
Characterization of

Unlabeled Level Planar Trees

Alejandro Estrella-Balderrama⋆, J. Joseph Fowler⋆⋆, Stephen G. Kobourov∗∗

Department of Computer Science, University of Arizona
{aestrell,jfowler,kobourov}@cs.arizona.edu

Technical Report 06-03
August 28, 2006

Abstract. Consider a graph G drawn in the plane so that each vertex
lies on a distinct horizontal line ℓj = {(x, j) | x ∈ R}. The bijection φ that
maps the set of n vertices V to a set of distinct horizontal lines ℓj for
j ∈ {1, 2, . . . , n} forms a labeling of the vertices. The graph G with the
labeling φ is called an n-level graph and is said to be n-level planar if it
can be drawn with straight-line edges and no crossings while keeping each
vertex on its own level. In this paper, we consider the class of trees that
are n-level planar regardless of their labeling. We call such trees unlabeled
level planar (ULP). Our contributions are three-fold. First, we provide a
complete characterization of ULP trees in terms of a pair of forbidden
subtrees. Second, we show how to draw ULP trees in linear time. Third,
we provide a linear time recognition algorithm for ULP trees.

1 Introduction

When drawing an n-vertex planar graph G(V, E) in the xy-plane, a more re-
strictive form of planarity can be obtained by insisting on a predetermined y-
coordinate for each vertex. In particular, suppose we have a set of k equidistant
horizontal lines or levels, namely ℓj = {(x, j) |x ∈ R} for j ∈ {1, 2, . . . , k} and
each vertex is assigned to one of these k levels. Call this level assignment φ. The
tuple G(V, E, φ) forms a k-level graph, and if φ is bijective so that each vertex
is constrained to its own level, i.e., k = n, then G(V, E, φ) is an n-level graph.
Further, suppose that when drawing G, each edge is a straight-line segment (or
a continuous y-monotone polyline). If a planar drawing of G can be obtained in
spite of these restrictions, then G is said to be level planar for level assignment
φ. If G is an n-level graph that is level planar, then we say G is n-level planar.

In fact, if k < n, then it is NP-hard [13] to determine whether there even
exists a k-level assignment of G in which G is level planar. If k = n, in which G
is an n-level graph, such a level assignment gives a labeling of V since each vertex
in V is uniquely numbered. A labeling of V whose level assignment preserves
the planarity of G can be easily obtained from a plane drawing of G and a
perturbation of the vertices to ensure unique x-coordinates [3]. One can use the
x-ordering of the coordinates of a straight-line grid drawing [4] after perturbing
the drawing so that no two vertices lies on the same horizontal line to obtain
a labeling of V whose level assignment preserves the planarity of G. So while
the question of the existence of a level planar assignment is clearly answered for

⋆ Partially supported by CONACYT-México.
⋆⋆ This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.

k = n, the existence of a level non-planar assignment is not. We call a n-level tree
that is n-level planar for all possible labelings of its vertices an Unlabeled Level
Planar (ULP) tree1. We characterize ULP trees in terms of a pair of forbidden
subtrees and provide linear time recognition and drawing algorithms.

1.1 Background and Motivation

Visualizing hierarchical relationships using automated graph drawing has his-
torically been a strong motivating factor in the study of the planarity of level
graphs, i.e., graphs with a predetermined level assignment. Many hierarchical
models such as those used in social networks [2] utilize either a constant or log-
arithmic number levels. Even when this is not necessarily the case, a natural
underlying emphasis is to minimize the number of levels while preserving pla-
narity whenever possible. For instance, Sugiyama’s algorithm [17] for the display
of directed acyclic graphs (DAG’s) does so by favoring the use of short edges over
long edges. Hence, given that often there are relatively few levels on which one
wants to place vertices, considering levels graphs with O(|V |) levels has not been
of practical utility in this area.

However, geometric simultaneous embedding, which is related to geometric
thickness [7, 9], has recently led to a new application of n-level graphs [3]. When
simultaneously embedding a set of graphs G, each with n vertices labeled by
the numbers {1, 2, . . . , n} such that no number is used twice. A simultaneous
embedding of G can be thought of as overlaying a set of transparencies on an
overhead projector in which each graph of G is drawn on its own transparency,
or layer. Furthermore, all the vertices with the same label from all the layers
must coincide when overlaid. Ideally, one would like to draw all the graphs with
no bends or edge crossings in any layer. Determining which sets of graphs have
geometric simultaneous embeddings has proven difficult. For instance, it is un-
known whether a path and a tree can aways be simultaneously embedded in this
way for any possible labeling of vertices.

When simultaneously embedding an n-vertex path P with another n-vertex
graph G, one can relabel the vertices of P sequentially 1 to n from one endpoint
to the other. The corresponding relabeling of the vertices of G gives a natural
level assignment φ for G. Eades et al. [8] have provided an O(|V |) time algo-
rithm for drawing any level planar graph with straight-line segments. Thus, if G
is n-level planar for φ, it can easily be simultaneously embedded with P since
the path merely zig-zags in a y-monotone fashion from one level to the next.
The ability to characterize n-level graphs that are n-level planar regardless of
the vertex-to-vertex labeling between the pair of graphs, proves useful in deter-
mining which obstructions prevent such an n-level planar drawing, which in turn
can give additional insight into open problems in simultaneous embedding.

1.2 Previous Work

Jünger et al. [15] provide a linear time recognition algorithm for level planar
graphs. This is based on the level planarity test given by Heath and Pem-

1 A more appropriate name for these types of trees might be “unlabeled n-level planar
trees” but for simplicity we call them unlabeled level planar or ULP trees.

2

maraju [11, 12], which in turn extends the more restricted PQ-tree level pla-
narity testing algorithm of hierarchies—level graphs of DAGs in which all edges
are between adjacent levels and all the source vertices are on the uppermost
level—given by Di Battista and Nardelli [5]. Hierarchies are characterized in
terms of level non-planar (LNP) patterns in [5] as well. Jünger and Leipert [14]
further provide a linear time level planar embedding algorithm that outputs a
set of linear orderings in the x-direction for the vertices on each level. However,
to obtain a straight-line planar drawing one needs to subsequently run a O(|V |)
algorithm given by Eades et al. [8] who demonstrate that every level planar em-
bedding has a straight-line drawing, though it may require exponential area. If
the number of levels is constant, then Dujmović et al. [6] also provide a linear
time level planarity testing algorithm using fixed parameter tractability instead
of PQ-trees. Healy et al. [10] use LNP patterns to provide a set of minimum level
non-planar subgraph patterns that characterize level planar graphs. These sub-
graph patterns are somewhat analogous to Kuratowski’s result that any minimal
non-planar graph is either a subdivided K5 or K3,3 [16]. It should be noted that
these patterns are specific to a given level assignment and are not based solely
on the underlying graph.

1.3 Our Contribution

Our contributions are three-fold.

1. First, we provide a forbidden subdivision characterization for unlabeled level
planar (ULP) trees in terms of two minimal ULP trees, T1 and T2; see Fig. 1.

Trees only containing

subdivisions of T2

Trees only containing

subdivisions of T1

Radius-2
stars

Degree-3
spiders

T1

T2

Trees containing

subdivisions of T1 and T2

Caterpillars

Fig. 1. A Venn diagram for the universe of trees characterized by the two forbidden sub-
trees T1 and T2. Graphs that do not contain either a subdivision of T1 or T2 are caterpillars,
radius-2 stars, and degree-3 spiders. These three categories comprise the universe of un-
labeled level planar trees, which are depicted in the three overlapping circles. Examples of
trees that falling into multiple categories are illustrated in the intersections of the circles.

3

2. Second, we characterize any tree without a subdivision of either T1 or T2 as
either (i) a caterpillar, a tree in which the removal of all degree-1 vertices
yields a path, which forms its spine, or (ii) a radius-2 star, a K1,k in which
every edge is subdivided at most once, or (iii) a degree-3 spider, an arbitrary
subdivision of K1,3. Examples of each of these are also shown in Fig. 1. We
show that these three classes are n-level planar by virtue of an O(|V |) time
algorithm for constructing straight-line n-level planar drawings of ULP trees.

3. Third, if a tree is not a caterpillar, then it must contain a lobster (a graph in
which the removal of all degree-1 vertices yields a caterpillar). Using minimal
lobsters we show that trees that are not radius-2 stars or degree-3 spiders
must contain subdivisions of T1 or T2, which completes the characterization.
We also provide a O(|V |) time algorithm for testing whether a tree falls
into one of these three categories, thus yielding a linear time recognition
algorithm for ULP trees.

2 Preliminaries

In this paper we try to use the established notation for level graphs whenever
possible. The following definitions for levels graphs are predominantly taken
from [1, 5, 10]. A k-level graph G(V, E, φ) on n vertices is a DAG with a level as-
signment φ : V → [1..k] such that the induced partial order is strict: φ(u) < φ(v)
for every (u, v) ∈ E. A k-level graph is a k-partite graph in which φ partitions V
into k independent sets V1, V2, . . . , Vk, which form the k levels of G. A level-j
vertex v is on the jth level Vj of G if φ(v) = j where Vj = φ−1(j).

If φ is an injection, each level contains at most one vertex, i.e., |Vi| ≤ 1 for
i ∈ [1..k], hence, k ≥ n. W.l.o.g., we can assume in such instances that k = n
in which case φ is a bijection that forms a topological sort of the DAG G(V, E).
Unless noted otherwise, an n-level graph G(V, E, φ) is assumed to have a bijective

level assignment φ, i.e., φ : V
1:1
−→
onto

[1..n]. Such a bijective level assignment is

equivalent to a labeling of the vertices from 1 to n.
A level graph G has a level drawing if there exists a drawing such that every

vertex in Vj is placed along the horizontal line ℓj = {(x, j) |x ∈ R} and the
edges are drawn as strictly y-monotone polylines. The order that the vertices
of Vj are placed along each ℓj in a level drawing induces a family of linear
orders (≤j)1≤j≤k along the x-direction, which form a linear embedding of G.
A level drawing, and consequently its level embedding, is level planar if it can
be drawn without edge crossings. A level graph G is level planar if it admits a
level planar embedding. The more restrictive definition of level drawings allowing
only straight-line segments for edges is equivalent, as shown by Eades et al. [8] by
demonstrating that every level planar graph has a straight-line planar drawing.

A planar graph H is realized if it can be drawn with straight-line edges
without crossings. Such a plane graph is a realization of H . A n-level graph
G(V, E, φ) is n-level realized if it is realized such that each vertex v lies on its
level φ(v), which is a certificate of the n-level planarity of G.

A chain of a k-level graph G(V, E, φ) is a nonrepeating sequence of vertices
v1, v2, . . . , vt of V such that t > 1 and either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for

4

every i ∈ {1, 2, . . . , t−1}, i.e., a path in the underlying undirected graph of G. If
C is a chain, let lower(C) and upper(C) denote the lowermost and uppermost
vertices, respectively, with respect to φ. Also let min(C) = φ

(

lower(C)
)

and

max(C) = φ
(

upper(C)
)

be the minimum and maximum levels of C, thus,
min(C) ≤ φ(v) ≤ max(C) for every v of C.

For an n-level graph G(V, E, φ), let <Y denote the strict linear ordering
given by the level assignment φ, i.e., for every u, v ∈ V , we have u <Y v iff
φ(u) < φ(v). Let <X (and ≤X) denote the strict (and weak) linear ordering
induced by the x-coordinate of the placement of a level-i vertex u and a level-j
vertex v along their respective horizontal lines ℓi and ℓj in the particular level
drawing under consideration. Finally, for vertex subsets U, W ⊆ V , let U <X W
(and U <Y W) iff u <X w (and u <Y w) for every u ∈ U and w ∈ W . Often we
will represent an edge (u, v) ∈ E as u−v and a chain of vertices, v1, v2, . . . , vt

for some t > 1 as v1−v2− · · · −vt.
Finally, we recall a few standard graph theory definitions. In a graph G(V, E),

subdividing an edge (u, v) ∈ E is the operation of replacing (u, v) with the pair
of edges (u, w) and (w, v) in E by adding w to V . A subdivision of G is a graph
obtained by performing a series of successive edge subdivisions of G.

3 Characterization of Unlabeled Level Planar Trees

First, we introduce the forbidden subdivisions T1 and T2 together with explicit
level assignments in which the resulting graphs are level non-planar. Then we
show how to compute a n-level realization for each of the three remaining types
of trees—caterpillars, radius-2 stars and degree-3 spiders—in linear time given
a labeling of the vertices. Next, we show that if a tree does not contain a sub-
division of T1 or T2, then it must fall into at least one of the three categories of
unlabeled level planar trees. Finally, we give a simple O(|V |) time recognition
algorithm for ULP trees.

3.1 Forbidden Trees

Lemma 1 There exist labelings that prevent T1 and T2 from being level planar.

Proof. Fig. 2(a) gives one of 8 distinct labelings that satisfies the y-partial order
{c, g}>Y d>Y f >Y a >Y b >Y {e, h} (or its dual in which the ordering is re-
versed). Each labeling gives a bijective n-level assignment in which T1 does not
have a n-level realization. This can be seen as follows: To prevent paths a−b−c
and a−d−e from crossing, one path must go to the left and the other to the
right. Assume w.l.o.g. c−b <X d−e. This forces c <X f <X d so that a−f does
not cross b−c, or a−f−g does not cross a−d−e. However, then f−h will cross
either a−d or a−b−c. This concludes the argument for T1.

Next, consider T2. Fig. 2(b) gives one of 8 distinct labelings that satisfies the
y-partial order {c, h}>Y d>Y f >Y a >Y b >Y g >Y {e, i} (or its dual in which
the ordering is reversed). Each labeling gives a bijective n-level assignment in
which T2 does not have a n-level realization. This can be seen as follows: To
prevent paths a−b−c and a−d−e from crossing, one path must go to the left

5

7

6

5

4

3

2

1

8

(a)

7

6

5

4

3

2

1

8

9

(b)

g

c

d

a

b

e

h

f a

g

e

i

b

h

c

d

f

T1
T2

Fig. 2. Labelings that prevent T1 and T2 from being ULP.

and the other to the right. Assume again w.l.o.g. c−b <X d−e. Then a−i must
be drawn below and to the right of a−b and to the left of d−e, otherwise it will
cross b−c or d−e. To prevent the edge a−f from crossing a−b−c or a−d−e, f
must with be drawn (i) so that a <X f <X e in which case f−g−h will then cross
a−i or d−e, or (ii) so that c <X f <X d in which case f−g will cross a−b−c, a−d,
or a−i. This completes the argument about T2 and the overall claim. ⊓⊔

As a consequence, we have the following corollary.

Corollary 2 If a tree T (V, E) contains a subdivision of T1 or T2, then it cannot
be unlabeled level planar.

Proof. Assume that the tree T contains a subdivision of T1 (or T2). Let T ′(V ′, E′)
be a subtree of T that is a subdivision of T1 (or T2). Label the 8 (or 9) vertices
of V ′ in the same order as shown in Fig. 2. Note that the values of the labels
need to be adjusted in order to accommodate any intermediate vertices along a
subdivided edge of T1 (or T2). Any extra vertex w along a subdivided edge (u, v)
can be assigned to a unique level that preserves the y-ordering u <Y w <Y v.
This works since level planarity is defined in terms of y-monotone polylines. An
edge drawn from level φ(u) to level φ(v) is allowed any number of bends so long
as the edge proceeds in a y-monotone fashion. In particular, it can bend at w on
level φ(w), which is equivalent to subdividing the edge u−v into u−w−v.

This gives a labeling of the vertices of T ′ using the labels {1, 2, . . . , |V ′|}
such that the 8 (or 9) vertices corresponding to T1 (or T2) satisfy one of the
y-partial orders from Lemma 1. Hence, the arguments used in Lemma 1 can
be directly applied to this y-ordering. Thus, T ′ is not n-level planar, and as a
consequence, neither is T , regardless of the labels for the remaining vertices. ⊓⊔

3.2 ULP Trees—Caterpillars, Radius-2 Stars, and Degree-3 Spiders

The following three lemmas explicitly show all the trees that are unlabeled level
planar and how to n-level realize them in linear time.

6

N(v2) N(v3) N(v4)N(v1)

v
1

v
3

v
4

v
2

Fig. 3. A n-level realization of a 30-level caterpillar on a 8 × 30 grid. The eight vertical
grid lines are omitted for readability.

Lemma 3 (Brass et al. [3]) An n-vertex caterpillar T (V, E) with an m-vertex
spine can be n-level realized in O(n) time on a 2m×n grid for any vertex labeling

φ : V
1:1
−→
onto

{1, 2, . . . , n}.

Proof. The following proof of the claim is a shorter version and is an improve-
ment over the original proof in [5] that spans 3 pages. Note that the original
claim had the slightly weaker result of using a 2n × n grid.

Let T (V, E, φ) be an n-level caterpillar with spine S(V ′, E′) such that S is
isomorphic to P|V ′|. In particular, let the vertices of V ′ be labeled according

to their relative distance from the end point v1, and the edges E′ =
{

(v1, v2),

(v2, v3), . . . , (v|V ′|−1, v|V ′|)
}

. Let the degree-1 leaves of v be denoted by N(v) =
{

u | (u, v) ∈ E and (u, v) /∈ E′
}

for each v ∈ V ′. Then for each i ∈ {1, 2, . . . , n}

place vi ∈ V ′ at the coordinate
(

2i − 1, φ(vi)
)

and place each u ∈ N(vi) at

the coordinate
(

2i, φ(u)
)

unless u would lie on the straight-line edge segment

vi−vi+1 in which case place u directly under vi at the coordinate
(

2i − 1, φ(u)
)

instead. All this can be done in O(n) time. This drawing is an n-level planar
since S is drawn in a strictly left to right fashion and each incident edge to the
spine is either drawn either directly above or below the spine or immediately
to its right. Clearly, this drawing uses only straight-line edge segments in which
there are no crossings forming a n-level realization. ⊓⊔

Lemma 4 An n-vertex radius-2 star T (V, E) can be n-level realized in O(n)

time on a (2n + 3) × n grid for any vertex labeling φ : V
1:1
−→
onto

{1, 2, . . . , n}.

Proof. Let r be the root of an n-level radius-2 star T (V, E, φ) located at the
coordinate

(

n+2, φ(r)
)

. For every leaf ℓ that is at a distance of 1 from r, place it

at the coordinate
(

n+1, φ(ℓ)
)

, which is one x-coordinate to the left of r. For each
remaining leaf ℓ, let adj(ℓ) denote its adjacent vertex, and let L ⊆ V denote this
set of leaves at a distance 2 from r. Then Ld =

{

ℓ | ℓ ∈ L and φ(adj(ℓ)) > φ(ℓ)
}

7

r

Au

Ad Lu

Ld

Fig. 4. A n-level realization of an 29-level radius-2 star on a 61 × 29 grid. The small gray
circles are the intersection points of slope-1 rays emanating from each vertex in Ad and
Au to the imagined 0-level and imagined (n + 1)-level, respectively, which are drawn with
dashed lines.

and Lu =
{

ℓ | ℓ ∈ L and φ(adj(ℓ)) < φ(ℓ)
}

partition L according to whether the
adjacent vertex of the leaf is to be drawn above or below it, i.e., whether the
incident edge goes down or up. Let Ad =

{

adj(ℓ) | ℓ ∈ Ld

}

and Au =
{

adj(ℓ) | ℓ ∈

Lu

}

be the adjacent vertices of degree 2 to the leaf vertices of T .

Place each u ∈ Ad at the coordinate
(

n + 1, φ(u)
)

immediately to the left of

r, and each u ∈ Au at the coordinate
(

n+3, φ(u)
)

, immediately to the right of r.
For each ℓ ∈ Ld, place it at the grid point that corresponds to the intersection of
the φ(ℓ)-level and the line segment connecting the points

(

n + 1, φ(adj(ℓ)
)

, the

coordinate of its adjacent vertex, and
(

n − φ(adj(ℓ)) + 1, 0
)

, the point that an
emanating ray from adj(ℓ) with a slope of 1 in the negative x-direction intersects
an imagined 0-level; see Fig. 4. Since the ray has slope 1, this intersection will
always be an integer grid point. In a similar fashion, place each ℓ ∈ Lu at the grid
point that corresponds to the intersection of the φ(ℓ)-level and the line segment
connecting the points

(

n + 3, φ(adj(ℓ)
)

, the coordinate of its adjacent vertex,

and
(

n−φ(adj(ℓ))+1, n+1
)

, the point that an emanating ray from adj(ℓ) with
a slope of 1 in the positive x-direction intersects an imagined (n + 1)-level. All
this can be done in linear time since O(1) time is spent locating each vertex.

This produces a n-level realization since every vertex that is adjacent to r is
either placed immediately to its right or left, and every other leaf is placed so
that its incident edge has a slope of 1, which prevents any edge from crossing. ⊓⊔

Lemma 5 An n-vertex degree-3 spider T (V, E) can be n-level realized in O(n)

time for any vertex labeling φ : V
1:1
−→
onto

{1, 2, . . . , n}.

Proof. We start by noting that unlike in the case of a caterpillar or a radius-2
star, a degree-3 spider can require exponential area for a n-level realization. We

8

omit details regarding area for this abstract.
The proof is in three parts. First, we show how to reduce an arbitrary

degree-3 spider to one in which all the legs zig-zag between successively lower
and higher levels. Second, we skip ahead and show how to place the vertices of
the original spider when processing an edge of the reduced spider. Finally, we
show an O(n) time algorithm for greedily drawing the reduced degree-3 spider.

Part 1: Let r be the root vertex of an n-level degree-3 spider T (V, E, φ).
Let X , Y , and Z be the three subtrees of r, each of which forms a chain. First,
we show how to reduce T to a special form in which X , Y , and Z each zig-zag
back and forth between successively lower and higher levels. Call T ′(V ′, E′, φ′)
a strictly expanding degree-3 spider if the level assignment φ′ on the vertices
r, v2, . . . , v|C| of each chain C of T ′ obeys the following two properties:

φ(vi−1) < φ(vi) > φ(vi+1) or φ(vi−1) > φ(vi) < φ(vi+1), (1)
and

[

φ(vi−1) < φ(vi) ⇒ φ(vi−1) > φ(vi+1)
]

and
[

φ(vi−1) > φ(vi) ⇒ φ(vi−1) < φ(vi+1)
]

(2)

for 1 < i < |C|. We call a chain that satisfies property (1) a zig-zagging chain
since it cannot have any monotonically increasing or decreasing sequences of
vertices. We note that if a portion of a chain were to be monotonic, then the
locations of the vertices of that portion could be trivially computed. Hence, this
property is easily satisfied by extracting a subchain from T , namely the vertices
in which the level assignment changes direction, which are precisely the vertices
of T for which (1) holds. Assuming that we only have zig-zags for chains, then a
zig-zagging chain that also satisfies property (2) is strictly expanding as the next
level reached by the chain is either greater than any previous level or less than
any previous level.

(c)(a) (b)

C C ′

u4

u8

u3

u5

u7

vj

u6

vk

u2

u3

u2

r r

v2

Fig. 5. An example of a chain C of (a) in which the strictly expanding zig-zagging subchain
C′ of white vertices is extracted to give (b). Then (c) shows an example n-level realization
of the intermediate edges and vertices for the second edge of (b).

9

A1 A2 A3 A4 A5 A6

Fig. 6. Six iterations of the greedy strategy to n-level realize a degree-3 spider.

A zig-zagging chain C can be made strictly expanding by keeping track of
the minimum and maximum levels encountered by the chain so far. Assume
w.l.o.g. that φ(r) < φ(v2), i.e., the chain C begins by going upwards. We extract
from C, the strictly expanding subchain C′, which we will label its vertices as
r−u2−u3− · · · −uC′ , by first prepending r to C′. Then we set minC = φ(r)
and find the first vertex vj along C such that φ(vj) < minC . Next we append
u2 = upper(r−v2−v3− · · · −vj−1) to C′, and set maxC = φ(u2). Then we
look for the next vertex vk along C such that φ(vk) > maxC . Afterward, we
append u3 = lower(vj−vj+1− · · · −vk−1) to C′, and set minC = φ(u3), and
repeat this process until all the vertices of C are exhausted. If the last vertex
encountered is not greater than minC or less than maxC , then we add an extra
vertex to the end of C′ satisfying this condition; see Fig. 5 for an illustration of
this process.

Part 2: For each vertex ui in C′, we keep a linked list of the subpath
P = ui−wi1−wi2− · · · −wi|P |−2

−ui+1 of C that was replaced by the edge
ui−ui+1 where min(P) = φ(ui) and max(P) = φ(ui+1) (or max(P) = φ(ui)
and min(P) = φ(ui+1)). This linked list will be used to place edges of T as we
process edges from T ′. Fig. 5(c) visually illustrates how this might be done. Here,
any particular subpath P of C for a given edge of C′ can be drawn arbitrary
close to C. We omit the details of this particular point, noting only that the
intuitive idea of compressing the zig-zagging chain allows us to greedily draw
the edges of T without crossings for each edge of T ′ that is processed. We finish
this section of the proof by observing that both the extraction of C′ from C and
the ability to draw the edges of T once we have processed the edges of T ′ can
be done in linear time.

Part 3: Now that we have our degree-3 spider in the proper form, we can
apply a simple greedy algorithm that can be used to give a n-level realization
of T ′. We complete the proof of the lemma by giving the details regarding this
linear time algorithm.

Let the vertices of chain X be denoted by x0−x1− · · · −x|X|−1 in which
x0 = r and (xi, xi+1) ∈ E for 0 ≤ i < |X |−2. Similarly, let the vertices of Y and
Z be y0−y1− · · · −y|Y |−1 and z0−z1− · · · −z|Z|−1. Finally, let A1 = {x1, y1, z1}
be the first vertices along each chain immediately following r.

There exist two possibilities for the strictly expanding degree-3 spider T ′:
Either (i) A1 >Y r (or A1 <Y r) or (ii) min(A1)<Y r <Y max(A1). We show

10

how to draw T for case (i) assuming that A1 >Y r. The other case is similar. We
start the first iteration by drawing A1 so that the vertex of maximum index with
respect to φ′ lies between the other two vertices of A1 along the x-coordinate.

At any one point in this greedy strategy, we maintain the invariant that the
last vertex along a chain that we placed either lies above or below any of the
other vertices that have been drawn so far. Property (2) allows us to do this.
If we encounter the end of a chain in which this invariant does not hold for its
last vertex, then we can easily draw the remaining two chains without crossings
since the invariant holds for their most recently placed vertex. We do this by
drawing one of the two chains monotonically to the right until we reach its end,
and do the same for the other chain monotonically to the left.

For iteration i > 1, we arbitrarily pick one of the chains whose most recently
placed vertex is neither the maximum nor the minimum vertex drawn so far.
We greedily extend the chain either to the right or left until we reach a vertex
whose level assignment is either above or below all the ones drawn so far. This
enlarges the set of processed vertices from Ai−1 to Ai.

Note that we can always extend a chain C to the right or left. This follows
from the fact that during the previous iteration, before the vertices of some other
chain C′ were processed, the last vertex v of C was either minimum or maximum.
Suppose w.l.o.g. v was the maximum vertex processed so far until a vertex v′ of
C′ becomes the new maximum vertex without any of the previous vertices of C′

having level assignments less than the minimum vertex v′′ of the other chain C′′.
As a result, we temporarily suspend drawing C′. Suppose further w.l.o.g. that
the edge incident to v′ was drawn to the right of v. This allows us to continue
extending C to the left. In fact, this must be the next course of action since the
third chain C′′ is not eligible to be drawn at this time. This is because v′′ must
still be the minimum vertex processed so far. If at any point a previous vertex
of C′ were to have a level assignment less than v′′, then we would have stopped
drawing C′ at that point, and continued drawing C′′ in which case C would not
be eligible to be drawn. This is because v would still be the maximum vertex
processed so far. See Fig. 6 for an example of this greedy algorithm.

Since we can always greedily place a vertex without introducing a crossing,
this strategy succeeds in producing a n-level realization of T in O(n) time (con-
stant time per vertex), which shows that T is indeed ULP. Simple geometry can
be used to construct such an drawing using only straight-line edge segments for
T ′, which can be used to produce a plane drawing of T as detailed above, though,
as we initially noted, this can require exponential area. ⊓⊔

Now that we have shown which trees are ULP, we need to show that our char-
acterization is complete. First, we show that T1 and T2 are minimal unlabeled
level non-planar trees with the following lemma.

Lemma 6 Removing any edge from T1 or T2 yields a forest of ULP trees.

Proof. If removing an edge from T1 decreases the degree of one of the two
degree-3 vertices, call them x and y, then the resulting graph is a forest consist-
ing of a degree-3 spider and a possible lone edge; see Fig. 7(a). Removing the
edge x−y yields two paths. The only possibility (up to isomorphism) in removing

11

(b) (c)(a)

t

T1 T2L T in case (ii)T in case (i)

s

a

b

c

r z r

y

x

w

Fig. 7. Finding copies of T1 and T2 in trees that are not caterpillars, radius-2 stars, or
degree-3 spiders.

an edge without affecting the degree of x and y, yields a caterpillar with a spine
of length 5. Moving onto T2, if its vertex z of degree 4 maintains its degree after
the edge removal, then the resulting graph must be a forest consisting of either a
caterpillar, if the removed edge was incident to a leaf vertex at a distance 2 from
z, or a radius-2 star and a possible lone edge, otherwise. On the other hand, if
the degree of z decreases to 3, then the resulting graph is a degree-3 spider and,
possibly, a path; see Fig. 7(c). ⊓⊔

The next theorem completes the characterization of ULP trees.

Theorem 7 Every tree either contains a subdivision of T1 or T2 in which case
it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider in which
case it is ULP. Hence, T1 and T2 give a minimal forbidden subtree characteriza-
tion of ULP trees.

Proof. First, we argue that neither T1 nor T2 is a caterpillar, a radius-2 star, or
a degree-3 spider to show that if a tree T contains a subdivision of T1 or T2,
it cannot be one of those three. Clearly, both T1 and T2 are lobsters and not
caterpillars since removing all their degree-1 vertices yields caterpillars rather
than paths. The two vertices of degree 3 prevent T1 being a radius-2 star or a
degree-3 spider. Since T2 has radius 3 and a vertex of degree 4, it cannot be a
radius-2 star or a degree-3 spider either.

Now we show that caterpillars, radius-2 stars, and degree-3 spiders are the
only types of ULP trees. We do this by showing that any tree that does not fit
into at least one of these categories must contain either a subdivision of T1 or T2.
Then by Corollary 2 any tree T that contains a subdivision of T1 or T2 cannot
be ULP. By Lemma 6, T1 and T2 are minimal.

Assume that T (V, E) is a tree that is not a caterpillar, radius-2 star, or
degree-3 spider. Since T is not a caterpillar, it must contain a minimal lobster L,
i.e., the unique tree that cannot have any more edges removed without becoming
a caterpillar (and possibly a lone edge); see Fig. 7(b). It has one vertex r of
degree 3 and three leaf vertices a, b, c at a distance 2 from r, which is the
minimal requirement for a tree to be a lobster. Any other lobster can have its
edges trimmed away until L is all that remains, which is what makes L minimal.

Since T is not a degree-3 spider, there are two cases to consider: either (i) T
has two vertices s and t of degree at least 3 or (ii) T has one vertex of degree k
greater than 3.

12

Assuming case (i) holds, we show how to find a subdivision of T1 in T . Let
x and y be the two vertices of degree 3 in T1 where x is the one without an
adjacent leaf vertex; see Fig. 7(a). At least one of the two vertices s and t of
degree at least 3 in T must correspond to the root vertex r in the subtree L
that forms the minimal lobster in T . Assume w.l.o.g. this vertex is s. Then we
map s in T to vertex x in T1, and the other vertex of degree at least 3, t in T
to vertex y in T1. Since t has degree at least 3, there exists two neighbors of t
not along the path from s to t, which we can map to the two corresponding leaf
vertices in T1 that are adjacent to y. Only one of the three leaf vertices a, b, c of
L in T can be contained in the subtree of s containing t. Suppose w.l.o.g. it is a.
Then the other two vertices b and c in T can be mapped to the two remaining
leaf vertices in T1. This completes the mapping of vertices of T1, showing that
T contains T1 as a subdivision where the only edge in T1 that is subdivided is
x−y that maps to the path s to t in T .

Next we consider case (ii) in which we show how to find the subtree T2 in
T . The one vertex of degree k greater than 3 must be the corresponding vertex
r of L in T ; see Fig. 7(c). Otherwise, if there were separate vertices of degree
greater than 3, case (i) would apply. Let r be mapped to the degree-4 vertex z
of T2. Since T is not a radius-2 star, there exists a vertex w at a distance 3 from
r, which can be mapped to the leaf vertex in T2 at a distance 3 from z. Only
one of the three vertices a, b, c of L in T can be along the path from r to w.
Suppose w.l.o.g. it is a. The other two vertices b and c in T can be mapped to
the other two leaf vertices in T2. The remaining leaf vertex of T2 that is directly
adjacent to z can be mapped to the endpoint of the fourth edge incident to r in
T since it has degree greater than 3. This completes the mapping of vertices of
T2, showing that T contains T2 as a subtree. ⊓⊔

3.3 Linear Time Recognition of ULP Trees

First, we need a few simple observations regarding the degree sequences of cater-
pillars, radius-2 stars, and degree-3 spiders, which we state as lemmas whose
proofs we omit in this abstract.

Lemma 8 If a tree T has a degree sequence of the form 2, . . . , 2, 1, 1 or 1, 1, i.e.,
a path, after the removal of all degree-1 vertices, then T must be a caterpillar.

Lemma 9 If a tree T has a degree sequence of the form k, 2, . . . , 2, 1, 1, . . .1 for
some k > 2, i.e., T is an arbitrarily subdivided K1,k, and after the removal of
all degree-1 vertices, the degree sequence then becomes ℓ, 1, . . . , 1 for some ℓ ≤ k,
i.e., T becomes a K1,ℓ, then T must be a radius-2 star.

Lemma 10 If a tree T has a degree sequence of the form 3, 2, . . . , 2, 1, 1, . . .1,
i.e., T has maximum degree of 3 with only one vertex of degree 3, then T must
be a degree-3 spider.

Theorem 7 together with the above Lemmas, lead to a simple linear time
recognition algorithm for ULP trees summarized in the following corollary:

13

Corollary 11 The class of ULP trees can be recognized in linear time. That is,
given an arbitrary n-vertex tree T , one can decide in O(n) time whether or not
it is always possible to n-level realize T for any possible labeling.

Proof. In order to determine whether a tree T (V, E) is ULP, we merely need to
determine whether it is a caterpillar, radius-2 star, or degree-3 spider by Theorem
7. We do this using degree sequences. We note that it is possible to obtain a sorted
degree sequence of a graph given an adjacency matrix representation since it is
merely the size of each vertex list. The sorting of the degree sequence can be
done in linear time using counting sort since there are at most n positive integer
values that lie strictly in the range of 1 and n − 1.

If the degree sequence of T is of the form 3, 2, . . . , 2, 1, . . . , 1, then by Lemma
10, T must be a degree-3 spider. Else we do a single pass through all the doubly-
connected adjacency lists and remove all degree-1 vertices, which can be done
in O(n) time by using a companion adjacency matrix with pointers into the
adjacency lists. If the resulting graph is empty, then T is a path, i.e., a caterpillar.
Otherwise, if its degree sequence is of the form 1, 1 or 2, . . . , 2, 1, 1, then by
Lemma 8, T must be a caterpillar. Otherwise, if degree sequence is of the form
k, 1, . . . , 1, then T must be a radius-2 star by Lemma 9.

If none of these is the case, then T cannot be one of these three types of
trees. Since we can make these evaluations of degree sequences in O(n) time,
this algorithm only takes linear time to determine whether a tree is ULP. ⊓⊔

4 Conclusion and Future Work

We described a complete characterization of unlabeled level planar trees. We
provided a linear time algorithm to n-level realize the three classes of ULP trees
which can also be used for simultaneously embedding a ULP tree T with any
path P . Clearly, an n-level graph G can be simultaneously embedded with a
path P , provided the level assignment of G corresponding to the labeling of the
vertices of P yields a n-level realization. Since this is always the case for ULP

trees, have also given a mechanism for simultaneously embedding a ULP tree T
with any path P .

Finally, we provided a linear time recognition algorithm for ULP trees. What
is missing from the recognition algorithm is a certificate of unlabeled level non-
planarity, i.e., the 8 (or 9) vertices corresponding T1 (or T2) if they exist.

We can easily find some set of vertices corresponding to a copy of T1 or T2

in an unlabeled level non-planar tree T in O(n2) time running depth-first search
from each vertex of degree at least 3 determining if it either corresponds to one
of two vertices of degree 3 in T1 or the vertex of degree 4 in T2. Developing a
more efficient, perhaps linear time, version of this algorithm is left for future
work. Even so, the copy of T1 or T2 found in this way may not be the offending
one that prevents T from being n-level non-planar for a given level assignment
φ, which is more desirable.

In this case, we can construct an O(n2) time algorithm to produce such a
certificate. We do this by using the linear time recognition algorithm for level
planar graphs of Jünger, Leipert, and Mutzel (JLM) [15]. For every edge e of

14

a n-level non-planar tree T , try removing it to form T ′. If T ′ is n-level planar,
then leave e in T , otherwise delete it from T , and repeat this process until all
the edges of T have been considered. By Corollary 2, the resulting tree T ′′ that
is still n-level non-planar, must contain a subdivision of T1 or T2. Furthermore,
it can only contain one such subdivision, since any edge that would have only
contributed to one, but not the other, would have been removed. Finally, we
can process T ′′ in O(n2) time attempting to “unsubdivide” each pair of edges
incident to vertices of degree 2. We process these vertices from the ones with
least to the ones with greatest level assignment. Since there are at most O(n)
such pairs of edges, and we can test if the resulting tree is still level non-planar
in O(n) time, this algorithm takes O(n2) time altogether. This process is guar-
anteed to yield vertices in T corresponding to either a copy of T1 or T2 with a
n-level non-planar level assignment.

The problem with this approach aside from the running time is that it de-
pends on the complicated JLM algorithm. Giving an algorithm that can directly
yield a violating certificate given a particular level assignment in which T is
n-level non-planar would be preferable. This remains to be done and is also left
for future work.

Another future task is to provide a forbidden subgraph characterization for
general unlabeled level planar graphs as we have done for ULP trees.

References

1. C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time. J. Graph Algorithms Appl., 9(1):53–97, 2005.

2. U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy network
drawings. IEEE Transactions on Visualization and Computer Graphics, 09(2):241–
253, 2003.

3. P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous graph embedding.
In 8th Workshop on Algorithms and Data Structures, pages 243–255, 2003.

4. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

5. G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Trans.
Systems Man Cybernet., 18(6):1035–1046 (1989), 1988.

6. V. Dujmovic, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In European
Symposium on Algorithms, pages 488–499, 2001.

7. C. Duncan, D. Eppstein, and S. G. Kobourov. The geometric thickness of low
degree graphs. In 20th ACM Symposium on Computational Geometry, pages 340–
346, 2004.

8. P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-line drawing algorithms
for hierarchical graphs and clustered graphs. Algorithmica, 44(1):1–32, 2006.

9. D. Eppstein. Separating thickness from geometric thickness. In Proceedings of the
10th Symposium on Graph Drawing (GD), pages 150–161, 2002.

10. P. Healy, A. Kuusik, and S. Leipert. A characterization of level planar graphs.
Discrete Math., 280(1-3):51–63, 2004.

15

11. L. S. Heath and S. V. Pemmaraju. Recognizing leveled-planar dags in linear time.
In 4th Symposium on Graph Drawing (GD), pages 300–311. 1996.

12. L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of directed acyclic
graphs. II. SIAM J. Comput., 28(5):1588–1626, 1999.

13. L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J.
Comput., 21(5):927–958, 1992.

14. M. Jünger and S. Leipert. Level planar embedding in linear time. J. Graph
Algorithms Appl., 6:no. 1, 67–113, 2002.

15. M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In 6th
Symposium on Graph Drawing (GD), pages 224–237. 1998.

16. C. Kuratowski. Sur les problèmes des courbes gauches en Topologie. Fundamenta
Mathematicae, 15:271–283, 1930.

17. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109–
125, 1981.

16

