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Abstract

Given a vertex-labeled tree orvertices we show how to obtain a straight-line, crossings-tiraw-
ing of it on a set oh labeled concentric tracks, such that the vertex labelsmthte track labels. The
tracks can be defined by conic sections (such as circlegsedj circular arcs) or other smooth convex
curves. We show that this type of embedding can be used tdtsimewously embed tree-path pairs,
such that the tree is drawn without crossings, using onéghtréine segment per edge, and the path
is drawn without crossings, using one circular arc segmenegge. This result generalizes to outer-
planar graphs. We also consider star-track embeddingses$ twhich we use to obtain simultaneous
embeddings of tree-path pairs using piecewise linear edgesarticular, we show how to simultane-
ously embed tree-path pairs so that the tree is drawn wittressings, using one straight-line segment
per edge and the path is drawn without crossings, using at 2nbsnds per edge. These results also
generalize to outerplanar graphs.

1 Introduction

Embedding trees and other classes of planar graphs on @neidle¢d pointsets, or small integer grids is
motivated by graph layout algorithms and applications i ¥fsualization of relational information. Si-
multaneous embedding of planar graphs is motivated by lasioaship with problems of graph thickness,
geometric thickness, and contour tree simplification.

We define tracks to be nonintersecting copies of a shape tbhydranslating the shape in a direction
or scaling the shape around a point. As may be seen in Fiqiel,,dine wave, and staircase tracks may be
formed by translating a shape to form parallel copies. Sinyilcircular and star tracks may be formed by
scaling a shape around the origin.

Informally, a graph can be embedded on tracks if we can findagégbt-line, crossings-free drawing
of the graph on a set of fixed curves in the plane, so that eatéxviées on its corresponding curve; see
Fig. 1. Formally, we embed a graghon a set of track&, whereG is ann-vertex graph with vertex labels
V1,Vo,...,Vy andL is a set ofn tracks (smooth non-intersecting curves in the plane),ldabe, |-, ... I,
provided thats; € |;, for 1 <i < nand the graph drawing is straight-line and crossings-free.

A simultaneous geometric embeddiofjtwo vertex-labeled planar graphs arvertices is possible if
there exists a labeled point set of sizeuch that each of the graphs can be realized on that poinisiag(
the vertex-point mapping defined by the labels) with strialijie edge segments and without crossings. For
example, any two paths can be simultaneously embedded: thigite exist pairs of outerplanar graphs that
do not have a simultaneous embedding. While it may be tegptisay that if the union of the two graphs
contains a subdivision dfs or K3 3 then the two graphs have no simultaneous geometric emlgdtia is
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Figure 1:A tree embedded on line tracks, circle tracks, staircase tracks, sinx tracks, and star tracks.

not the case; see Fig. 2. In fact, while planarity testingaf@ingle graph can be done in linear time [17],
the complexity of determining whether a pair of graphs casibriltaneously embedded is not known. In
addition to generalizing the notion of planarity, techmgdor simultaneous embedding of cycles have been
used to show that degree-4 graphs have geometric thickhesssatwo [12].

Contour trees were proposed by van Krevetdal [24] for computing isolines on terrain maps in ge-
ographic information systems. Carr, Snoeyink and van de@§r| use contour trees for scientific and
medical visualization. Contour tree simplification applie ideas of topological persistence to trees and
is another application for simultaneous drawing of trees, ia particular trees on tracks [6]. Simultaneous
embedding techniques are also useful in the visualizatiaraphs that evolve through time, for example,
in the context of visualization of the evolution of softwd.

In this paper we present results about track embeddingsee$ tand outerplanar graphs, as well as
related results on simultaneous embedding of tree-pats.phi particular, we show that trees cannot be
embedded on parallel line tracks, but they can be embeddédhcks defined by conic sections (such as
circles, ellipses, circular arcs) or other smooth convexesi These results generalize to outerplanar graphs
as well. We also show that tree-path pairs can be simultafyeembedded, such that the tree is straight-line
and crossings-free and the path is crossings-free and dgehisedrawn using one circular arc. We also show
that tree-path pairs can be simultaneously embedded, batlhe tree is straight-line and crossings-free
and the path is crossings-free and each edge has at most£ bend

1.1 Related Work

The existence of straight-line, crossing-free drawingsafeingle planar graphs is well known [14, 23, 25].
Moreover, straight-line drawings for-vertex planar graphs can be found@tn) time, usingO(n?) area,
with vertices placed at integer grid points, as shown by dg$3eix, Pach and Pollack [9] and Schnyder [22].
If bends on the edges are allowed, Biedl [2] shows that olzegp graphs can be embedded usd{glogn)
area.

Brasset al [5] describe linear time algorithms feimultaneous geometric embeddimgpairs of paths,
cycles, and caterpillars, usif@(n?) area. If bends on the edges are allowed, Erten and Kobougjefibw
that tree-path pairs can be embedded simultaneously usangend per tree edge. Moreover, tree-tree pairs
can be embedded simultaneously using at most 3 bends per edge

A related problem is the problem gfaph thicknessdefined as the minimum number of planar sub-
graphs into which the edges of the graph can be partitionter] see survey by Mutzel, Odenthal and
Scharbrodt [20]. If a graph has thickness two then it can lagvdron two layers such that each layer is
crossing-free and the corresponding vertices of diffelaygrs are placed in the same locations. Dillen-
court, Eppstein and Hirschberg [10] stuglyometric thicknessf graphs, where the edges are required to be
straight-line segments. Thus, if two graphs have a simetias geometric embedding, then their union has
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Figure 2:The union of the graphs in (a) and (b) is Ks, but (c) shows a simultaneous geometric embedding.

geometric thickness two. Similarly, the union of any twonaeagraphs has graph thickness two. Duncan
et al[12] use simultaneous geometric embedding techniquesolw #at degree-four graphs have geomet-
ric thickness two. Finallybook thicknesadds the further restriction that the vertices must be irveon
position [1].

While the thickness and simultaneous embedding problemsetated, results from one do not neces-
sarily translate into the other. Bose, Hurtado, Rivera-@amnd Wood [4] show that the complete convex
graphK,, can be partitioned inta plane spanning trees and moreover, characterize all thexefit parti-
tions. In particular, they show th#b, can be partitioned inta non-crossing paths. However, giveipaths
it it not possible to always simultaneously embed thennfer3, as shown by Brasst al [5].

Simultaneous drawing of multiple graphs is also relatechéodroblem ofixed pointset embeddingf
planar graphs. Bose [3] and Gritzmanhal [16] show that if the mapping between the vertisdéand the
pointsP is not fixed, then trees and outerplanar graphs can be drathowvicrossings, using straight-line
edges. In the same setting general planar graphs cannotibva dvithout bends. If bends are allowed,
Kaufmann and Wiese [19] show that two bends per edge sufficeiekker, if the mapping betwe&dhandP
is predetermined, Pach and Wenger [21] show@1{a) bends per edge are necessary to guarantee planarity,
wheren is the number of vertices in the graph.

In the context of 3D layout, Dujmovic, Por and Wood [11] stuldg (k,t)-track layoutsof graphs, where
the graph is vertek-colored and edgk-colored. They examine the relationship between such layand
geometric thickness. Felsner, Liotta and Wismath [15] att@rize the trees that can be drawn onrhe2
grid and describe a universal pointset for outerplanartggap 3D.

1.2 Our Contribution

We begin with results on track embeddabifityThere exists a tree with vertices labelgdto v, such that
for any set of labeled parallel lines (i.e., tracks)to L, there does not exist a straight-line crossings-free
drawing ofT, such that is on trackL;. However, if the tracks are concentric circles insteadraddi then
for every tree there exists such a drawing on some set of écrnc circular) tracks. We describe a linear
time algorithm for obtaining such drawings and show thatalgerithm easily generalizes to outerplanar
graphs. Moreover, we show that other types of tracks alspastpuch drawings, in particular tracks defined
by conic sections, and other smooth convex tracks.

Our motivation for the problem of track embeddings comemfie/o open problems in simultaneous
geometric embedding. Formally, in the problem of simultar'egeometric embedding we are given two
planar graph&; = (V,E;) andG, = (V, Ez) and we would like to find straight-line crossings-free drays

10ur use of “tracks” differs from earlier use of the word [15],Jwhere the mapping between vertices and tracks is nohgive
In this paper, the mapping between the vertices and thesiagkedetermined by the vertex labels.
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Figure 3: Path-path simultaneous embedding. The vertices of the first (second) path have monotonically
increasing x-coordinates (y-coordinates), hence the first (second) path is crossings-free.

D1 and D5 such that for all vertices € V the location of the corresponding verticesDa and D> is the
same (i.e.Pi(v) = Dj(v)). On one hand, several simple types of pairs, such as p#th-pale-cycle, and
caterpillar-caterpillar can be simultaneously embedded.the other hand, several types of pairs, such as
outerplanar-outerplanar and path-outerplanar, canmayal be simultaneously embedded. These results
leave open the status of many other types of pairs. Recéntlgs shown that tree-tree pairs cannot always
be simultaneously embedded [18].

The circular track layout of trees and outerplanar graphdeaused to obtain simultaneous embeddings
of path-outerplanar graph pairs, such that the outerplgrah is straight-line and crossings-free while the
path edges are crossings-free circular-arc segments.oveEnearticular kind of track, which we call a “star
track” allows the simultaneous embedding of path-outelgriagraphs pairs so that the outerplanar graph is
straight-line and crossings-free and the path edges assings-free and have at most 2 bends per edge.

2 Trees and Outerplanar Graphs on Tracks

A common method for simultaneous embedding of path-grapts,pig to place all of the vertices that
form the path in order of their appearance on a series oflphtales [5]. Without loss of generality we
can assume that thevertex path is labele@,vs,...,v,. Thus, if we can draw the other graph without
crossings while placing the vertices on a set of paralledilmbeled.1,L,,...,L, in order, then the pair can
be simultaneously embedded. This method is illustratethiocase when both graphs are paths; see Fig. 3;
In particular, if we can draw a labeled tree on a set of pdrilleeled line tracks, then tree-path pairs
can be simultaneously embedded. We show that not all trées alich embeddings. However, we show
that trees can be realized on labeled concentric circudaks; provided that the ratio between the radii of
the largest and the smallest circles is small. We genertizeesult to outerplanar graphs and show that if
the radii of the circular tracks are arbitrary, it is not gbksto realize all trees and outerplanar graphs.

2.1 Trees on Parallel Line Tracks

Theorem 2.1 Labeled n-vertex trees cannot always be embedded on n ¢thpatallel line tracks.

Proof Sketch: To show that not all trees can be embedded on a labeled pdirsléracks it suffices to find

a counterexample. The 8-vertex tree in Fig. 4 is the smadlgsh counterexample. Assume that we have
already placed all vertices except for 2 and 7, on their spwading tracks and there are no crossings yet.
Then it is easy to show that any placement of 2 on track 2 andti@aok 7 will result in either a crossing of
the edge (3,7) with an edge of the tree or in a crossing of (Zif®)an edge of the tree.



©

(b) (c)

Figure 4:The tree on the left cannot be drawn on a set of parallel lines with the vertices in increasing order.
Regardless of how we place all of the vertices except v» and vz, every placement will cause an intersection
in the graph.

We can show that this is the smallest counterexample by abgethat every tree which does not have a
subgraph of Fig. 4(c) is a caterpillar and caterpillars measags be embedded on tracks[5]. Since Fig. 4(a)
has only one more node, for a smaller counterexample toiermsist be Fig. 4(c) with some node labelling.
Now observe that regardless of the track labelling of nodekgast two of the children d® must be either
above or below it. WLOG assume that the children are labeéllathdB and that they are belo® with A
is aboveB. Let us place th& on its track at x=0 and draw nod€sandF at x=-1. Notice this causes no
crossings.

Now we have three cases:

e Case 1D is belowA

If this is the case then we can pladeandD at x=0 and plac® andE at x=1. This cannot cause a
crossing becaus& andD are drawn directly belowr andB andE are both to the right.

e Case 2D is aboveA andE is belowB

If this is the case then we can plaBeandE at x=0 and placé andD at x=1. This cannot cause a
crossing becaud® andE are placed directly below andA andD are both to the right.

e Case 3D is aboveA andE is aboveB

Recall thatA is aboveB. Let us placeA, B, andD at x=1 and plac& at x=2. SinceA andB have the
same X location the edges from thenReoannot cross. Sinckis aboveB andD is aboveA similarly
(A,D) will not cross another edge. The edd®E) cannot cross any others because it is the furthest
edge to the right. Thus the drawing has no crossings. -

It is not surprising that trees cannot be embedded on phliaketracks, as the restriction that the order
of they-coordinate of every vertex is determined in advance is taamg. What is surprising, however, is
that introducing just the slightest curvature to the trackenough to allow us to embed all trees. Next we
show how this can be done, starting with circular tracks.

2.2 Trees on Concentric Circular Tracks

The infeasability of embedding trees on a set of labeledllphtimes leads to the question of whether trees
can be embedded on other types of tracks. In particularddbebncentric circular tracks are of interest,
bearing in mind the simultaneous embedding applicationg. stw that any vertex-labeled tree can be
realized on labeled concentric circular tracks by deseghan algorithm for drawing trees on concentric
circles and a formula for determining the appropriate radii
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Figure 5:The vertices of the tree in (a) are arranged around a circle in order given by a pre-order traversal
(b). The circle is scaled to n concentric circles and each vertex is moved along a ray from the center through
its original position, until the appropriate track is reached (c).By moving the vertices to their tracks we may
have introduced crossings (d). This problem can be resolved by fixing the ratio between the radii of the
circles (e).

Theorem 2.2 Any n-vertex labeled tree can be drawn without crossings seteof n labeled concentric
circular tracks, using straight-lines segments, itnPtime.

Proof: We prove this claim by providing a linear time embedding &thm. We begin by showing that any
tree can be embedded on a single circle with the verticedyespaced around it. Next we perturb the
points so that each of them belongs to a unique concentiteciiThis step, in effect, corresponds to the
construction of a universal circular track set, which cardbae by carefully selecting the radii of time
circles. Each of these steps is described below.

Drawing a Tree on a Circle: This is a special case of embedding a tree on a set of pointsniergl
position [3, 16]. Since we need the specifics of the placerfaarthe next step, we provide some details.
We begin by creating a circl€;, centered at the origin. We placepoints p1, po, ..., pn around the circle
and evenly spaced. We map thgertices of the tree to thesegpoints using a mapping obtained from a pre-
order traversal of the tree. Recall that in a pre-order tsalene visit the root of the current tree and then
recursively explore all of its children. We perform a prelar traversal of the tree, starting at an arbitrary
vertex, and mapping theth vertex visited, to theth consecutive endpoinp;, of the circle; see Fig. 5(a-b).

To see that the resulting straight-line drawing of the teerossings-free consider two arbitrary tree
edgega,c) and(b,d). Two vertices labeled j by the pre-order traversal, are connected by an edge, only if
vk, i < k< j, (k) impliesi <I < j. This means that we cannot have crossings by connectingegthat
lie on a circle in this manner because a crossingaof) and(b,d) impliesa < b < ¢ < d, which contradicts
the assumption that the labels came from a pre-order ti@vers

Perturbing the Points: In this step we perturb thepoints on circleC so that each of them is on its own
circular track. We do this by creatingconcentric circles starting witG and move each vertex along a ray
from the origin through each point @ until it intersects the appropriate circle; see Fig. 5(b+édwever,
the resulting tree drawing may not be crossings-free; sgedkd-e). Fortunately, is it not difficult to remedy
this problem, by choosing the radii of the circular tracksrencarefully.

Circle Radius Selection: We can draw the tree without any crossings on a set of concemtcles by
choosing the radii appropriately. In particular, if a ciogsof (a,c) and(b,d) impliesa < b < c < d then
we can use the same algorithm as above. Notice thatwitirtices, it is sufficient to show that any edge
between verticez andy crosses the smallest concentric circle; see Fig. 5(e).dardor each edge to have
this property, it is sufficient to show the shortest edge hasgroperty. Given two points on a circle that
are % x 21t radians away from each other, the distance between the mtdpfothis line segment and the
radius of the circle is & cogT) in units where 1 is the radius of the circle. This means thateifmaken

concentric circles have radﬁcﬁﬁ apart, we have the desired property. Note this is not a tighht as it



can be shown that we can relax the circle distance by a fat®by observing that only the edges between
vertices at least 2 apart need to cross the smallest coitceintle and that both of the vertices cannot live
on the outermost circle. -

2.3 Outerplanar Graphs on Concentric Circular Tracks

The idea of embedding a tree on a single circle and then rgfithi@ circle ton concentric circular tracks
can be extended to outerplanar graphs as well, as we show.belo

Corollary 2.3 A n-vertex labeled outerplanar graph can be drawn on a setlabaled concentric circular
tracks without crossings in @) time.

Proof: We assume that the outerplanar graph is maximally outempldhit is not, it can be appropriately
augmented, and when the algorithm completes, the extraedgebe removed. A combinatorial embedding
of the graph can be found in linear time [17]. Next we placeviices of the graph onto points evenly
spaced around a given circle, so that the edges can be drastmaaght-line segments and there are no
crossings. Once again, the correctness of this step folimms[3, 16]. Similar to the approach in Theorem
2.2, we then perturb the points by scaling the circle inta distinct circular tracks,lfcﬂs(g) apart. The
vertex labels of5 determine the appropriate tracks for each vertex. The agparof the tracks was chosen
so that every edge on the outerface must intersect the imsétnack. Once again, it is straight-forward to
verify that if all edges intersect the innermost track, thesulting drawing is still-crossings free. -

2.4 Trees and Outerplanar Graphs on Refinable Shapes

It is easy to see that the results above extend to circulairacks, as well as to conic section tracks, such
as parabolas, ellipses, hyperbolas, and more generaliypytehape that may be refined into tracks. We can
draw labeled outerplanar graphs on any set of shapes givEnrceestrictions (all the tracks are obtained
by scaling or translating one original shape, tracks domtetrsect, and the separation between the tracks is
bounded). We summarize the results in the following theorem

Theorem 2.4 Given a straight-line, crossings-free drawing of an outanar graph G with n vertices on
a shape S in the plane where S can be refined into n tracks, Geanalavn on the refinement of S into n
tracks.

Proof Sketch: G is drawn on a some shadn the plane if its vertices lie o8. Consider a plane drawing
of GonS. Lete be the minimum distance between a pair of non-adjacent asfg@sConsidem copies of

S (then tracks), scaled from the original one, so that the distamte/den two tracks is at most2n. By
perturbing the vertices from their original positions®to the track determined by their label, in a direction
perpendicular to a tangent §ta vertex moves no more thap2 away from its original position. Since the
minimum distance between any pair of edge&afiase, after the vertex positions have been perturbed, no
pair of non-adjacent edges intersects. -

2.5 Trees on Predetermined Concentric Circular Tracks

Circular tracks, tracks determined by conic sections,amkis determined by smooth convex curves allow the
realization of trees and outerplanar graphs only if the isgjoe between neighboring tracks meets certain
criteria. If the separation is predetermined, it is not sseely true that any tree or outerplanar graph can be
realized without crossings and using straight-line sedmerhis idea is captured in the following lemma
for the case of circular tracks.
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Figure 6:(a) This tree cannot be drawn on circular tracks with predetermined radii if multiple vertices must
be placed on the same track; (b) Any vertices placed on the concentric circular arc in the top 1/3 region
must have strictly increasing y-coordinates.

Lis
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Figure 7:(a) Routing one circular arc per edge that fits inside two consecutive concentric circles; (b) The
concentric circles with the center at C. C' is the center of a circle that gives a curve (dashed circle) that must
connect v; and vj, 1 while staying in the annulus of L; and L; 1.

Lemma 2.5 If the radii for the circular tracks are predetermined, teeeannot always be realized without
crossings.

Proof Sketch: We will constrain the problem slightly by placing multiplentices on the same concentric
track. Note that we can do this for an arbitrary tree if we dleneed to choose the radii. The tree in
Fig. 6(a) has its root vertex labeled 0, and hence must beeghlaa the innermost track. The root's 6
children are labeled so that they must be placed on the oagttnack. Any drawing of this tree must divide
the concentric circular regions into at least three se¢tmrsause we can place two of the edges adjacent to
the root next to each other and place pairs of their subtne@pposite sides). The subtrees hanging off the
root’s children are copies of the tree that cannot be emlubddeparallel tracks; see Fig. 4. Since we have
three sectors there must be at least one sector of size 1¢3r Without loss of generality let this sector
be the top 1/3 of the circular tracks; see Fig. 6(b). Then #ldéi of the tracks can be chosen progressively
larger as we move away from the innermost track, so that artices placed on the concentric circular
arc in the top 1/3 sector must have strictly increasirapordinates. Since we cannot realize the subtree on
parallel line tracks, we cannot realize the entire tree. -



3 Simultaneous Embedding with Curves and Bends

In this section we use the results from the previous seatiabtain simultaneous embedding of an outerpla-
nar graph and a path. The fact that we can embed an outergleapr on concentric circular tracks, can be
used to show that we can simultaneously embed an outergiaain and a path, such that the outerplanar
graph is straight-line and crossings free, while the pa#is wse circular arc per edge and is crossings free.

Typically, piecewise-linear edges are used to visualizplgredges, and we can extend the idea to si-
multaneous embedding with bends. It is straight-forwardinoultaneously embed a pair pfvertex pla-
nar graphs such that one is straight-line and crossingsénel the other ha®(n) bends per edge and is
crossings-free, using the result by Pach and Wenger [21hgldsir track embeddings of outerplanar graphs
and trees, we can improve on this result for the case of patr@anar graph pairs.

We show that we can simultaneously embed an outerplanah giragh a path, such that the outerplanar
graph is straight-line and crossings-free, while the patlrdéssings-free and has exactly one circular arc per
edge.

For the case where we insight on piecewise-linear edges,awssimultaneously embed an outerpla-
nar graph and a path, such that the outerplanar graph ightiaie and crossings-free, while the path is
crossings-free and has at most 2 bends per edge. We do thinli®dding the tree on “star tracks” with-
out crossings using straight-line edges, while routingphth edges between the star tracks with at most 2
bends.

3.1 Curvilinear Simultaneous Embedding of a Path and Outerjanar Graph

Recall that givem consecutive concentric circular tracks, Lo, ...,L, we can realize any outerplanar graph
onnvertices such that € L;j, 1 <i <n. Also, we assume (without loss of generality) that the gatbntains

the vertices in order, i.ep = vi,Vo,...,Vy. We show how to route the edges of the path using exactly one
circular arc segment per edge of the path so that no two suchla arcs intersect (other than at incident
vertices).

Lemma 3.1 A crossings-free drawing of a path=pvy, Vo, ..., V, can be realized on n consecutive concentric
circular tracks Ly, L,,...,Ln, such that ve Lj, 1 <i < n, using one circular arc per edge.

Proof: It suffices to show that one circular arc can be used to cormectonsecutive vertices on the path,
v; andvi 1, such that the arc is outside circular trdglkand inside circular track;. 1, regardless of the exact
placement of; onL; andvi.; onL;,1; see Fig. 7(a).

LetC’ be the circle that forms the needed circular arc connectiagdv; 1. We begin by placin@€’ on
the line betweel, the center of the concentric circles, and the vewiexonL;; see Fig. 7(b). We chose
the radius of the circle, so that it intersetts; exactly once (and sind® is inside, the circle is completely
inside trackLi.1). This curve will intersect; at most twice and we can place the center of the circle so
that one of these intersections is at the verean Li. We can findC’ by first drawing a perpendicular line
bisecting the line segment betwegrandv;, 1. We can then intersect this line with the line fr@o vj, 1 to
obtain the location of’. Since the distance betwegmandC' is equal to the distance betwe€handvi, 1,
the circular arc connecting to v 1 is insideL;; and outsidd.;. [ ]

Theorem 2.3 together with Lemma 3.1 give us the followingtken.

Theorem 3.2 An outerplanar graph and a path can be simultaneously enmdmhdglich that the outerplanar
graph is straight-line and crossings-free, while the paslesione circular arc per edge and is crossings free.

Using our algorithm to draw a path with circular arcs and oge twith straight lines, it immediately
follows that if we were to view the circular tracks agjons instead, we can simultaneously embed the tree
with no bends and the path (by following thegon) withO(n) bends.
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Figure 8:A star shape (a), a tree (b), and an embedding of the tree on the star shape (c).

3.2 Star Tracks

In this section we show how to reduce the number of bends opétiefromO(n) per edge to 2 per edge. In
order to do this we will use a different kind of track calledtargrack. We begin by showing how to draw
arbitrary outerplanar graphs on a star shape.

Lemma 3.3 An unlabeled outerplanar graph G on n vertices can be dravthawuit crossings using straight-
line segments with its vertices placed on integer grid cimatts defined by three line segmengsll, Lo,
with endpointg0,n) and (n,n), (0,2n) and (n,n), (2n,2n) and (n,n), respectively.

Proof: A slightly weaker result (using 3 longer line-segments) lsarbtained as a corollary from Theorem
5 of Felsneret al [15], where outerplanar graphs are drawn on a prism in 3Desp@hbe argument below
follows along similar lines.

Let us assume we have an unlabeled outerplanar ggaphd an outerplanar embeding of this graph.
Consider the 3 line segments, L1, Lo; see Fig. 8(a). These line segments determme B points on the
integer grid: (n,0),(n,1),...(n,n) on Lo; (0,2n),(1,2n—1),...,(n,n) onLy; and(2n,2n),(2n —1,2n—
1),...(n,n) onL,. Any unlabeled outerplanar gra@on n vertices can be drawn without crossings, using
straight-line segments, by placing the vertices on a sudfisbe :r+ 1 points defined by the 3 line segments
as follows. We can take an arbitrary verteitom the graph and call it the root. Using a counterclockwise
breadth first search @& from r we can label the vertices @ with two labels: the order they are visited
(ignoring nodes that have already been visited) and thetadce from the root. For each vertex, if its
distance from the root ik we place it on segmertt;, wherek mod 3=i. The order of the vertices along
the segmentk; is determined by the order they were visited. We begin byip¢acat position(n,n— 1) on
segment. All of its children are placed oh;, starting with(n— 1,n+ 1), and taking grid points in order.
All of r’s grandchildren are placed @n starting atin+ 1,n+ 1), and so on in clockwise manner. It is easy
to see that this method produces no crossings but we leawvkethis out of the abstract; see Fig. 8(b-c).

This is anO(n) algorithm that requires a2« 2n integer grid. u

Now, we extend the line segmernig, L1, L, into a star track as shown in Fig 9(a). First of all, we refine
the star shape to have starting and stopping points. We sellthe area between the starting and stopping
points for drawing our outerplanar graph. In order to buttt $racks from our star shape, we connect the
end of the used part of track 1 to the beginning of the usedgbémrdck 1 on the next clockwise star area. To
define track 2, we create a connecting line parallel to thatrémk 1 and extend track 2 past the used area
until they intersect. We draw the other tracks in a similahfan; see Fig 9(b). Observe that we can draw
arbitrarily many tracks in this fashion and none of the tsaicitersect.
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Figure 9:A refinement of the star shape (a) and the corresponding star tracks (b).

Since the separation between neighboring tracks is boundedan extend the outerplanar graph em-
bedding algorithm for one star shape (determined_fy.1,L,) to an embedding algorithm on threstar
tracks. This leads to the following theorem, the full probiuhich is left out of this extended abstract.

Theorem 3.4 Any n-vertex labeled outerplanar graph can be realized oeteo§ n concentric star tracks
without crossings.

Proof: We know from Theorem 2.4 that since we can draw an outerplgnagh on this shape, we can draw
a outerplanar graph on tracks of this shape (because it magfibed by scaling about the center of the star
shape). We can use the algorithm described in Lemma 3.3 ¢e plar nodes on tracks. Note that we only
use the indicated regions of the tracks in Fig. 9(b) when \megthe nodes. [ |

We can use this outerplanar graph embedding on star tragksltioour final theorem.

Theorem 3.5 An outerplanar graph and a path can be simultaneously ermdgmbddch that the outerplanar
graph is straight-line and crossings-free, while the paslesi2 bends per edge and is crossings-free.

Proof: From the point of view of simultaneous embeddings with befd®orem 3.4 provides us with a
method for embedding an outerplanar graph on star tracksalRbat without loss of generality the path
is labeledvy, Vo, ..., V. Given the above star track embedding of the outerplanghgrae can route edges
of the path(v;,Vvi11), 1 <i < n, along the star tracks so that they do not intersect. We hawecases for
connecting adjacent path nodes, either they are in the sa@aeragion of the star tracks or different regions.

If they are in the same region we can simply connect the naagshés path line will be fully contained
between the two tracks.

If the nodes are in different regions we will connect the lowembered node by following the higher
numbered track either clockwise or counterclockwise (Wener is shorter) until we reach the higher num-
bered node. To get on the higher numbered track we connelee tbigher numbered track at the location
of the first bend in the direction of the higher node. Since thia point on the parallel track we clearly
don’t move outside of the region between the two tracks (idiclg the higher track). Now we just follow
the higher numbered track around to reach the node.

Since each path edge doesn't cross the boundaries betvesis and that tracks themselves do not
cross we have no crossings of path edges in the graph. Sitadee# 2 bends to go from one region to the
next using the tracks, we can draw the path with 2 bends artbutitcrossings. By Theorem 3.4 we can
simultaneously draw the outerplanar graph crossingswviitkestraight lines. -
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4 Conclusions and Open Problems

We presented several results on embedding labeled treesut@planar graphs on labeled tracks. We
showed how these results can be used to obtain simultaneduedeings of path-tree and path-outerplanar
graph pairs using circular arc edges or a small number ofdeBelveral simultaneous embedding problems
remain open, with two of the most relevant to this work being:

1. Do all tree-path pairs have simultaneous geometric edibgd

2. What is the complexity of determining whether two planeapips admit a simultaneous geometric
embedding?
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