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Abstract

This paper presents San Fermı́n, a system for aggregating

large data sets from the nodes of large–scale distributed

systems. Each San Fermı́n node individually computes

the aggregated result by dynamically creating its own

binomial tree as it aggregates data. Nodes that fall be-

hind abort their aggregations, thereby reducing overhead.

Having each node create its own binomial tree makes San

Fermı́n highly resilient to failures, and ensures that the

internal nodes of the tree have high capacity, reducing

completion time without overwhelming nodes.

Compared to existing solutions San Fermı́n handles

large data sets better, has higher completeness when

nodes fail, computes the aggregated result faster, and has

better scalability. We analyze the completion time, com-

pleteness, and overhead of San Fermı́n versus existing

solutions using analytical models, simulation, and exper-

imentation with a prototype deployed on PlanetLab. Our

evaluation shows that San Fermı́n is scalable both in the

number of nodes and in the size of the data being ag-

gregated. With 10% node failures during aggregation,

San Fermı́n still returns the answer from over 97% of the

nodes and in most cases does so faster than the underly-

ing DHT recovers from failures.

1 Introduction

The goal of this research is to aggregate large data sets

stored in large–scale distributed systems efficiently. For

example, CERT logs about 1/4 TB of information daily

on nodes distributed throughout the Internet [2]. Ana-

lysts must use these logs to detect the anomalous behav-

ior that signals worms and other attacks, and must do so

quickly to minimize damage. An example query might

request the number of flows to and from each TCP/UDP

port (to detect an anomalous distribution of traffic in-

dicating an attack). The challenge is to provide high
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completeness (fraction of nodes whose data are included

in the result) and low completion time, while tolerating

node failures and without overwhelming nodes.

Current aggregation systems are designed for small

amounts of aggregate data (typically only a few bytes) [4,

20, 28]; they make use of techniques such as balanced

trees and continuous queries over trees with high–degree

internal nodes. High–degree internal nodes that are con-

currently used reduce latency when the amount of data

is small, but can be overwhelmed when the amount of

data is large. This slows the aggregation and increases

the peak network traffic observed by a node, which in-

creases the potential for failures to reduce completeness.

In this paper we present San Fermı́n1, an aggre-

gation technique based on binomial trees that is effi-

cient, dynamic, and scalable. Compared to trees with

high–degree internal nodes, dynamic binomial trees of-

fer higher completeness, faster results, and improved re-

silience to failure for large aggregate data sizes. San

Fermı́n leverages DHT (Distributed Hash Table) technol-

ogy to allow each node to construct its own binomial

aggregation tree by successively partnering with other

nodes increasingly distant in node ID space. Nodes race

to complete the aggregation while nodes that fall be-

hind abort their aggregations. This naturally ensures that

high–capacity nodes perform the bulk of the aggregation,

while limiting the effect of node failures and slow nodes.

Having each node compute the aggregation allows San

Fermı́n to tolerate many failures, since a node that does

not fail will compute an aggregation of some subset of

the nodes, perhaps only itself.

1.1 Contributions

San Fermı́n makes use of dynamic binomial trees whose

performance scales well with the data size and number

of nodes, and are highly–tolerant of failures. By lim-

iting the number of nodes contending for any node’s

1San Fermı́n is the festival at Pamplona that includes the running of

the bulls.



resources, San Fermı́n significantly decreases per–node

network traffic, while providing high completeness and

low completion time.

Analytic models demonstrate that San Fermı́n scales

better in both network size and aggregate data size than

centralized, balanced tree, and supernode solutions. Pro-

totype implementations of San Fermı́n and SDIMS [28]

are compared on PlanetLab to demonstrate the differ-

ences on a real world network. Simulation results also

show that San Fermı́n scales well, has low overhead, and

provides high completeness even in the presence of fail-

ures.

1.2 Applications

In addition to aggregating network information as in the

CERT example, San Fermı́n also benefits other applica-

tions that require aggregating large amounts of data from

many nodes:

Software Debugging Recent work on software debug-

ging [17] leverages execution counts for individual in-

structions. This work shows how the total of all the in-

struction execution counts across multiple nodes helps

the developer quickly identify bugs.

System Monitoring Administrators often wish to pro-

cess the logs of thousands of nodes around the world to

troubleshoot difficulties, track intrusions, or monitor per-

formance.

Distributed Databases A common operation in rela-

tional databases is a GROUP BY query [22]. This query

combines table rows containing the same attribute value

using an aggregate operator (such as SUM). The query

result contains one table row per unique attribute value.

In distributed databases different nodes may store rows

with the same attribute value and this information must

be combined and returned to the requester.

These applications are characterized by their need for

the aggregate result of a large amount of data. In most

cases the aggregate data from multiple nodes can be ag-

gregated to produce a result that is approximately the

same size as any individual node’s data. The target envi-

ronments may contain hundreds or thousands of nodes,

requiring the aggregation to tolerate failures.

1.3 Limitations

San Fermı́n focuses on one-shot queries rather than con-

tinuous queries. In a continuous query, information is

continually streamed from the leaves to the root. This re-

duces the requester’s latency in receiving updated aggre-

gate data at the cost of increasing overhead. As the size

of the aggregated data increases, the overhead quickly

becomes excessive because each update sends aggregate

data up to the root. Due to this scalability and effi-

ciency limitation, San Fermı́n does not support contin-

uous queries.

Aggregations in San Fermı́n are only performed on

nodes that were alive when the request was issued.

Nodes that come up during an aggregation will not be

included in the result.

2 San Fermı́n Overview

Each node in San Fermı́n performs its own aggregation

by creating an individual binomial tree based on nodeIds

in the underlying DHT. Each node initially partners with

another node that has the longest nodeId prefix in com-

mon. These nodes exchange their data and each com-

pute the aggregated result. Each then moves on to part-

ner with a node that has the second-longest nodeId pre-

fix in common, and so on until it partners with a node

that has no nodeId prefix in common. At this point the

node has computed the aggregated result; the first node

to do so sends it to the requester, and the rest of the

nodes halt their aggregations. To reduce overhead and

improve completeness, nodes that fall behind during the

aggregation process abort their aggregations. San Fermı́n

is highly resilient to failures since all nodes start part-

nering with other nodes when the aggregation begins;

once a node has partnered with another node both nodes

must fail for its data to be lost, and as the aggregations

progress the number of nodes that must fail grows expo-

nentially. San Fermı́n uses a timeout mechanism to de-

tect node failures, but scales node polling intervals based

on nodeId prefixes to ensure nodes are not overwhelmed.

Details of the San Fermı́n implementation are presented

in the next section.

We had several design goals for San Fermı́n:

Completeness San Fermı́n maximizes the number of

nodes included in the result, even if nodes fail. Com-

pleteness can be less than one due to node failures and

in general should be no worse than the number of nodes

that fail (barring catastrophic events like partitioning the

DHT). An aggregation system can do better than that de-

pending on how it handles node failures.

Speed San Fermı́n minimizes completion time to im-

prove the completeness and responsiveness of the sys-

tem.

Correctness San Fermı́n should produce correct re-

sults, so that the data from a node should appear exactly

once in the result. In the terminology used by Jain et

al. [13], San Fermı́n has perfect arithmetic precision in

the returned results, temporal imprecision only due to

clock skew amongst nodes, and nearly perfect network

imprecision in the face of failures without the possibility

of duplicated results.

Dynamic Trees The nodes and the network compo-

nents have inherent differences in capacities, and these

capacities can vary over time due to loads and contention

for resources. Efficiently constructing and maintaining a

static tree in a dynamic environment is challenging. San
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Fermı́n instead constructs dynamic trees as the aggrega-

tion progresses. Nodes that fall behind in constructing

their trees abort the process, naturally ensuring that low–

capacity or overloaded nodes do not slow down the ag-

gregation process.

Data Exchanges When nodes in San Fermı́n partner

they exchange their data, rather than simply have one

send its data to the other. This allows each to perform its

own aggregation and create its own binomial tree, lead-

ing to high completeness and low completion time. The

downside is that the nodes transfer twice as much data

as strictly necessary, as at most one of the nodes in a

partnering will eventually produce the final aggregated

result. There are two reasons why the additional network

traffic is acceptable. First, the bandwidth bottlenecks

tend to be at the edge of the network [12]. This means

that a node can saturate its bottleneck without affecting

other nodes. Second, most edge networks are switched

and the links are full–duplex (with the notable excep-

tion of wireless); this means that the node can send and

receive data simultaneously without reducing the band-

width available to either. Thus the cost of the increased

network traffic is more than offset by the increased com-

pleteness and improved completion time it affords.

3 San Fermı́n Details

This section describes the details of San Fermı́n, includ-

ing an overview of the Pastry DHT upon which the proto-

type in layered, a description of how San Fermı́n nodes

find other nodes with whom to exchange, how failures

are handled, how timeouts are chosen, and how laggards

are aborted.

3.1 Pastry

Pastry [23] is a peer-to-peer based DHT abstraction sim-

ilar to Chord [25] and Tapestry [32]. Each node has

a unique 160-bit nodeId that is used to route messages

and identify nodes. Given a message and a destina-

tion nodeId Pastry routes the message to the node whose

nodeId is numerically closest to the destination nodeId.

Each Pastry node has two structures used to route mes-

sages: a routing table and a leaf set. The leaf set con-

sists of a fixed number of nodes that have the numerically

closest nodeIds to the current node. This assists nodes in

the last step of routing messages and in rebuilding rout-

ing tables when nodes fail.

The routing table consists of node information orga-

nized in rows by the length of the common prefix. When

routing a message in the nodeId space, a node forwards

the message to the node in the routing table with the

longest prefix in common with the destination nodeId.

Pastry uses nodes with nearby network proximity

when routing tables are constructed. As a result, it has

been shown that the average latency of Pastry messages
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Figure 1: Pastry Ring and Prefix Tables

is less than twice the IP delay [5]. For a complete de-

scription of Pastry see the paper by Rowstron and Dr-

uschel [23].

3.2 Finding Partners

Each San Fermı́n node computes the aggregated result

of all nodes by exchanging data with other nodes hav-

ing aggregate data from progressively larger and larger

sets of nodes. The exchanges are based on nodeId pre-

fixes: initially each node exchanges data with a node

that has the longest nodeId prefix in common, then pro-

gresses through a series of exchanges with nodes that

have shorter and shorter prefixes in common, and finally

exchanges data with a node that has no prefix in common,

thereby getting the aggregated data from the other half

of the nodeId space. For example, in Figure 1 there are

8 nodes aggregating data. Nodes 46 and 7C will initially

exchange data because they have the longest matching

prefix with each other (as will 81 and 9D, and E3 and F5).

One of 46 and 7C will then exchange with 0A, and one

of those will finally exchange with a node from the other

subtree whose nodeId starts with 8–F. Barring a failure,

at this point the node’s data are the result of aggregating

the data from every node. Having every node perform

the aggregation enables San Fermı́n to tolerate failures

and reduces the completion time. Once one node pro-
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duces the result the remaining aggregations are aborted

on all other nodes. As San Fermı́n runs it continually

prunes aggregations that are unable to find partners with

whom to exchange data.

The aggregation process is driven by a prefix table

maintained on each node. There is one row in the ta-

ble for each prefix of the node’s nodeId, and each row

contains a list of known nodes with that particular prefix

(if any). When an aggregation begins the prefix table is

initialized from Pastry’s leaf set and routing table. Pas-

try fills its routing table with nodes having favorable net-

work characteristics; this biases each San Fermı́n node

to exchange data with nodes with which it has high–

performance network connections, improving aggrega-

tion performance. Pastry’s routing table and leaf set are

fixed-size, so the prefix table is also fixed-size.

The data exchange process has three steps: finding a

partner; exchanging data; and aggregating data. A node

uses invitations to invite other nodes to exchange data

for a particular prefix. Whenever a node is ready to ex-

change data for a prefix it first attempts to do so with

all nodes from whom it has received invitations for that

prefix. If an exchange succeeds the node moves on to ex-

change data on the next shorter prefix. If the exchanges

fail with all nodes that sent invitations, the node sends its

own invitations to all nodes in the corresponding row of

its prefix table and begins a series of timeouts waiting for

a response, sending invitations to larger and larger sets of

nodes after each timeout before eventually declaring the

prefix dead and moving on to the next shorter prefix. In

Figure 1, node 0A sends invitations to its longest prefix

matches 46 and 7C and then begins its series of time-

outs. After 46 and 7C finish exchanging data they each

respond to those invitations by attempting to exchange

with 0A. Whichever is unsuccessful in exchanging with

0A will instead instead send invitations to the prefix and

wait for a timeout.

Exchanging data with another node consists of estab-

lishing a connection with that node and verifying that

both nodes agree about the prefix to be aggregated. If

not, the connection is dropped and the nodes resume

looking for a partner. If the prefixes do match, the nodes

refuse all other exchange requests for the current prefix

and exchange their data. Once they have exchanged the

data they each to compute the aggregation of the two data

sets and move on to the next shorter prefix. If there is

no shorter prefix to aggregate then they have the com-

plete answer for the entire tree and instead provide the

requester with the answer.

A node performs the following actions when it re-

ceives an invitation. If the node’s current prefix (the

prefix for which it is currently trying to find a partner)

is shorter than the invited prefix then the node has al-

ready exchanged data for the invited prefix, so the node

replies with “No”. Otherwise, the node may be willing

to exchange data for the invited prefix in the future so it

replies with “Maybe”and adds the sender to a ready ta-

ble that keeps track of potential future partners. If the

invited prefix matches the node’s current prefix and the

node has not yet started to exchange data, the node con-

nects to the sender directly. If the sender has already

aggregated the invited prefix the exchange will fail. In

Figure 1, when 0A sends invitations to 46 and 7C they

each respond with a Maybe to signify they are alive and

have not exchanged data with that prefix yet. 0A will

continue to send periodic invitations until either 46 or

7C exchanges data with it. Suppose 7C initiates the ex-

change with 0A. 0A will respond with Maybe to any invi-

tations from 46 (and should 7C fail during the exchange

0A will exchange with 46). Once the exchange from 0A

and 7C completes, 0A will respond to any further invita-

tions from 46 with a No.

If a node is unable to exchange data with nodes from

whom it received invitations it actively seeks out a part-

ner. First, it sends invitations to all nodes in the corre-

sponding row of the prefix table, sets a timeout, and waits

for a reply. If it receives a No it simply makes note of it

and continues to wait. If it receives a Maybe it knows

that sender received the invitation and is a possible fu-

ture partner so the node resets the timeout and resumes

waiting. If at any time a connection is established and

an exchange is successful the node ceases to wait and

simply moves on to the next shorter prefix.

If the timeout expires without receiving a reply the

node resends an invitation to the last node that responded

with a Maybe to a previous invitation. If a Maybe is

not received to the second invitation the node assumes

that there is a problem with the node that originally sent

the reply, so the node resends an invitation to that node

as well as to a random node in the row and a random

nodeId with the proper prefix. If a Maybe is not received

for these invitations the node sends invitations to the last

node to reply, all nodes in the row, and n + 1 random

nodeIds with the proper prefix, where n is the number of

nodes in the row. If a Maybe is not received to these invi-

tations the node looks to see if a No was received at any

point during the invitation process. If so, there is another

node that has already aggregated the prefix so the current

node simply aborts. If a No was not received the node

declares the prefix dead and moves on to the next shorter

prefix.

At first glance sending invitations to random nodeIds

appears pointless — sending them to the nodes in the

routing table seems sufficient because these nodes are

known to exist and Pastry will eventually notify San

Fermı́n if they fail. Furthermore, messages sent to ran-

dom nodeIds will be routed through the nodes in the rout-

ing table, so if San Fermı́n cannot communicate with the
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nodes in the routing table for a prefix then it cannot com-

municate with any nodes in the prefix. There are two rea-

sons for sending invitations to random nodeIds anyway.

First, the nodes in the routing table may have aborted

the aggregation (see Section 3.5), but there may be other

nodes in the prefix that have not. Second, the nodes in

the routing table may not respond to San Fermı́n invita-

tions, but still route Pastry messages (see Section 3.3).

In both of these cases the nodes in the routing table are

not potential partners, but can route messages to potential

partners.

Empty rows in the prefix table are handled in one of

two ways. First, the Pastry leaf set for a node contains the

node’s k immediate neighbors in nodeId space. If the row

falls within the leaf set then the row is empty because no

nodes have that prefix. In this case San Fermı́n skips the

row. In Figure 1, this is the case for 81 and 9D who have

no node with a 2–bit prefix match. Otherwise, if the row

does not fall within the Pastry leaf set then nodes may

exist with that prefix, but the current node does not know

about them. In this case the node sends out invitations

as described above. Note that having an empty row that

does not fall in the leaf set is unlikely, since each shorter

prefix doubles the range of nodeId space covered.

3.3 Handling Failures

The Pastry layer on a node notifies the San Fermı́n layer

when the routing table or leaf set changes, allowing San

Fermı́n to detect some failures directly, but node fail-

ures outside of the routing table or leaf set will not be

reported, nor will failures that cause the node to stop re-

sponding to San Fermı́n messages while continuing to

respond to Pastry messages. In addition, it may take a

significant amount of time for Pastry’s routing tables to

converge after a failure.

San Fermı́n is able to tolerate two types of node fail-

ures: dead nodes and zombie nodes. A dead node is one

recognized as no longer functioning by Pastry, and is re-

moved from any routing tables and leafs sets in which it

appears. A zombie node is considered functional by Pas-

try, but no longer responds to any San Fermı́n messages

sent to it. San Fermı́n handles these two types of failures

differently.

San Fermı́n is notified by Pastry of a dead node and

changes its prefix table to accordingly. Unless the change

affects the current prefix and the node does not have

a partner for that prefix, no further action is necessary.

Otherwise, if the dead node lies within the leaf set and

the prefix is now empty, the node moves on to the next

shorter prefix. If a node is removed from Pastry that is

not within the leaf set, San Fermı́n does not skip the pre-

fix even if its routing table entries are empty because Pas-

try’s routing tables take some time to converge.

A zombie node is not detected by Pastry, but is no-

ticed by San Fermı́n because the node stops responding

to invitations. As long as an San Fermı́n node can con-

tact at least one responsive node in the current prefix, the

node will continue to wait on that prefix. This ensures

that San Fermı́n will only timeout on prefixes that have

no live nodes. If in Figure 1, nodes 46 and 7C become

zombie nodes then 0A will eventually time out their sub-

tree. The 8-F nodes in the system will not timeout the

entire 0–7 subtree as long as they can contact 0A.

3.4 Choosing Timeouts

San Fermı́n relies on timeouts to determine when to re-

send invitations and ultimately when to declare a pre-

fix dead and move on. The timeout length is important

because it should be short enough so that San Fermı́n

resends invitations promptly, but not so short that San

Fermı́n prematurely declares a prefix dead. San Fermı́n

accomplishes this by scaling the timeout for a batch of

invitations sent to a prefix based on the number of nodes

with that prefix — the more nodes with a prefix the less

likely they will all fail, and so the longer the timeout.

Longer timeouts are also beneficial because they give

time for the Pastry routing tables to converge. If a prefix

falls within a node’s leaf set the node knows exactly how

many nodes have the prefix and sets the timeout to that

number times a constant c (2 seconds by default). Oth-

erwise the node must estimate the number of nodes that

have the prefix.

The estimate of the number of nodes that have a given

prefix is derived from the estimated number of nodes in

the entire system, which in turn is estimated from the

range of nodeIds spanned by the Pastry leaf set for the

node. The hashing function distributes the nodeIds uni-

formly so the average distance between all n nodeIds is

approximately 1
n

of the nodeId space. This allows the

total number of nodes n to be estimated by measuring

the average distance d between a subset of nodes (specif-

ically the leaf set) and computing what fraction of the

nodeId space it covers. A prefix of b bits covers 1
2b+1

of the nodeId space, therefore the estimated number of

nodes m with a given b-bit prefix is n
2b+1 . San Fermı́n

then sets the timeout to mc. An important property of

this technique is that the timeouts for prefixes that con-

tain fewer nodes are shorter than the prefixes contain-

ing more nodes. This causes San Fermı́n to timeout the

longest prefix possible and exclude only unresponsive

nodes.

Making the timeout proportional to the number of

nodes in a prefix also allows San Fermı́n to scale with-

out overwhelming nodes with invitations. Consider a

node whose current prefix is b bits long. It will respond

with Maybe to nodes whose current prefixes are shorter

or equal to its own, and No to nodes with longer pre-

fixes. The former will continue to send invitations to the
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current node. Since nodeIds are uniformly distributed,

on average the node will receive one invitation per prefix

and there are b prefixes shorter than or equal to its current

prefix. The timeout for a prefix of length b is cn
2b+1 which

corresponds to a rate of 2b+1

cn
. The invitation rate from

all prefixes is therefore
∑b

i=0
2i+1

cn
≤

∑⌈logn−1⌉
i=0

2i+1

cn
=

2(2⌈logn⌉−1)
cn

≤ 4(n−1)
cn

< 4
c

which is a constant.

3.5 Aborting Laggards

San Fermı́n aborts aggregations by nodes that cannot find

a partner for a prefix that other nodes have already aggre-

gated. If a node times–out on a prefix without finding a

partner it checks to see if it received a No to an invitation.

If so, the node aborts, otherwise it considers the prefix

dead and moves on. Having nodes abort is a tradeoff be-

tween completion time and completeness. If a node were

instead to continue, its aggregation would not include

nodes from the skipped prefix, reducing its complete-

ness. If, on the other hand, San Fermı́n were modified so

that nodes did not respond with No to an invitation but

exchanged instead, then nodes that already aggregated

a prefix could be forced to aggregate the prefix multiple

times, slowing down the overall aggregation. San Fermı́n

balances these considerations by forcing a node that can-

not find a partner to abort. Note that this could affect the

overall aggregation if a node aborts because other nodes

already aggregated a prefix but all nodes that did so sub-

sequently failed. In this case the aggregated result will

not contain any data from the prefix when in theory it

could have contained data from the aborted node. For

example, in Figure 1 suppose after nodes 7C and 0A fail

after they exchange data with each other but before they

exchange data with any of the 8–F nodes. If 46 were

to abort before 7C and 0A failed then the result would

not contain data from 46. In practice this is unlikely to

happen because each exchange increases the number of

nodes with the data from a prefix, making it more and

more unlikely that they will all fail.

Aborting also has the beneficial side–effect of reduc-

ing overhead, as discussed in Section 4.3.4. A node that

aborts does not continue aggregating data and ceases to

incur overhead. If the node was not going to produce the

aggregated result first this results in a net reduction in

overhead without affecting completeness or completion

time.

4 Evaluation

We evaluated San Fermı́n using three techniques: analyt-

ical models; simulations; and experiments using a pro-

totype implementation on PlanetLab. These techniques

enable exploration of the tradeoffs between San Fermı́n

and existing techniques in terms of overhead, completion

time, and completeness. They also allow analysis of San

Fermı́n behavior such as the resilience to failures and the

variance in overhead at different nodes.

4.1 Analytical Models

The analytical models enable comparison of comple-

tion time and completeness of four different techniques

for aggregating data: centralized; binomial trees (San

Fermı́n); balanced trees (SDIMS2), and Supernodes

(Seaweed). The models use system parameters measured

from real world systems. In the models the total number

of nodes is denoted as N . The churn rate c is the frac-

tion of the nodes N expected to fail per second. The

models assume that any node that fails during the aggre-

gation does not recover, and any node that comes online

after the aggregation begins does not join the aggrega-

tion. A node that fails while sending data causes the en-

tire send to fail. Inter–node latencies and bandwidths are

a uniform l and b, respectively. The bandwidth b is con-

sidered a per node limitation, which is consistent with

real world observations that the bandwidth bottleneck is

usually at the edges of the network and not in the mid-

dle [12]. Each node contributes data of size s and the ag-

gregation function condenses all input data to a result of

size s. Per-packet, DHT, and connection establishment

costs are ignored for all techniques.

4.1.1 Centralized (Direct Retrieval)

In the centralized model, the requester contacts every

node and retrieves its data directly. The requester then

aggregates all of the data locally. The requester can elim-

inate almost all latency costs by pipelining the retrievals

so that the next one starts as soon as the current com-

pletes. The time to retrieve the data from all nodes is

therefore:

l +
s ∗ N

b
(1)

The result completeness is the number of nodes that

did not fail prior to the requester retrieving their data.

The probability that a node is alive after t seconds is (1−
c)t, so the expected completeness is:

N∑

i=1

(1 − c)
i∗s
b

+l (2)

2SDIMS nodes use Pastry routing tables to form aggregation trees

by using the next hop toward the root key as their parent. Since a single

node with good latency properties commonly occurs in many nodes’

routing tables, this leads to internal nodes having many children (we

have observed similar behavior by Scribe [6] and so believe this prop-

erty is inherent in the technique and not an artifact of the implementa-

tion). As a result we classify SDIMS as building balanced trees. When

using a DHT like Chord [25], SDIMS builds binomial trees.
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4.1.2 Binomial Trees (San Fermı́n)

The analytical model assumes a complete binomial tree

to simplify analysis, leading to the following completion

time:

log2 N ∗ (
s

b
+ l) (3)

The completeness of using binomial trees is superior

to the centralized solution because after a node partners

with n other nodes its data will appear in 2n binomial

trees, meaning that 2n nodes must fail for the original

node’s data to not be included in the result. The prob-

ability of single node failing by time t is 1 − (1 − c)t,

and the probability of a group of g nodes all failing by

time t is (1 − (1 − c)t)g . This expected completeness is

therefore:

N −

log2 N∑

i=1

N

2
∗ (1 − (1 − c)i∗( s

b
+l))2

i−1

(4)

4.1.3 Balanced Trees (SDIMS)

Aggregation is often performed using trees in which the

internal nodes have a similar degree d and the majority

of leaf nodes have similar depth. An internal node waits

for all of its child nodes to send it data after which it

computes the aggregation of all the child data and its own

data and sends the result to its parent. In practice, one of

the child nodes is also the parent node so only d−1 nodes

at the lower level must send data to it.

The model assumes that trees are balanced and com-

plete with degree d. In the case of an internal node fail-

ure, a new node is selected to take the place of the failed

internal node. All of the child nodes of the failed node

must resend their data to their new parent. Since the par-

ent is chosen from the child nodes at the lower level, an

internal node failure causes data to be resent from one

internal node in each of the lower levels. This may intro-

duce a variable amount of delay in the parent’s response

(depending on the timing and level of the failures). The

model assumes these failures do not affect completion

time to simplify analysis. The completion time is:

logd(N) ∗ (
(d − 1) ∗ s

b
+ l) (5)

The completeness is affected by node failures. In the

common case, a node that fails before sending to its par-

ent will be excluded from the result. It is also possible

that both the child and parent fail after the child has sent

the data, causing the child to be excluded. The com-

pleteness model captures these node failures, but does

not consider a cascade effect involving a failure of the

failed child’s children. Since with
∑logd(N)−1

i=0
N

(d−1)∗di

nodes per level there is a
∑d−1

j=1(1−(1−c)j∗ s
b
+l) proba-

bility of an internal node failure with
∑i∗(d−1)

k=1 (1− (1−

c)i∗(
(d−1)∗s

b
+l)+(k+j)∗ s

b
+l) probability of a correspond-

ing child failure, the balanced tree’s completeness is:

N −

logd(N)−1∑

i=0

N

(d − 1) ∗ di
∗

d−1∑

j=1

(1 − (1 − c)j∗ s
b
+l)

∗ (1 +

i∗(d−1)∑

k=1

(1 − (1 − c)i∗(
(d−1)∗s

b
+l)+(k+j)∗ s

b
+l)) (6)

4.1.4 Supernode (Seaweed)

In a system with supernodes the nodes form a tree whose

internal nodes replicate data before sending it up to the

root of the tree. Typically the tree is balanced and has

uniform degree d. To prevent the loss of data when an

internal node fails, there are r replicas of each internal

node. When a node receives data from a child it repli-

cates the data on the replicas before replying to the child.

Ideally an internal node can replicate data from one child

concurrently with receiving data from another child. In

order to prevent sending small amounts of data through

the tree, a node typically batches data before sending

them to its parent.

The analytical model allows internal nodes to replicate

data while receiving new data. Also internal nodes send

data to their parents as soon as they have received all data

from their children. This means the model hides all but

the initial delay in receiving the first bit of information

( s
b

+ l) in the replication time ( r∗d∗s
b

+ 2 ∗ l). Using this

model, the completion time for supernode solution is:

logd(N) ∗ (
s

b
+ l +

r ∗ d ∗ s

b
+ 2 ∗ l) (7)

To simplify analysis the model assumes that there is

enough replication to avoid losing all replicas of a su-

pernode simultaneously. As a result, the only failures

that affect completeness are leaf nodes who fail before

sending data to their parents. The completeness is there-

fore:

d∑

i=1

N

d
∗ (1 − c)i∗( s

b
)+l (8)

4.1.5 Analysis

These models allow comparison of the completion time

and completeness of the four techniques for aggregating

data, as functions of the number of nodes and the size of

the aggregated data. All other parameters are set to the

values in Table 1.

In Figure 2 the completion time of each technique is

shown as a function of the data size. The number of

7



Description Value Source

N Number of nodes 300,000 CorpNet[20]

b Bandwidth 725Kbps S
3 [29]

l Latency 150ms S
3 [29]

s Data size 1MB CERT[2]

c Churn rate 5.5 ∗ 10
−6 Farsite

r Supernode replicas 4 Seaweed[20]

d Node degree 16 Seaweed[20]

Table 1: Model parameters
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Figure 2: Completion Time vs. Data Size

nodes is fixed at 300,000. The completion times grow

roughly linearly as the size of the data is increased. As

expected, the centralized is the slowest, followed by the

supernode technique (due to the replication cost). The

balanced solution performs poorly once the aggregate

data is over 64KB and it trails binomial trees by roughly

a factor of four.

In Figure 3 the completion time is shown as a function

of the number of nodes. The data size is fixed at 1MB.

As expected the centralized technique grows linearly and

takes by far the most time. The other techniques have

logarithmic growth. The supernode technique is a lit-

tle more than 4 times slower than the balanced tree for

the same number of nodes (which is expected because

the replication factor is four). The binomial tree is again

about four times faster than the balanced tree.

Figure 4 shows the completeness of the techniques

(expressed as the number of nodes not included in the

result) as a function of the data size. All other parame-

ters set to the values in Table 1. The completeness for

the centralized technique drops off rapidly as the data

size increases because the transfers are done sequentially

and a longer aggregation increases the probability that

the last nodes to transfer their data will fail before they

do. Supernodes perform better than balanced trees be-

cause of the replication in the supernodes, but perform

worse than binomial trees because leaf node failures still

affect completeness. Binomial trees have superior com-

pleteness because for a failed node’s data to be lost every
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node whose tree includes the failed node’s data also fail

before exchanging their data with another node. As the

aggregation proceeds the probability of this happening

become vanishingly small.

Increasing the number of nodes also affects complete-

ness. Since completeness is expressed as the number of

nodes whose data are not included in the result, com-

pleteness should decrease at least linearly with the num-

ber of nodes because more nodes means more potential

failures. As shown in Figure 5, completeness for the

centralized technique drops off rapidly. The other tech-

niques do quite well for under 1000 nodes and then de-

cline. Binomial trees perform well even when there are

over 1 million nodes in the network, with fewer than 50

nodes whose data are not included in the result.

4.2 Simulation

This section presents a discrete, event–based simulation

of San Fermı́n that helps understand its scalability and

reliability properties. The simulator was driven by mea-

surements of real network topologies, and makes several

simplifications in order to improve scalability and run

time. In particular, the simulator builds the Pastry routing

tables using global knowledge, does not include all of the

8



    0

  100

  200

  300

  400

  500

  600

  700

  800

  900

 1000

220218216214212210282624

N
od

es
 N

ot
 In

cl
ud

ed

Number of Nodes

Centralized
Binomial

Balanced
Supernode

Figure 5: Completeness vs. Nodes

connection teardown states of TCP (as San Fermı́n does

not wait for TCP to complete the connection closure),

and does not model lossy network links. In Section 4.3 a

prototype implementation of San Fermı́n is evaluated in

a real world environment.

4.2.1 Experimental Setup

The simulations used network topologies from a Com-

puter Science department and PlanetLab. The Computer

Science department topology (CS) consists of a central

switch connected to 142 systems with 1 Gbps links, 205

systems with 100 Mbps links, and 6 legacy systems with

10 Mbps links. Configurations with different numbers

of nodes were constructed by randomly choosing nodes

from the overall topology.

The PlanetLab topology was derived from data pro-

vided by the S3 project [29]. The data provides pairwise

latency and bandwidth measurements for all nodes on

PlanetLab. Intra–site topologies were assumed to consist

of a single switch connected to all nodes. The latency

of an intra–site link was set to 1/2 of the minimum la-

tency seen by the node on that link, and the bandwidth

to the maximum bandwidth seen by the node. Inter–site

latencies were set to the minimum latency between the

two sites as reported by S3 minus the intra–site latencies

of the nodes. The inter–site bandwidths were set to the

maximum bandwidths between the two sites.

4.2.2 Completion Time

The first set of experiments measures the completion

time of San Fermı́n on the network topologies. The first

experiment varied the number of nodes in the system to

demonstrate the scalability of San Fermı́n; the results of

the CS topology are shown in Figure 6. Each data point

represents the average of 10 trials and standard devia-

tions are shown. The completion time increases slightly

as the number of nodes increases; when the number of

nodes increases from 32 nodes to 1024 nodes the com-

pletion time only increases by about a factor of four.
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Nodes CS PlanetLab

DHT TCP DHT TCP

32 1.6 3411 2.8 2821

64 1.7 3428 3.4 2976

128 1.8 3565 3.6 3226

256 1.9 3741 4.1 3465

353 2.0 3831

394 4.1 3488

512 2.2 3994 4.3 3604

1024 2.7 4011 5.5 3682

Table 2: Network Traffic (KB)

A 1024 node aggregation of 1MB completed in under

500ms. The PlanetLab topology (not shown) has sim-

ilar behavior, as the completion time also increases by

approximately a factor of four as the number of nodes

increases from 32 to 1024.

Figure 7 shows the result of varying the data size while

using all 394 nodes in the PlanetLab topology. Each data

point represents the average of 10 trials and standard de-

viations are shown. The completion time is dominated

by the DHT and message header overheads for data sizes

under 128KB. When aggregating more than 128KB the

completion time increases significantly. The CS topol-

ogy (not shown) has a similar pattern in which all of the

data sizes under 128KB take about 200ms and thereafter

the mean time increases linearly with the data size.

4.2.3 Network Traffic

To evaluate the network traffic overhead of San Fermı́n,

we ran experiments with different numbers of nodes, data

sizes, and network topologies (Table 2). The traffic is

segregated into that incurred by Pastry and that incurred

by TCP. The first set of experiments vary the number of

nodes. The increase in traffic is slight as the number of

nodes increases. San Fermı́n on the PlanetLab topology

has higher DHT and lower TCP traffic than on the CS

topology. This is because PlanetLab’s latency is higher

and more variable, causing the overall aggregation pro-

cess to take much longer (which naturally increases the

number of DHT messages sent). The PlanetLab band-

width is also highly variable (especially intra–site links

versus inter–site links). This means that the variability in

partnering time is very high, so that slow partnerings that

would otherwise occur do not because faster nodes have

already computed the answer.

The data size is the most significant contributor to

traffic overhead. Figure 8 shows that doubling the size

causes the traffic to slightly more than double. The stan-

dard deviation in traffic across different runs was less

than 4%. The CS topology has a lower DHT traffic be-

cause fewer timeouts happen over the LAN. The DHT

overhead does not significantly increase as the data size

increases. The traffic per node increases roughly linearly
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Figure 8: Traffic vs. Data Size

as the size of the data increases.

4.2.4 Completeness

The final set of simulations measured the effectiveness

of San Fermı́n in the face of node failures. Failure

traces were synthetically generated by randomly select-

ing nodes to fail during the aggregation. The times of

the failures were chosen randomly from the start time of

the aggregation to the original completion time. The re-

sponsiveness of the underlying DHT in noticing failures

is varied to demonstrate the effect on San Fermı́n.

Due to the timeout mechanism in San Fermı́n, failures

may be detected before the underlying DHT. As a re-

sult, the average completion time is less than the Pastry

recovery time (Figure 9). On the PlanetLab topology,

when the Pastry recovery time is less than 5 seconds,

the cost of failures is negligible because other nodes use

the time to aggregate the remaining information (leav-

ing only failed subtrees to complete). When the recovery

time is more than 5 seconds then some nodes end up tim-

ing out a failed subtree before continuing. The CS de-

partment topology (not depicted) typically completes in

less than 500ms so all non–zero Pastry recovery increase

the completion time. However, the average completion

time is less than the Pastry recovery time for all recovery

times greater than 1 second.

Figure 10 shows how failures affect completeness.

Since failures occurred over the original aggregation

time, altering the Pastry convergence time has little ef-

fect on the completeness (and so the average of all runs

is shown). The number of failures has different effects

on the PlanetLab and CS topologies. There is greater

variability of link bandwidths in the PlanetLab topology,

which causes exchanges to happen more slowly in some

subtrees. Failures in those trees are more likely to de-

crease completeness than in the CS topology, which has

more uniform link bandwidths and the data exchanges

happen more quickly. In both topologies the complete-

ness is better than the number of nodes that failed – in
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most cases a node fails after enough data exchanges have

occurred to ensure its data are included in the result.

4.3 PlanetLab Results

This section presents the results comparing a San Fermı́n

prototype and SDIMS [28] running on PlanetLab [21] .

The San Fermı́n prototype is written in Java and runs

on the Java FreePastry implementation. A set of 100

randomly selected live nodes with transitive connectiv-

ity and clock skew under 1 second was initially cho-

sen. The same set of nodes was used for each test of

that size. Subsets of nodes were chosen from the nodes

which were alive at the end of the previous test. San

Fermı́n and SDIMS tests were run consecutively. Nodes

that could not be contacted between tests were automati-

cally excluded from the smaller subsets. However nodes

that failed to respond to some aggregation requests due

to load were not explicitly excluded.

It must be noted that SDIMS was designed for stream-

ing small amounts of data whereas San Fermı́n is de-

signed for one–shot queries of large amounts of data.

The comparison is performed primarily to demonstrate

that existing techniques are inadequate for this task. One

complication we encountered was zombie nodes in Pas-

0

10

20

30

40

50

60

70

80

90

100

220218216214212210

N
od

es
 N

ot
 In

cl
ud

ed

Data Size (bytes)

San Fermin
SDIMS-1
SDIMS-4

Figure 11: Completeness vs. Data Size

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

N
od

es
 N

ot
 In

cl
ud

ed

Nodes

San Fermin
SDIMS-1
SDIMS-4

Figure 12: Completeness vs. Nodes

try. San Fermı́n uses timeouts to quickly identify nodes

that are unresponsive. SDIMS however, relies on the un-

derlying DHT to identify unresponsive nodes, leaving it

vulnerable to zombie nodes. After consulting with the

authors, we learned that they avoid this issue on Planet-

Lab by building more than one tree (typically four) and

using the result from the first tree to respond. In our

experiments we measured SDIMS using both one tree

(SDIMS–1) and four trees (SDIMS–4).

The experiments compare the time, overhead and

completeness of SDIMS and San Fermı́n. A small

amount of accounting information was included in each

aggregation result to allow us to track which nodes are

represented in the result. All tests were limited to 5 min-

utes in length. In SDIMS the results trickle up to the

root over time. An SDIMS result was considered com-

plete when either all nodes answered or at least half of

the nodes answered and there was no update for 20 sec-

onds.

4.3.1 Completeness

The first set of PlanetLab experiments evaluate the com-

pleteness of the algorithms as the amount of data in-

creases (Figure 11). Each experiment used 100 Planet-
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Figure 13: Per–node Completion Time vs. Data Size

Lab nodes and was repeated five times. The number of

failed nodes is small for each algorithm until the data size

exceeds 256KB. At that point SDIMS performs poorly

because high–degree internal nodes are overwhelmed.

San Fermı́n continues to include the answer from most

nodes.

The next set of experiments measures how complete-

ness is affected when the number of nodes is varied (Fig-

ure 12). The data size was fixed at 1MB. When there are

few nodes SDIMS–4 and San Fermı́n algorithms do quite

well. Once there are more than 30 nodes the SDIMS trees

start to perform poorly due to high–degree internal nodes

being overwhelmed with traffic.

4.3.2 Completion Time

Figure 13 shows per–node completion time, which is the

completion time of the entire aggregation divided by the

number of nodes whose data are included in the aggrega-

tion. This metric allows for meaningful completion time

comparisons between San Fermı́n and SDIMS because

they may produce results with different completeness.

Data sizes larger than 256KB significantly increases the

per–node completion time of SDIMS, while San Fermı́n

increases only slightly. Although not shown, for a given

data size the number of nodes has little effect on the per–

node completion time.

Figure 14 shows the result of aggregating 1MB of

data on 100 nodes for 50 runs of each system. San

Fermı́n consistently provides high completeness and low

completion time even in a dynamic environment like

PlanetLab. SDIMS’s performance is highly variable —

SDIMS–1 occasionally has very high completeness and

low completion time, but more often performs poorly

with more than half of the runs missing more than 35

nodes from the answer. SDIMS–4 performs even worse

with the all but 10 runs missing the answer from at least

80 nodes.
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4.3.3 Network Traffic

Network traffic can limit the scalability of an aggregation

technique. There are two considerations: the total traffic

required by an aggregation; and the peak traffic seen by

each node during aggregation. If the total traffic during

an aggregation is too high the network infrastructure and

other applications are likely to be impacted. If the peak

traffic is too high then nodes in the system may become

overloaded and fail. Figure 15 shows the impact different

data sizes have on the total overhead in the system. For

less than 256KB, SDIMS–1 incurs the smallest amount

of overhead, followed by San Fermı́n and then SDIMS–

4. After 256KB the overhead for SDIMS actually de-

creases because the completeness decreases. In this case

nodes fail due to being overwhelmed by the traffic they

receive. A single internal node failure causes the loss of

all data for it and its children until either the internal node

recovers or the underlying DHT converges.

Figure 16 shows the peak traffic received by any node

during 1–second intervals. SDIMS internal nodes may

receive data from all of their children simultaneously; the

large initial peak of SDIMS traffic causes internal nodes

that are not well–provisioned to either become zombies

or fail. On the other hand, San Fermı́n nodes only receive

data from one partner at a time, reducing peak traffic.

4.3.4 San Fermı́n Node Selection

An important aspect of San Fermı́n is that each node cre-

ates its own binomial aggregation tree. By racing to com-

pute the answer high–capacity nodes naturally fill the in-

ternal nodes of the binomial trees, while low–capacity

nodes fill the leaves and ultimately abort their own ag-

gregations. The final experiment measures how effec-

tive San Fermı́n is at doing that. 1MB of data was ag-

gregated from 100 PlanetLab nodes 10 times, and the

state of each node when the aggregation completed was

recorded. Table 3 shows the results, including the num-

ber of exchanges each node had to perform before com-

pleting its aggregation and the average peak bandwidth

of nodes with the same number of exchanges remaining.

Nodes with the higher capacity had fewer exchanges re-

maining, whereas the nodes with lower capacity aborted.

The nodes in the middle tended to abort but some were

still working. The average capacity of the nodes that

aborted was 2.1Mbps, whereas the average capacity of

the nodes still working was 3.2Mbps. This illustrates that

San Fermı́n is effective at having high–capacity nodes

perform the aggregation while low–capacity nodes abort.

5 Related Work

Using trees to aggregate data from distributed nodes is

not a new idea. The seminal work of Chang on Echo-

Probe [7] formulated polling distant nodes and collect-

Remaining Aborted Nodes Working Nodes

Exchanges Number Mbps Number Mbps

0 0 0.0 38 4.3

1 0 0.0 105 3.9

2 0 0.0 116 3.6

3 9 2.5 56 2.3

4 82 2.0 32 2.2

5 143 2.0 19 1.2

6 107 2.4 9 1.1

7 62 2.0 1 0.8

8 14 1.7 0 0.0

9 16 2.4 0 0.0

10 3 1.6 0 0.0

11 0 0 0 0.0

12 2 1.9 0 0.0

Table 3: Node Progress

ing data as a graph theory problem. More recently, Wil-

low [27], SOMO [31], DASIS [1], Cone [3], SDIMS [28]

Ganglia [19], and PRISM [13], have used trees to ag-

gregate attributes. These systems build at most a sin-

gle tree per attribute being aggregated. Willow, SOMO,

and Ganglia build one tree for all attributes, whereas

SDIMS, Cone, and PRISM build one tree per attribute.

In contrast, San Fermı́n dynamically creates multiple

trees for each attribute, improving aggregation perfor-

mance and completeness especially when failures occur.

San Fermı́n also differs from these systems in supporting

one–shot queries with large results.

Seaweed [20] performs one-shot queries of small

amounts of data and like San Fermı́n is focused on com-

pleteness. However, Seaweed trades completion time

for completeness in that queries are expected to live for

many hours or even days as nodes come online and return

results. Seaweed uses a supernode based solution which

further delays the timeliness of the initial results. In-

stead San Fermı́n focuses on a different part of the design

space, robustly returning the results from living nodes in

a timely manner.

CONCAST [4] implements many-to-one channels as a

network service. In many respects it is IP multicast in re-

verse. It uses routers to aggregate data over a single tree.

As the size of the aggregate data grows the memory and

processing requirements on routers becomes prohibitive.

Gossip and epidemic protocols have also been used

for aggregation [16, 10, 15, 14], perhaps the most well-

known of which is Astrolabe [26]. Gossip and epidemic

protocols are inherently imprecise – if the data are not

replicated the result may be missing some, and if the data

are replicated some data may be duplicated in the result,

perhaps many times. In contrast, San Fermı́n ensures that

data are represented at most once in the result, and uses

dynamic binomial trees to improve completeness.

Data aggregation is also an issue in sensor networks.
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Unlike our work, the major concerns in sensor networks

are power consumption and network traffic. San Fermı́n

instead focuses on completeness even in the face of net-

work failures on more traditional network topologies.

Examples of data aggregation in sensor networks are

TAG [18], Hourglass [24], and Cougar [30].

Distributed query processing involves answering

queries across a set of distributed nodes. The most rele-

vant to our work are systems such as PIER [11], which

stores tuples in a DHT as part of processing a query.

Distributed query processing also encompasses perform-

ing queries on continuous streams of data. Aurora [8],

Medusa [8], and HiFi [9] are examples. San Fermı́n is

designed for one–shot aggregation, in future work we in-

tend to examine reusing the resulting trees for the aggre-

gation of continuous streams.

6 Conclusions

This paper presents San Fermı́n, a technique for aggre-

gating large amounts of data that provides high com-

pleteness, low completion time, and is scalable. By hav-

ing each node compute the aggregated result by creating

its own binomial tree San Fermı́n naturally ensures that

high–capacity nodes perform the bulk of the aggregation,

while limiting the effect of node failures and slow nodes.

Having each node compute the aggregation also makes

San Fermı́n highly fault–tolerant since a node that does

not fail will compute an aggregation of some subset of

the nodes, perhaps only itself. San Fermı́n scales better

than conventional techniques as the number of nodes or

the data size increases, and reduces peak network traffic

to prevent overwhelming nodes.
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