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Abstract

Remote code injection attacks against computer systems

are occurring at an alarming frequency. A crucial aspect

of such attacks is that in order to do any real damage,

the injected attack code has to execute system calls, and

therefore can be foiled by suitably hardening the system

call interface. Most current proposals for doing so, how-

ever, suffer from various shortcomings, such as relying

on special compilers or libraries, or incurring huge run-

time overheads, or being vulnerable to mimicry attacks.

This paper describes a systematic approach to defending

against remote code injection attacks that uses two com-

plementary techniques: cryptographic signatures to pro-

tect system calls themselves, and compiler-based tech-

niques to hide code fingerprints that could be exploited

for mimicry attacks. Experiments indicate that our ap-

proach is effective against a wide variety of attacks at

modest cost.

1 Introduction

Worms, viruses, denial of service attacks, and other se-

curity incidents are occurring at an alarming frequency

despite the increased attention being paid to computer

security [13]. These attacks utilize a variety of system

vulnerabilities ranging from careless users (e.g., click-

ing on executable email attachments), to lax system ad-

ministration (e.g., default, weak, or non-existent pass-

words), to vulnerabilities in the system or application

programs (e.g., buffer overflows). While compromis-

ing even a single machine can cause significant dam-

age, the largest overall impacts are typically caused by

self-propagating attacks (such as the Slammer, Sasser,

�This work was supported in part by the National Science Founda-

tion under grants EIA-0080123 and CCR-0113633.

or Nimda worms) that exploit a common vulnerability

to automatically spread to a large number of machines.

Such attacks are often based on code injection into a run-

ning program. In a typical attack scenario, a remote at-

tacker exploits some software vulnerability, such as lack

of protection against buffer overflows, to introduce at-

tack code into the system. The system is then “tricked”

into executing this code, thereby allowing the attacker to

obtain control of the application.

Taking control of an application is, however, not enough

to be useful to an attacker. In order to do any real

damage—such as create a root shell, install or change

permissions on a file, or access proscribed data—the at-

tack code needs to interact with other parts of the system

by executing system calls. If the attack code can be pre-

vented from doing this, the intruder will not be able to

gain control over the machine. The system call interface

is therefore a crucial defense point against intrusions.

In this paper, we describe a systematic defense against

code injection attacks that uses a combination of crypto-

graphic and compiler-based methods to harden the sys-

tem call interface. Specifically, we use two complemen-

tary techniques, system call signing and fingerprint hid-

ing, to prevent attack code from executing the system

calls it requires to gain control. Our approach is based on

using an installer program to transform the executables

of applications and user-level system software such as

daemons before execution. Specifically, the installer per-

forms two types of transformations. The first is to mod-

ify each system call to include a signature constructed

using standard cryptographic techniques, thereby creat-

ing a signed system call. This signature is then used by

the kernel at runtime to verify that the system call was

not created or modified by malicious code. The second

1



transformation hides fingerprints—that is, the binary pat-

terns associated with specific code segments—to prevent

attack code from using such patterns to locate and ex-

ploit existing system call stubs and functions that make

system calls. It does this by randomly relocating and

modifying a program’s basic blocks using correctness-

preserving compiler transformations.

Our approach has many features that make it practical

and effective. One is that it is fully automated, requir-

ing only that a system administrator run the installer for

each application and service that executes on the ma-

chine. It also does not require access to the source code,

and works for both statically and dynamically linked

executables. Another advantage is that it does not re-

quire keeping the algorithms or the approach itself secret,

since the signing security is based on cryptographic tech-

niques and the fingerprint hiding is based on randomiza-

tion. The random nature of fingerprint hiding techniques

makes it nontrivial to detect the different types of vari-

ations introduced in programs. The overhead of the ap-

proach is moderate (see section 4), depending primarily

on the strength of the cryptography used, and is mostly

incurred at installation time rather than at run time. Fi-

nally, the approach not only prevents code injection at-

tacks, it also makes it more difficult for an attacker to

install new software (e.g., backdoors, password sniffers,

DDoS bots1 ) on an otherwise compromised machine.

While other research efforts have addressed buffer over-

flow attacks and the system call interface, none pro-

vides techniques as effective, efficient, and well-founded

in cryptography and compiler techniques. Most of this

research has focused on ways to prevent code injec-

tion attacks from happening, with proposals ranging

from techniques for detecting potential buffer overflows

[20, 26, 27], to approaches for preventing the execution

of attack code [6, 16, 17], to dynamic decryption tech-

niques to disrupt the execution of the attack code [8, 24].

The first two approaches have the drawback of requir-

ing that applications be recompiled using special com-

pilers, header files, and/or libraries, which makes it diffi-

cult to apply them to third-party software whose source

code may not be available (they may also be vulnerable

to carefully crafted attacks [11, 31]). The third approach

incurs extremely high performance overheads on stock

hardware. Recently, the system call behavior of pro-

grams has received considerable attention in the context

of intrusion detection [18, 23, 25, 34, 37, 39, 40]. The

main drawback of such systems has been their reliance

on maintaining application specific state in the kernel.

1DDoS (distributed denial of service) bots, or DDoS zombies, are

programs that are installed on compromised machines and that launch

DDoS attacks against a given target on command.

This paper focuses on remote code injection attacks. We

assume that our algorithms are known to the attacker,

but not the secret keys used to protect applications on

a particular system. We also assume that the actual ap-

plication executable on the machine being attacked is not

available to the attacker for offline analysis or reverse en-

gineering. The attacker may have access to the source

code or other transformed versions of the same appli-

cation, but—because of randomizing transformations—

they are likely to be different from the particular exe-

cutable on the particular computer that is being attacked.

In other words, we assume some level of inscrutability,

in that the attacker has no way to directly determine the

instruction sequence or layout of the code being attacked.

The rest of this paper is organized as follows. Section 2

explains our approach in detail and describes how it pre-

vents the different types of code injection attacks. The

implementation details of the approach are described in

section 3. We currently have two prototype implemen-

tations of the approach, one using Linux kernel modifi-

cations and the PLTO binary re-writing tool, and another

using an unmodified version of Linux running on the Xen

virtual machine monitor [7]. Section 4 provides prelim-

inary experimental results of the approach including the

performance overhead and evaluation of the effective-

ness of the approach. We describe the related work in

more detail in section 5 and section 6 summarizes the

contributions of the paper and outlines future work.

2 Our Approach

Our approach is based on transforming binary program

executables by applying the techniques of system call

signing and code fingerprint hiding. These transforma-

tions are performed by an installer program that is ex-

ecuted only by a system administrator authorized to in-

stall software on the particular computer. For system call

signing, the administrator provides the installer a secret

key used for cryptographic functions in the installer. The

installer is a binary rewriting tool that reads in the binary

executable of the program to be installed, disassembles

it, and constructs a control flow graph for the program.

The installer then locates the system calls in the binary,

for example, by scanning the code of the binary for oc-

currences of the ‘int 0x80’ system call interrupt in-

struction. Finally, it computes the signature at each sys-

tem call in the program, modifies the system call to pass

this signature to the kernel, transforms the control flow

of the program to hide fingerprints, and then writes the

transformed binary back to disk. The system call sign-

ing transformation is described in detail in Section 2.1

and the fingerprint hiding transformations are described

in Section 2.2.
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2.1 Signed System Calls

The key idea behind system call signing is to associate

additional information, a signature, with a system call, in

a manner that is difficult for an attacker to forge. The sig-

nature can then be checked within the OS kernel to verify

that it is a legitimate system call from a properly installed

program. The signature is constructed, and verified, us-

ing a cryptographic function and a secret key. Depending

on the type of cryptographic function used, the key may

be shared by the kernel and the program that constructs

the signature (the installer program) or the key used by

the kernel to verify a signature may be publicly known

while the key used to construct the signature is secret

(public key cryptography [32]). In either case, the secret

key used to construct the signature is never stored in the

application program, where it is potentially accessible to

attack code. Rather, the secret key is only provided to the

installer program when it is run, and the installer uses the

key at installation time to construct the signatures.

2.1.1 Constructing System Call Signatures

Cryptographically signed components of a system call

are difficult for attack code to alter. For example, if (the

string address of) the file name being passed to an open
system call is part of its signature, then any attempt by

attack code to change that argument, to point to a differ-

ent string, will be detected by the kernel when it checks

the signature. Intuitively, therefore, the larger the set of

values encompassed by a signature, the fewer openings

there are for attack code to exploit. More formally, the

coverage of the signature can be defined as the metric of

how much of the system call is protected by the signa-

ture. It is therefore natural to try and maximize the ex-

tent of coverage achieved. Ideally, the signature should

protect the system call number, the address of the sys-

tem call,2 and all the system call parameters (passed in

registers or the stack). If a signature covers the location

of a system call, the attack code cannot reuse that signa-

ture for another system call at a different location. For

the system call arguments whose values are known, e.g.,

using standard program analysis such as constant propa-

gation , the signature can protect either the value of the

argument, or—for address arguments—the dereferenced

value, i.e., the value pointed at (e.g., the character se-

quence for the string "/bin/csh"). If the parameter

address is covered, the attack code cannot replace the ar-

2By the “address of a system call” we mean the address of the in-

struction following the ‘int 0x80’ interrupt instruction. Since this

address is pushed onto the stack by the hardware as a side effect of exe-

cuting the system call interrupt, i.e., immediately before control passes

to the kernel, this value cannot be spoofed by attack code, and therefore

serves as a reliable indicator of the location from which the system call

was invoked.

gument with one at a different address. If a parameter

value is covered by the signature, the attack code cannot

modify or replace that argument with a different value.

While signing the system call number is straightforward,

there are more subtle issues with signing the location and

argument values of a system call, involving a tradeoff of

code size vs. extent of coverage obtained. For exam-

ple, while the system call address is known and can be

signed at installation time for statically linked binaries,

the address is not known for dynamic libraries. For a

program for which we want increased protection, there-

fore, we can create a statically linked executable that

contains all the libraries that it requires: this results in

a larger executable that is less vulnerable to attacks. We

have a similar size/security tradeoff for system calls (or

library routines) called from multiple call sites with dif-

ferent constant arguments. In such situations, we can in-

line the system call (or library routine) into each call site,

thereby generating specialized versions of the code, each

having its own set of signed parameters (the parameters

to functions in dynamic libraries are typically not known

at installation time, so they cannot be signed).

As this discussion indicates, a system call signature has

to convey information about those aspects of a system

call that are known at program install time; the informa-

tion necessary to allow the kernel to retrieve the argu-

ments from the appropriate locations; and, for each ar-

gument, whether or not the argument value is signed. A

signature therefore consists of the following information:

� system call number: the original system call num-

ber;

� argument order: the order in which the actual sys-

tem call arguments are passed to the kernel (as dis-

cussed in section 2.2, the installer randomly per-

mutes the argument order at each system call loca-

tion);

� signature coverage: describes which arguments of

the system call have been covered by the signature

and if the call address is covered by the signature;

and

� argument and system call address signature: A

CRC over the system call address (if known) and

the argument values/addresses (if known). If nei-

ther is known, this field is filled with random bits.

This information is encoded into a bit sequence that is

then encrypted using a cryptographic algorithm and a se-

cret key. In our current implementation this information

3



is encoded in 64 bits. Note that the system call num-

ber itself is included in the signature and is not passed to

the kernel in the clear. The main reason for hiding the

system call in this manner is to hide the fingerprint as-

sociated with this system call stub. The argument order

is also related to fingerprint hiding, see Section 2.2. The

fact that the system call number is included in the sig-

nature also allows us to use the register that would have

passed the system call number to the kernel to store part

of the signature instead.

2.1.2 Using System Call Signatures

When the operating system kernel receives a signed sys-

tem call, it decrypts the signature using its key. It then

verifies the signature by making sure the decrypted in-

formation consists of a valid system call number and

syntactically valid argument order and signature cover-

age descriptions. It then uses these descriptions to calcu-

late a CRC over the covered address and the arguments,

and compares this to the one included with the signature.

Only if everything matches does the kernel execute the

system call. If the signature does not match, the kernel

can be configured to perform a choice of actions includ-

ing logging the event, alerting the operator, and killing

the process that issued the incorrectly signed system call

by executing the exit system call.

2.2 Hiding Code Fingerprints

While signed system calls prevent injected attack code

from constructing a system call and invoking it directly,

it may be possible for a sophisticated attack to indirectly

invoke a system call already in the program, e.g., by find-

ing and jumping to the beginning of a suitable library

function. The fingerprint of such a function is any char-

acteristic property of the function that the injected code

can use to locate it; for example, the address of the func-

tion, if known to the attacker, is a trivial fingerprint.

To launch an indirect attack, the attack code can simply

jump to some fixed address where it expects to find code

that will lead to the desired system call (a known-address

attack). Alternatively, it can use pattern matching with

specific instruction sequences to identify code, such as

library routines or system call stubs, that will eventu-

ally lead to the desired system call (a scanning attack).

Such attacks rely on the program being attacked being

predictable in some way: either having a particular rou-

tine at a predictable address, or having some predictable

byte sequence that can be used to identify some routine.

These attacks can therefore be handled by randomizing

the structure of the programs in such a way as to destroy

such predictability. This can be done using two basic

techniques: code layout randomization and elimination

of distinctive byte sequences within the code.

Code layout randomization involves randomizing the or-

der in which the functions in a program appear in the exe-

cutable, as well as randomizing the order of basic blocks

within each function (in the latter case, it may obviously

be necessary to add additional control transfer instruc-

tions to preserve program semantics) [19]. In principle,

the attack code could overcome the effects of layout ran-

domization by, in effect, disassembling the program and

constructing its control flow graph, thereby essentially

reverse engineering the program. While this is possi-

ble in principle if we assume no limits on the time and

space utilization of the attack code, it would require the

injected attack code to be dramatically larger, and more

sophisticated, than attacks encountered today. More-

over, such reverse engineering by the attack code can

be thwarted using binary obfuscation techniques [28],

which inject “junk bytes” into an executable to make dis-

assembly algorithms produce incorrect results.

We use two complimentary techniques for eliminating

distinctive byte sequences. For the system call stubs, we

use system call homogenization and argument random-

ization. For all basic blocks, we break code fingerprints

by using random code insertion. All system calls are ho-

mogenized by adding dummy arguments to system call,

so that all system calls appear to take the same number

of arguments.3 This is done since information about the

number of arguments can, in principle, be used by attack

code to help identify specific system calls. As the next

step, the order of arguments is randomized. This may

cause, for example, the filename argument to an open
system call to be passed, say, in the fourth argument po-

sition. Each system call location in a program has its

own argument permutation, which means that two dif-

ferent calls to open in the same program could pass the

arguments in different orders. The information about the

actual argument order is passed to the kernel as part of

the signature.

Random code insertion disrupts attacks that scan for spe-

cific byte sequences by periodically inserting into the

text stream (randomly chosen) instruction sequences that

do not alter program semantics, but which change the

byte sequence for the program text [19]. Examples of

such instruction sequences include: nops and instruc-

tion sequences that are functionally equivalent to nops,

e.g., ‘add $0, r’, ‘mov r, r’, ‘push r; pop r’,

etc., where r is any register; and arithmetic computations

into a register r that is not live. In each case, we have

3The maximum number of arguments taken by any system call in

Linux is 6, so system call homogenization makes every system call

appear to take six arguments in our implementation.
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to ensure that none of the condition codes affected by

the inserted instructions is live at the point of insertion.

The approach can be enhanced using binary obfuscation

techniques [28]. The higher the frequency with which

such instructions are inserted, the greater the disruption

to the original byte sequence of the program, as well as

the greater the runtime overhead incurred. One possi-

bility to determining a “good” insertion interval would

be to compare the byte sequences of all the functions

(and libraries) in a program to identify, for each function,

the shortest byte sequence needed to uniquely identify

that function in that program; and thereby determine the

length of the shortest byte sequence that uniquely identi-

fies any function. Any insertion interval smaller than this

length would be effective in disrupting such signature-

based scanning attacks. It is worth noting that some ad-

vanced viruses, e.g., encrypted and polymorphic viruses,

use a similar mechanism for disguising their decryption

engines from detection by virus scanners [35, 44].

3 Implementation Approach

This section describes our implementation of a prototype

system to evaluate the efficiency of the techniques.

3.1 Securing Application Binaries

Address in
signature

System call
number

19

CRC Checksum

6 1

Argument Order

824

Address Value
Signed Signed

6

Figure 1: System Call Signature

In our prototype implementation, a system call signature

consists of a 64-bit sequence as shown in Figure 1. It

encodes the system call number, argument order, signa-

ture coverage and a CRC over the various fields making

up the coverage. The bit sequence is encrypted using the

DES algorithm using a key shared between the installer

and the OS kernel. The signature is placed in memory,

and the system call passes its address to the kernel in the

eax register.4

We used the PLTO binary rewriting toolkit [33] to per-

form user level transformations for protecting applica-

tions. It uses constant propagation to identify the system

call number for each system call. The implementation

adds dummy operations where necessary, so that all sys-

4Normally the eax register is used to pass the system call number.

In our case, the system call number is part of the signature, and so does

not have to be passed separately.

tem calls have the same number of arguments, then ran-

domly permutes the arguments of each system call. The

permutation order is recorded in the signature, so that the

kernel can recover the arguments, in the right order, af-

ter it decrypts the signature. Our current implementation

does not perform address and value signing of system

call arguments, which we leave as a future extension.

Our tool also carries out various semantics-preserving

transformations to hide code fingerprints (see Section

2.2). In particular, it inserts randomly selected instruc-

tion sequences that are semantically equivalent to nops

into the instruction stream roughly k instructions apart,

where k is slightly less than the average number of in-

structions per block; currently, these nop-sequences are

chosen to be between 1 and 4 instructions in length. It

also performs code layout randomization, randomly per-

muting both the basic block layout within functions as

well as the order of functions within an executable. Sec-

tion 4 demonstrates that the performance overhead due

to these transformations is modest.

Our current implementation handles only statically

linked binaries. This is not due to any limitations of

our approach, but because of restrictions in the under-

lying binary rewriting tool PLTO [33]. We are working

on extending PLTO to handle dynamically linked exe-

cutables. After PLTO has been extended, our approach

can be used directly to support dynamic linking: each

library is signed and randomized through the installer,

as described earlier. In addition, to prevent indirect and

known address attacks that utilize features of dynamic li-

braries, we will randomize the library entry points and

sections (GOT and PLT) of the ELF binary, and unmap

portions of the symbol table. The exact details of these

procedures are beyond the scope of this paper. Note,

as mentioned earlier, that dynamic linking reduces the

coverage of the signature since items such as return ad-

dresses can no longer be included in the signature.

3.2 Handling Signed System Calls

It is necessary for the operating system to decrypt system

call signatures and use them to process the system call

arguments. If source code is available for the OS ker-

nel, then one alternative is to modify the kernel source

to handle system call signatures. This has the advantage

of having lower performance overhead and is ideal for

target environments such a small mobile devices (e.g.,

cell phones) where system overheads are a premium for

performance, power etc. Alternatively, kernel modifica-

tions can be avoided by handling the signed system calls

in a virtual machine before they are passed to the kernel.

This also has the advantage of supporting multiple under-

lying operating systems simultaneously (e.g., Windows
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and Linux). We experimented with both approaches, as

described below.

3.2.1 In-kernel interception

Interception in the kernel is done by modifying the soft-

ware trap handler. Typically the software trap handler is

responsible for identifying the system call number, based

on the contents of the eax register, invoking the appro-

priate system call handler and returning the result to the

calling application. We modified the handler to call a

routine that decrypts the signature using DES and veri-

fies the signature. If the checks succeed, the parameters

are rearranged according to the argument order informa-

tion passed as part of the signature, after which control

is passed to the original system call handler identified

through the original system call number. In case the

checks fail, the process is terminated gracefully by in-

voking the exit() system call.

Interception in the kernel involved modifying the

entry.s file and adding about 200 lines of source code

for the signature decryption and verification routines.

3.2.2 Interception through a VMM

It may not always be feasible or practical to modify an

operating system kernel to support signed system calls.

In this case signed system calls can be implemented

through a virtual machine monitor (VMM) without mod-

ifying the kernel. A VMM provides a virtual machine

abstraction to the kernel, fooling it into thinking it is run-

ning on the bare hardware when in fact it is not. The

basic idea behind implementing the signed system calls

in the VMM is that when an application issues a system

call, it causes a system call trap on the real hardware.

This trap is caught by the VMM, which then invokes a

virtual system call trap in the virtual machine. The oper-

ating system running in the virtual machine catches this

trap just as if it occurred on the real hardware.

The signed system call functionality can be implemented

without modifying the kernel by placing it in the system

call trap handler in the VMM. When the VMM gets the

trap, it invokes the routine to verify the system call signa-

ture. If the checks succeed, the parameters are modified

as necessary and control passed to the operating system

in the virtual machine. The operating system then pro-

cesses the system call without any knowledge of signa-

tures. If the checks fail, then the offending process re-

ceives a general protection fault, causing the process to

be terminated.

We implemented a prototype of this in the Xen [7] VMM

running an unmodified version of Linux. This required

less than 50 lines of code to be added to the Xen sys-

tem call handler. To simplify introducing code into Xen,

we currently turn off Xen’s fast trap mechanism, which

speeds up system calls. This results in somewhat higher

overheads for signed system calls in this implementation.

3.3 Signature Caching

To mitigate the cost of in-kernel decryption of system

call signatures on mobile systems, such as cell-phones,

where performance and power are a concern, we can add

a software cache in the kernel. Each cache line con-

tains the 3-tuple hreturn address, signature, decrypted

signaturei. The idea is to use the return address of a

system call as the index into the cache. Each time a sys-

tem call is made, the corresponding entry in the cache

is checked to see if the return address and the signature

matched. If they do, the cached decrypted signature is re-

turned; otherwise decryption is carried out as usual and

the previous entry is overwritten with the new value.

As shown in Section 4, signature caching has the ef-

fect of amortizing the cost of in-kernel decryption over

a large number of system calls, and thereby dramatically

reduces the average cost of a signed system call. These

savings can be attributed to the fact that programs typi-

cally contain a few system calls that are repeatedly called

from the same location.

Our prototype implementation uses a 100-line cache.

The source code for maintaining the cache is fewer than

40 lines long.

4 Experimental Evaluation

This section describes experiments performed to evaluate

the effect of these transformations on a 3.2 GHz Pentium

IV system with 1 GB of main memory running Fedora

Core 1 with a Linux 2.4.22 kernel. The experiments are

described in two sets, the first aimed at testing the in-

creased resilience to malcode injection through known

attack techniques. The second set demonstrates the per-

formance overheads imposed by these techniques.

4.1 Attack Experiments

Broadly speaking, a remote code injection attack begins

by exploiting a software vulnerability to inject and exe-

cute some attack code. The execution of the attack code

eventually results in (or is intended to result in) the ex-

ecution of an appropriate system call. Most reported at-

tacks differ in the details of the specific vulnerability that

was exploited to inject the attack code, and/or the partic-

ular actions that were carried out once the attack gained

control of a system. Because the focus of our work is on
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Type of attack Attack Outcome

Regular System Protected System

Simple Code injection attack succeeded attack failed

(shell access) (process exited without shell)

Jump to known address attack succeeded attack failed

(shell access) (segmentation fault)

Fingerprint based scanning attack attack succeeded attack failed

(shell access) (unable to find pattern)

Hijacking system call parameters attack succeeded attack failed

(shell access) (process exited without shell)

Table 1: Attack experiments and their Outcomes

hardening the system call interface between an applica-

tion and the OS kernel, neither of these facets of attacks

is relevant to this paper: we focus, instead, on the manner

in which the attack code causes a system call to be exe-

cuted. Furthermore, we would like to be able to explore

attacks that may not even have occurred “in the wild.”

For these two reasons, we used synthetic attacks to eval-

uate our ideas. We used four different synthetic attacks,

each of them examining a different way to execute a sys-

tem call, and each therefore representative of a whole

class of “real” attacks. The mechanisms incorporated

into our synthetic attacks were based on exploits from

[3, 4, 5], viruses [2] and worms [1, 36]. The attacks were

targeted at a synthetic program which contained several

exploitable features such as an overflowable buffer and

direct calls to the execve function.

Simple Code Injection

The simplest attacks involved injecting malicious code

into the stack or heap of an executing program and then

executing the malicious code, which invoked a system

call directly. Most reported code injection attacks fall

into this category [3, 4, 5].

Our experiment was based on injecting exploit code

through a known buffer overflow in the vulnerable pro-

gram (note that the nature of the exploit used to inject

and execute the attack code—e.g., buffer overflow, heap

overflow, double free, format string vulnerability, etc.—

is not important for the purposes of these experiments).

The attack was able to compromise the unmodified sys-

tem but failed on the protected system. Code injection

was successfully carried out even in the protected sys-

tem, but when the malicious code tried to invoke a signed

system call, this was detected and the process terminated.

In case of long running processes such as web servers,

restarting the process as described in [12] would be an

alternative to terminating the process.

Jumping to known address

Knowing that the malicious code can not make system

calls directly, an attacker could try an jump to the address

of a known system call. Since source code is available to

the attacker – system call locations can be identified eas-

ily by disassembling the compiled program. This allows

the attacker to exploit the uniformity shown in general

systems and predict with a high probability the addresses

at which functions exist. A number of platform neutral

distributions of exploits demonstrate this observation.

Our attack experiment was based on identifying the lo-

cation of the execve system call and jumping to it. In

the unmodified system, the attack succeeded in compro-

mising the system. In the protected system, the buffer

overflow succeeded in injecting attack code, but because

code addresses had changed due to randomization of the

binary’s layout, the injected code jumps to the wrong ad-

dress, causing the attack to fail.

Scanning for signatures

The next set of attacks model function fingerprint based

attacks. The goal here is to use function fingerprints of

varying lengths to identify the location of a system call.

This mechanism is used in more sophisticated attacks

such as the slapper worm.

Our attack experiments used two distinct scanning at-

tacks, one using a 12-byte signature and the other a 32-

byte byte signature to identify the execve system call.

The 12-byte signature was based on the identifying the

two-byte sequence 0xcd80 (the binary encoding of the

system call interrupt instruction ‘int 0x80’) with the

appropriate system call number, while the 32-byte signa-

ture used a byte sequence from the start of the function.

The signature identification techniques, based on both

substring and subsequence matching, used in our exper-

iments was more sophisticated than techniques used in

real exploits. The attack succeeded in the unprotected

system and resulted in giving shell access. On the pro-
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tected system the attack code was unable to locate the

execve system call.

Hijacking a known system call

The final exploits were based on hijacking parameters

to a known system call, i.e., replacing the arguments to

a legitimate system call with different values of the at-

tacker’s choice. Our experiment scanned the program

looking for the execve system call, and replaced its ar-

guments to try and invoke a shell. The exploit succeeded

on the unprotected system and resulted in giving shell

access. On the protected system the attack was not able

to identify the execve call or its parameters to perform

replacement.

To demonstrate the efficacy of our proposed value and

address signing techniques, we repeated the same ex-

ploit on an un-randomized binary. The location of the

execve call was the same as in the original program so

was the parameter ordering. Address and value signing

were enabled and indicated in the signature. While the

attack was successfully able to replace the parameters at

user level and pass it in to the system call, the attack was

detected by the kernel since the signatures did not match

and the process terminated.

4.2 Effect on performance

The following set of experiments discuss the effect of

signatures and randomization on the performance of a

system based on the in-kernel interception approach. We

begin with a description of micro-benchmarks which

show that signatures impose a reasonable overhead. Next

the effect on overall system performance is reported.

Micro-benchmarks

System call signing and fingerprint hiding via code ran-

domization introduce two sources of overheads: the de-

cryption and verification costs, and potential overheads

due to increased argument passing, since each system

call now takes six arguments.

Table 2 presents the overheads introduced by these tech-

niques on a per system call basis. To measure the ef-

fect of these techniques on individual system calls each

system call was executed in a tight loop of 10,000 iter-

ations, and the total number of cycles taken measured

using the Pentium processor’s rdtsc instruction, which

reads a 64-bit hardware cycle counter. The last row of

Table 2 indicates the measurement overhead – the differ-

ence between two consecutive rdtsc instructions. Each

experiment was repeated 12 times, the highest and low-

est readings discarded, and the average of the remaining

10 readings are presented in Table 2. Column 2 gives the

number of cycles required to execute an unmodified sys-

tem call on an unmodified kernel; columns 3 and 4 show

the effect of code randomization alone; columns 5 and

6 show the effect of system call signing and fingerprint

hiding; and columns 7 and 8 show the effects of adding

a decryption cache as discussed in Section 3.3.

It can be seen, from Table 2, that the effect of code ran-

domization alone is small, typically ranging from 1.1%

to 6.9%. The largest percentage increases are obtained

for brk and getpid, and the smallest for read. Not

surprisingly, when signatures are added, the cost in-

creases noticeably, ranging from 9.1% for read() to

about 50% for brk(). However, much of this increase

can be recovered by adding a decryption cache, which

amortizes the in-kernel decryption cost over several sys-

tem calls, and thus brings the costs down to essentially

that for code randomization alone.

Our experiences with a prototype system based on the

interception in the Xen virtual machine are similar.

Though, in this case disabling the ”fast trap” mechanism

led to higher overheads in the signed versus unsigned

system call cost : as expected the highest percentage

increase was for getpid (245%) and the smallest for

read (16%).

Effect on overall application runtime

To discuss the effect of these techniques on overall per-

formance of applications, we compare the running times

of the original program and the protected version. 14 ap-

plications as described in Table 3 were selected for cre-

ating a benchmark suite. These programs are classified

as either CPU or system call intensive as shown in the ta-

ble: the CPU-intensive programs are from the SPECint-

2000 benchmark suite, while the system call intensive

programs are a collection of common applications that

incur a large number of system calls. The programs were

compiled using gcc 3.2.2 at optimization level -O0, with

additional flags to create statically linked relocatables

which were then processed using our binary rewriting

tool, PLTO. Three types of executables were created us-

ing PLTO: untransformed binaries corresponding to the

unmodified program, randomized binaries in which the

dead code insertion and layout transformations were per-

formed and finally signed binaries in which apart from

randomization, system calls were signed using DES en-

cryption.

Our experiment consisted of measuring the time taken

for each program to execute a fixed set of inputs. The

time utility was used to measure the amount of time

taken by each program and the amount of time per pro-

gram computed as a sum of the user time and system

time. Each program was repeated 12 times, the highest

and lowest measurements discarded and the mean of the

8



Original Randomization Rand. + Signatures Signature caching

System Call Cost Cost Overhead Cost Overhead Cost Overhead

(cycles) (cycles) (%) (cycles) (%) (cycles) (%)

getpid() 1263 1328 5.1 1880 48.8 1332 5.5

gettimeofday() 1470 1572 6.9 2159 46.9 1575 7.1

read(4096) 5841 5874 5.6 6370 9.1 5828 0.0

write(4096) 23946 24210 1.1 29876 24.8 25943 8.3

select() 2083 2176 4.5 2754 32.2 2267 8.8

brk() 1247 1333 6.9 1876 50.4 1325 6.2

rdtsc cost 84 88 88 88

Table 2: Micro-benchmarks : Effect of transformations on individual system call performance

Program Name Type Description

bzip2 CPU file compression program from SPEC INT 2000 benchmark.

gzip-spec CPU file compression program from SPEC INT 2000 benchmark.

crafty CPU Game playing (Chess) program from SPEC INT 2000 benchmark

mcf CPU combinatorial optimization program from SPEC INT 2000

vpr CPU FPGA circuit and routing placement from SPEC INT 2000

twolf CPU Place and route simulator from SPEC INT 2000

mpeg play syscall Video decoder and player

pftest syscall Tester for the physical layer of a database

webserver syscall Simple single threaded webserver

copy syscall File copying program

gcc syscall & CPU Gnu C compiler from SPEC INT 2000

vortex syscall & CPU Object oriented database from SPEC INT 2000

pyramid syscall Multidimensional database - index creation and range queries

gzip syscall file compression program

Table 3: Benchmark suite

remaining 10 experiments computed. This value is re-

ported in Table 4.

As seen in Table 4 randomization does not impose a sig-

nificant performance overhead: on an average the per-

formance overhead for the 14 applications was about

4.07%. Performing system call signing on randomized

binaries increases the average overhead to 5.44%. Note

that in some of the CPU intensive benchmarks the aver-

age time taken for the execution of signed and random-

ized binaries was less that of the unsigned binaries. This

can be explained by the fact that the installer random-

izes each program in a different way. pftest was the

only program where either of the techniques imposed an

overhead of greater than 10 %. This unsual overhead

can attributed to the relatively small execution time of

the pftest program. The last column describes the ef-

fect of adding a decryption cache. Not surprisingly the

benefits of caching are reflected more in the system call

intensive programs. pyramid shows the greatest im-

pact and the overhead is reduced to less than half of the

original value.

Effect on code size

Another side-effect of code randomization is an increase

in the program code size. Table 5 describes the percent-

age increase in program code size computed by using the

objdump -d program | wc -c command. The

numbers presented in columns 2 and 3 of Table 5 indi-

cate the number of number of bytes in the text sections

of the binary.

On an average program size increased by about 4:7%,

with gcc showing the largest increase ( 9:75%) and vor-

tex the least (1:58%). Even though the frequency of junk

code insertion was relatively high, at least 1 junk instruc-

tion per 4 instructions, the size of the junk instructions

(typically 1 byte) was less than the average instruction

length (about 2.9 bytes). This explains the smaller than

expected increase in program code size.

9



Program Original Randomization Rand. + Signatures Signature Caching

Run time Run time Overhead Run time Overhead Run time Overhead

(secs) (secs) (%) (secs) (%) (secs) (%)

bzip2 191.70 200.51 4.59 197.06 2.80 197.69 3.12

gzip-spec 152.34 155.48 2.06 154.45 1.38 153.88 1.01

crafty 107.57 114.03 6.00 114.31 6.26 114.25 6.20

mcf 236.38 242.09 2.41 242.29 2.50 239.41 1.28

vpr 220.44 226.45 2.72 235.81 6.97 229.32 4.03

twolf 396.94 408.89 3.01 408.71 2.96 407.41 2.64

mpeg play 93.93 95.66 1.84 96.18 2.39 95.43 1.60

pftest 0.070 0.080 14.28 0.081 15.71 0.080 14.28

webserver 0.059 0.061 3.39 0.062 5.08 0.061 3.39

copy 0.88 0.92 4.54 0.94 6.81 0.92 4.54

gcc 90.21 95.43 5.78 97.61 8.20 94.58 4.84

vortex 165.55 171.86 3.81 173.43 4.76 172.65 4.29

pyramid 2.52 2.55 1.11 2.74 8.73 2.61 3.50

gzip 2.69 2.72 1.14 2.73 1.64 2.72 1.14

Average 4.07 5.44 3.99

Table 4: Performance overhead

Our final experiment measured the cost of performing

address and value signing in the kernel. A copy program

was set up by manually signing the parameters of the

read and write system calls. Both the calls take in three

arguments, the first an integer file descriptor, a char array

and an integer representing the size. The values of the

first and the third parameter along with the address of the

second were used in computing the checksum. In the ker-

nel the checksum computed is checked against these val-

ues. The average cost of each system call, measured by

instrumenting the original program with rdtscl coun-

ters went up by about 200 cycles.

4.3 Discussion

This section briefly discusses various practical aspects

with our approach. The first part of this section argues

the pragmatism of this approach. Finally we present the

attackers perspective and show that attacking any sys-

tem with the intent of propagating the attack eventually

comes to a dead end without the ability to perform sys-

tem calls.

Usability and compatibility with tools

Our approach does not compromise the usability, main-

tainability or seriously hurt performance of existing ap-

plications. Debugging and development tools such as

gdb, strace etc can continue to be used in the modified

system. Modifying strace involved a handful of modifi-

cations in the strace source code. Our installer can easily

be extended to support automatic upgrades and patches.

The simplicity of the approach and its deployment en-

sure that unseen vulnerabilities, which may eventually

be exploited to attack the system, are unlikely to be in-

troduced.

Customizability

Our approach can be configured in several ways to

adapt to deployment scenarios. Our technique is general

enough to be uniformly applicable to a wide range of

systems ranging from embedded devices to web servers.

During deployment customizing the system is easy and

a matter of choosing between different policies. For ex-

ample, while our current implementation chooses to log a

message and terminate processes that make unauthorized

system calls, it is straightforward to change this, e.g., to

restart the process, without changing the overall security

model. The underlying algorithm can be also customized

depending on the deployment site requirements, e.g., for

cheap decryption, certificate verification can be chosen

as an alternative to DES in an embedded context without

affecting the protection offered by the approach.

Attacking the system

Preventing the attacker from issuing system calls

severely restricts the capabilities of the attacker. The op-

erations that can be performed, and in effect the dam-

age possible is strictly restricted to within the address

space of a given host process. In order to cross address

spaces the attacker needs invoke a system call. Opera-

tions that can be performed by an attacker without issu-

ing system calls, are restricted to scanning the processes

address space and requesting intra-address-space func-

tions. The OS maintains each process in its own address
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Program Program Size (bytes) Increase

Original Randomization Rand. + Signing (%)

bzip2 5,667,562 5,846,338 5,857,143 3.34

gzip-spec 5,900,779 6,009,818 6,021,233 2.04

crafty 7,343,326 8,010,146 8,022,412 9.25

mcf 5,190,011 5,297,951 5,308,146 2.28

vpr 6,653,956 7,064,919 7,075,114 6.33

twolf 7,546,058 8,087,422 8,098,024 7.32

mpeg play 15,802,993 16,715,412 16,736,194 5.90

pftest 5,271,729 5,396,150 5,408,077 2.59

webserver 5,899,141 6,064,041 6,077,953 3.03

copy 5,059,821 5,161,010 5,161,756 2.01

gzip 5,997,845 6,260,194 6,273,141 5.49

gcc 20,983,110 23,016,807 23,029,652 9.75

vortex 11,350,087 11,518,789 11,359,811 1.58

pyramid 5,264,248 5,466,860 5,475,263 4.01

Average 4.69

Table 5: Size overhead

space and not only regulates any communication across

address spaces, but also regulates all changes to system

state. Performing any operation such as installing a back-

door, giving shell access etc changes the state of the sys-

tem and hence requires OS interaction. Since the attacker

is not able to issue system calls he will not be able to

change the state of the system and all his damage is re-

stricted to the process that is targeted.

5 Related Work

A number of projects have proposed a variety of obfus-

cation techniques to prevent code injection attacks from

making system calls. Chew and Song proposed a num-

ber of techniques, including permuting system call num-

bers, to make the system call interface less vulnerable to

attack code [14]. Our approach goes well beyond such

techniques, for example, instead of just obfuscating the

system call numbers, our signing approach makes it pos-

sible to protect not only the system call number, but also

additional attributes of the system call, such as its loca-

tion, the values of known arguments, etc. Note that this

makes it possible to handle attacks that exploit existing

system calls in a program by changing their arguments,

e.g., by sending the name of a different file argument

to open. Finally, it allows the OS kernel to detect and

deal intelligently with signature mismatches, e.g., by ter-

minating the responsible process or signaling an intru-

sion; by contrast, with a simple permutation of system

call numbers, a system call invoked from the attack code

has unpredictable (and, potentially, problematic) results.

Bhatkar et al. propose the use of address obfuscation

to foil known-address attacks [10]. The idea is to ran-

domize the base addresses of the stack, heap and code

regions, and add gaps within stack frames and at the end

of memory blocks requested by malloc. [43] is a similar

technique based on dynamically and randomly relocat-

ing contents of a program’s address space during startup.

While these techniques are effective against known ad-

dress attacks, they are susceptible to the scanning attacks

described in this paper. We view these as complementary

to ours and are investigating their application in extend-

ing our approach to handle local and insider attacks.

There is a wide body of literature on defending against

code injection attacks. A number of researchers have

proposed static program analysis to detect potential vul-

nerabilities such as buffer overflows [20, 26, 38]. When

applied thoroughly, such schemes have the advantage

of not letting an attacker even to begin an attack. One

disadvantage of such schemes is that they require that

programs be recompiled using special compilers. This

makes it difficult to apply them to third-party software,

where the source code is unavailable and the conditions

under which the binary was produced are not known.

Other proposals, such as StackGuard [17] and Format-

Guard [16], aim to prevent control transfers to the attack

code. As in the previous case, such schemes require that

programs be recompiled using special compilers, include

files, and/or libraries, making them difficult to apply to

third-party software. Moreover, they can be bypassed by

well-crafted attacks (see, e.g., [11, 31]). There has been

some recent work on disrupting the actual execution of

attack code by means of “instruction set randomization”
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[8, 24], but current proposals for this have the drawback

of high execution overheads in the absence of specialized

hardware support. Rabek et al., propose monitoring the

origin of library calls for the Windows operating system

to prevent misuses of critical functions [30]. Their par-

ticular approach suffers mostly due to the fact that inter-

cepting attack code at this level is vulnerable to mimicry

attacks that “spoof” the return address on the stack. The

approach can also be bypassed by the scanning attacks

described here.

The idea of constructing semantic models of “legitimate”

system call behaviors for a program in terms of se-

quences of system calls, and monitoring departures from

such models, was proposed by Forrest et al. [18, 23, 40]

and subsequently explored by a number of researchers

(see, for example, [25, 34, 37]). A drawback to this ap-

proach is that it is vulnerable to specific mimicry attacks

[39]. Also related is the work of Bernaschi et al., who

propose modifications to the Linux operating system to

regulate the usage of security-critical system calls [9].

System calls are intercepted at the kernel level and are

validated based on rules stored in database. An example

rule is validation of arguments known to be valid or safe.

A drawback of this approach is that it requires manual

encoding of access control rules for individual system

calls and applications. Furthermore, all of the above ap-

proaches require the kernel to maintain fair amount of

state information related to each application, while our

approach only requires the kernel to maintain one key.

The use of NOP-insertion and code layout randomization

to obfuscate code structure were proposed by Forrest et

al. [19]; however, this work does not describe an imple-

mentation or provide experimental results. Other work

along these lines is that of Wroblewski [42]. Many of

these ideas can be traced to Cohen’s work on system di-

versification [15]. Additional techniques for binary ob-

fuscation, to hamper static disassembly, are described by

Linn and Debray [28].

Imposing application specific restrictions through sand-

boxing is another technique that can be considered as re-

lated work. System call signing can be viewed as a sim-

ple yet efficient way of implementing a sandbox. In com-

parison to existing techniques [21, 22], our implementa-

tion offers significant speedups. Performance Signatures

as have been proposed for intrusion detection can be

viewed as extensions of address and value signing. While

performance signatures rely on monitoring dynamic be-

havior of a program, our techniques rely inferring val-

ues through static program analysis. Our techniques can

also be viewed as orthogonal yet relevant to the con-

tainment approaches [41, 29] being proposed to handle

propagatory worm attacks. While these approaches em-

phasize regulating the network interfaces, our focus has

been on the host’s system interface. Most containment

techniques try to throttle propagation from an already in-

fected host; by contrast, our goals are to make it difficult

to infect a host.

6 Conclusions

The increasing prevalence of remote code injection at-

tacks against computer systems makes it increasingly

important to develop effective countermeasures against

such attacks. A crucial aspect of such attacks is that, in

order to do any real damage, the attack code must in-

voke one or more system calls: if the attack code can

be prevented from successfully invoking system calls,

the attack will fails. This paper describes a novel de-

fense against code injection attacks that uses a combi-

nation of cryptographic and compiler-based methods to

harden the system call interface. The idea is to use cryp-

tographic signatures to protect the arguments to system

calls, together with compiler-based code randomization

techniques to hide code fingerprints that could be used

for mimicry attacks. We have evaluated our ideas using

two experimental systems: one, suitable where source

code for the OS kernel is available, where the operating

system kernel is modified to decrypt and validate system

call signatures; and another, suitable where source code

is not available, where this is carried out using a virtual

machine monitor. Our experiments indicate that our ap-

proach is effective in thwarting code injection attacks at

modest cost.
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