
A Resource Allocation Framework for Global Service-Oriented Networks

Justin Cappos, John Hartman

University of Arizona

Gould-Simpson, Rm. 749

Tucson, AZ 85719

(520) 621-2738

Fax: (520) 621-4246

fjustin,jhhg@cs.arizona.edu

Submitted to SRMPDS. This paper will be presented

by Justin Cappos.

Abstract

We study the problem of allocating resources on global

networks where there is no central administrative control.

We describe a framework that abstractly describes a num-

ber of components that are necessary in an auction system

to provide users with a secure trading environment. We

propose solutions for specific issues relating to auction

granularity, cost/value effective bidding, bids on large re-

source sets, currency control, and computationally effec-

tive auction resolution. We then describe the application

of our framework to PlanetLab and how the components

would be implemented on this system.

Keywords: Resource Allocation, Conditional Bids,

Escrow, Resource Reservation

1. Introduction

Effectively managing the allocation of resources on a het-

erogeneous, distributed network is a daunting task that

faces many worldwide networks today. We abstractly de-

fine a framework for resource allocation that uses virtual

currency and bidding. We then discuss how this frame-

work would be applied to PlanetLab[14] to support the

sort of programs and services that the PlanetLab user

community is interested in running.

We broadly propose to solve the problem of decid-

ing which users are granted resources on specific nodes

in the system. Although a number of other groups have

proposed solutions to this problem [1, 3, 5, 9], we solve

it in a novel manner that does not have the problems that

plague other systems.

In most systems, users wishing to gain resources gen-

erally either must wait for bidding intervals to obtain re-

sources or may only gain resources in a short term / best

effort manner. We accommodate the different needs of

those users who want to run a new job immediately, those

users who are happy to take any “spare” resources avail-

able on systems, and those users who are running large

scale, long running programs. We believe that many users

will want to run large scale programs from time to time

and that they should not require mechanisms outside of

the auction system to do so.

In addition, resource allocation systems must ensure

that a stable base for service programs is available in

the system. Our framework supports long-term trading

of resources which helps to provide a static resource set

to support these programs. In addition, many services

and programs require resource guarantees so we consider

Lottery Scheduling [20] or proportional sharing schemes

[9] unacceptable to many users. Our system also facili-

tates the secure exchange of provable receipts by services

in exchange for resources. We believe the negative social

effects of refusing to honor a provable receipt are suffi-

cient to keep services honest.

A key concern to users of any resource allocation sys-

tem is the mechanisms involved in the bidding process.

If the system is difficult to use or lacks flexibility and

power then users will not use it. From an informal poll

we learned that PlanetLab users are interested in being

able to place bids that are cost/value effective, descrip-

tive, take into account metrics not handled by the system,

are conditional on the outcome of other bids, and are easy

to phrase. Another concern is that users want to be able to

make bids depending on whether or not other bids are re-

solved. Many systems use XOR based bidding languages

to build complex bid types[1]. One problem with pure

XOR based bids is that the size can grow tremendously

when attempting to do complex queries. For example, an

XOR based bid able to request between fifty to one hun-

dred nodes would result in one bid item for each number

between fifty and one hundred (and that is assuming that

the system can find a set of any n nodes without intro-

ducing more XOR constructs!). We use a different mech-

anism to provide users with additional resources as long

as it is cost effective.

We provide an explicit mechanism for converting vir-

tual funds for real funds in the system. We believe that

when a user is spending something equivalent to real



funds they will make a more careful evaluation of deci-

sions.

We use the term service to mean a set of distributed

and cooperating programs delivering some higher-level

functionality to end-users, other services, or the infras-

tructure itself.

Throughout this document the term user will be used

to refer to what is likely a human driven interaction.

Buyer and seller are also implicitly human agents. There

is no reason why computer controlled agents may not per-

form these actions, but the examples will assume human

interaction.

2. Challenges

There are many challenges for providing efficient, pre-

dictable, fair, and secure resource allocation in a global

network.

� A global network will necessarily span multiple

administrative domains. Users and services from

each domain generally care more about getting the

resources they need than the overall fairness and

stability of the system. Furthermore, there isn’t

a central authority that can step in and resolve re-

source request disputes.

� The resources in such a system are heterogeneous,

if for no other reason than different resources are

located at different geographic locations within the

network. The quantity of resources available at

different locations within the network may vary

greatly. The location of resources with respect to

other devices in the network also is a key concern

for many applications.

� Resource allocation should be efficient. Resources

should not go unused when there is sufficient de-

mand. The allocation mechanism itself should not

require excessive amounts of resources.

� Users who bid on large resource sets should not

have to pay significantly more than the sum of the

individual resource costs.

� Resource allocation should be predictable and un-

derstandable by users in the system. Users should

feel currency has true value and be able to estimate

reasonable bid values.

� The language for expressing resource requests

should be expressive enough to capture a service’s

complex needs, while remaining easy to use for

simple requests.

� Resource requests must incorporate marginal costs,

allowing users to express their desire for additional

resources if they are cost-effective.

Resolution

Bid Currency

Manager

Backs Sec. 5.3

Sec. 5.3.1 Sec. 5.3.2

Resolution

Bid Currency

Manager

Sec. 5.3Backs

Sec. 5.3.1 Sec. 5.3.2

Sec 5.4

Zap

Interaction

...

In
cr

ea
si

n
g
 a

u
ct

io
n
 f

re
q
u
en

cy

In
creasin

g
 reso

u
rce d

u
ratio

n

Trusted

Resource
Reservation

Sec 4.1

Sec 4.2

On−demand
Services
Sec 4.4

Auction
Sec 4.3

Allocation Enforcement

Allocation Authority

Escrow Service

Sec. 5.1.1

Sec. 5.1.2

Sec. 5.2

Figure 1: This is an overview of the layered architecture

we build a resource management system upon.

� Resource discovery and allocation must be inte-

grated so as to produce good allocations without

requiring undue amounts of resources to do so.

3. Overview

We are developing a resource allocation system to ad-

dress these challenges (Figure 1). There are three main

components of the system. The lowest level is resource

reservation, which is responsible for enforcing the cur-

rent allocation of resources for programs. In the middle

is trusted interaction, which is an escrow service that al-

lows mutually untrusting parties to safely exchange re-

sources and currency. At the highest level is resource

allocation, which is responsible for deciding how to allo-

cate resources to the various programs that require them.

Each of these is addressed in the following sections.

3.1. Resource Reservation

At a low level the system must be responsible for acting

on the resource allocation decisions. This layer provides

real guarantees of resources and gives hard limits to pro-

grams to ensure they stay within their allowed resources.

This layer also tracks which users own resources and

which programs are being funded with those resources.

Users may directly change the funding or ownership by

directly contacting the resource reservation system. We

use this layer to give us a secure interface for changing



resource allocation on a node and to enforce resource al-

location decisions.

3.2. Trusted Interaction

Any system that promotes the open exchange of valuable

items requires a method to securely exchange items be-

tween mutually untrusting parties. We provide a facility

that handles such transactions in a secure way. This layer

is also used to provide receipts for services in exchange

for currency or resources.

3.3. Resource Allocation

Resource allocation is handled by Backs, an auction sys-

tem that allows users to buy and sell resources. We run

copies of Backs with different resource granularities and

bidding intervals to allow users to get different time in-

crements of resources for different prices. This prevents

users from being forced into a set bidding schedule (such

as needing to bid every hour for resources on a program

you wish to run for months or being forced to bid one

week in advance for a one hour chunk of resources).

3.3.1. Bid Resolution

Backs has a bid resolution component that allows users to

submit complex bids and have them resolved in the sys-

tem. We use approximation algorithms to handle com-

plex bids and allow the bidder to pay for processing re-

sources to resolve their bid. XOR based bidding schemes

that use decoupled resource discovery [11] and bid res-

olution [1] have efficiency issues. For example, a bid

for any ten nodes so that no two nodes have internode

RTT > 100ms results in a tremendous number of an-

swers from the resource discovery system. Using XOR

based bidding schemes to evaluate these results is not ef-

ficient. We integrate resource discovery and bid resolu-

tion to allow us to quickly and efficiently approximate

such queries. Users should be able to place bids that are

cost/value effective, descriptive, take into account met-

rics not handled by the system, are conditional on the

outcome of other bids, and are easy to phrase. Our bid

resolution mechanism provides all of the above.

3.3.2. Currency Manager

The currency manager regulates resource prices, avoid-

ing sharp swings in prices. A problem in many systems

is that the value of currency fluctuates so wildly it is dif-

ficult for users to use the system or determine what is

an acceptable bid for resources. We solve this problem

by regulating the amount and value of currency in the

system through the currency manager buying and selling

resources. We will experiment with mild inflation and

taxation as other methods to regulate currency and pro-

vide incentive for users to spend funds in the short term

(as funds either grow less valuable through inflation or

recede through taxation over time).

Another problem in auction systems is user indiffer-

ence when spending currency. A user can build up cur-

rency over a long period of disuse of the system and then

when they need something, bid a tremendous amount of

currency. We make resource and currency decisions of

more consequence to users by allowing users to exchange

virtual and real currency. We assume that when a user

is spending something equivalent to real funds they will

make a more careful evaluation of decisions.

3.4. On-demand services

Services may discover they need additional resources im-

mediately, perhaps to cope with unexpected demand. To

handle this situation, at the top of the auction hierarchy is

a “buy it now” service called Zap. Zap is the convenience

store of the system. There users can buy a small limited

set of resources at any time but for a proportionally high

price. Zap purchases resources from Backs by attempting

to determine future users’ needs. While waiting for a user

to purchase its resources, Zap funds highly interruptible

programs. This provides us not only with better utiliza-

tion of the system, but also resources on-demand in the

system.

The end result of our auction system is a forum that

is fair in the handling of user requests and allows users

an easy way to obtain resources to run desired programs

in a reasonable amount of time. Our system also pro-

vides long-running programs the resources that they need

to continue operation.

4. PlanetLab Prototype

This section describes a prototype implementation we are

developing for PlanetLab.

4.1. Resource Reservation

Resource Reservation is described above as a single en-

tity, but on PlanetLab it is divided into two subcompo-

nents to leverage existing tools for resource allocation:

allocation enforcement and allocation authority.

4.1.1. Allocation Enforcement

PlanetLab currently has a system called Sirius that han-

dles resource reservations. Sirius has been given an al-

location of resources that it can re-allocate to other pro-

grams. The mechanism is fairly crude at the moment,

but the goal is to give those users that assign programs to

”wait in the Sirius queue for their turn” as much CPU ca-

pacity as they would have received during quieter times

rather than thrash in an overloaded system. So concep-

tually, Sirius is a resource control mechanism on Planet-

Lab. We intend to work with David Lowenthal to modify



Time

C
P

U
 Q

u
an

ti
ty

 R
es

er
v
ed

Node B CPU Allocation

Time

C
P

U
 Q

u
an

ti
ty

 R
es

er
v
ed

Node A CPU Allocation

Allocation Authority (justin) Allocation Authority (justin)

Stork (justin) Stork (jhh)

CoDeen (vivek, llp) CoDeen (vivek, kyoungso)

SWORD

(davidopp)

DHARMA

(maoy)

SHARP (bnc)

Sophia (mhw)Zap

(dkl) Escrow Service (jhh)

Figure 2: Example CPU resource allocation information

for two nodes can be viewed as a table with time on the

x axis and resource amounts on the y axis. The user will

have an area on the graph corresponding to a set of re-

sources they control for a period of time. Each node may

have a different quantity of each resource and thus may

have a different total area of resources. The program

names are succeeded by the funding users (in parenthe-

sis). Note that multiple users are able to pool resources

to fund the same program (as is the case for CoDeen).

Sirius to meet the resource allocation demands for our

framework and separate out the ”queuing”, etc. portions

of Sirius into a separate service.

4.1.2. Allocation Authority

The allocation authority controls who owns resources on

each node. This service maintains a local table (see

Fig. 2) that is used by the allocation enforcement soft-

ware to limit the resources used by specific programs.

The individual node software is responsible for enforcing

resource usage boundaries. The purpose of the allocation

authority is to provide a secure interface for modification

of which users have ownership of specific resources and

to allow those users to fund different programs with those

resources.

The allocation authorities schedule resource intervals

in small time blocks (perhaps 6 hours) on PlanetLab.

However, users may freely reassign those resources to

fund different programs at any point. The allocation au-

thority keeps information about what resources are re-

served for different users from the current time period

into the future.

Sites may want to give resources to specific services

to attract them to deploy on a node. For example, the

Stork service [19] provides package management and

disk space saving functionality so it is desirable for both

users and nodes to have it deployed, thus many nodes

may freely give resources to it over long periods of time.

4.2. Escrow

The escrow service facilitates the exchange of resources

and currency within our system. It allows mutually un-

trusting users to perform transactions through a trusted

third party.

The escrow service runs on a few nodes and acts as an

intermediary for transactions. The basic model is that a

set of users will come to an agreement upon a set of trans-

actions. For example, User A wants to trade resources

with User B. User A and User B will get a unique trans-

action ID marked with a time from the escrow service

and they will each sign a copy of the proposed transac-

tion. Each transaction consists of the parties involved, a

Transaction ID, and a timeout (if the transaction cannot

be completed within this time it is canceled and owner-

ship is returned to the original owners). After this docu-

ment is submitted to the escrow service, each user must

transfer ownership of the resources specified to the es-

crow service. Assuming this all completes within the

timeout period, resources are then transferred by the es-

crow service to the applicable users.

The escrow service uses the allocation authority’s in-

terface to perform transactions. This means that other

services that use this interface to handle transactions may

use the escrow service to interact. For example, in Stork

we will use escrow transactions to gain the disk space

necessary to install a new package for a program. Stork

and the user funding the program will sign a transaction

where Stork gives a “receipt” for the package in exchange

for the disk space the user provides. Notice that this will

not prevent the user from being cheated in such a case (by

Stork maliciously refusing to install the package), but the

user is provided with proof that they were cheated.

4.3. Backs

Backs represents a central tradinghouse where users buy

and sell resources. Instead of requiring users to barter

directly for resources [5], Backs uses a virtual currency

to match buyers and sellers automatically. Bids for re-

sources and the sale of resources are provided to Backs

via the escrow service (described in Section 4.2). Backs

charges a small fee to bidders to discourage frivolous bid-

ding and also to recoup the resource costs of running the

Backs program (see Section 4.3.2).

Backs provides users with a “receipt” that either their

bid will be met for at most the agreed price or the user will

be refunded their currency. In the same way users who

sell resources will be refunded their resources or given

at least that amount of currency at the conclusion of the

auction.

Some systems use a marginal cost ranking [3] to or-

der bids and then handle them individually. One problem

with this is that it becomes very difficult for users to get

large sets of resources. Consider an example where we

have 3 users who are bidding on resources on 3 equivalent

nodes. Suppose each of these users wants the resources

on one node. If a new user wants to get resources on any

one of these nodes, they need only bid more than the low-

est bidder. If this new user instead wanted resources on

all 3 nodes, they would need to bid more than the highest



bidder per node. In other words, you must bid enough

currency so that your marginal cost is higher than the

users who are competing for the resources you need.

In addition, items like inflation or taxation (see Sec-

tion 4.3.2) are more problematic for users requesting

large jobs because loss of a percentage of value implies

that they lose more value.

To offset the disadvantages of large bids we use a

modified marginal cost system. We rank bids according

to a formula a

x

r

y

where a is the amount of the bid and r is

the quantity of resources the user is bidding on. In such

a formula, a pure marginal cost ranking is represented by

x = y, while we prefer to tilt the ranking towards higher

bid amounts thus in our system x > y. We intend through

experimentation to discover sane parameters for the x and

y values which set the ranking in our system.

Backs first orders bid requests according to our mod-

ified marginal cost formula and then resolves each bid in-

dividually. When attempting to resolve individual bids in

an auction, Backs resolves the bid in an attempt to max-

imize total bid surplus in the system (similar to the ap-

proach used in [12]).

4.3.1. Resource Queries

Users should have the ability to issue requests in an un-

derstandable bidding language that is flexible and pow-

erful. While the speed of bid resolution is important,

queries must also be:

� cost/value effective: Users want to be able to place

bids that will provide them with a certain subset of

resources and then additional resources as long as

it makes sense economically.

� descriptive: Users should be able to put forth re-

quests that obtain nodes on separate sites, that pro-

vide for the best network coverage, that correspond

to a low latency group and many other factors. The

requirements of the user shouldn’t change to meet

the constraints of the query language.

� flexible: Users may have program specific metrics

in their requests (for example nodes in separate

BGP ASes, nodes connected by DSL links, etc.).

Thus users should have the ability to request nodes

based upon metrics that we cannot predict without

requiring us to modify the query system.

� conditional: A user may wish to only submit ad-

ditional bids if previous bids meet a specific out-

come. For example, users may want to bid on re-

sources for a completely different program if their

original requirements aren’t met.

� simple to use: Users want to be able to easily put

forth complex requests without learning a strange

query language. Requests should “make sense”

and yet be flexible enough to state any reasonable

request.

Backs provides a resolution mechanism to address

these concerns and issues.

Requests for complicated resource descriptions are

processed using time purchased by the bidder. Backs al-

lows complicated resource query types and use approxi-

mation algorithms to determine the feasibility of the bid.

One approach is to separate resource discovery from

the bid resolution mechanism [1]. The resource discov-

ery phase finds all resources that meet the user’s require-

ments; the resource allocation phase finds the cheapest

subset. A problem is that it is not efficient to have the

resource discovery mechanism return a huge number of

answers that all must be sifted through to find a feasible

bid. For example, if we request a set of resources on any

five PL nodes that have internode RTT < 100ms, there

will be a tremendous number of matches. Giving this

output as input to the bid matching system results in a

tremendous amount of slowdown because it considers all

cases.

We believe that the resource discovery mechanism

must be tightly integrated with the bid resolution mecha-

nism for efficiency. As a result, we combine the resource

discovery and bid resolution steps to form an approxima-

tion algorithm that attempts to minimize cost while max-

imizing the accuracy of the match. For example, a user

may spend a small amount of currency that pays for their

bid computation time and then request a set of resources

on a set of nodes that provide the best network coverage

of the Internet. The system spends a small number of

seconds of processing time in order to compute the best

approximation with a low cost for their request. The al-

gorithm discards matches and removes nodes that are too

expensive early on in the algorithm in an attempt to speed

up processing time.

Backs allows users to use built in approximation al-

gorithms to certain problems that allow expressive bid

types. We consider many simple problems that can be

solved optimally such as bids based upon sets of nodes

(a request for any 10 nodes that have the applicable re-

sources). We also consider hard problems such as the K-

clique problem, graph centers problem, dense subgraph

problem, etc. The user may choose to tradeoff the accu-

racy of the solution for the cost of the resources.

For example, users can request resources on nodes so

that all the links obey a property (such as < 100 ms RTT

time or have at least 5 IP hops) which is the K-clique

problem. In addition, the user may value the total intern-

ode latency of the selected nodes as a 1/1 proportional

factor of the cost. In other words, if we can reduce the to-

tal internode latency by 1/2 we are willing to pay twice as

much. One way of gaining an acceptable answer would

be to use a simple greedy algorithm to choose a cheapest

node and then choose the cheapest nodes with low latency



and continue this process until we have a match (backing

out and trying other nodes if this attempt doesn’t work).

Now that we have a solution to the problem, we know we

can discard any other solutions that have greater cost. So

we may aggressively discard high cost nodes and quickly

backtrack out of fruitless paths to more quickly refine our

search. We are currently developing other techniques to

give approximate solutions to problems of interest.

Another problem is that in order to consider metrics

in the bidding process they must be part of the resource

discovery mechanism. This means that users must lobby

for modifications to the existing system to be able to bid

based upon new metrics. We believe that the diversity of

our user group may be such that they will be interested

in metrics the system has not measured. Backs provides

a system where users may place their own metrics for

nodes in the system that will be evaluated when perform-

ing bid resolution.

Users may place their own metrics for bids by pro-

viding a valuation for nodes or links along with their bid.

The purpose of such a list of values is to allow Backs

to compute queries based upon metrics without needing

to measure or understand them. For example, a query

might be submitted that references the node’s BGP Au-

tonomous System Number. The corresponding bid may

request a set of 25 nodes that have distinct BGP ASNs.

In this way we allow users the flexibility to specify their

own metric types that are submitted along with their bids.

To state another example, suppose that a user only wants

to deploy their program on nodes where a certain service

is running, for example Stork. Stork may post a list of

values on their website that lists the nodes on which it is

running and then users can upload this to allow their bids

to take this factor into account without requiring Backs to

understand anything about Stork.

To provide a similar functionality to XOR bids while

solving the problem of having the quantities of bids grow

tremendously, Backs allows users to submit conditional

bids that will only be submitted if the original bid reached

a specified outcome. The user may request the consider-

ation of a bid given the acceptance or rejection of a pre-

vious bid.

Conditional bids are useful in many cases including

gaining additional resources as long as it is economically

feasible or attempting to gain resources of a different type

in the case that the first set is not available. For example,

to request resources on any 50 to 100 nodes in our lan-

guage a user would place a bid for 50 nodes and then

attach a success conditional bid that adds a node until the

bid funds have been exhausted or there are 100 nodes.

In addition, we support the notion of adding resources

as long as it is cost/value effective through conditional

bids. The user submits a bid for the minimal set of re-

sources that they need to be able to run their program.

As a success conditional bid, they request additional re-

sources a piece at a time until there are no longer benefi-

cial resources available for the amount they are willing to

spend per unit.

4.3.2. Valuing Virtual Currency

The universe in which Backs works (the set of resources

total in the system along with the set of currency) pro-

vides a model which we attempt to regulate through sev-

eral mechanisms to increase and decrease the value of

currency.

Backs allows users to exchange real currency and vir-

tual currency. This allows virtual currency to have true

value to users and provides users with a real incentive not

to waste currency. It also causes resources to be valued

by the users in the system as resource use is indirectly

linked to currency.

Backs also regulates the amount of currency in the

system by purchasing long-term resources from Resource

Managers and selling those resources. If Backs wishes to

remove currency from the system, it will charge more for

those resources it puts up for auction and purchase long-

term resources for low amounts. Conversely, to add cur-

rency to the system it will purchase long-term resources

for higher amounts and sell resources in the short term

for low values.

Similarly, to discourage hoarding of currency, we will

intentionally introduce mild inflation into the system to

grease the wheels of commerce [8]. The gradual infla-

tion means that the currency that is in a user’s account

will only decrease in value the longer they maintain it.

Periodically, when the currency is inflated to the point

where a single unit of currency has little value we will

perform a system wide “currency exchange” which ef-

fectively halves the amount of currency in the system to

prevent the number of currency units from becoming un-

wieldy. We intend for currency exchanges to be rare (per-

haps once a year). In this case, all users of Backs will be

notified in advance of the exchange. As input in our sys-

tem, we have a “currency type” that will be incremented

with every exchange and requests in terms of old currency

will be automatically converted.

We automatically regulate the currency in the system

by the use of a Currency Manager which has a notion of

the value of resources in terms of real currency (based

upon hardware costs, resources in the system, etc.) and

attempts to keep a rough balance in the system. As the

number of resources in the system changes, it will in a

similar manner alter the amount of currency in the system

to compensate. It also decides by looking at the level of

inflation upon the timing of the currency exchanges.

The bid fee in Backs is used to allow Backs to be able

to “pay for itself” and recoup the cost of computing bids.

Backs can recover enough currency through charging a

fee for bids to purchase enough resources to run itself. In

other words, Backs acquires enough resource value from



incoming bids to support the cost of resources to operate

it. We intend to fluctuate the bid fee slightly in Backs also

to regulate currency in the system.

4.4. On-demand resources

Services may suddenly require additional resources. Sub-

mitting a bid and waiting for the next auction to complete

may not be acceptable. The solution to this problem is

Zap, a service that provides on-demand resources to users

at a fixed price. Conceptually, Zap is a version of Backs

that runs with infinite auction interval and has short re-

source durations.

Zap is a service that optimistically purchases re-

sources it thinks on-demand users may wish to use for

their program. It is not privileged in that it is considered

to be a Backs user, the same as any other user request-

ing resources. It makes a determination based upon what

it was able to sell in the past and attempts to predict fu-

ture requests and usage. It then charges a premium on

those resources which are being transferred to users as

they realize the need. It is conceptually a convenience

store for PlanetLab resources, with Backs representing

ordering groceries for delivery from a supermarket. Zap

has limited selection and higher prices but items are avail-

able at all times.

The resources of Zap go to waste until they are pur-

chased by a user (if ever). There are many programs

that can use resources in a piecemeal fashion to compute

part of a larger problem (such as SETI at home [17], The

Great Internet Mersenne Prime Search [6], etc.). Zap dis-

tributes and funds such programs on nodes (for a very

low price) until those resources are purchased by another

user. This aspect of Zap is similar to the DAWGS system

[10] proposed by David Lowenthal.

5. Future Work

As this is a design document, we have a significant por-

tion of the system left to implement.

We intend to experiment with different bid surplus

distribution schemes based upon resource valuation, us-

ing the second-trade model as a baseline.

The amount and type of currency value regulation is

also an area where we intend to experiment and analyze

different approaches to see what works well in our sys-

tem.

Many aspects of the design of the bid query language

have been left underspecified.

6. Acknowledgements

We would like to thank Larry Peterson, David Lowenthal,

Michael Stepp, and Prasad Boddupalli for their helpful

comments and suggestions. We would also like to thank

Patrick Homer for subconsciously planting the name Zap.

7. References

[1] AuYoung, A., Chun, B., Snoeren, A., Vahdat, A., “Resource Allocation

in Federated Distributed Computing Infrastructures”, Proceedings of the

1st Workshop on Operating System and Architectural Support for the on

demand IT InfraStructure, 2004.

[2] Burrows, A., Abadi, M., Needham, R., “A logic of authentication”, ACM

Transactions on Computer Systems, 1990.

[3] Chun, B., Ng, C., Albrecht, J., Parkes, D., Vahdat, A., “Com-

putational Resource Exchanges for Distributed Resource Allocation”,

http://berkeley.intel-research.net/bnc/papers/share.pdf

[4] Foster, I., Kesselman, C., “Globus: A Metacomputing Infrastructure

Toolkit”, International Journal of Supercomputer Applications, 11(4):115-

128, 1997.

[5] Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A., “SHARP: an archi-

tecture for secure resource peering”, Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles, 2003

[6] Mersenne Prime Search. http://www.mersenne.org/prime.htm

[7] Grid. http://www.globus.org.

[8] Inflation - Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Inflation

[9] Lai, K., Rasmusson, L., Adar, E., Sorkin, S., Zhang, L., Huberman, B.,

“Tycoon: an Implementation of a Distributed Market-based Resource Al-

location System”, http://arxiv.org/pdf/cs.DC/0412038

[10] Lowenthal, D., Peterson, L., Hartman, J., Cappos, J., E-mail discussion

about DAWGS and Backs, September, 2004

[11] Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A., “Distributed re-

source discovery on PlanetLab with SWORD”, First Workshop on Real,

Large Distributed Systems (WORLDS ’04), December 2004

[12] Parkes, D., Kalagnanam, J., Eso, M., “Achieving budget-balance with

vickrey-based payment schemes in exchanges”, In Proceedings of Interna-

tional Joint Conference on Artifical Intelligence, pages 1161-1186, 2001.

[13] Peterson, L., “Dynamic Slice Creation”, PDN-02-005 Draft, 2002.

[14] Peterson, L., Anderson, T., Culler, D., Roscoe, T., “A Blueprint for Intro-

ducing Disruptive Technology into the Internet”, PDN-02-001, 2002.

[15] Peterson, L., Roscoe, T., “PlanetLab Phase 1: Transition to an Isolation

Kernel”, PDN-02-003, 2002.

[16] Sandholm, T., Subhash, S., Gilpin, A., Levine, D., “Winner Determination

in Combinatorial Auction Generalizations”, ACM AAMAS, 2002

[17] SETI@home: Search for Extraterrestrial Intelligence at home.

http://setiathome.ssl.berkeley.edu/

[18] SSH. http://www.ssh.com/.

[19] Stork. http://www.cs.arizona.edu/stork/.

[20] Waldspurger, C. A., Weihl, W. E., “Lottery Scheduling: Flexible

Proportional-Share Resource Management”, Proceedings of the First

Symposium on Operating Systems Design and Implementation (OSDI

’94), pages 1-11, Monterey, California, November 1994


