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Abstract

We present a study of the static structure of real Java bytecode programs. A total of 1132 Java jar-files were
collected from the Internet and analyzed. In addition to simple counts (number of methods per class, number of
bytecode instructions per method, etc.), structural metrics such as the complexity of control-flow and inheritance
graphs were computed. We believe this study will be valuable in the design of future programming languages and
virtual machine instruction sets, as well as in the efficient implementation of compilers and other language processors.

1 Introduction

In [15], Donald Knuth examined FORTRAN programs collected from printouts found in a computing center. Among
other things, he found that arithmetic expressions tend to be small, which, he argued, has consequences for code-
generation and optimization algorithms chosen in a compiler. Similar studies have been done for COBOL [5, 20],
Pascal [10], and APL [19, 18] source code.

In this paper we report on a study on the static structure of real Java bytecode programs. Using information
gathered from an automated Google search, we collected a sample of 1132 Java programs, in the form of jar-files
(collections of Java class files). The static structure of these programs was analyzed automaticaBpncivigrk,

a tool which, among other things, performs static analysis of Java bytecode.

It is our hope that the information gathered and presented here will be of use in a variety of settings.

For example, information about the structure of real programs in one language can be used to design future lan-
guages in the same family. One example isfihally clause of Java exception handlers. Special instructions
()sr andret ) were added to Java bytecode to handle this construct efficiently. These instructions turn out to be
a major source of complexity for the Java verifier [21]. If, instead, the Java bytecode designers had known (from a
study of MODULA-3 programs, for example) that tfieally clause is very unusual in real programs, they may
have elected to kegpr /ret out of the instruction set. This would have simplified the Java bytecode verifier while
imposing little overhead on typical prograhns

There are many types of tools that operate on programs. Compilers are an obvious example, but there are many
software engineering tools which transform programs in order to improve on their structure, readability, modifiabil-
ity, etc. Such language processors can benefit from knowing typical and extreme counts of various aspects of real
programs. For example, in our study we have found that while, on average, a Java class file has 9.0 methods, in the
extreme case we found a class with 570 methods. This information can be used to select appropriate data structures,
algorithms, and memory allocation strategies.

Our own research is focused on the protection of software from piracy, tampering, and reverse engineering, using
code obfuscation and software watermarking [8]. Code obfuscation attempts to introduce confusion in a program
to slow down an adversary’s attempts at reverse engineering it. Software watermarking inserts a copyright notice

IThefinally clause can be implemented by copying code.



or customer identification number into a program to allow the owner to assert their intellectual property rights. An
important aspect of these techniquestisalth For example, a software watermarking algorithm should not embed a
mark by inserting code that is highly unusual, since that would make it easy to locate and remove. Our goal is to use
the information gathered in this study to develop evaluation models for the stealth of software protection algorithms.

The remainder of this paper is structured as follows. In Section 2 we describe how our statistics were gathered. In
Section 3 we give a brief overview of Java bytecode. In Sections 4, 5, 6, and 7, we present application-level, class-
level, method-level, and instruction-level statistics, respectively. In Section 8 we discuss related work, and in Section 9
we summarize our findings.

2 Experimental Methodology

Table 1 shows some statistics of the applications that were gathered. Figure 1 shows an overview of how our statistics
were collected.

To obtain a suitably random set of sample data, we queried the Google search engine using the key-phrase
“"index of" jar . This query was designed to find web-pages that display server directory listings that con-
tain files with the extensionjar . In the resulting HTML pages we searched for a#y> tag whoseHREFattribute
designated a jar-file. These files were then downloaded.

The initial collection of jar-files numbered in excess of 2000. An initial analysis discarded any files that contained
no Java classes, or were structurally invalid. Static statistics were next gathered uSagdhéark tool.

SandMark [7] is a tool developed to aid in the study of software-based software protection techniques. The tool
is implemented in Java and operates on Java bytecode. Inclu@shdMark are algorithms for code obfuscation,
software watermarking, and software birthmarking. To aid in the development of new algorithms and as a means
to study the effectiveness of these algorithms a variety of static analysis techniques are included. Examples of such
techniques are class hierarchy, control-flow, and call graphs; def-use and liveness analysis; stack simulation; forward
and backward slicing; various bytecode diffing algorithms; a bytecode viewer; and a variety of software complexity
metrics.

Not all well-formed jar-files could be completely analyzed. In most cases this was because the jar-file was not
self-contained, i.e. it referenced classes not in the jar, or in the Java standard library. Missing class files prevents the
class hierarchy from being constructed, for example. In these cases we still computed as much statistics as possible.
For example, while an incomplete class hierarchy prevented us from gathering accurate statistics of class inheritance
depth, it still allowed us to gather control flow graph statistics. SamdMark tool is also not perfect. In particular, it
is known to build erroneous control-flow graphs (CFGs) for methods with complex subroutine structure (combinations
of thejsr andret instructions used for Javafgially  -clause). There are few such CFGs in our sample set, so
this problem is unlikely to adversely affect our data.

Because of our random sampling of jar-files from the Internet, the collection is somewhat idiosyncratic. We assume
that any two jar-files with the same name are in fact the same program, and keep only one. However, we kept those
files whose names indicated that they were different versions of the same program, as show@lgoivez -files
in Figure 1. Most likely, these files are very similar and may contain methods that are identical between versions. It
is reasonable to assume that such redundancy will have somewhat skewed our results. An alternative strategy might
have been to guess (based on the file name) which files are versions of the same program, and keep only the higher-
numbered file. A less random sampling of programs could also have been collected from well-known repositories of
Java code, such asurceforge.net

Giving an informative presentation of this type of data turns out to be difficult. In many applications we will only
be interested iypical values (such amodeor mear) or extreme values (such asin andmay. Such values can
easily by presented in tabular form. However, we would also like to be able to quickly get a general “feel” for the
behavior of the data, and this is best presented in a visual form. The visualization is complicated by the fact that most
of our data has sharp “spikes” and long “tails”. That is, one or a few (typically small) values are very common, but
there are a small number of large outliers which by themselves are also interesting. This can be seen, for example, in
Figure 29(b), which shows that out of the 801117 methods in our data, 99% have fewer than 2 subroutines but one
method has 29 subroutines.

We have chosen to visualize much of our data using binned bar-graphs where extremely tall bars are truncated to
allow small values to be visualized. For example, consider the graph below which shows the number of constants in
the constant pool of the Java applications we studied:
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Figure 1: Overview of how our statistics were gathered.

Table 1: Collected jar-file statistics.

measure count

total number of jar-files 1132

total size of jar-files (MB) 198945317
total number of class files 102688
total number of packages 7682

total number of classes 90500
total number of interfaces 12188
total number of constant pool entries 12538316
total number of methods 874115
total number of fields 422491
total number of instructions 26597868
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Most of our graphs will have the same structure. Along the X-axis we show the bins into which our data has been
classified. On top of each bar the actual count and cumulative percentage are shown. Very tall bars are truncated
and shown striped. In a separate table to the top right of the graph we show the total number of data points, the
minimum, maximum, and average X-values, thedé, the median(the middle value), and the standard deviation.
The SAMPLES/alues is the total number of items inspected for the given statistic, andQiéL value is the total
number of sub-items counted. For example; in the above graptsAMPLESvalue will be the number of classes
analyzed and th€OTALvalue will be the sum of all the constant pool entries over all the classes analyzetOTié
value is only included where appropriate. TR&ILED value gives the number of unsuccessful measurements, when
appropriate.

3 The Structure of Java Bytecode Programs

A Java application consists of a collection of classes and interfaces. Each class or interface is compileldssto a

file. A program consists of a number of class files which are collected together jatdile. A jar-file is directly
executable by a Java virtual machine interpreter. The Java class file stores all necessary data regarding the class. There
is a symbol table (called th@onstant Poglwhich stores strings, large literal integers and floats, and names and types

and of all fields and methods. Each method is compiled to Java bytecode, a stack-based virtual machine instruction
set. Figure 2 shows the structure of the Java class file format. The JVM is defined by Lindholm and Yellin [16].

The Java bytecodes can manipulate data in several formats: integers (32-bits), longs (64-bits), floats (32-bits),
doubles (64-bits), shorts (16-bits), bytes (8-bits), booleans (1-bit), chars (16-bit Unicode), object references (32-bit
pointers), and arrays. The boolean, byte, char, and short types are compiled down into integers.

Bytecode instructions are variable width. Simple instructions su¢adas (integer addition) are one byte wide,
while some instructions (such &bleswitch ) can be multiple bytes. Each method can have up to 65536 local
variables and formal parameters, calgots The bytecodes reference slots by number. For example, the instruction
'load _3' pushes the third local variable onto the stack. In order to access high-numbered slots, axsgecial
instruction can be used to modify load and store instructions to use 16-bit indexes. The Java execution stack is 32-bits
wide. Longs and doubles take up two stack entries and two slot numbers.

Local variable slots are untyped. In fact, a particular slot can hold different types of data at different locations in
a method. However, regardless of how execution reaches a given location in the method, the type of data stored in a
particular slot at that location will always be the same. A static analysis knowstaskasimulatiortan compute slot
types without executing a method.

Some bytecodes reference data from the class’ constant pool, for example to push large constants or to invoke
methods. Constant pool references are 8 or 16 bits long. To push a reference to a literal string with constant pool

2The mode is the most frequently occurring value. This is often — but because of binning not always — the tallest bar of the graph.
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Figure 2: A view of the Java class file format.

number 4567, the compiler would issue the instructida _w 4567’ . If the constant pool number instead fits in a
byte (such as 123), the shorter instructiblc 123  would suffice.

Some information is stored mttributesin the class file. This includes exception table ranges, and (for debugging)
line-number ranges and local variable names.

Tables 3 through 6 give an overview of the Java virtual machine instruction set. Table 2 explains the notation used.

4 Program-Level Statistics

In this and the following three sections we will present the data collected about applications (this section), classes
(Section 5), methods (Section 6), and instructions (Section 7).
Figures 3, 4, 5, and 6 visualize application-level data about the programs we gathered.

4.1 Packages

Classes in Java are optionally organized into a hierarctpaokages For example, Java’'String  class is in the
packaggava.lang , and can be referred to fva.lang.String . As can be seen from Figure 3(a), many Java
programs put all classes into the same package. In fact, half of the 1132 applications we gathered have 3 or fewer
packages, and only 4 have 50 or more.

A packagen is counted if there exists some clgssuch that the fully-qualified classnamefois a.3. Thus if an
application has classéava.packl.Classandjava.pack2.Classthenjava.packlandjava.pack2would be counted,
butjavawould not. Also, the default or “null” package is counted exactly once, if there is a class in that package.

Figure 4(a) shows that while a small number of programs have packages with hundreds of classes, the typical
package will have only one, and the average is about 11.8.

Packages can be nested inside of other packages, allowing for the easy creation of unique names. While it is
possible to create a package hierarchy of arbitrary depth, Figure 3(b) shows that the maximum depth for an application
is 8, with an average depth of 3.9.



Table 2: Notation used to refer to data values in the bytecode.

notation explanation

B An 8-hbit integer value.

S A 16-bit integer value.

L A 32-hit integer value.

Cp An 8-bit constant pool index.

Cs A 16-bit constant pool index.

Fpo An 8-bit local variable index.

Fs A 16-bit local variable index.

Cli] Thei:th constant pool entry.

V[i] Thei:th variable/formal parameter in the current method.

Table 3: The first 87 Java bytecode instructions.

Opcode  Mnemonic Args  Stack Description

0 nop 0=10

1 aconst _null [1 = [null] Push null object

2 iconst _ml 1 =[-1] Push -1

3...8 iconst _n 0=1n] Push integer constant0 < n <5

9...10 Iconst _n 0 =1[n] Push long constant0 <n<1

11...13 fconst _n 1 =[n] Push float constant,0 <n < 2

14...15 dconst _n 0=1In Push double constant0<n<1

16 bipush n:B 1 =1[n] Push 1-byte signed integer

17 sipush n:S [ =1[n Push 2-byte signed integer

18 Idc nCy, [I=I[C[N] Push item from constant pool

19 ldc -w nCs [ = [C[N] Push item from constant pool

20 ldc2 _w nCs [l = [C[n]] Push long/double from constant pool

21...25 Xload nFy, [ = [V[n] X €{il,f,d,a}, Load int, long, float, double, objed
from local var.

26...29 load _n [ = [VIn]] Load local integer van,0 <n <3

30...33 lload _n [0 = [V Load local long vam,0<n<3

34...37 fload _n 0= [V Load local float vam,0 < n< 3

38...41 dload _n [ = [VIn]] Load local double van,0<n<3

42...45 aload _n [ = [VIn]] Load local objectvan,0<n<3

46...53 Xload [Al]=[V] X €{iala,fa,da,aa,ba,cajsaPush the valu¥ (an
int, long, etc.) stored at inddxof arrayA.

54...58 Xstore nFy VI =1 X €{i,l,f,d,a}, Store int, long, float, double, objeq
to local var.

59...62 istore _n VIinl =1 Store to local integer van,0 < n< 3

63...66 Istore _n [VInll =10 Store to local long van,0 < n<3

67...70 fstore _n [VInll =10 Store to local float van,0 <n <3

71...74 dstore _n VIinl =1 Store to local double van,0 <n <3

75...78 astore _n [VInll =10 Store to local object van,0 <n<3

79...86 Xstore [ALLV]=] Xe&{ialafada,aa,ba,cajsaStore the valu® (an

int, long, etc.) at index of arrayA.

—

—



Table 4: Java bytecode instructions.

Opcode Mnemonic  Args Stack Description

87 pop [Al =1 Pop top of stack.

88 pop2 [AB] =] Pop 2 elements.

89 dup V] =[V,V] Duplicate top of stack.

90 dup x1 [B,V] = [V,B,V]

91 dup x2 [B,C,V]=[V,B,C,V]

92 dup2 [V,W] = [V,W,V,W]

93 dup2 x1 [AV,W] = [V,W,AV,W]

94 dup2 x2 [A,B,V,W] = [V,W,A B,V,W]

95 swap [A/B] = [B,A] Swap top stack elements.

96...99 Xadd [A,B] = [R] Xe{ildf}. R=A+B

100...103 Xsub [A,B] = [R] Xe{ildf}.R=A—B

104...107 Xmul [A,B] = [R] X e{ildf}. R=AxB

108...111 Xdiv [A,B] = [R] X efildf}. R=A/B

112...115 Xrem [A,B] = [R] X e{il.df}. R=A%B

116...119 Xneg [Al = [R] Xe{ildf}. R=-A

120...121 Xshl [A,B] = [R] Xefil}. R=A<<B

122...123 Xshr [A,B] = [R] Xe{il}.R=A>>B

124...125 Xushr [A,B] = [R] Xe{il}. R=A>>>B

126...127 Xand [A,B] = [R] X efil}. R=A&B

128...129 Xor [A,B] = [R] Xe{il}.R=AB

130...131 Xxor [A,B] = [R] X e{il}. R=AxorB

132 iinc V:Fp,BB [[=1 V+=B

133...144 X2Y [F]=1[T] Convert F from type X to T of type Y.
X e{ilfd}, Y e{ilfd}.

145...147 2 X [F]1=1[T] X e{b,c,s. Convert integeF to byte, char, or
short.

148 lcmp [A,B] = [V] Compare long valueA>B=V =1,A<B=
V=-1,A=B=V=0.

149,151 Xcmpl [AB] = [V] Compare float or double valueX.<{f,d}. A>
B=V=1A<B=V=-1A=B=V=0.
A=NalVB=NaN=V =-1

150,152 Xcmpg [A,B] = [V] Compare float or double valueX.c{f,d}. A>
B=V=1A<B=V=-1A=B=V=0.
A=NaNVB=NaN=V =1

153...158 if ¢ L:S [Al =1 o={eq,ne,lt,ge,gt,Ip If A o 0 gotoL + pc.

159...164 if dicmpo LS [AB] =] o={eq,ne,lt,ge,gt,lp If Ao BgotoL +pc.

165...166 if _acmpo L:S [AB] =] o={eq,ng. A,B are object refs. IA ¢ B goto
L +pec.

167 goto 1:S 0=1 Jump tol +pc.

168 jsr 1:S 1 =T[Al Jump subroutine to instruction+-pc. A= the
address of the instruction after the jsr.

169 ret L:Fy 0=10 Return from subroutine. Address in local var




Table 5: Java bytecode instructions.

Opcode Mnemonic Args Stack
170 tableswitch D:L kLo [K]=1]
JuLongDescrmp through théth offset. Else got®.
171 lookupswitch D:L,n:L,(m,0)" KI=1
If, for one of the(m,0) pairs,K = m, then gotoo. Else gotdD.
172...176 Xreturn Vi=1
X e{i,fl,d,a}l. ReturnV.
177 return 0=10
Return from void method.
178 getstatic F:Cs 0=1[V]
Push valud/ of static fieldF.
179 putstatic F:Cs Vi=1
Store valué/ into static fieldF.
180 getfield F:Cs [R] = [V]
Push valué/ of field F in objectR.
181 putfield F:Cs [RV]=1
Store valué/ into field F of objectR.
182 invokevirtual P:Cs [RA1,A2,...]1=1
Call virtual menthodP, with argumentg\; - - - An, through object referende
183 invokespecial P:Cs [RAL,A,...]=1]
Call private/init/superclass menth&l with argumentg\; - - - A, through object referende
184 invokestatic P:Cs [AL, A0, .. ]1=1]
Call static menthodP with argumentg\; - - - An.
185 invokeinterface P:Cs,n:S [RALA2,...]=1]
Call interface mentho®, with n argument#\; - - - Ay, through object referende
187 new T:Cs 0=I[R
Create a new obje® of typeT.
188 newarray TB [Cl1=I[R
Allocate new arrayr, element typél, C elements long.
189 anewarray T:Cs [C] = [A]
Allocate new arrayA of reference types, element tyfleC elements long.
190 arraylength [A] = [L]
Determines the length of arrayA.
191 athrow [R] =[]
Throw exception.
192 checkcast C:Cs [Rl = [R]
Ensures thaR is of typeC.
193 instanceof C:Cs [R] = [V]
Push 1 if objecRis an instance of clas3, else push 0.
194 monitorenter [R =1
Get lock for objecR.
195 monitorexit [R =1

Release lock for objedr.




Table 6: Java bytecode instructions.

Opcode  Mnemonic Args Stack
196 wide CBI:Fs Q=1
Perform opcod€ on variable/[ 1] . Cis one of the load/store instructions.
197 multianewarray T:Cs,D:Cp  [d1,d2,...] = [R]
Create nevD-dimensional multidimensional arrdy di,dy, ... are the dimension sizes.
198 ifnull L:S Vi=1
If V =null gotoL.
199 ifnonnull L:S V=1
If V # null gotoL.
200 goto _w I:L 0=10
Goto instruction.
201 jsr -w I:L 0=1A

Jump subroutine to instructidn A is the address of the instruction right after thewysr
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A Javainterfaceis a special type of class that only contains constant declarations or method signatures. A class
whichimplement&n interface must provide implementations of the methods. Interfaces are often used to compensate
for Java’s lack of multiple inheritance. Figure 4(b) show that over 70% of Java packages contain 0 or 1 interface.

4.2 Protection

A Java class can be declared asstract (it serves only as a superclass to classes which actually implements its
methods) ofinal (it cannot be extended). These declarations are, however, fairly unusual. Figures 5(a) and 5(b) show
that over 70% of all packages contain no abstract or final classes.

4.3 Inheritance Graphs

In addition to a class implementing an interface, a class can also extend another class. In this case the subclass inherits
all of the variables and methods of the class which it extends (the superclass), thus creating an inheritance relationship.
An inheritance graph can be constructed to represent the superclass/subclass relationsimeritaece graph
heightfor a given application is the maximum number of superclasses that any class in the application has. This will
include some but not all of the Java library classes.

Figure 6(a) shows that on average the height of an inheritance graph for an application is 4.5 and that over 90% of
all applications have an inheritance graph with a height of less than 7.

It is important to note that for 303 of our applications the inheritance graph construction failed due to the jar-file
not being self-contained.

Figure 6(b) shows the number of classes in each application that extend other classes in the same application.

Some classes in each applicationstdirectly extend a Java library class (most offava.lang.Object ), but it
is interesting to note that only about 1/3 (1132/90500) extend other classes inside the same application. Table 8 shows
that most of the classes in each application exjaend.lang.Object directly.

5 Class-Level Statistics

In this section we present data regarding the top-level structure of class files. This includes the number, type/signature,
and protection of fields and methods, and the class’ or interface’s position in the application’s inheritance graph.

5.1 Fields

A Java class can contain data members, cdidds Fields are eitheclass variablegthey are declarestatic  and
only one instance exists at runtime)instance variablegevery instantiation of the class contains a unique copy).

Figures 7, 8, and 9 shows field statistics. In Figure 7(a) we see that 60% of all classes have two or fewer fields,
but in one extreme case a class declared almost a thousand fields. Instance variables are more common than class
variables. On average, a class will contain 2.8 instance variables and 1.6 class variables, and 44% of all classes have
more than one instance variable but only 17% have more than one static variable. It is also more common for a class
to have fields of reference types than of primitive types. On average, a class will have 1.5 fields of primitive type, but
2.6 fields of reference type.

Table 7 gives a breakdown of the declared types of fields. Only primitive types, and types exported from the
Java standard library are shown. Our data also contained some user defined types with high usage counts. This is
due to idiosyncrasies of our collected programs, such as a program declaring vast numbers of fields of one of its
classes. Table 7 shows that the vast majority of typesnares, String s andboolean s. We note that, somewhat
surprisingly,java.lang.Class (Java’s notion of a class) is a frequent field type, dadble s are more frequent
thanfloat s.

5.2 Constant pool

Figure 10(a) shows the number of entries in @@nstant Poo(the class file’s symbol table) per class. While small
literal integers are stored directly in the bytecode, large integers as wsttiag s and real numbers are instead
stored in the constant pool. Figures 11, 12, and 13 show the relative distribution of literal types.
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Figure 9: Field declarations in classes

Table 7: Most common field types.

Field Type Count %
int 153861 21.8
java.lang.String 105787 15.0
boolean 44914 6.4
java.lang.Class 24355 3.4
long 16556 2.3
java.lang.Object 14472 2.0
byte[] 10229 14
int[] 8157 11
java.util.Vector 7601 1.0
java.util.Hashtable 7095 1.0
short 7048 1.0
byte 6464 0.9
java.lang.String[] 6412 0.9
java.util.Map 5692 0.8
double 5256 0.7
java.util.List[] 4971 0.7
float 3115 04
java.io.File 3019 0.4
charf] 2995 0.4
java.math.Biginteger 2782 0.3
java.lang.StringBuffer 2472 0.3
java.sgl.Connection 2443 0.3
javax.swing.JLabel 2066 0.3
java.util.HashMap 2064 0.3
java.awt.Color 2058 0.3
char 1987 0.3
java.util.ArrayList 1748 0.2
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Figure 14: Method declarations in classes

5.3 Methods

Figures 14, 15, and 16 give statistics of methods. Of interest is that 73% of all classes have 9 or fewer methods
(Figure 14(a)), and that the vast majority of classes have no abstract or native methods (Figures 14(b) and 15(a)).
Almost all classes have at least one virtual method, with an average of 7.7 methods per class (Figure 16(a)). Static
methods are quite rare: 80% of all classes have at most one static method, with an average of 1.3 methods per class

(Figure 15(by)).

5.4 Member protection

Figures 17 and Figures 18 show the frequency of visibility restrictions of class members (fields and methods). A mem-
ber can bgackage private , private , protected ,orpublic . Table 18(c) summarizes the information by
giving average numbers of members with a particular protection.

5.5 Inheritance

Figure 19 shows information about class inheritance. Figure 19(a) shows the number of immediate subclasses of a
class, i.e. the number of classes that directly extend a particular class. Figure 19(b) shows the number of classes that
directly or indirectly extend a particular class. 97% of all classes have two or fewer direct subclasses. One of the
classes in our collection is extended by 187 classes. 48% of classes are at depth 1 in the inheritance graph, i.e. they
extendjava.lang.Object , the root of the inheritance graph (Figure 19(c)). The average depth of a class is low
(only 2.1), although 6 of our classes are at depth 30-39. In many cases we failed to build the inheritance hierarchy due
to the program containing references to classes not in the jar-file or the standard Java library.

Figure 20 shows the same information for interfaces.
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Table 8: Most common standard classes to be extended by application classes.

Class Count %
java.lang.Object 42629 47.1
user _class 34805 385
java.lang.Exception 1089 1.2
javax.swing.AbstractAction 893 1.0
java.lang.Thread 738 0.8
javax.swing.JPanel 691 0.8
java.lang.RuntimeException 464 0.5
java.awt.event.WindowAdapter 341 0.4
java.awt.Panel 313 0.3
java.awt.event.MouseAdapter 309 0.3
java.util.ListResourceBundle 276 0.3
java.util.EventObject 248 0.3
java.io.FilterlnputStream 232 0.3
org.omg.CORBA.portable.Objectimpl 226 0.2
org.omg.CORBA.SystemException 217 0.2
org.xml.sax.helpers.DefaultHandler 203 0.2
java.awt.Dialog 203 0.2
java.io.FilterOutputStream 202 0.2
java.applet.Applet 202 0.2
java.awt.Canvas 197 0.2
java.io.OutputStream 196 0.2
java.awt.Frame 194 0.2
java.io.lOException 192 0.2
java.io.InputStream 183 0.2
javax.swing.JFrame 149 0.2
javax.swing.JDialog 135 0.1
org.omg.CORBA.UserException 126 0.1
java.lang.Error 120 0.1
java.beans.SimpleBeaninfo 119 0.1
java.awt.event.KeyAdapter 118 0.1
javax.swing.table.AbstractTableModel 104 0.1
java.awt.event.FocusAdapter 101 0.1
java.util. AbstractSet 94 0.1
java.security.Signature 80 0.1
javax.swing.beaninfo.SwingBeanInfo 79 0.1
java.security.GeneralSecurityException 78 0.1
org.xml.sax.SAXException 70 0.1
javax.swing.JComponent 70 0.1
javax.swing.event.InternalFrameAdapter 60 0.1
java.util.Hashtable 57 0.1
java.lang.lllegalArgumentException 56 0.1
java.io.Writer 54 0.1
java.util. AbstractList 51 0.1
java.util.Properties 50 0.1
java.io.Reader 49 0.1
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Table 9: Most common standard.interfaces to be implemented by application classes.

Interface Count %
user _interface 21955 55.9
java.io.Serializable 3534 9.0
java.awt.event.ActionListener 2880 7.3
java.lang.Runnable 1447 3.7
java.lang.Cloneable 1009 2.6
org.omg.CORBA.portable.Streamable 793 2.0
java.awt.event.ltemListener 302 0.8
java.lang.Comparable 266 0.7
java.util.lterator 262 0.7
java.util.Enumeration 216 0.6
java.util.Comparator 215 0.5
javax.swing.event.ChangeListener 211 0.5
java.awt.event.MouseListener 187 0.5
org.xml.sax.EntityResolver 173 0.4
java.security.PrivilegedAction 145 0.4
org.xml.sax.ErrorHandler 130 0.3
java.security.spec.AlgorithmParameterSpec 130 0.3
java.beans.PropertyChangeListener 114 0.3
java.awt.event.MouseMotionListener 113 0.3
org.xml.sax.ext.LexicalHandler 109 0.3
java.awt.event.KeyListener 109 0.3
org.xml.sax.ContentHandler 100 0.3
javax.swing.event.ListSelectionListener 99 0.3
java.io.Externalizable 99 0.3
java.security.spec.KeySpec 87 0.2
org.xml.sax.DocumentHandler 83 0.2
org.xml.sax.DTDHandler 82 0.2
java.awt.event.AdjustmentListener 81 0.2
javax.sgl.DataSource 80 0.2
java.awt.event.WindowListener 80 0.2
java.awt.image.ImageObserver 76 0.2
java.awt.image.renderable.RenderedimageFactory 74 0.2
javax.naming.spi.ObjectFactory 72 0.2
java.sgl.Connection 71 0.2
java.awt.event.FocusListener 71 0.2
org.w3c.dom.NodeList 70 0.2
org.xml.sax.AttributeList 59 0.2
javax.naming.Referenceable 58 0.1
java.io.FilenameFilter 55 0.1
org.xml.sax.Locator 52 0.1
java.util.Map$Entry 52 0.1
java.lang.reflect.InvocationHandler 52 0.1
javax.swing.event.DocumentListener 51 0.1
java.awt.event.ComponentListener 50 0.1
org.xml.sax.Attributes 48 0.1
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Table 10: Most common standard interfaces to be extended by application interfaces.

Interface Count %
user _interface 3359 57.7
org.w3c.dom.html.HTMLElement 676 11.6
java.util.EventListener 362 6.2
java.io.Serializable 251 4.3
org.w3c.dom.Node 225 3.9
java.lang.Cloneable 118 2.0
org.omg.CORBA.Object 96 1.6
java.security.PrivateKey 43 0.7
org.w3c.dom.CharacterData 42 0.7
org.w3c.dom.events.EventTarget 39 0.7
java.security.PublicKey 39 0.7
org.omg.CORBA .portable.IDLEntity 38 0.7
org.omg.CORBA.IDLType 36 0.6
org.w3c.dom.Element 29 0.5
org.w3c.dom.Document 28 0.5
java.rmi.Remote 24 0.4
org.w3c.dom.css.CSSRule 23 0.4
java.security.Key 23 0.4
org.w3c.dom.events.Event 22 0.4
org.w3c.dom.DOMImplementation 22 0.4
org.w3c.dom.Text 21 04
org.xml.sax.XMLReader 20 0.3
org.omg.CORBA.IRObject 18 0.3
org.xml.sax.ContentHandler 16 0.3
java.lang.Comparable 16 0.3
javax.crypto.interfaces.DHKey 14 0.2
java.util.Map 12 0.2
java.sgl.ResultSet 11 0.2
java.util.List 10 0.2
java.sgl.Connection 9 0.2
java.lang.Runnable 9 0.2
org.w3c.dom.css.CSSValue 8 0.1
org.xml.sax.Locator 7 0.1
org.xml.sax.DTDHandler 7 0.1
java.util.Collection 7 0.1
java.sgl.ResultSetMetaData 7 0.1
org.xml.sax.ext.LexicalHandler 6 0.1
org.omg.CORBA.DynAny 6 0.1
org.xml.sax.DocumentHandler 5 0.1
org.omg.CORBA.Policy 5 0.1
javax.xml.transform.SourcelLocator 5 0.1
java.sgl.PreparedStatement 5 0.1
org.w3c.dom.events.UIEvent 4 0.1
org.w3c.dom.events.DocumentEvent 4 0.1
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Figure 21: Method overriding

Table 8 was computed by looking at which classes each application class extended. Every interface is considered
to extendjava.lang.Object . Similarly, Table 10 looks at which interfaces were extended by other interfaces.
There is a bit of ambiguity here, because in Java source code an interface uegtetitekeyword to extend an-
other interface, although technically the interface is really beimgemented Table 9 shows which interfaces were
implemented byanyapplication class, including other interfaces.

Method overriding occurs when a method in a class has the same name and signature as a method in its superclass.
This is a technique used to provide a more specialized implementation of a particular method. Figure 21(a) shows that
the majority of classes have at most one overridden method.

6 Method-Level Statistics

In this section we present method-level statistics. This includes information about method signatures, local variables,
control-flow graphs, and exception handlers.

6.1 Method sizes

Figure 22 shows the sizes in bytes and instructions of bytecode methods. The maximum size allowed by the JVM is
65535 bytes, but only one of our methods (63019 bytes long) approached this limit.

6.2 Local variables and formal parameters

Figure 23(a) shows the maximum number of slots used by a method. All instance methods will use at least one slot
(for thethis parameter). No method used more than 157 slots, indicating thatidee instruction (used to access
up to 65536 slots) will be rarely used.

Table 11 gives a breakdown of slot types. Note that Jalest , byte , char , andboolean types are compiled
into integers in the bytecode, and thus will not show up as distinct types. Also, a slot may contain more than one type
within a method, although at any one particular location it must always have the same type. Table 11 shows that
int sandString s make up the majority of slot types. Only 3.8% of slots contain two types, and only 0.6% 3 types.
This indicates that the design of the Java virtual machine could have been simplified by requiring each slot to contain
exactly one type throughout the body of a method, without much adverse effect.

Slots are not explicitly typed in the bytecode. Instead, slot types have to be computed using a static analysis known
asstack simulationThis involves simulating the behavior of each instruction on the stack and the local variable slots,
while following all possible paths of control flow within the method. A similar algorithm is used in the Java bytecode
verifier.

Figure 23(b) shows the maximum stack depth required by a method. This is stored as an attribute in the class file,
and could thus be larger then taetualstack size needed at runtime.
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Table 11: Most common slot types.

Register Type Count %
int 614910 16.2
java.lang.String 365915 9.6
2 types 144145 3.8
java.lang.Object 76764 2.0
byte[] 50658 1.3
long 49903 1.3
java.lang.Throwable 38046 1.0
double 25541 0.6
3 types 23426 0.6
java.lang.StringBuffer 21716 0.6
java.lang.String[] 20600 0.5
java.util.lterator 16036 0.4
float 15595 0.4
java.lang.Class 15129 0.4
java.util.Vector 14795 0.4
int[] 14604 0.4
java.lang.Exception 14149 0.4
java.io.File 13334 0.4
java.io.InputStream 11686 0.3
java.util.List 11615 0.3
java.lang.ClassNotFoundException 11331 0.3
java.util.Enumeration 10732 0.3
char[] 9534 0.3
java.lang.Object[] 9417 0.2

33



Table 12: Most common method signatures.

Method Signature Count %
()void 120997 13.8
(user _class )void 57762 6.6
()java.lang.String 53047 6.1
() user _class 44098 5.0
(java.lang.String)void 43810 5.0
()boolean 39772 4.5
(int 35064 4.0
(int)void 18959 2.2
(boolean)void 11461 1.3
(user _class ) user _class 10332 1.2
(user _class , user _class )void 9652 11
(java.lang.String) user _class 7781 0.9
(java.lang.String)java.lang.String 7777 0.9
(user _class )boolean 6880 0.8
(user _class )java.lang.Object 6812 0.8
()java.lang.Object 6461 0.7
(java.lang.String)java.lang.Class 6258 0.7
(java.lang.String,java.lang.String)void 5561 0.6
(java.lang.Object)boolean 5373 0.6
(int)int 4776 0.5
(java.lang.Object)void 4697 0.5
(java.awt.event.ActionEvent)void 4479 0.5
(int) user _class 4270 0.5
(int)boolean 4116 05
(java.lang.String[])void 4044 0.5
(java.lang.String)boolean 3933 0.4
(int,int)void 3726 04
(int)java.lang.String 3473 0.4
(bytel] 3380 04
() user _class ] 3322 0.4
(user _class ,int)void 3251 0.4
()java.util.List 2970 0.3
(user _class java.lang.String)void 2821 0.3
(byte[])void 2697 0.3
()java.lang.String[] 2292 0.3
(user _class , user _class ) user _class 2289 0.3
(int,int)int 2023 0.2
(java.awt.event.MouseEvent)void 2008 0.2
(user _class )int 1998 0.2
(java.lang.String)int 1993 0.2
(user _class )java.lang.String 1951 0.2
()org.omg.CORBA.TypeCode 1941 0.2
(java.lang.String, user _class )void 1900 0.2
(java.lang.Object) user _class 1873 0.2
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Figure 25: Control-Flow Graphs

The number of slots used by a method in Figure 23(a) includes those slots reserved for method parameters. Fig-
ure 24(a) breaks out the number of formal parameters per method. This is the number of parameters, not the num-
ber of slots those parameters would consume (i.e. longs and doubles count as 1). As expected, the average is low
(1.0), with 90% of all methods having 2 or fewer formals. Table 12 shows the most common method signatures.
One reason that(void " is so common is that this is the signature of default constructors, especially the one for
java.lang.Object , which must be called in the constructors of all classes that directly extend it.

6.3 Control-flow graphs

A a method body can be converted into a control-flow graph (CFG), where the nodés$ibdlock} are straight-

line pieces of code. Control always enters the top of the basic block and exits at the bottom, either through an explicit
branch or byfalling-throughto another block. There is an edge from basic blad& basic blockB if control can flow

from Ato B.

Building CFGs for Java bytecode is not straight-forward. A major complication is how to deal with exception
handling. Several instructions in the JVM can throw exceptions implicitly. This includes the division instructions
(which may throw a divide-by-zero exception), and ¢e¢field |, putfield , andinvokevirtual instructions
(which may thrownull  -reference exceptions). These changes in control flow can be represented byexdeijoiipn
edgedo the CFG, which connect a basic block ending in an exception-throwing instruction to the CFG'’s sink node.
If every such instruction (which are very common in real code) is allowed to terminate a basic block, blocks become
very small. Since some analyses can safely ignore implicit exceparmsjMark supports building the CFGs both
with and without implicit exception edges. Tfge andret instructions used for Javamally  -clause also cause
problems. In general, a data flow analysis is necessary in order to correctly build CFGs in the presence of complex
jsr Iret combinationsSandMark currently does not support this and, as a consequence, will sometimes introduce
spurious edges out of blocks ending@t instructions. Since there are few such CFGs in our sample set this problem
is unlikely to significantly affect our data.

As can be seen from Figure 26(a), the average number of instructions in a basic block is very small, only 2.0,
and 98% of all blocks have fewer than 6 instructions. The average out-degree of a basic block node is, predictably,
low, only 1.2. Higher out-degrees than two can only be achieved either when an instruction is inside an exception
handler'stry block, or with the JVM’stableswitch andlookupswitch instructions. In the first case, edges
are added from each basic block insidérya block to the first basic block of the handler code. Therefore, if a
basic block is inside multiple nest&y blocks its outdegree may be high. In the second caseatitleswitch
andlookupswitch instructions are Java’s implementationssfitch -statements, which may have many possible
branch targets.
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Figure 26(b) shows the number of instructions per basic block when implicit exception edges have not been gen-
erated. As can be seen, this increases the average number of instructions per block to 7.7.

A nodex in a directed grapl® with a single exit node dominates nogén G if every path from the entry node to
y must pass througk The dominator set of a nogds the set of all nodes which domingteDominator information
is used in code optimizations such as loop identification and code motion. Table 28 shows the number of dominator
blocks per basic block.

6.4 Subroutines and exception handlers

Java subroutines are implemented by the instrucigns andret . They are chiefly used to implement the finally
clause of an exception handler. This clause can be reached from multiple locations. For exastyle, ainstruction

within the body of ary -block will first jump to the finally clause before returning from the method. Similarly, before
returning from within an exception handler, the finally block must be executed. To avoid code duplication (inlining
the finally block at every location from which it could be called) the designers of the JVM add¢st thandret
instructions to jump to and return from a block of code. This has caused much complication in the design of the JVM
verifier. See, for example, Stata et al. [21]. Figure 29 shows that 98% of methods have no more than two exception
handlers, and 98% of all methods have no subroutines. Figure 29(c) shows that the average size of a subroutine is 7.5
instructions. The length of a subroutine was computed as the number of instructions befjarees @rget and its
correspondinget . Together, our data indicates thsit andret could have been left out of the JVMs instruction

set without out much code increase fréimally  -clauses being implemented by code duplication.

6.5 Interference graphs

An interference graph models the variables and live range interferences of a method. The live ranges of a variable are
the locations in a method between where the variable is first assigned to and where it is last used. The graph has one
vertex per local variable and an edge between two vertices when the corresponding variables’ live ranges interfere. As
an example consider the sample code in Figure 31(a) and the corresponding interference graph in Figure 31(b). Since
the code has 5 variables, the graph has 5 nodes. The graph has an edge since variables; andv, are live at

the same time. An interference graph is often used during the code generation pass of a compiler to perform register
allocation. Two variables with intersecting live ranges cannot be assigned to the same register. Figure 30 shows that
95% of the methods have 9 or fewer nodes.

7 Instruction-Level Statistics

In this section we present information regarding the frequency of individual instructions and patterns of instructions.
We also show the most common sub-expressions and constant values found in the bytecode.

7.1 Instruction counts

There are 200 usable Java virtual machine instruction opcodes. Tables 13 and 14 show the frequency of each of those
bytecode instructions. The most frequently occuring instructiatoiad _0 which is responsible for pushing the local
variable 0, thehis reference of non-static methods. Even though this is the most frequently occuring instruction it
only has a frequency of 10%. Thevokevirtual instruction which calls a non-static method is also common,

as isgetfield , dup, andinvokespecial , the last two being used to implement Javaésv operator. These 5
instructions account for 33.8% of all instructions. Our data indicates that the majority of the remaining instructions
each occur with a frequency of at most 1%, and thajghe_wandgoto _winstructions (used for long branches) do

not occur at all.

7.2 Instruction patterns

A k-gram is a contiguous substring of lendtlwvhich can be comprised of letters, words, or in our case opcodes. The
k-gram is based on static analysis of the executable program. To compute the uniquegetro$ for a method we
slide a window of lengtlk over the static instruction sequence as it is laid out in the class file.
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Table 13: Instruction frequences (A).

Op Count % Op Count %
aload 0 2672134 10.0 ifnonnull 110290 0.4
invokevirtual 2360924 8.9 aaload 108016 0.4
dup 1521855 5.7 anewarray 106780 0.4
getfield 1447792 5.4 putstatic 105900 0.4
invokespecial 1003439 3.8 astore _1 99436 0.4
Idc 936890 35 isub 93852 0.4
aload _1 909356 3.4 if _icmplt 89901 0.3
aload 876138 3.3 if _icmpne 89452 0.3
bipush 865346 3.3 iconst _3 85851 0.3
new 665727 2.5 arraylength 81083 0.3
iconst _0 634481 2.4 iaload 70687 0.3
iload 601808 2.3 iconst _ml 67600 0.3
putfield 552241 2.1 ldc2 _w 66717 0.3
goto 507322 1.9 iconst _4 64544 0.2
iconst _1 495114 1.9 istore _3 58529 0.2
aload 2 494004 1.9 istore 2 57750 0.2
invokestatic 457014 1.7 iand 55782 0.2
getstatic 438851 1.6 instanceof 50049 0.2
return 433081 1.6 if _acmpne 48379 0.2
astore 395436 15 if _icmpeq 47866 0.2
sipush 383115 1.4 newarray 44390 0.2
areturn 351978 1.3 iconst 5 39857 0.1
aastore 332112 1.2 baload 39482 0.1
aload _3 314398 1.2 castore 38065 0.1
invokeinterface 300563 1.1 istore 1 37068 0.1
ifeq 286898 1.1 if _icmpge 35921 0.1
iastore 285979 1.1 sastore 30690 0.1
ldc .w 281190 1.1 ixor 29811 0.1
pop 270894 1.0 if _icmple 28212 0.1
istore 264341 1.0 imul 27174 0.1
ireturn 259627 1.0 iload 0 26837 0.1
iload _2 200600 0.8 dload 26640 0.1
iload _1 197241 0.7 lastore 23738 0.1
checkcast 193243 0.7 ifle 23025 0.1
aconst _null 178499 0.7 monitorexit 22023 0.1
iload _3 172820 0.6 jsr 20074 0.1
bastore 171902 0.6 Iconst 0 19617 0.1
iadd 171637 0.6 nop 18136 0.1
ifne 167878 0.6 lload 17515 0.1
iconst _2 163348 0.6 ifge 17494 0.1
athrow 151515 0.6 i2b 17432 0.1
astore 2 144741 0.5 ishl 17233 0.1
iinc 132890 0.5 fload 16966 0.1
astore _3 121477 0.5 ior 15500 0.1
ifnull 121318 0.5 ishr 15363 0.1

41



Table 14: Instruction frequences (B).

Op Count % Op Count %
lcmp 15033 0.1 fsub 4463 0.0
dstore 14261 0.1 i2s 4338 0.0
dup x1 14202 0.1 d2i 4331 0.0
dmul 14077 0.1 fconst 0 4316 0.0
idiv 13833 0.1 f2d 4086 0.0
if _icmpgt 12477 0.0 laload 3781 0.0
iflt 11944 0.0 dload _3 3538 0.0
caload 11871 0.0 Iconst _1 3515 0.0
if _acmpeq 11595 0.0 dload _2 3286 0.0
dastore 11325 0.0 fload _1 3261 0.0
astore 0 10400 0.0 Isub 3212 0.0
tableswitch 10197 0.0 fload _2 3130 0.0
land 10047 0.0 dcmpg 3040 0.0
monitorenter 9961 0.0 dup x2 2984 0.0
daload 9782 0.0 fdiv 2930 0.0
fastore 9708 0.0 saload 2867 0.0
ret 9670 0.0 ineg 2577 0.0
dconst 0O 9295 0.0 multia- 2500 0.0
i2l 8832 0.0 newarray
fstore 8765 0.0 d2f 2402 0.0
lookupswitch 8738 0.0 freturn 2360 0.0
lload _1 8723 0.0 fload _3 2357 0.0
faload 8634 0.0 Ishl 2195 0.0
iushr 8468 0.0 fconst _1 2122 0.0
dadd 8407 0.0 dload 0 2093 0.0
i2d 8403 0.0 lload 0 1982 0.0
ifgt 7976 0.0 fcmpl 1917 0.0
fmul 7674 0.0 istore 0 1787 0.0
Istore 7512 0.0 Istore _3 1727 0.0
dup2 7332 0.0 Imul 1664 0.0
lload 2 7125 0.0 lor 1520 0.0
ddiv 6644 0.0 Istore 2 1475 0.0
lload _3 6514 0.0 f2i 1391 0.0
dsub 5882 0.0 Ishr 1386 0.0
i2c 5839 0.0 Istore _1 1352 0.0
12i 5680 0.0 fcmpg 1243 0.0
dload _1 5548 0.0 dneg 1230 0.0
fadd 5515 0.0 dstore _3 1215 0.0
irem 5508 0.0 Idiv 1194 0.0
dreturn 5159 0.0 Ixor 1146 0.0
dconst _1 5146 0.0 dstore _2 1085 0.0
dempl 5065 0.0 lushr 993 0.0
i2f 5003 0.0 dstore _1 908 0.0
Ireturn 4935 0.0 12d 878 0.0
ladd 4621 0.0 swap 849 0.0

Op Count %
fconst 2 839 0.0
fstore _3 695 0.0
fstore 2 650 0.0
Irem 539 0.0
fload _0 510 0.0
fneg 496 0.0
pop2 378 0.0
fstore _1 374 0.0
d2l 273 0.0
dup2 x1 263 0.0
Ineg 208 0.0
12f 187 0.0
dstore 0 168 0.0
dup2 x2 164 0.0
Istore .0 159 0.0
drem 55 0.0
f2l 42 0.0
fstore 0 20 0.0
frem 12 0.0
jsr _w 0 0.0
goto _w 0 0.0
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Table 15: Most common 2-grams.

Op Count %
aload _0,getfield 1219837 4.7
new,dup 664718 2.6
Idc,invokevirtual 353412 1.4
invokevirtual,invokevirtual 332487 1.3
dup,bipush 330887 1.3
putfield,aload 0 311038 1.2
iastore,dup 250744 1.0
invokevirtual,aload 0 235924 0.9
dup,sipush 226520 0.9
aload _1,invokevirtual 223958 0.9
aload,invokevirtual 222692 0.9
getfield,invokevirtual 219107 0.8
aload O,aload _1 214369 0.8
aastore,dup 208247 0.8
dup,invokespecial 202840 0.8
aload _0,invokevirtual 200872 0.8
invokevirtual,pop 193105 0.7
aload _0,invokespecial 159742 0.6
astore,aload 146309 0.6
bastore,dup 141779 0.5
|dc,aastore 133994 0.5
getfield,aload 0 129300 0.5
invokespecial,aload 0 122168 0.5
Idc,invokespecial 120935 0.5
dup,ldc 116043 0.4
invokespecial,athrow 115994 0.4
aload _2,invokevirtual 115394 0.4
goto,aload 0 115340 04
putfield,return 113044 0.4
dup,iconst _0 109473 0.4
invokevirtual,ldc 109060 0.4
invokevirtual,return 106765 0.4
invokevirtual,ifeq 103093 0.4
bipush,bastore 102969 04
invokevirtual,astore 100355 0.4
ifeq,aload -0 99667 0.4
bipush,bipush 98715 0.4
Idc _w,iastore 98376 0.4
iconst _0O,ireturn 98199 0.4
invokevirtual,aload 93325 0.4
aload _0,new 90040 0.3
anewarray,dup 81992 0.3
dup,aload _0 80579 0.3
aload _0,aload 0 80329 0.3
aload,aload 78718 0.3
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Table 16: Most common 3-grams.

Op Count %
new,dup,invokespecial 202836 0.8
aload _0,getfield,invokevirtual 194765 0.8
iastore,dup,bipush 132759 0.5
invokevirtual,aload _0,getfield 125019 0.5
new,dup,ldc 115036 0.5
aload _0,getfield,aload 0 111950 0.4
getfield,aload _0,getfield 111002 0.4
iastore,dup,sipush 102667 0.4
bipush,bastore,dup 100197 0.4
invokevirtual,ldc,invokevirtual 98964 0.4
Idc _w,iastore,dup 97826 0.4
dup,ldc,invokespecial 91303 0.4
aload _0,new,dup 90029 0.4
dup,bipush,bipush 83402 0.3
Idc,aastore,dup 82970 0.3
anewarray,dup,iconst 0 81984 0.3
aastore,dup,bipush 80740 0.3
new,dup,aload 0 80524 0.3
invokevirtual,invokevirtual,invokevirtual 80161 0.3
invokespecial,ldc,invokevirtual 69626 0.3
aload _0,getfield,aload 1 68922 0.3
bastore,dup,sipush 67634 0.3
aload _0,invokespecial,aload 0 66723 0.3
dup,sipush,bipush 64736 0.3
aload _O,aload _1,putfield 60661 0.2
bastore,dup,bipush 60580 0.2
goto,aload _0O,getfield 60205 0.2
aload _O,aload _0,getfield 58350 0.2
dup,invokespecial,ldc 57764 0.2
dup,sipush,ldc W 57139 0.2
dup,bipush,ldc W 56309 0.2
aastore,dup,iconst A 56004 0.2
putfield,aload _0,getfield 55324 0.2
aastore,aastore,dup 55149 0.2
aload _0,geffield,areturn 55073 0.2
Idc,invokevirtual,invokevirtual 53465 0.2
new,dup,aload _1 52185 0.2
Idc,invokevirtual,aload 0 51342 0.2
invokespecial,putfield,aload 0 50827 0.2
sipush,bipush,bastore 50642 0.2
dup,bipush,ldc 50439 0.2
dup,iconst  _0,ldc 49992 0.2
aload _0,geffield,getfield 49974 0.2
iconst _0,ldc,aastore 49056 0.2
sipush,ldc  _w,iastore 48252 0.2
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Table 17: Most common 4-grams.

Op Count %
aload _0,getfield,aload _0,getfield 95199 0.4
new,dup,ldc,invokespecial 91302 0.4
new,dup,invokespecial,ldc 57764 0.2
dup,invokespecial,ldc,invokevirtual 57239 0.2
bipush,bastore,dup,sipush 50663 0.2
dup,sipush,bipush,bastore 50642 0.2
bastore,dup,sipush,bipush 50642 0.2
sipush,bipush,bastore,dup 50392 0.2
anewarray,dup,iconst _0,Idc 48862 0.2
dup,iconst  _0,ldc,aastore 48697 0.2
iastore,dup,sipush,ldc W 48252 0.2
dup,sipush,ldc _w,iastore 48252 0.2
Idc _wi,iastore,dup,sipush 48198 0.2
sipush,ldc  _w,iastore,dup 47875 0.2
iastore,dup,bipush,ldc W 47528 0.2
dup,bipush,ldc _w,iastore 47528 0.2
Idc _wi,iastore,dup,bipush 47520 0.2
bipush,ldc  _wi,iastore,dup 47384 0.2
dup,bipush,bipush,bastore 44682 0.2
bastore,dup,bipush,bipush 44680 0.2
bipush,bastore,dup,bipush 44674 0.2
bipush,bipush,bastore,dup 44209 0.2
aload _0,new,dup,invokespecial 43141 0.2
new,dup,new,dup 42678 0.2
invokevirtual,ldc,invokevirtual,invokevirtual 42594 0.2
ldc,aastore,aastore,dup 41430 0.2
aastore,aastore,dup,bipush 40443 0.2
dup,ldc,invokespecial,athrow 40441 0.2
new,dup,aload _0,getfield 36325 0.1
new,dup,invokespecial,putfield 34800 0.1
Idc,aastore,dup,iconst 1 34705 0.1
iconst _0,ldc,aastore,dup 34705 0.1
aastore,dup,iconst _1,ldc 34585 0.1
putfield,aload _0,new,dup 34499 0.1
dup,iconst  _1,ldc,aastore 34191 0.1
invokevirtual,aload _0,getfield,invokevirtual 34185 0.1
aload _0,iconst _0,putfield,aload 0 33108 0.1
aload _0O,aload _1,putfield,return 32147 0.1
aload _0,aconst _null,putfield,aload 0 31719 0.1
aload _0,getfield,aload _1,invokevirtual 31472 0.1
iconst _2,anewarray,dup,iconst 0 30710 0.1
Idc,invokevirtual,aload _0,getfield 30470 0.1
putfield,aload _O,iconst  _0,putfield 27739 0.1
iastore,dup,bipush,ldc 26735 0.1
dup,bipush,ldc,iastore 26735 0.1
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Figure 32: Expressions

We computed data fok-grams wherek = 2, 3,4 which is shown in Tables 15, 16, and 17. These tables show
that as the value df increases the percentage of the most frequency ocurring sequences decreases. For example, the
most frequently occuring 2-granajoad _0, getfield , has a frequency of only 4.7%. For 2 and 3-grams the
most frequently occuring sequence is less than 1%. This indicates that these sequences become quite unique for each
individual application.

7.3 [Expressions

Figure 32 shows the size (number of nodes in the tree) and height (length of longest path from root to leaf) of expression
trees in our samples. As reported already by Knuth [15], expressions tend to be small. 61% of all expressions only
have one node.

Expressions are constructed by performing a stack simulation over each method. For each instruction that will
produce a result on the stack the simulator determines which instructions may have put its operands on the stack. This
information is used to build up a dependency graph with instructions and operands as nodes, and an edge from node
ato nodeb if bis used bya. If the program contains certain types of loops these graphs might have cycles, in which
case they are discarded. The following code segment is an example of such a loop:

ICONST_2
ICONST_3
IADD
DUP
IFEQ <1>

FPwNMRO
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Table 18: Abbreviations used in Table 19.

null = ACONSINULL ( D)a) = typecasttis a primitive
-( a) = negation type orClass
(o+a) = addition A = create new array
(a-0a) = subtraction S = static field

(o*a) = mult F = non-static field
(ol a) = div M() = method call
(0%) = mod/rem (o instanceof K) = instanceof

(0&a) = and " = string constant
(a] o) = or f = float constant
(a”a) = Xxor d = double constant
(a<<a) = leftshift I = long constant
(a>>q) = signed right shift N = NEW

(a>>>a) = IUSHRorLUSHR | (o<a) = DCMPLlor FCMPL
afl = array element (o>a) = DCMPG®GrFCMPG
a.length = ARRAYLENGTH (a<>a) = LCMP

i = int constant L = load local variable

In this example, théADD instruction may become its own child. If the branch at offset 4 is taken, then the result from
the first iteration of theADD will be used as the first operand in the second iteration ofAB®.

In Table 19 we show the most common subexpressions found in our sample method bodies. Table 18 explains the
abbreviations used., for example, represents a local varialtleg double constantaf-a) addition, etc. Since we are
counting subexpressions, the same piece of an expression will be counted more than once. For exasupdsy; if
are local variables then the expressicty*2 will generate subexpressiohsL, i, (L*) , and(L+(L*)) , each
of which will increase the count of its respective expression class.

To compute subexpressions we convert each expression tree into a string representation, classify each subexpres-
sion into equivalence classes according to Table 18, and count each subexpression individually.

What we see from Table 19 is that, unsurprisingly, local variable references, method calls, integer constants, and
field references make up the bulk of expressions. Somewhat more surprising is that the exfreS&ss )M())
is very frequent. Most likely this is the result of references to “generic” methods (particularly Java library functions
such agava.util.Vector.get() ) returningjava.lang.Object s which then have to be cast into a more
specific type.

7.4 Constant values

Tables 20, 21, and 22 show the most common literal constants found in the bytecode. Constants can occur in three
different ways: as references to entries in the constant pool (instrudtionsldc _w, andldc2 _w), as arguments

to bytecode instructiondipush n, sipush n, andiinc  n, c), or embedded in special instructionsapst _n,

etc.).

Figure 33 shows the distribution of integer constant values. It is interesting to note that 63% of all literal integers
are 0, powers of two, or powers of two plus/minus one. This has implications for, for example, software watermarking
algorithms such as the one by Cousot and Cousot [11] which hides a watermark in unusual constants. Figure 33 tells
us that in real programs most constants are small (93% are less than 1,000) or very close to powers of two, and hence
hiding a mark in unusual constants is likely to be unstealthy.

7.5 Method calls

Table 23 reports the most frequently called Java library methods. To collect this data, we looked H\&RKE
instruction to see what method it named. No attempt at method resolution was made.

Figure 34 measures the size of receiver sets of method calls. I.e., for a virtual method invoddtjonwe count
the number of method¥l() that might potentially be called. This depends on the static tyme ahd the number of
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Table 19: Most common sub-expressions.

Expression Count % Expression Count %

L 6574522 349 L.F.F.F 5087 0.0
M() 4119506 21.9  (L.F+L) 4607 0.0
i 2967193 157  (L.F&i) 4572 0.0
L.F 1366327 7.3  (M()+i) 4511 0.0
1039672 55  (L.F+L.F) 4326 0.0

N 665727 3.5 (L&) 4149 0.0
S 438851 2.3 ((L+MQ)+L.F[D) 4128 0.0
A 153670 0.8 (M()+L) 3997 0.0
L0 121966 0.6 (L.length-i) 3994 0.0
(¢ Class )M()) 115363 0.6 ((L>>i)&i) 3917 0.0
null 95366 0.5 (i*L) 3792 0.0
L.F[] 83259 04 ((L&D)<>I) 3734 0.0
| 67088 0.4 (L7 3689 0.0
L.F.F 54078 0.3 (L.F>>i) 3654 0.0
L.length 51938 0.3 (((L+MO)+L.F[D+i) 3392 0.0
(( Class )L) 49937 0.3 L.F[.F 3367 0.0
(L+i) 41182 0.2 ST 3351 0.0
(L instanceof Class ) 39081 0.2 (L.F instanceof Class ) 3342 0.0
d 37202 0.2 ((L>>>i)&i) 3162 0.0
S| 29776 0.2 (L+L.F) 3051 0.0
(L+L) 24534 0.1 (( Class )L[]) 2995 0.0
(L.F+i) 24296 0.1 (L.F-L) 2977 0.0
L.F.length 23898 0.1 (S[1&i) 2898 0.0
(L-i) 19852 0.1 (L°L) 2818 0.0
f 17746 0.1 (L.F&i) 2773 0.0
(( Class )S) 14614 0.1 ((long)L) 2748 0.0
(L-L) 13495 0.1 ((byte)L) 2699 0.0
(L&) 13436 0.1 (L.F*L.F) 2690 0.0
(L.F-i) 10759 0.1 S.length 2626 0.0
(L>>i) 9050 0.0 (I&L) 2618 0.0
(LO&i) 8285 0.0 ((I&L)<>1) 2612 0.0
(( Class )L.F) 7715 0.0 ((double)L.F) 2509 0.0
M().F 7518 0.0 ((L[]&i)<<i) 2473 0.0
(L+M() 7451 0.0 L.F.F[] 2437 0.0
(MQ)-i) 7181 0.0 (L-L.F) 2423 0.0
(L>>>i) 7181 0.0 -(L) 2423 0.0
(M() instanceof Class ) 6305 0.0 (L<>) 2322 0.0
(L<<i) 6013 0.0 (L&L) 2285 0.0
(L) 5818 0.0 ((L.F>>i)&i) 2275 0.0
Loo 5757 0.0 S.F 2214 0.0
(L.F-L.F) 5509 0.0 ((char)L) 2201 0.0
((double)L) 5300 0.0 (S+i) 2132 0.0
(L*L) 5234 0.0 ((float)L) 2129 0.0
L.F0 5230 0.0 ((intyM()) 2081 0.0
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Table 20: Common integer constants

Value Count %

0 634484 20.5
1 611382 19.7
2 165656 5.3
3 86253 2.8
-1 78187 2.5
4 65209 2.1
8 45619 1.5
5 40047 1.3
10 31762 1.0
255 31249 1.0
6 29798 1.0
7 28356 0.9
9 25497 0.8
16 24931 0.8
32 19401 0.6
12 17889 0.6
13 17228 0.6
11 15763 0.5
15 15008 0.5
14 13733 0.4
24 13607 0.4
20 10844 0.3
48 9759 0.3
17 9513 0.3
63 8963 0.3
46 8540 0.3
47 8214 0.3
18 8115 0.3
34 8029 0.3
31 7681 0.2
64 7602 0.2
40 7187 0.2
21 7044 0.2
100 6984 0.2
45 6970 0.2
23 6860 0.2
19 6855 0.2
41 6631 0.2
30 6621 0.2
58 6551 0.2
128 6547 0.2
22 6510 0.2
25 6441 0.2

(a) Most commorint  constants

Value Count %
0 19617 29.2
1 3515 52
-1 2320 3.5
1000 1114 1.7
287948901175001088 740 1.1
2 722 1.1
255 669 1.0
3 387 0.6
100 347 0.5
5 344 0.5
8388608 343 0.5
4294967295 331 0.5
10 323 0.5
7 304 0.5
71776119061217280 270 0.4
4 269 0.4
60000 217 0.3
9 199 0.3
541165879422 196 0.3
9223372036854775807 190 0.3
64 182 0.3
9007199254740992 170 0.3
8 167 0.2
-9223372036854775808 160 0.2
500 159 0.2
60 156 0.2
36028797018963968 148 0.2
2147483647 144 0.2
67108864 139 0.2
3600000 134 0.2
17179869184 132 0.2
144115188075855872 132 0.2
140737488355328 130 0.2
1024 129 0.2
10000 125 0.2
137438953504 123 0.2
43980465111040 122 0.2
1099511627776 122 0.2
562949953421312 118 0.2
17592186044416 118 0.2
33554432 117 0.2
268435456 117 0.2
16384 109 0.2

(b) Most commorong constants
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Table 21: Common real constants

Value Count % Value Count %
0.0 4316 24.3 0.0 9295 25.0
1.0 2122 12.0 1.0 5146 13.8
2.0 839 4.7 2.0 1920 5.2
0.5 573 3.2 0.5 1296 3.5
255.0 319 1.8 100.0 710 1.9
-1.0 311 1.8 10.0 689 1.9
4.0 177 1.0 5.0 585 1.6
100.0 164 0.9 -Infinity 467 1.3
10.0 151 0.9 -1.0 463 12
0.75 146 0.8 1000.0 454 1.2
64.0 124 0.7 3.0 409 11
3.0 124 0.7 3.141592653589793 (1) 364 1.0
1000.0 114 0.6 NaN 333 09
20.0 109 0.6 4.0 311 0.8
90.0 79 0.4 0.25 285 0.8
3.1415927 (M) 73 0.4 Infinity 206 0.6
NaN 68 0.4 8.0 198 0.5
57.29578 ( 180/m) 68 0.4 1.797693 ---7TE308 ( MAX 182 0.5
50.0 68 0.4 180.0 162 04
6.2831855 (2m) 64 0.4 15 156 04
6.0 64 0.4 0.1 152 04
3.4028235E38 ( MAX 62 0.3 360.0 145 04
1.0E-4 61 0.3 20.0 120 0.3
180.0 60 0.3 6.283185307179586  (2m) 118 0.3
5.0 58 0.3 -2.0 112 0.3
0.85 58 0.3 0.01 107 0.3
0.1 58 0.3 255.0 105 0.3
0.01 52 0.3 0.2 104 0.3
-10.0 51 0.3 6.0 103 0.3
0.0010 47 0.3 0.6 92 0.2
8.0 45 0.3 7.0 91 0.2
15 45 0.3 9.0 88 0.2
0.8 45 0.3 1.25 83 0.2
0.3 45 0.3 16.0 77 0.2
0.25 45 0.3 60.0 75 0.2
-Infinity 44 0.2 31.0 72 0.2
Infinity 44 0.2 26.0 71 0.2
100000.0 42 0.2 0.75 71 0.2
15707964 ( T/2) 40 0.2 12.0 69 0.2
0.70710677 ( 1/V?2) 40 02 0.05 67 0.2
-100.0 38 0.2 0.3 66 0.2
200.0 37 0.2 15.0 65 0.2
65536.0 36 0.2 645.0 64 0.2

(a) Most commoriloat

constants

(b) Most commordouble constants
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Table 22: Most common string constants

Value Count %
empty string 36456 3.5
" 9003 0.9
newline 5281 0.5
)" 4860 0.5
4718 0.5
"s" 4540 0.4
4201 04
"Q" 4139 04
4083 0.4
3885 0.4
"R" 3796 0.4
"p 3663 0.4
o 3562 0.3
e 3481 0.3
3113 0.3
"o" 3024 0.3
"name" 2725 0.3
"(" 2561 0.2
"false" 2536 0.2
"true” 2461 0.2
" 2115 0.2
"o 2093 0.2
"Center" 1931 0.2
1699 0.2
"BC" 1658 0.2
"PvQ" 1649 0.2
>t 1634 0.2
"id" 1450 0.1
"P->Q" 1373 0.1
"P&Q" 1370 0.1
"java.lang.String" 1314 0.1
"line.separator" 1313 0.1
1307 0.1
"W 1237 0.1
=" 1210 0.1
"shortDescription" 1207 0.1
tab 1159 0.1
" 1151 0.1
"RvS" 1110 0.1
"null" 1107 0.1
e 1084 0.1
"A" 1074 0.1
"I 1046 0.1
"class" 1012 0.1
"p" 996 0.1
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Table 23: Most common calls to methods in the Java library.

Method Count %
java.lang.StringBuffer.append(String)StringBuffer 340044 15.8
StringBuffer.toString()String 143985 6.7
StringBuffer.<init>()void 93837 4.3
Object.<init>()void 52597 2.4
StringBuffer.<init>(String)void 48408 2.2
String.equals(Object)boolean 46645 2.2
java.util. Hashtable.put(Object,Object)Object 42629 2.0
java.io.PrintStream.printin(String)void 42594 2.0
StringBuffer.append(int)StringBuffer 31702 1.5
StringBuffer.append(Object)StringBuffer 27284 1.3
String.length()int 25505 1.2
String.valueOf(Object)String 20146 0.9
java.lang.lllegalArgumentException.<init>(String)void 15737 0.7
StringBuffer.append(char)StringBuffer 15116 0.7
String.substring(int,int)String 14441 0.7
java.util.Vector.size()int 13817 0.6
java.util.Vector.addElement(Object)void 12705 0.6
java.util.Vector.elementAt(int)Object 12087 0.6
java.lang.System.arraycopy(Object,int,Object,int,int)void 11969 0.6
java.util.lterator.hasNext()boolean 11891 0.6
String.charAt(int)char 11831 0.5
java.util.Iterator.next()Object 11800 0.5
java.lang.Integer.<init>(int)void 11658 0.5
java.lang.Throwable.getMessage()String 11216 0.5
java.util.Vector.<init>()void 10434 0.5
java.util.List.add(Object)boolean 10166 0.5
Object.getClass()java.lang.Class 9641 0.4
java.util. Hashtable.get(Object)Object 9584 0.4
String.equalsignoreCase(String)boolean 9391 0.4
java.util.List.size()int 9226 0.4
java.util.Map.put(Object,Object)Object 8830 0.4
java.util.List.get(int)Object 8797 0.4
java.lang.Class.forName(String)java.lang.Class 8641 0.4
java.util. Map.get(Object)Object 8313 0.4
java.awt.Container.add(java.awt.Component)java.awt.Component 8270 0.4
String.substring(int)String 7862 0.4
java.io.PrintWriter.printin(String)void 7767 0.4
java.util. Enumeration.nextElement()Object 7539 0.3
java.lang.Class.getName()String 7288 0.3
String.startsWith(String)boolean 7186 0.3
String.indexOf(String)int 6960 0.3
java.util. ArrayList.<init>()void 6705 0.3
java.lang.Integer.parselnt(String)int 6667 0.3
java.util. Enumeration.hasMoreElements()boolean 6526 0.3
java.lang.NullPointerException.<init>(String)void 6403 0.3
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methods intype(o) ’s subclasses that overrides M() . A static Class Hierarchy Analysis [12] is used to compute
the receiver set.

The size of the receiver set has implications for, among other things, code optimization. A virtual method call that
has only one member in its receiver set can be replaced with a direct call. Furthermore, if, for exalmgle's
receiver set is{Class1.M(), Class2.M() }, then to expand.M() inline the codeif o instanceof
Classl then Classl.M() else Class2.M() has to be generated. The larger the receiver set, the more
type tests will have to be inserted.

To compute receiver sets for INVOKEVIRTUAL instruction, we first resolve the method reference. We then
gather all the subclasses of the resolved method’s parent class (including itself) and for each one look to see if it
contains a non-abstract method with the same name and signature as the resolved method. If so, we check to see if the
resolved method is accessible from the given subclass. If this is true, th&\WEKEVIRTUAL instruction could
possibly execute the subclass’s method, and it is added to the receiver setlfy@IEEVIRTUAL instruction.

For anINVOKEINTERFACEHRstruction, we perform the same test but we look instead at all implementors of the
resolved method’s parent interface. This set will contain all classes that directly implement the interface, as well as
subclasses of those classes, and classes that implement any subinterfaces of the interface (i.e. anything that could be
cast to the interface type). THEVOKESPECIAL and INVOKESTATIC instructions do not use dynamic method
invocation; the method they will call can always be determined statically. Thus, they all have receiver sets of size 1.

Since we count only method bodies in the receiver sets, it is possible to have receiver sets of size 0. This can
occur if an abstract class has no subclasses to implement its abstract methods, yet code is written to call its abstract
methods with future subclasses in mind. Similarly|NWOKEINTERFACEcall may have no receivers if no classes
implement the given interface.

Figure 34(a) shows that 88% of all virtual method calls have a receiver set with size at most 2, with the average
size being 4.5. Itis interesting to note the large number of methods with a receiver size between 20 and 29. As can
be expected, the average receiver set size is significantly larger for an interface method call. Figure 34(b) shows an
average set size of 16.5.

7.6 Switches

Figure 35(a) measures the numbecas$elabels for eactiableswitch andlookupswitch instruction. We had
to treat thetableswitch instruction specially, since it uses a contiguous range of label values. Not all of the labels
in the tableswitch instruction necessarily appeared in the source code for the program. As a result, some of the
branch targets for the cases will be the same asléfi@ultcase target. Therefore, when computing the label set size
and density of aableswitch instruction, we ignore all the labels whose branch targets are the samedafahk
case’s target.

The figure shows that the average number of labels per switch is 12.8 and that 89% of the switches contain fewer
than 30 labels.

Figure 35(b) shows the density of switch labels, computed as

numberof_casearms
maxlabel— min_label+ 1

)

This measure is important for selecting the most appropriate implementation of switch statements [4, 14]. In the JVM
thetableswitch instruction is used when the density is high andldukupswitch ~ when the density is low.

8 Related Work

In a widely cited empirical study, Knuth conducted an analysis of 440 FORTRAN programs [15]. The study was
conducted in an attempt to understand how FORTRAN was actually being used by typical programmers. By under-
standing how the language was being used a better compiler could be designed. Each of the programs were subjected
to static analysis in order to count common constructs such as assignment statements, ifs, gotos, do loops, etc. In
addition, dynamic analysis was performed on 25 programs which examined the frequency of the constructs during a
single execution of the program. The final analysis studied the effects of various local and global optimizations on the
inner loops of 17 programs.
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Knuth'’s study was the first attempt to understand how programmers actually wrote programs. Since that initial
study many similar explorations have been conducted for a variety of languages. Salvadori et. al [20] and Chevance
and Heidet [5] both examined the profile of Cobol programs. Salvadori et. al looked at the static profile of 84 Cobol
programs within an industrial environment. In addition to examining the frequency of specific constructs, the authors
also studied the development history by recording the number of runs per day and the time interval between the runs.
Chevance and Heidet studied the static nature of Cobol programs through the number of occurrences of source level
constructs in more than 50 programs. The authors took their study a step further by computing the frequency of the
constructs as the program executed. In this study 4 categories of data were examined: constants, variables, expressions,
and statements.

Other than Heidet [5], most studies of programmer behavior have concentrated on the static structure of programs.
Of equal importance is to examine how programs change over time. Collberg et. al [6] showed how to visualize the
evolution of a program by taking snapshots of its development from a CVS repository and presenting this data using a
temporal graph-drawing system.

Cook and Lee [10] undertook a static analysis of 264 Pascal programs to gain an understanding of how the language
was being used. The analysis was conducted within twelve different contexts, e.g. procedures, then-parts, else-
parts, for-loops, etc. Additionally, the authors compared their results with those of other language studies. Cook [9]
conducted a static analysis of the instructions used in the system software on the Lilith computer. An analysis of APL
programs was conducted by Saal and Weiss [18, 19].

Antonioli and Pilz [2] conducted the first analysis of the Java class file. The goal of their study was to answer 3
guestions. (1) What is the size of the typical class file? (2) How is the size of the class file distributed between between
its different parts? (3) How are the bytecode instructions used? To answer these questions they examined 6 programs
with a total of 4016 unique classes. In contrast to the present study, they examined the size in bytes of each of the
5 parts of a class file (i.e. header, constant, class, field, and method). They also examined instruction frequencies
to see what percentage of the instruction set was actually being used. They found that on average only 25% of the
instruction set was used by any one program. Our analysis does not focus on the frequency of a particular instruction
per program but instead looks at the frequency over all programs. Overall, their study is different from ours in that
they were interested in answering a few very specific questions, where our analysis is focused on obtaining a complete
understanding of JVM programs.

Gustedt [13] conducted a study of Java programs that measures the tree-width of control-flow graphs. The tree-
width is effected by such constructs geto usage, short-circuit evaluation, multiple exiteak -statements,
continue -statements, and returns. The authors examined both Java API packages as well as Java applications
obtained through Internet searches.

O’Donoghue, et. al [17] performed an analysis of Java bytecode bigrams. Their analysis was performed on
12 benchmark applications. The only similarity between their data and ours is that we bothaloaxd _0,
getfield to be the most frequently occurring bigram. We attribute the differences to the small sample size used in
their study.

One of the byproducts of our analysis is a large repository of publicly available data on Java programs. Appel [3]
maintains a collection of interference graphs which can used in studying graph-coloring algorithms. The availability
of such repositories is highly useful in the study of compiler implementation techniques..

9 Discussion and Summary

In this paper we performed a static analysis of 1132 Java programs obtained from the Internet. Through the use of
SandMark we were able to analyze the structure of the Java bytecode. Our analysis ranged from simple counts, such
as methods per class, instructions per method, and instructions per basic block, to structural metrics like the complexity
of control flow graphs.

Our main goal in conducting the study was to use the data in our research on software protection, however we
believe this data is useful in a variety of settings. This data could be used in the design of future programming
languages and virtual machine instruction sets, as well as in the efficient implementation of compilers.

It would be interesting to perform a similar study of Java source code. Even though Java bytecode contains much
of the same information as in the source from which it was compiled, some aspects of the original code are lost.
Examples include comments, source code layout, some control-structures (when translated to kigiecoaled
while -loops may be indistinguishable), some type information (booleans are compiled to JVM integers), etc.
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Because of our random sampling of code from the Internet, it is possible that our set of Java jar-files is somewhat
skewed. It would be interesting to further validate our results by comparing against a different set of programs,
such as standard benchmark programs (for example SpecJVM [1]), or programs collected from standard source code
repositories (for examplgourceforge.net ).

We would also welcome studies for other languages. It would be interesting to validate our results by performing
a similar study for MSIL, the bytecode generated from C# programs, since MSIL and JVM (and C# and Java) share
many common features. It would also be interesting to compare our results to languages very different from Java,
such as functional, logic, and procedural languages. It might then be possible to derive a set of “linguistic universals”,
programming behaviors that apply across a range of languages. Such information would be invaluable in the design
of future programming languages.

Our experimental data and tl8andMark tool that was used to collect it can be downloaded fitiip://
sandmark.cs.arizona.edu/download.html
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