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Abstract. We consider the centralized, anchor-free sensor localization problem. We
propose using classic and new force-directed techniques, depending on the underlying
sensor network size and geometry. We consider the case where the sensor network re-
ports range information and also the case where in addition to the range, we also have
angular information about the relative order of each sensor’s neighbors. In particular,
we describe a multi-scale dead-reckoning algorithm that scales well for large networks,
is resilient under range errors and can reconstruct complex underlying regions.

1 Introduction

Wireless sensor networks are used in many applications, from natural habitat monitoring to
earthquake detection. Often, the actual location of the sensors is not know but is necessary
for the underlying application [1], e.g., determining the epicenter of the quake. Moreover,
the location of the sensors can be used to design efficient network routing algorithms [12].

The sensor localization problem can be thought of as a graph drawing problem. The
true state of the underlying sensor network is captured by a source graph drawing D of the
graph G. Given the adjacency information for G, together with possibly some additional
noisy information (edge lengths, or angles between adjacent neighbors) we would like to
construct a drawing D̂ which matches D as best as possible. There are many variations of the
problem, depending on the quality of the edge length data (obtained using signal strength), or
whether some of the vertices know their exact location (GPS-equipped sensors), or whether
the vertices can detect the relative order of their neighbors (obtained by using multiple
antennas per sensor). Centralized and distributed algorithms have both been proposed for
these problems.

Sensors typically have a range that allows them to detect other sensors that fall in that
range, thus providing adjacency information for the underlying graph. Often, the strength
or the time of arrival of the signal can be used to estimate the actual distance between two
sensors. However, sensing neighbors is not perfect, especially close to the limits.

Sensors with GPS are often called anchors and while they make the localization problem
easier, they are bulky and expensive. Anchor-free sensor networks and more practical but
pose greater challenges in localization.

Sensors with multiple antennas can provide angular information by reporting the relative
order of their neighbors or an estimate on the angle between adjacent neighbors. Multiple
antennas add to the cost and size of the sensor, but not nearly as much as in the case of
GPS. Once again, the angular information is far from accurate but even allowing for some
errors, angular information can be used to find good localizations.

⋆ This work is supported in part by an ACIST grant and an NSF grant ACR-0222920.
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In this paper we focus on the centralized sensor localization problem for anchor-free
networks. We consider the cases with or without angular information. We also consider
different types of underlying regions for the sensor network: simple convex polygons, sim-
ple non-convex polygons, and non-simple polygons. Classic force-directed methods can be
augmented to take into account the edge length information. This approach works well for
small graphs of up to fifty or so vertices, provided that the graphs are well-connected. For
larger graphs, the simple force-directed algorithms fail to reconstruct the vertex locations.
Multi-scale versions of the force-directed algorithms extend the utility of these algorithms to
graphs with hundreds of vertices, provided that the graphs are defined inside simple convex
polygons. Using the angular information, we can extend the utility of these algorithms to
graphs with thousands of vertices, defined inside non-convex and even non-simple polygons.

1.1 Related Work

In the last decade the sensor localization problem has received a great deal of attention in
the networks and wireless communities, due to the lowering the production cost of miniature
sensors and due to the numerous practical applications, such as environmental and natural
habitat monitoring, smart rooms and robot control [1]. However, only a handful of research
papers on this topic have exploited the natural connections with graph layout algorithms:
Priyantha et al [13] survey the existing sensor localization algorithms and propose a new
distributed anchor-free layout technique, based on force-directed methods. Gotsman and
Koren [9] utilize a stress majorization technique in their distributed method. Neither of
these approaches assumes angular information.

Most of the algorithms that do utilize angular information, also assume that a fraction of
the sensors is GPS-equipped. Doherty et al [3] formulate the sensor localization problem as
a linear or semidefinite program based on both adjacency and angular information. Savvides
et al [15] describe an ad-hoc localization system (AHLoS) which employs an anchor-based
algorithms for sensor localization using both edge length and angular information. Savarese
et al [14] and Niculescu and Nath [4] describe anchor-based algorithms for sensor localization
utilizing edge lengths information. Fekete et al [5] use a combination of stochastic, topologi-
cal, and geometric ideas for determining the structure of boundary nodes of the region, and
the topology of the region.

1.2 Our Contributions

We focus on centralized force-directed sensor localization algorithms for anchor-free net-
works. We consider two variations of the problem: one in which the input contains (noisy)
edge lengths information and the other in which we the input also contains (noisy) angular
information. We perform experiments by varying the sizes of the graphs, in terms of number
of vertices and edge density. We also consider different geometries for the underlying graph:
simple convex polygons, simple non-convex polygons. Finally, we measure two types of per-
formance metrics: the global quality of the layout and the structure of the boundary of the
region.

The force directed algorithms are based on the Fruchterman-Reingold [7] and the Kamada-
Kawai [11] methods. If we are only given adjacency information about the underlying graph,
these algorithms fail to solve the sensor localization problem even for small graphs. Incorpo-
rating the (noisy) edge lengths information works surprisingly well for graphs defined inside
simple convex regions. For larger graphs, the multi-scale graph layout algorithms [8] perform
better. However, even these techniques fail to reconstruct graphs defined in non-simple, or
non-convex regions.
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We augment these approaches to take advantage of angular information. With the aid of
(noisy) angular information, we can extend the utility of multi-scale graph layout algorithms
to large graphs with complicated underlying regions. In particular, our proposed multi-scale

dead-reckoning algorithm performs well and is tolerant to non-trivial noise in the edge length
and angular information.

2 Background

2.1 Algorithms

We implemented and tested six force-directed algorithms: Fruchterman-Reingold Algorithm
(FR), Kamada-Kawai Algorithm (KK), Fruchterman-Reingold Range Algorithm (FRR),
Kamada-Kawai Range Algorithm (KKR), Multi-Scale Kamada-Kawai Range Algorithm
(MSKKR) and Multi-Scale Dead-Reckoning Algorithm (MSDR). The first two utilize only
the graph adjacency information. The next three utilize the graph adjacency information
and the edge lengths (range) information. The last algorithm utilizes the graph adjacency in-
formation, the edge lengths (range) information and the angular information. Details about
these algorithms are provided in the next section.

2.2 Metrics

We compare the performance of various algorithms on different underlying graphs, varying
the number of vertices, edge density, as well as the types of regions in which the graphs are
defined. We also vary the amount of error in both the edge length and angular information.
We use two metrics to capture the performance of the algorithms, one intended to measure
the global quality of the layout and the other measuring the quality of the boundary.

The first metric, the global energy ratio is the root-mean-square normalized error value
of the point-to-point distances, as defined by Priyantha et al [13]:

GER =

√

∑

i<j ê2
ij

n(n − 1)/2
,

where êij =
d̂ij−dij

dij
is the normalized error of the difference between the true distance dij

in D and the distance in the graph layout d̂ij in D̂. This metric attempts to measure the
global quality of the layout, by considering the distances between all pairs of sensors in D
and D̂.

The second metric, the boundary alignment ratio is the sum-of-squares normalized error
value of a boundary matching. Given the true drawing D, we compute its boundary and
then compute an approximation by taking a sample of the boundary points B. We compute
the same size sample B̂ of the boundary of the drawing D̂ produced by our algorithm. We
then apply the iterative closest point algorithm (ICP) [2] to align the two boundaries using
rotation and translation. The boundary alignment ratio is defined as:

BAR =

∑

p̂∈B̂(p̂ − p)2

|B|
.

The ICP algorithm first computes a match p̂ → p for each point p̂ ∈ B̂, based on
nearest neighbors. Next, the ICP algorithm aligns the two drawings D and D̂ as best as
possible using the BAR metric. This process of nearest-neighbor computation and alignment
is repeated until the improvement in the BAR score becomes negligible. In order to avoid
local minima we run the ICP algorithm from several different initial alignments.
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2.3 Experiments

Since we did not have actual sensors to work with, we wrote a plugin for our graph draw-
ing system, Graphael [6], that simulates the placement of the sensors and the reported
information from each. Our sensor data generator takes the following parameters as input:
number of sensors, average connectivity (density), region to place the sensors in (square-
shape, triangle-shape, star-shape, etc.), range error, and angle error. All of our regions have
the same area so that the size of the region does not affect the performance metric results.

Our data generator fills the region with the given number of sensors placed at random
inside it. Then the distances between all pairs of sensors are computed so that we can
determine the sensor range that will give us the desired average connectivity. Finally, we
connect the sensors that are within the determined sensor range and report the distance
between them after incorporating the range error into the actual distances. The range error
is specified as a percentage of the actual range. A 10% range error between sensors that
have an actual distance of r implies that the reported range is within [r− 0.1 · r, r + 0.1 · r].

Next we compute the angular information. Each sensor chooses a random direction to
be called “north.” Then, the sensor detects the clockwise angle from north that each of its
neighbors are located at, and angle error is factored in. We then sort these edges by reported
angle and generate a mapping from each edge to its next clockwise edge about the node,
and store with it the angle to that edge. This procedure guarantees that although error may
be present in the reported data, the sum of the reported angles between edges is equal to
360o. Angle error in our experiments is specified as a percentage of 360o. For example, an
angle error of 25% implies that the angle from north reported by a sensor might be up to
45o on either side of the actual angle.

3 Force-Directed Algorithms for Localization

The FR algorithm defines an attractive force function for adjacent vertices and a repulsive
force function for non-adjacent vertices. FR, relies on edgeLenth: the unweighted “ideal”
distance between two adjacent vertices. For a vertex v, FFR(v) = Fa,FR + Fr,FR, where the
attractive force is defined as

Fa,FR =
∑

u∈Adj(v)

distRn(u, v)2

edgeLength2 (pos[u] − pos[v]),

and the repulsive force is defined as

Fr,FR =
∑

u∈Adj(v)

s ·
edgeLength2

distRn(u, v)2
· (pos[u] − pos[v]).

In the KK algorithm each pair of vertices connected by a path has forces proportional
to the length of the path. The displacement of a vertex v of G is calculated by:

FKK(v) =
∑

u∈Ni(v)

(

distRn(u, v)2

distG(u, v) · edgeLength2 − 1

)

(pos[u] − pos[v])

Since neither FR, nor KK use the range information, the resulting layouts D̂ are not of
the same scale as the original graph drawing D. However, these algorithms often manage to
reconstruct the underlying structure as well as the boundaries. To address the scale issue,
we extend these algorithms to take into account the range information; see Fig. 1.
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Fig. 1. Typical input/output pairs illustrating input/output/boundary for KK (top) and FR (bottom).

3.1 Range Extensions to Classic Force-Directed Algorithms

In FRR the forces are defined by FFRR(v) = Fa,FRR + Fr,FRR. The difference between the
FR and FRR algorithms is in the definition of edgeLength. In FRR, edgeLength is different
for different edges and is given by the reported distance between the corresponding pair of
vertices. A similar result can be achieved by replacing the ideal edgeLength in the original
formulation of FR by a factor equal to the average distance between two vertices connected
by an edge (which can be easily computed from the range data).

In the range version of Kamada-Kawai, KKR, the forces are defined as follows:

FKK(v) =
∑

u∈Ni(v)

(

distRn(u, v)2

distP (u, v) · edgeLength2 − 1

)

(pos[u] − pos[v]),

where distP (u, v) is the weighted distance along the BFS path p from u to v. Again, a similar
result can be achieved by using the average edgeLength, computed from the range data.

FRR and KKR work surprisingly well for small graph of fifty or so vertices, defined in
simple convex shapes. However, non-convex shapes, larger graph sizes and low density can
result in very poor layouts; see Fig. 2.

3.2 Multi-Scale Extensions

One of the problems with the classic force-directed algorithms is that they typically do
not scale to larger graphs. One way to avoid this problem is to use multi-scale variants of
these algorithms. In particular, multi-scale variants of the Kamada-Kawai algorithm have
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Fig. 2. Typical input/output pairs illustrating input/output/boundary for KKR (top) and FRR (bottom).

already been shown to produce good results in traditional graph drawing setting [8, 10].
The multi-scale algorithm, MSKKR, uses these ideas to extend the utility of KKR to larger
graphs.

The MSKKR is an adaptation on the GRIP algorithm [8] to the sensor layout problem.
The algorithm computes a filtration of the vertices of the graph into a logarithmic number
of progressively smaller sets. The vertices of each set in the filtration are placed by using the
placement from the previous set, starting with the smallest. For large graphs, this approach
has a better chance of getting right some of the global details of the placement. As the
charts in Fig. 3 indicate, MSKKR scales much better than KKR. It is worth noting that the
GER metric cannot be used to compare the quality of the layout across different graph sizes.
Unlike the BAR metric which clearly indicates the degradation in performance of KKR over
larger instances (Fig. 3), the GER metric fails to capture this (Fig. 4). Sample input/output
pairs from KKR and MSKKR are show in Fig 5.

4 Multi-Scale Dead-Reckoning Algorithm

The KK, KKR, and MSKKR algorithms use either the graph theoretical distance or a
weighted version of this distance when the range data is taken into account. This approach
provides layouts that typically match the underlying graphs. As the number of vertices
increases, the utility of KK and KKR decreases, while MSKKR does quite well on graphs
with thousands of vertices. More complicated underlying shapes together with larger graphs,
decrease the utility of even MSKKR. Angular information (if available) can be used with
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Fig. 3. Comparison between KKR and MSKKR measured by the BAR metrics across square-shape and
star-shape graphs with sizes 50 to 500. There were five trials per shape, using graphs with density 8 and
10% range errors.
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Fig. 4. Comparison between KKR and MSKKR measured by the GER metrics across square-shape and
star-shape graphs with sizes 50 to 500. There were five trials per shape, using graphs with density 8 and
10% range errors.

great effect to improve the quality of the layouts. With this in mind, we propose the multi-
scale dead-reckoning (MSDR) algorithm.

4.1 Dead-Reckoning

Dead-reckoning has been used for centuries as a method of estimating the position of a
moving object by applying to a previously determined position the course and distance
traveled since. Given range and angular information, we can compute the distance between
two vertices x and y in the graph using this idea. We call that distance dr(x, y).

Suppose we want to calculate the dead-reckoning distance from vertex A to a vertex
D. Let node C be D’s predecessor in the shortest path from A to D, and let B be C’s
predecessor; see Fig. 6. Assume that dr(A, B) and dr(A, C) have already been calculated
and that we also know the orientation of △BCA. The ∠BCD is also known since the angle
between edges on node C is part of the source data, and the lengths of the edges from B to
C and from C to D are known as well. To reduce the number of special cases, we convert
this angle to a clockwise angle by negating it if it’s counter-clockwise.
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Fig. 5. Some typical input/output pairs illustrating input/output/boundary for KKR (top) and MSKKR
(bottom). The underlying graphs have 500 vertices, density 8, range error of 10% and angle error also
10%.

Ultimately, we want to calculate ∠ACD so that we can determine dr(A, D) via the law
of cosines. To do this, we must first we compute ∠BCA using the law of cosines:

dr(A, B)2 = edge(B, C)2 + dr(A, C)2 − 2 ∗ edge(B, C) ∗ dr(A, C) ∗ cos(∠BCA)

∠BCA = cos−1

(

edge(B, C)2 + dr(A, C)2 − dr(A, B)2

2 ∗ edge(B, C) ∗ dr(A, C)

)

To determine the clockwise angle ∠ACD, we must either add or subtract ∠BCA to/from
∠BCD, depending on the orientation of △BCA. If △BCA is clockwise, we simply add the
two. If △BCA is counter-clockwise, then the angles overlap and we must therefore take their

C

B

D

A

Fig. 6. In the BFS path from vertex A to D, the predecessor of D is C and the predecessor of C is B

8



 0

 1

 2

 3

 4

 5

 6

 200  400  600  800  1000

MSKKR
MSDR

 0

 20

 40

 60

 80

 100

 200  400  600  800  1000

MSKKR
MSDR

Fig. 7. Comparison between MSKKR and MSDR measured by the BAR metrics across square-shape
and U-shape graphs with sizes 50 to 1000. There were five trials per shape, using graphs with density 8
and 10% range errors and 10% angular error.

difference. Put another way, we can just convert ∠BCA to a clockwise angle and add it to
∠BCD, then wrap it so that it is in the range [0o, 360o).

Now we know the following useful information: dr(A, C), ∠ACD, and edge(C, D). Using
the law of cosines again, we can compute the distance from A to D:

dr(A, D)2 = dr(A, C)2 + edge(C, D)2 − 2 ∗ dr(A, C) ∗ edge(C, D) ∗ cos(∠ACD)

Although ∠ACD may be over 180o, the law of cosines still yields the proper DR distance
(the law of cosines yields the same result for the clockwise angle which is greater than 180o

and the counter-clockwise angle which is less than 180o). After the DR distance has been
computed, we save the orientation of △ACD (determined by whether or not ∠ACD is
greater than 180o) so that we can reference it when calculating the DR distance to further
nodes.

There are two base cases that must be considered separately. For nodes adjacent to the
starting node, the edge length is the DR distance and no further computation is necessary.
For nodes that are 2 edges away from the starting node, ∠ACD is already known and does
not need to be calculated. Therefore, only the final law of cosines used in our algorithm
needs to be applied to find dr(A, D).

4.2 MSDR Performance

Putting together the dead-reckoning idea with the multi-scale Kamada-Kawai algorithm re-
sults in our MSDR algorithm. It outperforms all of the algorithms discussed earlier in the
paper. We study MSDR more carefully below. Comparing MSKKR to MSDR shows that
MSDR consistently performs better; see Fig 7. For simple convex shapes both algorithms
recover the global structure and the boundary well. In such cases MSDR offers local improve-
ments over MSKKR. More notably, for non-simple and even non-convex shapes, MSDR can
perform significantly better by truly capturing the underlying shape, which is often not the
case with MSKKR; see Fig. 8.

Moreover, the MSDR algorithm is very tolerant to range errors and somewhat tolerant
to angle errors. We compare the quality of the layouts under varying range and angular
errors. Under the BAR metric, the algorithm can handle 25% range errors without noticable
effects. The effect of angular errors is more pronounced, especially for non-convex shapes;
see Fig. 9. The GER metric can be safely applied to compare the performance of MSDR for
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Fig. 8. Some typical input/output pairs illustrating input/output/boundary for MSKKR (top) and
MSDR (middle and bottom). The underlying graphs have 1000 vertices, density 8, range error of 10%
and angle error also 10%.

graphs of the same size, with varying range and angular errors. This metric also confirms
that the MSDR is stable under range errors of up tp 25%; see Fig. 10.

5 Conclusions and Future Work

We described several adaptations of force-directed graph drawing algorithms for the sensor
localization problem. We also presented a new approach that takes advantage of angular
information, based on dead-reckoning and multi-scale techniques. All of these algorithms
as well as the simulation that generates the data have been implemented as a part of the
Graphael [6] system.
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Fig. 9. Using the BAR metric: Error tolerance for MSDR across triangle-shape, square-shape, star-shape
and U-shape graphs with sizes 500. There were five trials per for each experiments, using graphs with
density 16 and varying the range errors and the angular errors.

We failed to find a performance metric that allows us to compare the quality of the global
layout across different graph sizes. While the GER metric can be used to test resilience to
different types of errors, it is not suitable for comparing graphs with different number of
vertices. The BAR metric that we describe in the paper can indeed be used for that purpose
but it only captures the quality of the boundary. Moreover, the ICP method on which the
BAR metric is based, is a heuristic that often results in sub-optimal matches (see Fig. 2).
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