TRO03-15

December 5, 2001

SENSE: A Toolkit for Stick-e Frameworks

Siva Kollipara, Rohit Sah,
Srinivasan Badrinarayanan, Rabee Alshemali

Supervisor: Dr. Nigel Davies

SENSE: A Toolkit for Stick — e Frameworks

Siva Kollipara, Rohit Sah, Srinivasan Badrinarayanan, Rabee Alshemali
Computer Science Department
The University of Arizona
{ siva, rsah, srinivas, alshemal } @ cs.arizona.edu
December 5, 2001

Abstract

The increase in the number of handheld devices
and active research in the field of Context
Aware Computing has led to a growing interest
in the development of platforms and toolkits for
context aware applications. In this paper we
present the experiences in designing and
implementing SENSE: An e-note toolkit for
context aware applications. SENSE provides a
platform to develop applications like campus
guides that are both passive and active context
aware.

Key words: Context Aware computing, mobile
computing, ubiquitous computing, Stick-E
notes, Event Based Framework, XML, JAVA,
Disconnected operations

1. Introduction

Toolkits provide a platform to build many
powerful applications. With the increase in the
number of handheld devices and active research
in the field of Context Aware Computing there
has been a growing interest in the development
of platforms and toolkits for context aware
applications. The Stick-E framework as
proposed by P.J. Brown [1] provides an
effectual abstraction to develop context aware
applications.

In this paper we present the design and
implementation of SENSE: A Context Aware
Toolkit for use in a wireless environment. Using
SENSE a user with a handheld device like a

PDA can place e — notes based on location, time
and other contexts that get triggered on the
match of the context. The location of the user is
detected using a GPS and it forms the basis for
triggering of location context based e-notes. The
experimental test bed uses GPS traces collected
with the University of Arizona as the coverage
area. However the application can be widely
deployed at any place.

The approach used in the development of
SENSE is based upon the Stick-E framework as
proposed by P.J. Brown and incorporates most
of the features of the framework. Furthermore,
we have gone a step ahead and incorporated
new techniques to make the application more
efficient. These include having client side
caching to reduce communication overhead,
support for disconnected operations and ability
to prefetch data when the user leaves a coverage
area.

The remainder of the paper is organized as
follows. In section 2, we look at the related
work done in this area. Section 3 contains the
core of the paper, the design issues and
important features of SENSE. In Section 4,
software components are listed and related to
the components of a Stick-E framework
Implementation details are given in Section 5
followed by Testbeds and Experiments in
Section 6. Section 7 lists the various areas of
future work and finally in Section 8 we present
our conclusion.

2. Related Work
Most of the work done in this field so far has
focused on the design of the system rather than
the implementation.

In [1] P.J. Brown laid the foundation for stick —
e notes by describing a Stick-E note
architecture. In this he describes the concept of
Stick-E notes and their contribution to context
aware computing. It also gives a lot of ideas
about how to structure the various software
components necessary in the implementation of
a toolkit for Stick-E notes. Our work has been
greatly influenced by this architecture.

Pascoe et. al. have implemented a stick-e note
system as described in [12]. Their system is
limited to a client side application. The system
was developed for field workers in an area
where wireless connectivity was unavailable.
Our implementation distributes software
components between an E-note Server and
clients. Our implementation is also meant for
wide scale deployment in areas of wireless
coverage with facility for disconnected
operation.

Support for Disconnected operations has been a
hot topic in mobile computing. The Coda and
Andrew File Systems support disconnected
mode of operations for mobile nodes [5,12]. In
this they describe a feasible and efficient
mechanism to implement disconnected
operations enabled by client side caching. We
have wused similar mechanisms to support
disconnected operations.

3. Design Features

Location Model

There are two types of Location Models [4].
One is the Symbolic Model in which the context
is associated with a certain area. The other is the
Geometric Model that refers to a single point in
an area. We have used a hybrid model that
supports both types of models in which an area
is represented by the diagonal . When we want
to map to a single point we use the same method

as for mapping an area but with the only
difference that the top-left and bottom-right
coordinates are the same i.e. the diagonal is a
single point. So the co-ordinates map to a single
point.

Client Caching

The key feature to our client side application
running on a handheld device is that it uses
caching thereby reducing the communication
overhead and reduces the possibility of frequent
disruptions in connectivity being a problem.

The schemes used are:

Whole file caching: The entire campus is

divided into cells and whenever a user enters a

cell all the notes for the client associated with

the cell are cached and then are locally triggered
based on the context.

e Disconnected Operations: This scheme of
caching has the advantage that it is easy to
support disconnected operations. Even when
the connectivity with the server is down, the
client can use the locally cached copies and
all updates can be postponed till the time
connectivity is reestablished.

e Prefetching: Related to disconnected
operations is the concept of prefetching.
This could be particularly useful when a
user is moving into an area with no cell
coverage, in which case he could prefetch
the cache notes for that place.

® Reintegration: When the user moves from a
region of disconnectivity to an area with cell
coverage all changes made to the e-notes in
the disconnected mode are propagated to the
server for updation.

e A Write Through Cache is maintained, so
all the updates are propagated to the server
immediately, except when the server is
down / loss of connectivity.

e Write Back Strategy: There are timestamps
associated with every e-note that has to be
updated at the server before the user leaves a
particular cell. The Write through
mechanism mentioned above doesn’t ensure
complete updation, as it is possible that the
timestamps could have changed without any

modifications to the e-note structure. So in
order to complete the updation the e-note
data is written back before the client leaves a
cell. This is like a Write back Strategy. The
advantage of this Write back scheme is that
it also ensures that all the changes made to
the client e-notes for that cell are updated a
second time too. This is helpful if the e-
notes were not written to the server during
the Write through stage due to loss of
connectivity and other reasons.

Note Categories

Notes can be of 3 types.

Private Notes: These are the most common type
of notes and are associated with only the owner
of the note. Owner refers to the user who
created the note. As the name suggests the notes
are triggered only for the owners. Examples of
these could be reminders that the user could set
like “Withdraw Cash from ATM”.

Public Notes: These can be associated with
everyone registered with the server. Public notes
could be advertisement messages, warning
messages or other messages that could be for the
general public. The user can also categorize the
public notes based on the sub type. The sub
types just groups the public notes into smaller
subsets based on the relevance or importance.
We could have sub types “Announcements’ that
can have advertisement messages and news
flashes and “Alert” messages that can have
warning messages.

Group Notes: These are the last type of
messages and are to support the possibility of
the user belonging to groups .Then he should be
able to associate notes with the groups. E.g.:
User ‘A’ comes early to a meeting and then he
could set a note to all members in a group
associated with the meeting location saying
“Will be back in 10 minutes don’t start the
meeting”.

Actions

Actions refer to events that are raised when an
e-note is triggered. A couple of actions are
supported in the current implementation. The

first and the most common is a ‘‘Popup form™’
that is popped up when an e-note is triggered.
The other action is a ‘Beep’ alerting the user
that an e-note has been triggered.

Power Optimization

Power optimization is very critical in a handheld
device where battery life is limited. However,
when developing an application there should be
a judicious balance between the workload on the
client and the server. Moreover, if the entire
load is on the server, though the server could be
on a wired network, there could be the overhead
of sending packets across a weak wireless link.
In SENSE, the workload is equally distributed
between the client and the server. The caching
at the client reduces the client — server
interaction. However, definitely the client can
make more optimizations to save power. The
current version does not do any such power
optimizations as the first step was to build a
bare bones structure that recognized all the
contexts and triggered the right notes at the right
time. Though our user interface supports these
options, they are not implemented.

The future releases of SENSE will have more
power saving options.

Multiple Device Delivery

The field of mobile computing is flourishing at a
rapid pace and the number and variety of
handheld devices coming out in the market is
also increasing. Bearing this fact in mind, the
implementation and design has been centered on
a modular structure that can be ported to any
device. The client side development has been
done using embedded Visual Basic (eVB) which
supports a variety of mobile devices like
handheld PC’s, pocket PC’s and palm PC’s. It is
believed that devices of the future will also run
Windows CE and be eVB compatible. The
added advantage of using eVB is that it can be
converted to a Visual Basic application, making
it possible to run the client on a workstation or
laptop.

EiMain ok Add Enote

r Add E-hake

—

Context Information 7:19p

Time Context

Date: 12{1/01 Time: 7:04:47 Cell &0

“elcome i

Date:[L2I01f01] TimetJ19:19 |

‘Welcome asd e

Location Context

IUse the menus to nawigate!

Descri |Testing Enote
functionality

E! Currloc

MoteType: |public

SubType:

Frioftv: [High

|administration=] vl |administration=l vl

TL ¥ | 110570551 ER x]110.570551
TLY |32, 1392994 | BR v[32, 1392990
Witk Cankeast

#iction; |P|jp up

ik

Conbext: |C0mbinati0n

TirmeSkarp: |

] [lear] [Cancel |

[0k | [clear] [Back |

Figure 1: Snap Shots of the User Screens. (a) The main menu (b) screen used to add notes. (¢)
screen specifying the context information for the enote.

The use of XML, the web language of the
future, also furthers the cause of multiple device
support. It is platform independent and will
definitely not become obsolete for many more
years to come.

The server is written in Java that is also
platform independent.

For GPS, the standard NMEA protocol has been
used. This is a globally acclaimed standard and
is supported by most of the GPS receivers.

3. Software Components
The seminal paper by P.J. Brown [1] on a stick e
document framework has greatly influenced our
system design has been influenced. In [1]
Brown proposes the following software
components for such a system:

SEPREPARE
SEMANAGE
SETRIGGER
SESHOW

In this section we explain how these
components are implemented in our system.

SEPREPARE

Users / Authors of e-notes can create them using
a form based embedded visual basic User
Interface module on an iPaq PocketPC. The user
can specify the following contexts:

Location: These can be Symbolic locations (an
area) or Geometric Locations (a particular
point).

Time: These are e-notes set to expire at a
specific time.

Adjacency: There can be notes that are triggered
when near, in the same cell of the coverage area,
another user.

In addition to specifying the context, the user
can also set the number of times the e-note must
be triggered.

Every e-note that gets created is assigned an ‘e-
noteid’. The ‘e-noteid’ is unique and formed
from the user name followed by a timestamp.

The e-notes can also be viewed, modified and
deleted. The modify and delete operations use
the ‘e-noteid’ to perform the operation on the
right e-note.

A screenshot of the user interface is shown in
Figure 1.

SEMANAGE

Managing E-notes: When users in any part of
the coverage area creates, modifies or deletes
notes a message with the information is to a
central e-note server that stores all the e-notes.
The e-note server stores these e-notes in an
XML file. The communication between the user
and the server is through a secure TCP
connection. The specifics of the communication
protocol are given in detail in section 5 on
implementation.

SETRIGGER

The e-notes received by the client application on
the iPaq get triggered by an embedded visual
basic background application that is continually
checking the e-note cache to check if any e-
note’s context is satisfied. Location sensing is
done by the application via GPS NMEA input
data from a GARMIN eTrek GPS receiver that
is connected to the iPaq. The current time is
read from the iPaq system clock.

SESHOW

When the e-notes are triggered the action that is
associated with that e-note is executed.
Currently a ‘Popup form’ is displayed on the
user’s screen with the title, description and other
details of the e-note. E-notes might also alert the
user by a beep on being triggered, if the user
while creating the e-note enabled this feature.

5. Implementation

E-note Structure

The e-notes are maintained at the client and the
server as XML objects. The server on boot up
loads the e-note list from an XML file and
stores these details in an XML Document
Object Model (DOM) object.

The representation at the client is also similar. A
template of the e-note structure is shown in
figure 2.

- <ENOTES>

- <ENOTE>
<Cl0=game/Cl0>
<ID>sam-12/1/01 3:22:31 AM</ID>
<TITLE=Gall«/TITLE
<DESCR>Call home«/DESCR:
<TVPE20</TYPE>
<SUBTYPE>HF</SUBTYPES
<PRICRITY=0¢/PRIORITY =
<ACTION>0</ACTION=
<FRED: 44 FREQ:
<TIMEC DATE=" TIME="" />
<LOCATIONC BL="110.574162%" BR="32,140517N" TL="110.574162W" TR="32.140517N" />
<WITHC FLAGS="1" IDTYPE="S" UID="" />
<FLAGS=12/FLAGS>
<TIMEPERIOD>12/TIMEPERIOD
<TIMESTAMP=37226.140636574 </TIMESTAMP:
<COUNT=1</COUNT=

</ENOTE>
</ENCTES

Figure 2: XML representation of the
enote structure used

Communication Protocol
The client and server communicate with each

other using the Transfer Control Protocol
(TCP).

The messages that the client server exchange
are:

Cache Request Message
The user in the following cases may trigger a
CACHE_REQUEST message:

e The client application detects that it has
crossed a cell boundary.

e The client wants to prefetch data for a
certain cell. In the current implementation
the prefetching is explicit. A snap shot of the
user prefetch screen is shown in figure 3

It is the responsibility of the user to cache the
data before going into a region of no service.
We plan, however, to develop heuristics to
determine with a high degree of certainty that a
client will soon be crossing over to another cell
or to an area with no coverage. This algorithm
can be based on the observed pattern of motion
of the user (both the speed and orientation as
provided by the NMEA protocol). This idea is
similar to the concept of hoarding in the Coda
file system [5]. Such a heuristic has also been

proposed in [4].

This will enable the client
application to implicitly prefetch the data.

E}}] Cache Prefetch Options

F27p

AW (Plussun,
Unian, Bookstore

ME {&dmin,
Health, Flandrau
ete,. - cell #1

SW (Centennial
Hall, 35 et) -=
cell #2

5E iRec Center,
Librarw ek,) -=
cell #3

Select cell to prefetch enckes for the cell,

| Load | | Save | | Back |

Load - = loads Fetched enotes into cache
Save -> Saves current enoke cache ko server

Figure 3: The pink region is where the user
is currently located. By clicking on any of the
(other) cells he can prefetch the data for that
cell.

Figure 4 shows two user movement patterns
from which we can with a high degree of
certainty predict that userl will soon be entering
cell 1 and user2 will soon be leaving the
coverage area.

E-notes are served to clients, on receiving a
CACHE_REQUEST message from a user in a
specific cell of the coverage area.

Cell 0 Cell 1
Cell 2 Cell 3

Usger 2

Figure 4: User movement patterns for which
cell boundary crossover can be predicted with a
high probability.

Cache Response Message

On receiving the CACHE_REQUEST, the
e- note server sends a CACHE_RESPONSE to
the user containing e-notes (this may be
user created and public notes) for that particular
cell.

Add Note Message

All new notes that are added by the user are sent
to the server as an ADD_NOTE message. The
message packet contains the e-note data as an
XML file that is parsed by the server to update
its e-note list.

Modify Note Message

These are similar to add note messages except
that the modified notes are sent as a file and the
server replaces the existing notes that match the
new modified notes. Matching is based on the
note id.

Remove Note Messages

To remove an e-note a REM_NOTE message is
sent that just contains the user name and ‘e-
noteid’.

User Personalization

All user profiles are also stored on the central e-
note server. The user may choose to not receive
public e-notes by setting his profile to reflect
this.

6. Testbed and Experiments

The testbed for our experiments include a

e A Sony VAIO Ilaptop computer with
Pentium II, 128 MB RAM and 433 MHz.
This was used as a base station (server).

e AnIPAQ 3670 PDA, with Windows CE 3.0,
64 MB RAM, 16 MB ROM, Intel Strong
ARM, SA1110 was used as the client.

e All the development was done on a 733
MHz, 128MB RAM workstation and then
ported to the handheld device and the laptop.

e The laptop and the IPAQ were in the 802.11
network in the adhoc mode. For this, 11
Mbps Lucent Technologies ORINICO
Wavelan Cards were used.

e A GARMIN ETREK Summit
GPS Receiver.

All the experiments were done within the
campus of the University of Arizona.

The coverage area included the 4 boundary
points of the campus as shown in figure 5.

Configuring the 802.11 Network

The first step in establishing the communication
between the IPAQ and the laptop was
configuring the 802.11 network in the adhoc
mode. Contrary to our belief that this would be a
rather difficult milestone to cross, it was rather
trivial configuring the network. To configure the
network first both the machines were setup in
the same subnet by giving them a same subnet
mask. The IP addresses used for the laptop and
IPAQ were 172.16.4.10 and 172.16.4.11

respectively. The subnet mask was
255.255.255.0. Once this was done the other
details of the network were removed. Then the
profiling information was changed so that the
devices belong to the same network group. The
configuration we used was:

Profile name: c¢s630c (used in identification),
Network Type: P2P group, Network Name:
enote (required for the devices to talk). A static
channel (7) was used for communication.

GPS Tools

GPS Talk

All the experiments were done using GPS
simulation traces that contained the position
coordinates of various places in the campus. The
reason for this is that it was impossible to test
the software indoors along with the GPS, as
GPS doesn’t work indoors. To make the process
of data collection easy a tool, GPS TALK, to
collect the information was developed and used.
The tool was upgraded many times and the

Cell 0

Cell 2"

| Cell 1

Cell 3

Figure 5: Map of University of Arizona that was the coverage area for the experiments.
The campus was divided into four cells that had an equal distribution of important places

latest version available is GPS Talk 3.0. We
used this tool to capture location points. This is
shipped along with SENSE.

However due to the inherent limitation of a GPS
receiver to not work indoor trace files were used
for testing. The GPS Emulator mimicked the
working of the GPS and provided the values of
the co — ordinates from the trace file rather than
collecting the information using real time co —
ordinates.

$GPRMC,003214,A,3213.7992,N,11057.2809,W,0.0,108.5,301101,11.4,E,A*30
$GPRMC,003216,A,3213.7992,N,11057.2808,W,0.0,108.5,301101,11.4,E,A*33
$GPRMC,003218,A,3213.7993,N,11057.2807,W,0.0,108.5,301101,11.4,E,A*33
$GPRMC,003220,A,3213.7993,N,11057.2806,W,0.0,108.5,301101,11.4,E,A*39
$GPRMC,003222,A,3213.7994,N,11057.2805,W,0.0,108.5,301101,11.4,E,A*3F
$GPRMC,003224,A,3213.7994,N,11057.2804,W,0.0,108.5,301101,11.4,E,A*38
$GPRMC,003226,A,3213.7995,N,11057.2802,W,0.0,108.5,301101,11.4,E,A*3D
$GPRMC,003228,A,3213.7995,N,11057.2801,W,0.0,108.5,301101,11.4,E,A*30
$GPRMC,003230,A,3213.7995,N,11057.2800,W,0.0,108.5,301101,11.4,E,A*38

Figure 6: Sample Trace File

GPS Emulation

A GPS Emulator was also implemented that
provided the GPS values to/from a trace file
rather than the actual co — ordinates. This was
very useful for testing.

Experiments

Collecting Co - ordinates

Using the campus region as the coverage area a
walk of the entire campus was done collecting
the co ordinates of the important places within
the campus. Also the boundaries of the coverage
area were found. GPS Talk 3.0 helped in this
data collection.

Based on the co ordinates collected the campus
was divided into 4 cells. This was done such
that each cell had equally important places like
the bookstore, food court, and recreation center.
Figure 5 shows the campus map and how it was
divided into cells.

Testing

The application developed keeps reading the
GPS coordinates from the GPS receiver, that is
interfaced with the PDA, every second.

Figure 6 shows a sample of the trace file. As the
file sample shows it has details of the longitude,
latitude of points that would be encountered by
the user when he is actually walking around
campus. So every second the next location from
the file is read and notes are triggered based on
this location and the current time.

Results
¢ Enote contexts were successfully triggered.

o Addition / deletion / updation of enotes
was successful in the presence and
absence of connectivity.

o Enotes were properly triggered at the
correct context.

¢ Operation of SENSE in connected mode was
successfully tested.

o Write-through to the server for e-note
based operations was successful.

o Write-back of cache to the server on
moving out of a cell was successful.

e Operation of SENSE in disconnected mode
was successfully tested.

o Prefetching of Enotes before entering a
region of no connectivity was
successful.

o Re-integration of cache contents at the
server (once connectivity is re-
established) was successful.

7. Future Work

SENSE is under active development. In earlier

sections of the paper we discussed about the

design of SENSE and what has been done so
far. In this section we list the various directions
in which we intend to broaden our work.

¢ In the current implementation the Client has
only a cached copy of the data. It could be
further extended so that the Client also saves
the files to his hard disk so that it could help
in connectivity and persistency as in Coda.

¢ One file is maintained at the Server for all
the clients. This increases the latency at the
server. We plan to have a faster indexing
mechanism that will enable quicker lookups.
One such mechanism could be to have one
XML file per client.

e An excellent opportunity also exists to
provide very good QoS to users. E.g. notes
delivered could be based on priority.
Though the user interface supports options
for specifying the number of notes to be
cached or the cell size, these options are not
supported and will be done in the future.

e Right now only a couple of basic actions are
triggered on an event. This can be further
extended such that active context aware
applications can be triggered.

e As had been stated earlier in the paper,
active steps will be taken to optimize to save
power.

e The focus of our research was to use the
Stick-E framework to develop context aware
applications and not much emphasis was
given to the server side development. So for
commercialization we can extend this.

e Using Microsoft Embedded Tools -
Platform Builder, a platform specifically for
SENSE can be developed.

e Using SENSE we plan to develop
‘documents’ of e-notes. For E.g. Tour guide
etc.

¢ In the current implementation when the Save
option is selected the Cached data at the
client is sent to the server that saves it the

information in its Database. This ensures
that modified and new notes are updated.
Delete operations, however, are not replayed
back. In order to do this we can have a
replay log with checkpoints, and perform all
operations since the last checkpoint. One
can also use compaction algorithms to
remove redundant log events and reduce the
number of transactions.

8. Conclusion

We have presented a toolkit that supports stick —
e frameworks. The Stick — e architecture,
proposed by P.J. Brown, has inspired the design
and implementation of SENSE that have been
presented in this paper

The toolkit supports a variety of contexts like
location and time and has all the components of
the stick — e framework working. It also
improves on the suggestions of P.J. Brown by
supporting disconnected operations, prefetching
and caching at the clients.

This is a preliminary version of the toolkit and
work is wunder progress to improve the
performance and also to incorporate many more
features that are currently not supported. More
information on the work described in this paper
is available on the web at
http://www.cs.arizona.edu/people/srinivas/enote
S

Acknowledgements

We wish to thank Dr. Nigel Davies for his
valuable feedback and comments. We also
thank the faculty in the Computer Science
Department at The University of Arizona and
friends for their help and support.

References

[1] P.J. Brown. The Stick — e Document: A
Framework for Creating Context -
Aware Applications. Proceedings of the
EP ‘96.

[2] P.J. Brown. The electronic Post — it note
— a metaphor for mobile computing

[31]

[10]

[11]

applications, University of Kent at
Canterbury (1995).

P.J. Brown, P.D. Bovey and X. Chen.
Context — Aware applications: From the
laboratory to the Marketplace. IEEE
Personal Communications 4 (5), 1997,
pp-58 — 64

Leonhardt, U. "Supporting Location-
Awareness in Open Distributed
Systems". PhD Thesis, Department of
Computing, Imperial College of Science,
University of London. (1998)

Kistler, JJ., Satyanarayanan, M.
“Disconnected Operation in the Coda
File System”. ACM Transactions on
Computer Systems. Feb. 1992, Vol. 10,
No. 1, pp. 3-25.

Nigel Davies, Keith Cheverst, Keith
Mitchell and Adrian Friday. 'Caches in

the Air" Disseminating Tourist
Information in the Guide System.
Proceedings of the Second IEEE

Workshop on Mobile Computer Systems
and Applications1998

A. K. Dey, D. Salber, and G. D. Abowd.
A conceptual framework and a toolkit for
supporting the rapid prototyping of

context-aware applications. Human-
Computer Interaction, 16. 2001
Andy Harter, Andy Hopper, Pete

Steggles, Any Ward, and Paul Webster.
The anatomy of a context-aware
application. In Proceedings of the 5th
Annual ACM/IEEE International
Conference on Mobile Computing and
Networking (Mobicom 1999), pages 59--
68, Seattle, WA, August 1999. ACM
Press.

Jason 1. Hong. Context Fabric:
Infrastructure Support for Context-Aware
Systems. Qualifying Exam Proposal.
University of California at Berkley.

Jason Pascoe. Adding generic contextual
capabilities to wearable computers. In
The Second International Symposium on
Wearable Computers, pages 92--99.
IEEE Computer Society, Oct 1998

Jason Pascoe. The Stick-e note
architecture: Extending the interface

[12]

[13]

[14]

[15]

[16]

beyond the user. In Proceedings of the
1997 International Conference on
Intelligent User Interfaces, pages 261-
264, Orlando, FL, January 1997. ACM
Press.

Jason Pascoe, David Morse, and Nick
Ryan. Developing personal technology
for the Field. Personal Technologies,
2(1), March 1998

Albrecht Schmidt, Michael Beigl, and
HansW. Gellersen. There is more to
context than location. In Proceedings of
Workshop on Interactive Applications of
Mobile Computing (IMC'98), Rostock,

Germany, November 1998. Neuer
Hochschulschriftverlag
Roy Want, Andy Hopper, Veronica

Falcao, Jonathon Gibbons, "The Active
Badge Location System", ACM Trans.
Inf. Sys., Vol. 10, No. 1, 1/1992.

L. Huston and P. Honeyman,
"Disconnected operation for AFS."
Proceedings of the USENIX mobile and
location-independent computing
symposium, August 2-3, 1993,
Cambridge, Massachusetts. Pages 1-10.
Mendel Rosenblum and John K.
Ousterhout. The design and
implementation of a log-structured file
system. ACM Transactions on Computer
Systems, 10(1): 26-52, February 1992

10

