
Automatic Operating System Specialization via Binary Rewriting

Mohan Rajagopalan Saumya K. Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

{mohan, debray}@cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932, USA

{hiltunen, rick}@research.att.com

Abstract

This paper explores the application of binary rewrit-

ing techniques to customization of operating system

kernels. Specifically, this paper describes a new bi-

nary rewriting system, Charon, and its application

to the synthesis of application-specific operating sys-

tems. Compiler techniques are used to analyze and

transform the kernel based on holistic knowledge

of the system. Preliminary experiments have been

promising and argue persuasively that more opportu-

nities for automation should be explored.

1 Introduction

Running costs, such as the memory footprint and

performance overheads, are a significant concern for

operating system designers in the context of embed-

ded systems. Accordingly, OS customization tech-

niques are becoming increasingly important in this

context since there is a growing trend to replace spe-

cialized, application specific operating system soft-

ware with customized versions of general purpose

operating systems such as Linux. This customization

has traditionally been a complicated, labor intensive,

and time consuming manual process that is usually

error prone. This paper explores the possibility of

automating the customization process through holis-

tic systems analysis and the application of compiler

techniques.

General purpose OSes are designed without mak-

ing assumptions about their deployment environment

or the applications that will run on them. Almost

all specialization research [4, 12, 13, 15] is based

on the fact that there is a natural tradeoff between

performance and generality in operating systems—

operating systems can be made to perform better by

making specific assumptions about the target system

and its operating conditions. Accordingly, we refer

to customization as the process of adapting and tun-

ing the behavior of a system to make it perform better

under certain assumptions. Specifically, in the con-

text of this paper, customization has two goals : com-

paction, reducing the memory footprint of an operat-

ing system and performance optimization, improving

performance characteristics.

Here, we describe an automatic approach to OS

customization based on holistic system analysis, that

takes advantage of the observation that the set of

applications that run on an embedded system—or,

more precisely, the set of operating system services

required by such applications—is fixed, and sys-

tem requirements do not change drastically or unpre-

dictably. Program analysis is used to predict system

requirements by looking at user-level applications,

the underlying hardware, and the operating system

itself. Next, compiler techniques such as constant

propagation, code elimination, and value specializa-

tion are used to compact and optimize the kernel for

the given set of requirements. The process is com-

pletely automatic and implemented using our Charon

binary rewriting tool.

Traditional approaches to OS customization have

taken a bottom-up approach targeting composability

[1, 3, 9, 10, 12] and configurability [2, 4, 7, 12, 13,

15]. The operating system is constructed by combin-

ing specialized components, each tailored to a set of

requirements. In contrast, the approach proposed in

this paper is top-down: starting with the most generic

operating system, the goal is to use automated anal-

ysis and code transformations to remove unneeded

generality, thereby specializing the system to the par-

ticular set of of hardware and application contexts of

its use. There are several advantages to such an ap-

proach. First, such automatic specialization allows

us to have the generality, flexibility, and economy of

using a general purpose operating system, as well as

the performance advantages of an operating system

customized to the specific hardware and software—

in essence, allowing us to have our cake and eat it

too. Second, the transformations are guaranteed to

be correctness preserving, i.e., the resulting operat-

1



ing system will behave in the same way as the orig-

inal system. Finally, our solution does not require

significant modifications to existing systems and can

be totally transparent to the user.

This paper describes our experiences with binary

rewriting and automatic customization. We begin

with a description of the new binary rewriting frame-

work, Charon. Next, a specific instance of cus-

tomization, kernel compaction, is described. This is

followed with a brief description of other opportuni-

ties under the general theme.

2 Binary Rewriting: Charon

Charon is a binary rewriting system targeted at pro-

cessing operating system kernels. The system is built

as an extension to the PLTO binary rewriting toolkit

[14]. Figure 1 describes the steps involved in pro-

cessing binaries. The input to the system is the op-

erating system kernel, the set of user level applica-

tion binaries, and a specifications file. The last of

these describes aspects of the underlying hardware

relevant for the specialization process (see section 3

for details).

The input binaries are typically statically linked

relocatable ELF files. Relocation information is

needed to distinguish between 32 bit data values and

pointers. Creating relocatable binaries is easy and

done by simply setting the appropriate flag during

compilation and linking. In the case of Linux, gen-

erating the appropriate input kernel was straightfor-

ward and required changing exactly one line in the

regular Makefile. Since the kernel is by default a

statically linked ELF file, it was merely a matter of

modifying the parameters to the linker.

Applications

Linux Kernel

Specifications

Profiler

profile data

Charon

kernel
Transformed2. Disassemby

1. Read in binary

3. Build Control Flow Graph

5. Patch address information
6. Assembly

4. Transformations 

7. Writeout

Figure 1: System overview

The first step of processing is to set up internal

data structures that correspond to the sections in the

ELF file. Next, the executable sections are disas-

sembled to recover the instruction stream. Kernel

binaries are unlike regular application binaries in a

number of ways. For example, there is a significant

amount of data embedded within executable sec-

tions, there are implicit addressing constraints, and

occasional unusual instruction sequences, a result

of hand-coded assembly and self modifying code.

Conventional disassembly algorithms were unable

to recover large parts of the kernel and hence, we

use an indigenous type-based disassembly algorithm.

Initially, everything in a section is conservatively

marked as data. Type information (for example from

the symbol table) and iterative control flow analysis

is then used to discover code. The current version of

Charon is able to disassemble approximately 94% of

the executable sections. The remaining 6% includes

data blocks (several 4K pages) and padding NOP

instructions, in addition to the executable code that

cannot currently be disassembled. An example of

code that cannot currently be disassembled includes

the code for the so-called “Duff’s device.”1 Portions

of the text section that cannot be disassembled are

treated as data and as such, are reinserted into the

kernel executable when it is reassembled; however,

any code pointers in such undisassembled code/data

are identified as such, and updated correctly, using

the associated relocation information.

Disassembly results in an instruction stream,

which is then processed to build a control flow graph

(CFG). The internal representation is comprised of

instructions, basic blocks, functions and different

types of edges that denote different control flow tran-

sitions. This CFG forms the basis for all further anal-

ysis and transformations. The CFG of an operating

system has significant differences compared to the

CFGs of regular programs. For example, the ker-

nel has multiple entry points (through system calls

and interrupts), whereas regular applications typi-

cally have a single entry point. In the kernel CFG,

system call and interrupt handlers, identified through

the interrupt descriptor and system call table, are

marked as potential entry points into the kernel. In

the case of regular applications, the start function

is the only entry point for the application.

Once the control flow graph has been built, various

transformations can be carried out on the program.

The final stage of processing is writeout, where the

processed binary is assimilated and an executable

image is written out to a file. Code addresses are

recomputed, and pointers into the code (in both the

1An optimized data copy loop invented by Tom Duff.

2



text and data areas), identified using relocation infor-

mation, are updated appropriately. Finally the appro-

priate ELF headers and table entries are created and

the program is written out to a file.

While binaries contain less high-level semantic in-

formation than source programs, they have the ad-

vantage that the entire program is available for anal-

ysis and optimization. For this reason, prior work

in binary rewriting has been successful in the con-

text of whole program optimization [5, 11, 16]. Our

experience with using binary rewriting for operating

systems has been favorable for similar reasons. Op-

erating system kernels are self-contained—they are

usually statically linked, i.e., all the code is present in

one place—and contain complete symbol table infor-

mation. Second, while OSes are typically large pro-

grams in which different components have been writ-

ten in different languages (including hand-written as-

sembly code, which can be difficult for source-level

analyzers to process), from a binary rewriting point

of view, the code is uniformly seen as a sequence of

machine instructions. Third, the low level address

information available can be used to our benefit; for

example, some indirect jumps, such as those to sys-

tem call handlers, can be resolved by looking at data

structures like the system call table.

While our experience is that the information lost

from the lack of source code has not posed a signifi-

cant issue, one can envision cases where it might be

an issue. For example, consider the issue of refac-

toring code, i.e., using semantic preserving trans-

formations to improve the internal organization of

the code. Operating systems are complex software

systems and there is an increasing interest in trying

to automate the refactoring process to, for example,

eliminate code duplication. Refactoring can be hard

at the binary level because of the difficulty in com-

paring two binary snippets even though they may

have arisen from the same macro definitions or may

be inlined versions of the same function.

3 Case Study: Compaction

Overview. For a variety of practical reasons related

to both cost and support, there is a growing trend

to replace vendor-specific custom operating systems

for embedded devices with general purpose counter-

parts such as Linux. Embedded systems are usually

restricted in terms of the memory available both for

computing and storage. Hence, transformations that

reduces the memory footprint are highly desirable.

Traditionally this has been a manual task that is la-

bor intensive, time consuming, and error prone.

The goal of our customization is to automatically

reduce the memory footprint of an OS kernel. We

do so by identifying and discarding parts of the OS

that will never be needed for the specific set of OS

services required to support a given set of applica-

tions on a given hardware platform. This is difficult

to do for a general purpose system where arbitrary

new applications may be installed and executed, but

we observe that embedded systems typically require

only a (small) subset of the services provided by a

general purpose OS. For example, software running

on a cell phone or a sensor network mote will most

likely have no need for code to interact with a mouse.

Such unneeded code can be identified and eliminated

via compiler based transformations based on dead

and unreachable code elimination. Although dead

code elimination is a well studied and common com-

piler transformation, it can not be applied directly in

this context for a couple of reasons—first, the sys-

tem being analyzed involves multiple address spaces

and second, the number of indirect jumps in the ker-

nel make conservative analysis ineffective. Kernel

specific semantic information is required to make the

transformation useful. Our approach is to adapt the

standard transformation and combine it with cross-

address space static analysis to achieve the net goal

of customization for reduced memory footprint.

Compaction. The first step in this transformation

is to identify all possible entry points into the kernel.

Next, starting at each entry point, depth first reach-

ability analysis is carried out to mark all reachable

parts of code.

Entry points into the OS are either system calls or

interrupts. Identifying all possible system calls the

OS needs to field is relatively straightforward. Static

analysis is performed on each of the applications to

compute the set of possible system calls the applica-

tion can make. System calls are identified by looking

for the int 0x80 software trap instruction. Con-

stant propagation is used to identify the system call

number associated with each system call.

Predicting interrupts is more complicated. Inter-

rupts are usually not generated directly, but rather

are invoked implicitly in response to hardware events

such as receiving a network packet or the result of

side effects of system calls such as a read system call

causing a page fault. To identify the set of interrupts

that could be encountered we use two pieces of in-

formation: first, the set of all possible hardware in-

3



terrupts that is supplied as part of the specifications

file, and second, a table of static mappings associat-

ing systems calls to interrupts they may generate.

Once kernel entry points have been marked, we

carry out a reachability analysis starting at these en-

try points. This is essentially just a depth-first traver-

sal of the control flow graph of the kernel, with the

modification that function calls and the correspond-

ing return blocks are handled in a context-sensitive

manner: the basic block that follows a function call is

marked reachable only if the corresponding call site

is reachable. A significant portion of the control flow

in the kernel is reached through indirect jumps, and

to ensure correctness the reachability analysis must

be conservative in its estimate of the possible targets

of such jumps. While it is easy to reason about things

like system call that will never be called, reason-

ing about interactions among co-operating modules

in the kernel is more sophisticated and is currently

under investigation.

After reachability analysis, code identified as un-

reachable can be eliminated. Additionally, any code

whose results—including any possible side effects—

are used only in unreachable code is dead, and can

also be eliminated.

Preliminary results. To obtain a preliminary

measure of the potential impact of our approach, we

started by measuring the system call requirements for

a number of applications. Table 1 shows the num-

ber of unique calls in each application. Since Linux

2.4.22, the OS kernel being used, has 270 system

calls, this means that less than 25% of the total pos-

sible system calls were seen in each application.

While we do not have actual compaction data at

the time of this writing, a prototype implementation

is nearing completion, and we expect to have de-

tailed experimental results shortly. We are encour-

aged by the results of manual application of the ideas

described here, which have yielded significant reduc-

tions in the size of the kernel. For example, we trans-

formed a binary of roughly 1.1 Mbytes to a little over

500 Kbytes, for a size reduction of roughly 45%.

Further compaction. To date, we have been con-

servative and restricted our attention to specific parts

of the kernel identified through simple reachability

analysis. One of the goals of our research is to ex-

pand this scope and make more dramatic semantic

transformations. For example, if it is known that

none of the applications make explicit use of the net-

working facilities, we would like the customizer to

Program No. of unique syscalls

bison 31
calc 54

screen 67
tar 58

Table 1: Unique system calls per program

eliminate the networking stack. Another possibil-

ity to be explored is the use of the specification file

to provide high-level information that can then be

assimilated by Charon and used for increasing the

scope of customization. For example, the specifi-

cation file could be used to indicate the hardware

present that could be used to discard unnecessary

drivers. A side effect of removing such drivers is that

indirect jumps can in turn be resolved by converting

them to directed jumps.

4 Future Directions

A binary rewriting system such as Charon opens up

many possibilities beyond compaction. In this sec-

tion we discuss other potential avenues for applica-

tion.

Performance optimization. Another aspect of

customization is that of improving the performance.

A straightforward extension to compaction would be

to optimize for frequently encountered values for

system call parameters. Static or dynamic profile

based analysis (e.g., through value profiling) can

be used to identify such values, which can then be

used to guide specialization through techniques such

as constant propagation, dead code elimination, and

value-based code specialization.

η-kernel: application specific OS. When the set

of target applications is small, it might be feasible

to generate a custom operating system for each set

of applications. We use the term η-kernel to de-

scribe a highly optimized and specialized operating

system. First, application requirements are used to

customize the operating system, which is then opti-

mized through static analysis techniques. Next, pro-

filing and dynamic analysis are used to further tune

the operating system.

OS structuring. The availability of automated

tools allows for drastic changes in the way operating

systems are developed. For example, a simple ap-

plication would be to bridge the gap between micro-

kernels and monolithic kernels. While micro-kernels

have traditionally been associated with clean com-

4



position, modular design, and ease of maintenance

and structuring, they have largely been unsuccess-

ful due to performance reasons. Monolithic kernels

such as Linux on the other hand, are successful for

performance reasons. A simple extension of our ap-

proach would be to structure operating systems as

micro-kernels and then relying on automated tools to

optimize the OS before deployment, possibly by con-

verting the modular structure into a monolithic unit.

Improved understanding of OS structure. The

Linux kernel is a very complicated piece of software

consisting of close to 6 million lines of code and nu-

merous separate source files. While modular, the

kernel code is tightly interconnected with different

components of the kernel using other components,

thereby inducing dependencies between files. Static

analysis can help by making such dependencies ex-

plicit. Specifically, the kernel CFG can be used to

see what other parts of a kernel use a specific piece of

code and vice versa. This makes it easier to predict if

a change in a kernel source file will have undesirable

side effects on the rest of the kernel.

Locating kernel bugs. Source code analysis has

been used to detect possible bugs in code, includ-

ing the Linux kernel source [6, 8]. Charon makes

it possible to do similar analysis without access to

all the source code. The fact that we work on bi-

naries allows us to potentially examine proprietary

code, e.g. device drivers, that are written in assem-

bly or for which the source is not available.

5 Concluding Remarks

This paper has presented our preliminary experi-

ence in developing a new binary rewriting framework

for transforming operating system kernels. This

framework is currently being used to develop au-

tomatic techniques for application-based specializa-

tion. Specifically, we have explored the possibility

of automating the customization process for porting

Linux to embedded systems. The novel contribution

of this research is that it explores the possibility of

completely automating processes that have tradition-

ally been performed by hand by skilled experts. A

number of potential applications have been identi-

fied and are under investigation. We believe that this

framework will open up new and exciting directions,

particularly in the context of small mobile devices.

References
[1] A. Arpaci-Dusseau, R. Arpaci-Dusseau, N. Burnett,

T. Denehy, T. Engle, H. Gunawi, J. Nugent, and

F. Popovici. Transforming policies into mechanisms
with infokernel. In Proc. SOSP, p. 90–105, Oct
2003.

[2] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, safety, and performance in the SPIN
operating system. In Proc. SOSP, p. 267–284, Dec
1995.

[3] R. Campbell, N. Islam, and P. Madany. Choices,
frameworks and refinements. Computing Systems,
5(3):217–257, 1992.

[4] R. Campbell and S. Tan. µ-Choices: An object-
oriented multimedia operating system. In Proc. 5th
HotOS, May 1995.

[5] R. S. Cohn, D. W. Goodwin, and P. G. Lowney. Op-
timizing Alpha executables on Windows NT with
Spike. Digital Technical Journal, 9(4):3–20, 1997.

[6] Coverity, Inc. Linux report. http://linuxbugs.-
coverity.com/linuxbugs.htm, Dec 2004.

[7] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-
level resource management. In Proc. SOSP, p. 251–
266, Dec 1995.

[8] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. In Proc.
SOSP, p. 90–105, Oct 2003.

[9] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel
and language research. In Proc. SOSP, p. 38–51,
Oct 1997.

[10] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and
A. Silberschatz. The Pebble component-based oper-
ating system. In Proc. USENIX Annual Tech. Conf,
June 1999.

[11] R. Muth, S. K. Debray, S. Watterson, and K. De
Bosschere. alto : A link-time optimizer for the
Compaq Alpha. Software—Practice and Experi-
ence, 31:67–101, Jan 2001.

[12] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang.
Optimistic incremental specialization: Streamlining
a commercial operating system. In Proc. SOSP, p.
314–324, Dec 1995.

[13] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis
kernel. Computing Systems, 1(1):11–32, 1988.

[14] B. Schwarz, S. K. Debray, and G. R. Andrews.
PLTO: A link-time optimizer for the Intel IA-32
architecture. In Proc. 2001 Workshop on Binary
Translation (WBT-2001), 2001.

[15] C. Small and M. Seltzer. VINO: An integrated
platform for operating systems and database re-
search. TR-30-94, Harvard CS Laboratory, Cam-
bridge, MA, 1994.

[16] A. Srivastava and D. W. Wall. A practical system for
intermodule code optimization at link-time. Jour-
nal of Programming Languages, 1(1):1–18, March
1993.

5


