanetLab this restriction

is relaxed. See Section 3 for more details.

available. The repository metahash is a special file that is

provided by the repository to indicate the current reposi-

tory state.

2.3 Architecture

Stork consists of four main components:

• a repository that stores configuration files, pack-

ages, and associated metadata;

• a set of client tools that are used in each Stork client

VM to manage its packages by interacting either di-

rectly with the repository or when available through

the nest;

• a nest process that runs on physical machines and

coordinates sharing between VMs as well as pro-

viding repository metadata updates to its client VMs

and downloading packages;

• and centralized management tools that allows a user

to control many VMs concurrently, create and sign

packages, upload packages to the repository, etc.

The client tools consist of the stork command-line tool

(referred to simply as stork), which allows users to

install packages manually, and pacman which supports

centralized administration and automated package instal-

lation and upgrade. While a client VM may communi-

cate with the repository directly, it is far more efficient

for client VMs to interact with their local nest process,

who interacts with the repository on their behalf.

2.3.1 Repository

The Stork repository’s main task is to serve files much

like a normal web server. However, the repository is

optimized to efficiently provide packages to Stork client

VMs. First, the repository provides secure user upload

of packages, trusted packages files, and pacman pack-

ages and groups files. Second, the repository pushes

notifications of new content to interested VMs. Third,

the repository makes packages available via different ef-

ficient transfer mechanisms such as BitTorrent.

Handling Uploaded Data The Stork repository al-

lows multiple users to upload files while retaining secu-

rity. TP, groups.pacman, and packages.pacman

files must be signed by the user that uploads them. Every

signed file has a timestamp for the signature embedded

in the portion of the file protected by the signature. The

public key of the user is embedded in the file name of the

signed file (similar to self-certifying path names [13]).

This avoids naming conflicts and allows the repository

verify the signature of an uploaded file. The repository

will only store a signed file with a valid signature that

is newer than any existing signed file of the same name.

This prevents replay attacks and allows tools to request

the files that match a public key directly.

3



Internet

Physical Machines

Repository

Packages
&

Metadata

VMM

VM 1 VM 2 VM 3

mew-2.2- 5.rpm

foobar -1.0.rpm

CT CT CT

NEST
VM

CacheAdministrator

Figure 1: Stork Overview. Stork allows centralized ad-

ministration and sharing of packages. The administra-

tor publishes packages and metadata on the repository.

Updates are propagated to VMs running on distributed

physical machines. Each physical machine contains a

single nest VM, and one or more client VMs that run the

Stork client tools.

Packages and package metadata are treated differently

than configuration files. These files are not signed, but

instead incorporate a secure hash of their contents in their

names. This prevents name collisions and allows users

to request packages directly by secure hash. In all cases,

the integrity of a file is verified by the recipient before

it is used (either by checking the signature or the secure

hash, as appropriate). The repository only performs these

checks itself to prevent pollution of the repository and

unnecessary downloads, rather than to ensure security on

the clients.

Pushing Notifications The repository notifies inter-

ested clients when the repository contents have changed.

The repository provides this functionality by pushing

an updated repository metahash whenever data has been

added to the repository. However, this does not address

the important question of what data has been updated.

This is especially difficult to address when VMs may

miss messages or suffer other failures. One solution to

this problem is for the repository to push out hashes of all

files on the repository. As there are many thousands of

metadata files on the repository, it is too costly to publish

the individual hashes of all of them and have the client

VMs download each metadata file separately. Instead the

repository groups metadata files together in a tarball or-

ganized by type. For example, one tarball contains all

of the trusted packages files, another with all of the pac-

man files, etc. The hashes of these tarballs are put into

the repository metahash which is pushed to each inter-

ested client VM. No matter how many updates the client

VM misses, it can examine the hash of the local tarballs

and the hashes provided by the repository and determine

what needs to be retrieved.

Efficient Transfers The repository makes all of its

files available for download through HTTP. However,

having each client download its files via separate HTTP

connections is prohibitively expensive. The repository

therefore supports different transfer mechanisms for bet-

ter scalability, efficiency, and performance. Some trans-

fer mechanisms are simple (like CoBlitz and Coral which

require no special handling by the repository) and others

(like BitTorrent) require special handling.

To support BitTorrent[6] downloads the repository

runs a BitTorrent tracker and a modified version of the

btlaunchmany daemon provided by BitTorrent. The

btlaunchmany daemon monitors a directory for any

new or updated files. When a new file is uploaded to the

repository it is placed in the monitored directory. When

the daemon notices the new file it creates a torrent file

that is later seeded. Unique naming is achieved by ap-

pending the computed hash of the shared file to the name

of the torrent. The torrent file is placed in a public lo-

cation on the repository for subsequent download by the

clients through HTTP.

2.3.2 Client Tools

The client tools are used to manage packages in a

client VM and include the stork, pacman, and

stork receive update commands. The stork

tool uses command-line arguments to install, update, and

remove packages. Its syntax is similar to apt [2] or

yum [25]. The stork tool resolves dependencies and

installs additional packages as necessary. It also up-

grades and removes packages. The stork tool down-

loads the latest metadata from package repositories, ver-

ifies that packages are trusted by the user’s TP file, and

only installs trusted files.

Package management with the stork tool is a com-

plex process involving multiple steps including depen-

dency resolution, trust verification, download, and in-

stallation. For example, consider the installation of

the foobar package. Assume foobar depends on a

few other packages, such as emacs and glibc, before

foobar itself can be installed. In order to perform the

installation of foobar, the stork tool must determine

whether foobar, emacs, and glibc are already in-

stalled on the client and if not, locate candidate versions

that satisfy the dependencies. These steps are similar to

those performed by other package managers[2, 25, 19].

Finally Stork ensures that those candidates satisfy the

4



<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>

<TRUSTEDPACKAGES>

<!-- Trust some packages that the user specifically allows -->

<FILE PATTERN="emacs-2.2-5.i386.rpm" HASH="aed4959915ad09a2b02f384d140c4

626b0eba732" ACTION="ALLOW"/>

<FILE PATTERN="foobar-1.01.i386.rpm" HASH="16b6d22332963d54e0a034c11376a

2066005c470" ACTION="ALLOW"/>

<FILE PATTERN="foobar-1.0.i386.rpm" HASH="3945fd48567738a28374c3b238473

09634ee37fd" ACTION="ALLOW"/>

<FILE PATTERN="simple-1.0.tar.gz" HASH="23434850ba2934c39485d293403e3

293510fd341" ACTION="ALLOW"/>

<!-- Allow access to the planetlab Fedora Core 4 packages -->

<USER PATTERN="*" USERNAME="planetlab-v4" PUBLICKEY="MFwwDQYJKoZIhvcNAQEB

BQADSwAwSAJBALtGteQPdLa0kYv+klFWTklH9Y7frYhl5JV1hgJa5PlGI3yK+R22UsD65_J4P

V92RUgVd_uJMuB8Q4bi1w4o6JMCAwEAAQ" ACTION="ALLOW"/>

<!-- Allowing the ’stork’ user lets stork packages be installed -->

<USER PATTERN="stork*" USERNAME="stork" PUBLICKEY="MFwwDQYJKoZIhvcNAQEBBQADSwAw

SAJBAKgZCjfKDl9ISoclfBuZsQze6bXtu+QYF64TLQlI9fgEg2CDyGQVOsZ2CaX1ZEZ_O69AYZ

p8nj+YJLIJM3+W3DMCAwEAAQ" ACTION="ALLOW"/>

</TRUSTEDPACKAGES>

Figure 2: Example TP File. This file specifies what

packages and users are trusted. Only packages allowed

by a TP file may be installed. FILE actions are used to

trust individual packages. USER actions allow hierarchi-

cal trust by specifying a user whose TP file is included.

The signature, timestamp, and duration are not shown

and are contained in an XML layer that encapsulates this

file.

trust requirements that the user has specified.

Figure 2 shows a TP file example. This file specifically

allows emacs-2.2-5.i386.rpm, several versions of

foobar, and customapp-1.0.tar.gz to be in-

stalled. Each package listed in the TP file includes the

hash of the package, and only packages that match the

hashes may be installed. It trusts the planetlab-v4

user to know the validity of any package it says (this user

has a list of hashes of all of the Fedora Core 4 packages).

It also trusts the stork user to know the validity of any

packages that start with “stork”.

Once satisfactory trusted candidates have been found,

Stork downloads the packages from the repository and

verifies that the packages it downloaded match the en-

tries in the TP file, including the secure hashes. Finally,

the packages themselves are installed.

Package removal is much less complex than installa-

tion. The stork command removes an installed pack-

age by deleting the package’s files and runs the uninstall

scripts for the package.

The pacman (“package manager”) tool is the

entity in a VM that locally enacts centralized

administration decisions. The pacman tool in-

vokes the appropriate stork commands based on

two configuration files: groups.pacman (Fig-

ure 3) and packages.pacman (Figure 4). The

groups.pacman file is optional and defines VM

groups. VM groups are used by an administrator to col-

lectively manage a set of VMs. The groups.pacman

syntax supports basic set operations such as union,

intersection, compliment, and difference. For example,

<GROUPS>

<GROUP NAME="ALPHA">

<INCLUDE NAME="planetlab1.arizona.net"/>

<INCLUDE NAME="planetlab2.arizona.net"/>

</GROUP>

<GROUP NAME="ACCOUNTING">

<INCLUDE NAME="ALPHA"/>

<INCLUDE NAME="pl1.unm.edu"/>

</GROUP>

</GROUPS>

Figure 3: Example groups.pacman. The “ALPHA”

group consists of two machines in Arizona. The “AC-

COUNTING” group also includes a machine at the Uni-

versity of New Mexico.

<PACKAGES>

<CONFIG SLICE="stork" GROUP="ACCOUNTING">

<INSTALL PACKAGE="foobar" VERSION="2.2"/>

<REMOVE PACKAGE="vi"/>

</CONFIG>

<CONFIG>

<UPDATE PACKAGE = "firefox"/>

</CONFIG>

</PACKAGES>

Figure 4: Example packages.pacman. VMs in the slice

(a term used to mean a VM on PlanetLab) “stork” and

in the group “ACCOUNTING” will have foobar 2.2

installed and vi removed. All VMs in this user’s control

will have firefox installed and kept up-to-date with

the newest version.

an administrator for a service may break their VMs into

alpha VMs, beta VMs, and production VMs. This allows

developers to test a new release on alpha VMs (where

there are perhaps only internal users) before moving it

to the beta VMs group (with beta testers) and finally the

the production servers.

The packages.pacman file specifies which pack-

ages should be installed, updated, or removed in the cur-

rent VM based on a combination of VM name, group,

and physical machine. This makes it easy, for example,

to specify that a particular package should be installed

on all VMs on a physical machine, while another pack-

age should only be installed on alpha VMs, etc.

Although pacman can be run manually, typically

it is run automatically via one of several mecha-

nisms. First, pacman establishes a connection to the

stork receive update daemon. This daemon re-

ceives the repository metahashes that are pushed by

the repository whenever there is an update. Upon

receiving this notification, stork receive update

alerts pacman to the new information. A change

to the repository metahash indicates that the reposi-

tory contents have changed which in turn may change

which packages are installed, etc. Second, when

stork receive update is unavailable pacman

wakes up every 5 minutes and polls the repository for the

repository metahash. As before, if there is a discrepancy

between the stored data and the described data, pacman

5



downloads the updated files. Third, pacman also runs

when its configuration files change.

The stork receive update daemon runs in each

client VM and keeps the repository’s metahash up-to-

date. Metadata is received from the repositories using

both push and pull. Pushing is the preferred method

because it reduces server load, and is accomplished us-

ing a multicast tree or publish/subscribe system such as

PsEPR[4]. Heartbeats are pushed if no new metahash

is available. If stork receive update doesn’t re-

ceive a regular heartbeat it polls the repository and down-

loads new repository metahash if necessary. This down-

load is accomplished using an efficient transfer mecha-

nism from one of Stork’s transfer modules (Section 4.1).

This combination of push and pull provides an efficient,

scalable, fault tolerant way of keeping repository infor-

mation up-to-date in the VMs.

2.3.3 Nest

The Stork nest process enables secure file-sharing be-

tween VMs, prevents multiple downloads of the same

content by different VMs, and maintains up-to-date

repository metadata. The nest serves two important func-

tions. First, it operates as a shared cache for its client

VMs, allowing metadata and packages to be downloaded

once and used by many VMs. Second, it performs pack-

age installation on behalf of the VMs, securely sharing

read-only package files between multiple VMs that in-

stall the package (Section 4.2). The nest functionality is

implemented by the stork nest daemon.

The stork nest daemon is responsible for main-

taining connections with its client VMs and processing

requests that arrive over those connections (typically via

a socket, although this is configurable). A client must

first authenticate itself to stork nest. The authentica-

tion persists for as long as the connection is established.

Once authenticated, the daemon then fields requests for

file transfer and sharing. File transfer operations use the

shared cache feature of the repository to provide cached

copies of files to the clients. Sharing operations allow

the clients to share the contents of packages using the

prepare interface (Section 4.4).

Typically, the nest runs on each machine machine that

runs Stork; however, there may be cases (such as in a

desktop machine or a server that does not use VMs)

where the nest is not run. In the case where no nest is

running or the nest process fails, the client tools commu-

nicate directly with the repository.

2.3.4 Centralized Management

The centralized management tools allow Stork users to

manage their VMs without needing to contact the VMs

directly. In our example the administrator wanted to in-

stall foobar automatically on applicable systems under

her control rather than logging into them individually.

Unlike the client tools that are run in Stork client VMs,

the centralized management tools are typically run on the

user’s desktop machine. They are used to create TP files,

pacman packages and groups files, the master configu-

ration file, public/private keypairs, etc. These files are

used by the client tools to decide what actions to perform

on the VM. In addition to managing these files, the cen-

tralized management tools also upload metadata and/or

packages to the repository, and assist the user in building

packages.

The main tool used for centralized management is

storkutil, a command-line tool that has many differ-

ent functions including creating public/private key pairs,

signing files, extracting metadata from packages, and

editing trusted packages, pacman packages and groups

files. Administrators use this tool to create and mod-

ify the files that control the systems under their con-

trol. While files can be edited by other tools and then

resigned, storkutil has the advantage of automati-

cally resigning updated files. After updating these files

they are then uploaded to the repository.

3 Stork on PlanetLab

Stork currently supports the Vserver environment, non-

VM machines, and PlanetLab [17, 18]. The PlanetLab

environment is significantly different from the other two,

so several extensions to Stork have been provided to bet-

ter support it.

3.1 PlanetLab Overview

PlanetLab consists of over 750 nodes spread around the

world that are used for distributed system and network

research. Each PlanetLab node runs a custom kernel

that superficially resembles the Vserver [12] version of

Linux. However there are many isolation, performance,

and functionality differences.

The common management unit in PlanetLab is the

slice, which is a collection of VMs on different nodes

that allow the same user(s) to control them. A node typ-

ically contains many different VMs from many differ-

ent slices, and slices typically span many different nodes.

The common PlanetLab (mis)usage of the word “slice”

means both the collection of similarly managed VMs and

an individual VM.

Typical usage patterns on PlanetLab consist of an au-

thorized user creating a new slice and then adding it to

one or more nodes. Many slices are used for relatively

short periods of time (a week or two) and then removed

from nodes (which tears down the VMs on those nodes).

It is not uncommon for a group that wants to run an ex-

periment to create and delete a slice that spans hundreds

of nodes in the same day. There are relatively loose re-

strictions as to the number of nodes slices may use and

6



the types of slices that a node may run so it is not uncom-

mon for slices to span all PlanetLab nodes.

3.2 Bootstrapping Slices on PlanetLab

New slices on PlanetLab do not have the Stork client

tools installed. Since slices are often short–lived and

span many nodes, requiring the user to log in and in-

stall the Stork client tools on every node in a slice is im-

practical. Stork makes use of a special initscript

to automatically install the Stork client tools in a slice.

The initscript is run whenever the VMM software

instantiates a VM for the slice on a node. The Stork

initscript communicates with the nest on the node

and asks the nest to share the Stork client tools with it.

If the nest process is not working, the initscript in-

stead retrieves the relevant RPMs securely from the Stork

repository.

3.3 Centralized Management

Once the Stork client tools are running they need the

master configuration file and public key for the slice. Un-

fortunately the ssh keys that are used by PlanetLab to

control slice access are not visible within the slice, so

Stork needs to obtain the keys through a different mech-

anism. Even if the PlanetLab keys were available it is

difficult to know which key to use because many users

may be able to access the same VM. Even worse, often

a different user may want to take control of a slice that

was previously managed by another user. Stork’s solu-

tion is to store the public key and master configuration

file on the Stork repository. The repository uses Planet-

Lab Central’s API to validate that users have access to the

slices they claim and stores the files in a area accessible

by https. The client tools come with the certificate for the

Stork repository which pacman and stork use to se-

curely download the public key and master configuration

file for the slice. This allows users to change the master

configuration file or public key on all nodes by simply

adding the appropriate file to the Stork repository.

4 Modularity

Stork is highly modular and uses several interfaces that

allow its functionality to be extended to accommodate

new protocols and package types:

Transfer A transfer module implements a transport

protocol. It is responsible for retrieving a particular ob-

ject given the identifier for that object. Transfer proto-

cols currently supported by Stork include CoBlitz [15],

BitTorrent [6], Coral [9], HTTP, and FTP.

Share A share module is used by the Stork nest to

share files between VMs. It protects files from modifi-

cation, maps content between slices, and authenticates

client slices. Currently Stork supports PlanetLab and

Linux VServers. Using an extensible interface allows

Stork to be customized to support new VM environ-

ments.

Package A package module provides routines that the

Stork client tools use to install, remove, and interact with

packages. It understands several package formats (RPM,

tar) and how to install them in the current system.

Prepare A prepare module prepares packages for

sharing. Preparing a package typically involves extract-

ing the files from the package. The Prepare interface

differs from the Package interface in that package in-

stall scripts are not run and databases (such as the RPM

database) are not updated. The nest process uses the pre-

pare module to ready the package files for sharing.

4.1 Transfer Modules

Transfer modules are used to download files from the

Stork repository. Transfer modules encapsulate the nec-

essary functionality of a particular transfer protocol with-

out having to involve the remainder of Stork with the de-

tails.

Each transfer module implements a

retrieve files function that takes several pa-

rameters including the name of the repository, source

directory on the repository, a list of files, and a target

directory to place the files in. The transfer module is

responsible for opening and managing any connections

that it requires to the repositories. A successful call to

retrieve files returns a list of the files that were

successfully retrieved.

Transfer modules are specified to Stork via an ordered

list in the main Stork configuration file. Stork always

starts by trying the first transfer module in the list. If

this transfer module should fail or return a file that is old,

then Stork moves on to the next module in the list.

4.1.1 Content Retrieval Modules

CoBlitz uses a content distribution network (CDN) called

CoDeeN[22] to support large files transfers without mod-

ifying the client or server. Each node in the CDN runs

a service that is responsible for splitting large files into

chunks and reassembling them. This approach not only

reduces infrastructure and the need for resource provi-

sioning between services, but can also improve relia-

bility by leveraging the stability of the existing CDN.

CoBlitz demonstrates that this approach can be imple-

mented at low cost, and provides efficient transfers even

under heavy load.

Similarly, the Coral module uses a peer-to-peer con-

tent distribution network that consists of volunteer sites

that run CoralCDN. The CoralCDN sites automatically

replicate content as a side effect of users accessing it.

A file is retrieved via CoralCDN simply by making a

small change to the hostname in an object’s URL. Then a

peer-to-peer DNS layer transparently redirects browsers

7



to nearby participating cache nodes, which in turn co-

operate to minimize load on the origin web server. One

of the system’s key goals is to avoid creating hot spots.

It achieves this through Coral [9], a latency-optimized

hierarchical indexing infrastructure based on a novel ab-

straction called a distributed sloppy hash table (DSHT).

BitTorrent is a protocol for distributing files. It identi-

fies content by URL and is designed to integrate seam-

lessly with the web. Its advantage over HTTP is that

nodes that download the same file simultaneously also

upload portions of the file to each other. This greatly

reduces the load on the server and increases scalability.

Nodes that uploads portions of a file are called seeds.

BitTorrent employs a tracker process to track which por-

tions each seed has and helps clients locate seeds with the

portions they need. BitTorrent balances seed loads by

having its clients preferentially retrieve unpopular por-

tions, thus creating new seeds for those portions.

Stork also supports traditional protocols such as HTTP

and FTP. These protocols contact the repository directly

to retrieve the desired data object. It is preferable to use

one of the content distribution networks instead of HTTP

or FTP as it reduces the repository load.

Stork supports all of these transfer mechanisms and

performance results are presented in Section 6. One key

observation is that although these transfer methods are

efficient, the uncertainties of the Internet make failure a

common case. For this reason the transfer module tries

a different transfer mechanism when one fails. For ex-

ample, if a BitTorrent transfer fails, Stork will attempt

CoBlitz, HTTP, or another mechanism until the trans-

fer succeeds or gives up. This provides efficiency in the

common case, and correct handling when there is an er-

ror.

4.1.2 Nest Transfer

In addition to the transfer modules listed above, Stork

supports a nest transfer module. The nest transfer mod-

ule provides an additional level of indirection so that the

client asks the nest to perform the transfer on its behalf

rather than performing the transfer directly. If the nest

has a current copy of the requested item in its cache,

then it can provide the item directly from the cache. Oth-

erwise, the nest will invoke a transfer module (such as

BitTorrent, HTTP, etc) to retrieve the item, which it will

then provide to the client and cache for later use.

4.1.3 Push

Stork supports metadata distribution to the nests using a

publish/subscribe system [8]. In a publish/subscribe sys-

tem, subscribers register their interest in an event and are

subsequently notified of events generated by publishers.

One such publish/subscribe system is PsEPR [4]. The

messaging infrastructure for PsEPR is built on a collec-

tion of off-the-shelf instant messaging servers running on

PlanetLab. PsEPR publishes events (XML fragments) on

channels to which clients subscribe. Behind the scenes

PsEPR uses overlay routing to route events among sub-

scribers.

The Stork repository pushes out metadata updates

through PsEPR. It also pushes out the repository’s

metahash file that contains the hashes of the metadata

files; this serves as a heartbeat that allows nodes to detect

missed updates. In this manner nodes only receive meta-

data changes as necessary and there is no burden on the

repository from unnecessary polling.

4.1.4 Directory Synchronization

In addition to pushing data, Stork also supports a mech-

anism for pulling the current state from a repository.

There are several reasons why this might be necessary,

with the most obvious being that the publish/subscribe

system is unavailable or has not published data in a

timely enough manner. Stork builds upon the transfer

modules to create an interface that supports the synchro-

nization of entire directories.

Directory synchronization mirrors a directory hierar-

chy from the repository to the client. It first downloads

the repository’s metahash file (the same file that the

repository publishes periodically using PsEPR). This file

contains a list of all files that comprise the repository’s

current state and the hashes for those files. Stork com-

pares the hashes to the those of the most recent copies of

these files that it has on disk. If a hash does not match,

then the file must be re-downloaded using a transfer mod-

ule.

4.2 Share Modules

Virtual machines are a double–edged sword: the isola-

tion they provide comes at the expense of sharing be-

tween them. Sharing is used in conventional systems to

provide performance and resource utilization improve-

ments. One example is sharing common application pro-

grams and libraries. They are typically installed in a

common directory and shared by all users. Only a sin-

gle copy of each application and library exists on disk

and in memory, greatly reducing the demand on these re-

sources. Supporting different versions of the same soft-

ware is an issue, however. Typically multiple versions

cannot be installed in the same common directory with-

out conflicts. Users may have to resort to installing their

own private copies, increasing the amount of disk and

memory used.

Stork enables sharing in a VM environment by weak-

ening the isolation between VMs to allow file sharing

under the control of the nest. Specifically, read-only files

can be shared such that individual slices cannot mod-

ify the files, although they can be unlinked. This re-

8



duces disk and memory consumption. These benefits are

gained by any slices that install the same version of a

package. It also allows slices to install different pack-

age versions in the standard location in their file systems

without conflict.

In Stork, sharing is provided through Share modules

that hide the details of sharing on different VM plat-

forms. This interface is used by the nest and provides five

routines: init client, authenticate client,

share, protect, and copy. Init client is called

when a client binds to the nest, and initializes the per-

client state. Authenticate client is used by the

nest to authenticate the client that has sent a bind request.

This is done by mapping a randomly named file into the

client’s filesystem and asking it to modify the file in a

particular way. Only a legitimate client can modify its

local file system, and therefore if the client succeeds in

modifying the file the nest requested, the nest knows that

it is talking to a legitimate client. The share routine

shares (or unshares) a file or directory between the client

and nest, protect protects (or unprotects) a file from

modification by the client, and copy copies a file be-

tween the nest and a client.

The implementation of the Share module depends on

the underlying platform. On PlanetLab the Share mod-

ule communicates with a component of the VMM called

Proper [14] to perform its operations. The nest runs in

an unprivileged slice – all privileged operations, such

as sharing, copying, and protecting files, are done via

Proper.

On the Vserver platform the nest is run in the root con-

text, which gives it full access to all VM file systems and

allows it to do all of its operations directly. Hard links

are used to share files between VMs. The immutable bits

are used to protect shared files from modification. Di-

rectories are shared using mount --bind. Copying is

easily done because the root context has access to all VM

filesystems.

4.3 Package Modules

Stork supports the popular package formats RPM and

tar. In the future, other package formats such as Debian

may be added. Each type of package is encapsulated in a

package module. Each package module implements the

following interfaces:

is package understood. Returns true if this

package module understands the specified package type.

Stork uses this function to query each package module

until a suitable match is found.

get package provides. Returns a list of depen-

dencies that are provided by a package. This function is

used to generate the metadata that is then used to resolve

dependencies when installing packages.

get packages requires. Returns a list of pack-

ages that this package requires. This function is used

along with get package provides to generate the

package metadata.

get package files. Returns a list of the files that

are contained in a package. This function is also used

when generating package metadata.

get package info. Returns the name, version, re-

lease, and size of a package. This information allows the

user to install a specific version of a package.

get installed versions. Given the name of a

package, return a list of the versions of the package that

are installed. This function is used to determine when a

package is already installed, so that an installation can be

aborted, or an upgrade can be performed if the user has

requested upgrades.

execute transactions. Stork uses a

transaction-based interface to perform package in-

stallation, upgrade, and removal. A transaction list is an

ordered list of package actions. Each action consists of

a type (install, upgrade, remove) and a package

name.

4.3.1 Supported Package Types

stork rpm. Stork currently supports RPM and tar

packages. The RPM database is maintained internally

by the rpm command-line tool, and Stork’s RPM pack-

age module uses this tool to query the database and to

execute the install, update, and remove opera-

tions,

stork tar. Tar packages are treated differently be-

cause Linux does not maintain a database of installed tar

packages, nor is there a provision in tar packages for ex-

ecuting install and uninstall scripts. Stork allows users to

bundle four scripts, .preinstall, .postinstall,

.preremove, .postremove that will be executed by

Stork at the appropriate times during package installation

and removal. Stork does not currently support depen-

dency resolution for tar packages, but this would be a

straightforward addition. Stork maintains a database that

contains the names and versions of tar packages that are

installed that mimics the RPM database provided by the

rpm tool.

4.3.2 Nest Package Installation

A special package manager, stork nest rpm, is re-

sponsible for performing shared installation of RPM

packages. Shared installation of tar packages is not sup-

ported at this time. Performing a share operation is a

three-phase process.

In the first phase, stork nest rpm calls

stork rpm to perform a private installation of

the package. This allows the package to be installed

atomically using the protections provided by RPM,

9



including executing any install scripts. In the second

phase, stork nest rpm contacts the Stork nest and

asks it to prepare the package for sharing. The prepare

module is discussed in the following section. Finally,

in the third phase stork nest rpm contacts the nest

and instructs it to share the prepared package. The

nest uses the applicable share module to perform the

sharing. The private versions of files that were installed

by stork rpm are replaced by shared versions. Stork

does not attempt to share configuration files because

these files are often changed by the client installation.

Stork also examines files to make sure they are identical

prior to replacing a private copy with a shared copy.

Removal of packages that were installed using

stork nest rpm requires no special processing.

stork nest rpm merely submits the appropriate re-

move actions to stork rpm. The stork rpm module

uses the rpm tool to uninstall the package, which unlinks

the package’s files. The link count of the shared files is

decremented, but is still nonzero. The shared files per-

sist on the nest and in any other clients that are linked to

them.

4.4 Prepare Modules

Prepare modules are used by the nest to prepare a pack-

age for sharing. In order to share a package, the nest

must extract the files in the package. This extraction

differs from package installation in that no installation

scripts are run, no databases are updated, and the files

are not moved to their proper locations. Instead, files are

extracted to a sharing directory.

Prepare modules only implement one interface, the

prepare function. This function takes the name of

a package and the destination directory where the ex-

tracted files should be placed.

RPM is the only package format that Stork currently

shares. The first step of the stork rpm prepare

module is to see if the package has already been

prepared. If it has, then nothing needs to be

done. If the package has not been prepared, then

stork rpm prepare uses rpm2cpio to convert the

RPM package into a cpio archive which is then extracted.

stork rpm prepare queries the rpm tool to deter-

mine which files are configuration files and moves the

configuration files to a special location so they will not

be shared. Finally, stork rpm prepare sets the ap-

propriate permissions on the files that it has extracted.

5 Stork Walkthrough

This section illustrates how the Stork components work

together to manage packages using the example from

Section 2.1 in which an administrator installs an updated

version of the foobar package on the VMs the com-

pany uses for testing and on the non-VM desktop ma-

chines used by the company’s developers.

1. The administrator uses storkutil to add the new

version of the foobar package to her TP file (if she

hasn’t done so already).

2. She uses storkutil to add the groups Devel

and Test to her groups.pacman file, repre-

senting the developer’s end systems and the testing

VMs, respectively. Since groups can be reused, this

step most likely would have been done already.

3. The administrator uses storkutil to add a line to

her packages.pacman file instructing the Test

group to update foobar. She does the same for the

Devel group.

4. Storkutil automatically signed these files with

her private key. She now uploads these files to a

Stork repository. If the new version of the foobar

package is not already on the repository she uploads

this as well.

5. The repository treats the TP and pacman files simi-

larly. The signatures are verified using the adminis-

trator’s public key that is embedded in the file name.

The new files replace the old if their signatures are

valid and their timestamps newer. The foobar

package is stored in a directory whose name is its

secure hash. The package metadata is extracted and

made available for download.

6. The repository uses the publish/subscribe system

PsEPR to push out a new repository metahash to

the VMs.

7. The VMs are running stork receive update

and obtain the new repository metahash. The

stork receive update daemon wakes up the

pacman daemon.

8. The pacman daemon updates its metadata. On

non-VM platforms, the files are downloaded effi-

ciently using whatever transfer method is listed in

the Stork configuration file. On VM platforms,

pacman retrieves the files through the nest (which

means the files are downloaded only once per phys-

ical machine).

9. Pacman processes its metadata and if the current

VM is in either the Test or Devel groups it calls

stork to update the foobar package.

10. The stork tool verifies that it has the current meta-

data and configuration files. This is useful because

it is not uncommon for several files to be uploaded

in short succession. If this is not the case it retrieves

the updated files in the same manner as pacman.

10



11. Stork verifies that the specified version of

foobar is not already installed; if it is, Stork sim-

ply exits.

12. Stork searches the package metadata for the spec-

ified package. If no candidate is found then it ex-

its with an error message that the package cannot

be found. Multiple candidates may be returned if

the metadata database contains several versions of

foobar.

13. Stork verifies that the user trusts the candidate

versions of foobar. It does this by applying the

rules from the user’s TP file one at a time until a

rule is found that matches each candidate. If the

rule is a DENY rule, then the candidate is rejected.

If the rule is an ACCEPT rule, then the candidate is

deemed trustworthy. The result of trust verification

is an ordered list of package candidates.

14. Stork now has one or more possible candidates for

foobar. However, if foobar depends on other

packages stork repeats steps 11 - 14 for the de-

pendencies to determine if those dependencies can

be satisfied.

15. Stork now has a list of packages that are to be

updated, including foobar and its missing depen-

dencies. Stork uses a transfer module to retrieve

foobar and dependant packages. The highest pri-

ority transfer method is to contact the repository,

which is via the nest in VM environments.

16. In a VM environment the nest receives the requests

for foobar and its dependencies from the client

VM. If these files are already cached on the nest,

then the nest provides those local copies. If not, then

the nest invokes the transfer modules (BitTorrent,

CoBlitz, etc) to retrieve the files. When retrieval is

complete, the nest shares the package with the client

VM.

17. Stork now has local copies of foobar and its

dependant packages. The client queries the pack-

age modules to find one that can install the pack-

age. In non–VM environments the stork rpm

module installs the packages using RPM and re-

turns to stork which exits. In VM envi-

ronments the stork nest rpm module is tried

first (stork will fail over and use stork rpm

if this module fails). Because foobar is an

RPM package, stork nest rpm can process

it. Stork builds a transaction list and passes

it to the execute transactions function of

stork nest rpm

18. In a VM environment the stork nest rpm mod-

ule passes the transaction list to stork rpm in

order to install a private non-shared copy of the

foobar package.

19. In a VM environment the stork nest rpm mod-

ule then contacts the nest and issues a request to pre-

pare and share foobar. The nest uses the appro-

priate prepare module to extract the files contained

in foobar. The nest uses the appropriate share

module to share the extracted files with the client

VM. Sharing overwrites the private versions of the

files in the client’s VM with shared versions from

the foobar package.

In some cases there will be systems that do not receive

the PsEPR update. This could occur because PsEPR has

failed to deliver the message or perhaps because the sys-

tem is down. If PsEPR failed then pacman will start

every 5 minutes to check for updates. If the system was

down then when it restarts pacman will run. Either way

pacman will start and obtain a new repository metahash

and the system will continue the process from Step 8.

If nest or module failures happen, stork fails over to

other modules that might be able to service the request.

For example, if the packages cannot be downloaded by

BitTorrent, the tool will instead try another transfer

method like CoBlitz as specified in the master config-

uration file.

6 Results

Stork was evaluated via several experiments on Planet-

Lab. The first experiment measures the effectiveness of

Stork in conserving disk space when installing packages

in VM environments. The second experiment looks at

the memory savings Stork provides to packages installed

in multiple VMs. The final set of experiments look at the

impact Stork has on package downloads both in perfor-

mance and in repository load.

6.1 Disk Usage

The first experiment measured the amount of disk space

saved by installing packages using Stork versus installing

them in client slices individually (Figure 5). These

measurements were collected using the 10 most popu-

lar packages on a sample of 11 PlanetLab nodes. Some

applications consist of two packages: one containing the

application and one containing a library used exclusively

by the application. For the purpose of this experiment

they are treated as a single package.

For all but one package, Stork reduced the per-client

disk space required to install a package by over 90%. It

should be noted that the nest stores an entire copy of the

package to which the clients link; Stork’s total space sav-

ings is therefore a function of the total number of clients

11



Package Disk Space (KB) Percent

Rank Name Standard Stork Savings

1 scriptroute 8644 600 93%

2 undns 13240 652 95%

3 chord 64972 1216 98%

4 j2re 61876 34280 45%

5 stork 320 32 90%

6 bind 6884 200 97%

7 file 1288 36 97%

8 make 808 32 96%

9 cpp 3220 44 99%

10 binutils 6892 60 99%

Figure 5: Disk Used by Popular Packages. This ta-

ble shows the disk space required to install the 10 most

popular packages installed by the slices on a sampling

of PlanetLab nodes. The Standard column shows how

much per-slice space the package consumes if nothing

is shared. The Stork column shows how much per-slice

space the package requires when installed by Stork.

Package Application Memory (MB) Percent

Rank Name Name Standard Stork Savings

1 scriptroute srinterpreter 5.8 3.2 45%

2 undns undns decode 4.2 2.0 53%

3 chord adbd 7.6 2.3 70%

3 chord lsd 7.5 1.1 86%

4 j2re java 206.8 169.5 18%

5 stork stork 3.4 1.2 64%

6 bind named 36.7 32.1 12%

7 file file 2.6 1.3 50%

8 make make 2.5 1.1 54%

9 cpp cpp 2.5 1.2 52%

10 binutils objdump 3.3 1.4 59%

10 binutils strip 2.9 1.0 65%

10 binutils strings 3.4 1.7 50%

Figure 6: Memory Used by Popular Packages. Pack-

ages installed by Stork allow slices to share process

memory. The Standard column shows how much mem-

ory is consumed by each process when nothing is shared.

With Stork the first process will consume the same

amount as the Standard column, but additional processes

only require the amount shown in the Stork column.

sharing a package.

One package, j2re, had savings of only 45%. This

was because many of the files within the package were

themselves inside of archives. The post-install scripts ex-

tract these files from the archives. Since the post-install

scripts are run by the client, the nest cannot share the ex-

tracted files between slices. By repackaging the files so

that the extracted files are part of the package, this issue

can be avoided.

6.2 Memory Usage

Stork also allows processes running in different slices

to share memory because they share the underlying ex-

ecutables and libraries (Figure 6). The primary appli-

cation was run from each package and how much of

its memory footprint was shared and how much was

Transfer Effective Client Bandwidth (Kbps) Nodes Server

Protocol 25% Median Mean 75% Completed MB Sent

HTTP 413.9 380.6 321.2 338.1 280/286 3080.3

Coral 651.3 468.9 253.6 234.1 259/281 424.7

CoBlitz 1703.5 737.2 381.1 234.0 255/292 77.9

BitTorrent 2011.8 1482.2 1066.9 1044.0 270/284 255.8

Figure 7: Package Download Performance. This ta-

ble shows the results of downloading a 10 MB file to 300

nodes. Each result is the average of three tests. The client

bandwidth is measured with respect to the amount of file

data received, and the mean, median, 25th percentile, and

75th percentile results given. The Nodes Completed col-

umn shows the number of nodes that started and finished

the transfer. The Server MB Sent is the amount of net-

work traffic sent to the clients, including protocol head-

ers and retransmissions.

not recorded. It was not possible to get memory shar-

ing numbers directly from the Linux kernel running on

the PlanetLab nodes. Instead, the pmap command was

used to dump the processes’ address spaces and from this

which portions are shared and which are not determined.

The results are only approximate, however, because the

amount of address space shared does not directly cor-

respond to the amount of memory shared. Portions of

the address space may not be backed by a page in mem-

ory. More accurate measurements require changes to the

Linux kernel that are not currently feasible.

Another difficulty in measuring memory use is that it

changes as the program runs. Daemon programs were

simply started and measured. Applications that process

input files (such as java and make) were started with a

minimal file that goes into an infinite loop. The remain-

ing applications printed their usage information and were

measured before they exited.

The resulting measurements show that Stork typically

reduces the memory required by additional processes by

50% to 60%. There are two notable exceptions: named

and java. These programs allocate huge data areas that

are much larger than their text segments and libraries.

Data segments are private, so this shadows any benefits

Stork provides in sharing text and libraries.

6.3 Package Retrieval

Stork downloads packages to the nest efficiently, in terms

of the amount of network bandwidth required, server

load, and elapsed time. This was measured by retrieving

a 10MB package simultaneously from 300 nodes (Fig-

ure 7), simulating what happens when a new package is

stored on the repository. Obviously faulty nodes were

not included in the experiments, and a new randomly–

generated 10MB file was used for each test. Each test

was run three times and the results averaged. It proved

impossible to get all 300 nodes to complete the tests suc-

cessfully; in some cases the nodes never even started the

12



0

25

50

75

100

0 500 1000 1500 2000
0

25

50

75

100

0 500 1000 1500 2000
0

25

50

75

100

0 500 1000 1500 2000

HTTP
Coral
CoBlitz
BitTorrent

0

25

50

75

100

0 500 1000 1500 2000

Pe
rc

en
t N

od
es

 C
om

pl
et

ed

0

25

50

75

100

Time (sec)
0 500 1000 1500 2000

Figure 8: Elapsed Time. This graph shows the cumula-

tive distribution of nodes that complete at a given time.

Only nodes that successfully completed are included.

test. Faulty and unresponsive nodes are not unusual on

PlanetLab. This is dealt with by simply reporting the

number of nodes that started and completed each test.

Repository load is important to system scalability, rep-

resented as the total amount of network traffic generated

by the repository. This includes retransmissions, proto-

col headers, and any other data. For BitTorrent, this in-

cludes the traffic for both the tracker and the initial seed

as they were run on the same node; running them on dif-

ferent nodes made negligible difference. At a minimum

the repository must send 10MB, since the clients are

downloading a 10MB file. CoBlitz generated the least

network traffic, sending 7.8 times the minimum. BitTor-

rent sent 3.3 times as much data as CoBlitz and Coral

sent 5.5 times as much as CoBlitz. HTTP was by far the

worst, sending 39.5 times more than CoBlitz. In fact,

HTTP exceeded the product of the number of clients and

the file size because of protocol headers and retransmis-

sions.

For each test the amount of useful bandwidth each

client received (file data exclusive of network proto-

col headers) is reported, including both the median and

mean, as well as the 25th and 75th percentiles. BitTor-

rent’s mean bandwidth is 2.8 times that of CoBlitz, 3.3

times that of HTTP, and 4.2 times that of Coral. HTTP

does surprisingly well, which is a result of a relatively

high-speed connection from the repository to the Planet-

Lab nodes.

Figure 8 shows the cumulative distribution of client

completion times. More than 78% of the nodes com-

pleted the transfer within 90 seconds using BitTorrent,

compared to only 40% of the CoBlitz and 23% of the

Coral nodes. None of the HTTP nodes finished within

90 seconds.

The distribution of client completion times also varied

greatly among the protocols. The time of HTTP varied

little between the nodes: there is only an 18% difference

between the completion time of the 25th and 75th per-

centiles. The BitTorrent clients in the 25th percentile fin-

ished in 48% the time of clients in the 75th percentile,

while Coral clients differed by 64%. CoBlitz had the

highest variance, so that the clients in the 25th percentile

finished in 14% of the time of the clients in the 75% per-

centile, meaning that the slowest nodes took 7.3 times as

long to download the file as the fastest.

These results reflect how the different protocols down-

load the file. All the nodes begin retrieving the file at

the same time. Clients in BitTorrent favor downloading

rare portions of the file first, which leads to most of the

nodes downloading from each other, rather than from the

repository. The CoBlitz and Coral CDN nodes download

pieces of the file sequentially. This causes the clients

to progress lock-step through the file, all waiting for the

CDN node with the next piece of the file. This places the

current CDN node under a heavy load while the other

CDN nodes are idle.

Based on these results Stork uses BitTorrent as its first

choice when performing package retrievals, switching to

other protocols if it fails. BitTorrent decreased the trans-

fer time by 70% over over HTTP and reduces the amount

of data that the repository needs to send by 92%.

7 Related Work

Popular package management systems [2, 7, 19, 24, 25].

typically retrieve packages via HTTP or FTP, resolve de-

pendencies, and manage packages on the local system.

They do not manage packages across multiple machines.

This leads to inefficiencies in a distributed VM envi-

ronment because a service spans multiple physical ma-

chines, and each physical machine has multiple VMs.

The package management system must span nodes and

VMs, otherwise VMs will individually download and in-

stall packages, consuming excessive network bandwidth

and disk space.

Most VMMs focus on providing isolation between

VMs, not sharing. VMMs such as Xen [3] and De-

nali [23] do not provide mechanisms for sharing files

or memory between VMs. There are exceptions:

Disco [5] implements copy-on-write memory sharing be-

tween VMs. This allows the buffer cache to be shared,

for example, so that storing software on a shared disk re-

sults in a single copy both on disk and in the buffer cache.

Similar benefits can be had by sharing software via NFS.

13



Disco shares the message buffer pages between the client

and server VMs, resulting in zero-copy file access. This

doesn’t solve the problem of supporting conflicting pack-

age versions in different VMs, however.

Several VMMs [11, 12] share package files that have

already been installed. They use unification programs

that search the VM filesystems for common packages

and then link read-only package files together. This unifi-

cation happens after the package has been installed; each

VM must download and install the package, only to have

its copies of the files subsequently replaced with links.

Stork avoids this overhead and complexity by linking the

files in the first place.

Stork allows VMs to share the memory used by shared

applications and libraries. VMware ESX Server [21] also

allows VMs to share memory, but does so based on page

content. A background process scans memory looking

for multiple copies of the same page. Any redundant

copies are eliminated by replacing them with a single

copy-on-write page. This allows for more potential shar-

ing than Stork, as any identical pages can be shared, but

at the cost of having processes create multiple identical

pages only to have them culled.

Stork uses content distribution mechanisms to down-

load packages to nodes. Alternatively, a distributed file

system could be used. There are numerous distributed

files systems: Shark [1] and SFS-RO [10] are two that

have been promoted as a way to distribute software.

Clients can either mount applications and libraries di-

rectly, or use the file system to access packages that are

installed locally. The former has performance, reliabil-

ity, and conflict issues; the latter only uses the distributed

file system to download packages, which may not be su-

perior to using a content distribution mechanism.

Most package management systems have support for

security. In general, however, the repository is trusted to

contain valid packages. RPM and Debian packages can

be signed by the developer and the signature is verified

before the package is installed. This requires the user to

have the keys of all developers. In many cases package

signatures are not checked by default because of this dif-

ficulty. The TP file mechanism in Stork allows multiple

signatures per package so that users require fewer keys.

The SFS-RO file system [10] uses self-certifying paths

to alleviate the key problem. The name of a file contains

the public key used to sign it. If you know the name, then

you know the key. Stork uses a similar technique to sign

the trustedpackages file and the configuration files

for pacman. Package names include their hash, instead

of the key because a package can have multiple signa-

tures, and so that packages can be refused. For example,

Stork has a security user who explicitly rejects packages

that are known to have security problems. SFS-RO has

no way to trust a user’s signature for only a subset of

packages.

8 Conclusion

Stork provides both efficient inter–VM package shar-

ing and centralized inter–machine package management.

When sharing packages between VMs it typically pro-

vides over an order of magnitude in disk savings, and

about 50% of the memory costs. Additionally, each

node needs only download a package once no matter how

many VMs install it. This reduces the package transfer

time by 70% and reduces the repository load by 92%.

Stork allows groups of VMs to be centrally adminis-

tered. The pacman tool and its configuration files al-

low administrators to define groups of VMs and spec-

ify which packages are to be installed on which groups.

Changes are pushed to the VMs in a timely fashion,

and packages are downloaded to the VMs efficiently.

Stork has been in use on PlanetLab for over 4 years

and has managed thousands of virtual machines. The

source code for Stork may be downloaded from http:

//www.cs.arizona.edu/stork

9 Acknowledgments

First and foremost we would like to thank all of the un-

dergraduates who were not coauthors but assisted with

the development of Stork including Mario Gonzalez,

Thomas Harris, Seth Hollyman, Petr Moravsky, Peter Pe-

terson, Justin Samuel, and Byung Suk Yang. We would

also like to thank all of the Stork users. A special thanks

goes out to the developers of the services we use includ-

ing Vivek Pai, KyoungSoo Park, Sean Rhea, Ryan Hueb-

sch, and Robert Adams for their efforts in answering our

countless questions. We would especially like to thank

Steve Muir at PlanetLab Central for his efforts on our

behalf throughout the development of Stork and Proper.

References

[1] ANNAPUREDDY, S., FREEDMAN, M. J., AND

MAZIÈRES, D. Shark: Scaling File Servers via

Cooperative Caching. In Proc. 2nd NSDI (Boston, MA,

May 2005).

[2] Debian APT tool ported to RedHat Linux. http://

www.apt-get.org/.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I.,

AND WARFIELD, A. Xen and the Art of Virtualization.

In Proc. 19th SOSP (Lake George, NY, Oct 2003).

[4] BRETT, P., KNAUERHASE, R., BOWMAN, M., ADAMS,

R., NATARAJ, A., SEDAYAO, J., AND SPINDEL, M. A

shared global event propagation system to enable next

generation distributed services. In Proc. of the 1st Work-

shop on Real, Large Distributed Systems (San Francisco,

CA, Dec 2004).

[5] BUGNION, E., DEVINE, S., GOVIL, K., AND ROSEN-

BLUM, M. Disco: running commodity operating systems

14



on scalable multiprocessors. ACM Transactions on Com-

puter Systems 15, 4 (Nov 1997), 412–447.

[6] COHEN, B. Incentives Build Robustness in BitTorrent. In

Workshop on Economics of Peer-to-Peer Systems (2003).

[7] Debian – dpkg. http://packages.debian.org/

stable/base/dpkg.

[8] EUGSTER, P. T., FELBER, P., GUERRAOUI, R., AND

KERMARREC, A.-M. The Many Faces of Pub-

lish/Subscribe. ACM Computing Surveys 35, 2 (Jun

2003), 114–131.

[9] FREEDMAN, M. J., FREUDENTHAL, E., AND

MAZIÈRES, D. Democratizing content publication

with coral. In Proc. 1st NSDI (San Francisco, CA, Mar.

2004).

[10] FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. The

Click Modular Router. ACM Transactions on Computer

Systems 20, 1 (Feb 2002), 1–24.

[11] KAMP, P.-H., AND WATSON, R. N. M. Jails: Confin-

ing the Omnipotent Root. In Proc. 2nd Int. SANE Conf.

(Maastricht, The Netherlands, May 2000).

[12] LINUX VSERVERS PROJECT.

http://linux-vserver.org/.

[13] MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F.,

AND WITCHEL, E. Separating key management from

file system security. In Proc. 17th SOSP (Kiawah Island

Resort, SC, Dec 1999), pp. 124–139.

[14] MUIR, S., PETERSON, L., FIUCZYNSKI, M., CAPPOS,

J., AND HARTMAN, J. Proper: Privileged Operations in

a Virtualised System Environment. In Proc. USENIX ’05

(Anaheim, CA, Apr 2005).

[15] PARK, K., AND PAI, V. S. Deploying Large File Transfer

on an HTTP Content Distribution Network. In Proc. of

the 1st Workshop on Real, Large Distributed Systems (San

Francisco, CA, Dec 2004).

[16] PARK, K., AND PAI, V. S. Scale and Performance in

the CoBlitz Large-File Distribution Service. In Proc. 3rd

NSDI (San Jose, CA, May 2005).

[17] PETERSON, L., ANDERSON, T., CULLER, D., AND

ROSCOE, T. A Blueprint for Introducing Disruptive

Technology into the Internet. In Proc. HotNets–I (Prince-

ton, NJ, Oct 2002).

[18] PlanetLab. http://www.planet-lab.org.

[19] RPM Package Manager. http://www.rpm.org/.

[20] VMWare Workstation. http://www.vmware.com/.

[21] WALDSPURGER, C. A. Memory resource management

in VMware ESX server. Operating Systems Review 36

(2002), 181–194.

[22] WANG, L., PARK, K., PANG, R., PAI, V., AND PETER-

SON, L. Reliability and Security in the CoDeeN Content

Distribution Network. In Proc. USENIX ’02 (San Fran-

cisco, CA, Aug 2002).

[23] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale

and Performance in the Denali Isolation Kernel. In Proc.

5th OSDI (Boston, MA, December 2002), pp. 195–209.

[24] Windows Update. http://update.windows.

com/.

[25] Yum: Yellow Dog Updater Modified. http://linux.

duke.edu/projects/yum/.

15


