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ABSTRACT 

This paper proposes a framework for emulating multiple IP 

hosts (virtual IP machines) inside a single system kernel. By 

augmenting and restructuring certain system components, the 

framework can provide an emulation and testing environment 

where a single system is capable of transparently representing 

multiple IP hosts comprising a virtual network.  

The main advantage of the framework is that existing protocols, 

applications and network configuration utilities may execute 

under multiple virtual IP machines without being modified nor 

recompiled. The framework significantly reduces the equipment 

and spatial resources required by test beds and laboratory 

environments to appropriately conduct experiments and 

emulations.   

This paper describes the architecture of the framework. We  also 

describe our implementation in the Linux kernel and analyze the 

performance and scalability of the framework based on the 

results obtained from experiments conducted on our 

implementation.  
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1. INTRODUCTION 
Distributed systems, protocols and applications continue to 

emerge as the Internet keeps growing in size and complexity. 

The Internet’s large-scale nature and global reach makes it even 

more important that we focus on correctness, performance and 

scalability. Therefore, developers and researchers must have at 

their disposal tools and resources that allow them to test their 

protocols and applications for these various types of 

performance metrics. These tools can be generally categorized 

as three different types: simulators, emulators and test beds. The 

latter we will also be referred as testing environments or 

laboratory environments. 

Simulation tools construct a synthetic representation of the 

network topology, protocols and applications. The simulated 

protocols and applications are usually simplified versions of the 

real systems, perhaps removing details irrelevant to simulations. 

Time is generally also synthetic because a difference is made 

between simulation time and real time. 

Simulators are economical and flexible because they can 

represent arbitrary topologies and diverse node and link 

characteristics. The notion of simulation time has also a positive 

effect on the scaling characteristics. Namely, there is no spatial 

or economical constraints on the size of network scenarios that 

can be simulated. Larger network scenarios may be simulated at 

the expense of longer execution time.  Simulation time is also 

advantageous because the efficiency of the code has no impact 

on performance. For example: no optimizations need to be done 

and floating point operations may be used with no cost in 

performance. Another nice property of simulators is that 

experiments can be replicated. Unless random processes are 

intentionally introduced, the same network scenario1 will always 

yield the same results. 

Simulators unfortunately do have their drawbacks. Applications 

must be modeled in a way the simulator can understand by using 

the application interface (API) exported by the simulator. This 

often means that protocols have to be re-written entirely. Real 

systems introduce unpredictability not easily replicated by 

simulators. For example, multiprogramming in real systems 

affects the order and timing of network events. 

There is no unique consensus of what network emulation  

involves.  The ns [7] simulator defines emulation [10] as the 

ability to introduce the simulator into a live network where 

special objects within the simulator are capable of introducing 

live traffic into the simulator and injecting traffic from the 

simulator into the live network. The authors of [11] define 

emulation as environment where the applications to be analyzed 

can be run on separate, real machines not inside a simulator. In 

either case, it is assumed that an emulator has both synthetic and 

real hardware and software components. The advantages and 

drawbacks of emulations will depend on which components are 

real and which are synthetic.  

Test beds represent an environment where all objects are real, 

including hardware, software and the notion of time. These 

environments obviously provide the most accurate 

representation but they exhibit serious flexibility problems. 

Different network scenarios require extra equipment and/or 

hardware rearrangement as well as software reconfiguration. 

Test beds are also very restricted in terms of scalability. Only 

                                                                 

1 “Network scenario” in this context represents the entire 

configuration of the simulation. 



small network scenarios can be represented with limited 

hardware and space. 

This paper proposes a tool that has two goals with respect to the 

discussion above: First, it provides novel approach and a new 

tool to test and analyze protocols and applications for 

correctness, efficiency and scalability. Second, it addresses the 

scalability issues of test beds or laboratory environments by 

having each hardware system effectively represent multiple IP 

hosts.  

Our architecture is totally transparent. By borrowing from the 

concept of virtual machines [6], we introduce the notion of a 

virtual IP machine as a representation of an IP host. Under this 

architecture we can have many protocols and applications 

executing on the same physical machine but in the context of 

different virtual IP machines. Processes executing on different 

virtual IP machines have the illusion that they are executing on 

different IP hosts with their own network interfaces, IP 

addresses, and network state. Transparency is also achieved 

because existing applications, protocols and network 

configuration utilities can  execute under different virtual IP 

machines without modification or the need to recompile. 

The reminder of this paper is organized as follows: Section 2 

describes the architecture of our framework and shows how 

multiple virtual IP machines are supported by the kernel. 

Section 3 describes our implementation in the Linux kernel.  

Section 4 presents the performance and scalability studies and 

describes the results obtained on experiments conducted in our 

implementation. Section 5 discusses related work, and explains 

how we have either improve or contributed on previous work. 

Section 6 elaborates on  possible areas of future work. Finally, 

in section 7 we present the conclusions of our research. 

2. VIRTUAL IP MACHINES 
The virtual IP machine architecture enables processes in a single 

system to execute under different network states called virtual IP 

machines, which are transparent and independent 

representations of virtual nodes within the network. Figure 1 

illustrates this concept. Just as every process is associated with a 

set of open files, a virtual address space, an execution state and 

process credentials, it is also be associated with a virtual IP 

machine. A virtual IP machine identifier is added to every 

process descriptor2. This identifier points to the virtual IP 

machine under which the process is running. 

A virtual IP machine is essentially a data structure containing all 

the components necessary to represent the state of any IP host or 

router. Figure 2 shows the components of a virtual machine. The 

two most salient elements are the routing table and a set of 

network interfaces, but other components are necessary as well 

and each one will be explained. 

                                                                 

2 Other commonly used names for this data structure are process 

control block, task control block, task descriptor, process table 

entry. In Unix, this structure is usually called proc structure 

 

Figure 1: Relation between processes and VIP Machines 

A virtual IP machine has a set of interfaces that connect it to 

other virtual IP machines residing either in the same physical 

machine or other external system. Each interface could either be 

real or virtual. A real interface links the virtual IP machine with 

a physical device attached to a network that may in turn be 

connected to other legacy systems or other systems capable of 

supporting multiple virtual IP machines. 

A virtual interface is not associated with a physical device. It is 

used to link two virtual IP machines in the same system. Each 

interface is configured with a bandwidth and latency value. 

When a packet arrives at the virtual interface, the bandwidth and 

latency are used to schedule the arrival of the packet at the other 

end through the use of software interrupts. Multi-access 

networks such as Ethernet may be emulated by having the 

software interrupt deliver the packet to all virtual IP machines 

connected to the same IP subnet. 

In Section 6, we discuss the possibility of having several virtual 

IP machines share a physical network interface by stacking 

several virtual interfaces on top a physical interface and defining 

the appropriate software interface between the two levels of 

abstraction. However, this requires a more elaborate re-

structuring of the system’s network stack.   

Each virtual machine has a route table and a route cache used to 

forward packets generated by a local process or received 

through one its virtual network interfaces. All processes execute 

in the context of some virtual IP machine. Therefore, their IP 

packets will be forwarded according to the route table and route 

cache of corresponding virtual IP machine.  

Locally generated packets are forwarded somewhat differently 

when compared to incoming packets arriving at one of the 

interfaces associated with the virtual IP machine. consider first 

those packets generated by a local process. Instead of doing a 

the usual lookup on a global forwarding table or cache, the IP 

layer must first obtain the virtual IP machine identifier of the 

current process and perform the route lookup in the table of the 

corresponding virtual IP machine. Incoming packets are instead 

forwarded during software interrupts and thus need to be treated 



differently. Software interrupts are by definition asynchronous 

events, therefore they are executed in the context of an arbitrary 

process which happens to be  whatever process is  executing at 

the time of the interrupt. Incoming packets need to be forwarded 

in the context of the virtual IP machine associated with the 

incoming interface. But since the current process is arbitrary the 

current virtual IP machine will also be arbitrary. To circumvent 

this problem, each network interface data structure includes the 

identifier of the virtual IP machine it belongs to. When an 

incoming packet arrives at any given interface, the IP layer first 

obtains the identifier from the network interface and performs a 

route lookup in the corresponding virtual IP machine. 

 

Figure 2: Structure of a Virtual IP Machine 

Each virtual IP machine has its own ARP table to achieve better 

transparency and isolation. The framework can be implemented 

with a single global ARP table but certain secondary effects are 

introduced. Certain network utilities  such as netstat and arp can 

be used to display address resolution information. If a global 

ARP table is used then the information from all virtual IP 

machines would be displayed. Any address resolution performed 

by a given virtual IP machine is also visible on all other virtual 

IP machines, potentially reducing the number of address 

resolutions in the network. This could be consider as an 

undesired change in network behaviour. 

Virtual IP machines must also store information regarding 

currently used TCP and UPD ports and their associated 

connections. This information is used by TCP and UDP to 

determine the connection associated with each incoming packet 

and to deliver the data to the appropriate process. TCP and UDP 

ports must be unique across all connections in the same IP host 

because they are used to de-multiplex incoming packets to the 

appropriate processes. With global port tables, two processes 

could not bind to the same port even if they execute in the 

context of different virtual IP machines. Therefore, it is 

important that each virtual IP machine maintains its own port 

tables to allow processes to bind to the same port providing they 

are running on different virtual IP machines. For example, if one 

wants to run the RIP routing protocol (routed) on every virtual 

IP machine, each process instance of routed should be able to 

bind to port 520 on its corresponding virtual IP machine. 

There is no performance penalty for adding support for virtual 

IP machines. That is, a legacy system will exhibit the same 

performance as a system running a single virtual IP machine. 

The only difference is that with virtual IP machines an extra 

level of indirection has been added when accessing network data 

structures. This means that virtual IP machine support can be 

added into main stream kernel distributions to provide extra 

functionality to the user without incurring in any loss of 

performance. 

3. IMPLEMENTATION 
We decided to implement our architecture on Linux. We 

initially debated between Linux and some open source 

implementation of BSD Unix. We ended up choosing Linux 

because we believe it has a broader reach and could be of more 

use to potential users. 

The framework is implemented as a conditionally-compiled 

module. A dynamic module implementation proved to be 

difficult because the framework is not sufficiently isolated and 

independent. Many parts of the system and the network stack 

had to be modified. Since most of the modifications we made  

are located on the INET socket layer, we decided to implement 

the virtual IP machine as a conditionally-compiled component 

of the INET layer3. 

Our initial version is limited to IPv4. Multicast is not yet 

supported and only point-to-point virtual links have been 

implemented. However, this is not a limitation of the 

architecture. We hope our implementation will be expanded in 

the near future to support IPv6, multicast, multi-access links, 

and quality-of-service routing through the use of multiple 

routing tables, all of which are already supported by Linux. 

The initialization code has been modified to create a default 

virtual IP machine with an ID of zero. All physical interfaces 

detected by the system at startup are assigned to the default 

virtual IP machine, and the virtual machine identifier of the init 

process is set to point to the default virtual IP machine. All 

processes created thereafter are descendants of the init process 

and therefore will inherit the default virtual IP machine. After 

initial start-up, the system will behave a single virtual IP 

machine and will behave just like legacy system. 

A new Unix command-line utility called viprun has been 

created to spawn new processes under a virtual IP machine 

different that of its parent. This utility is crucial in providing full 

transparency to existing protocols and applications. The syntax 

of the viprun command is as follows 

viprun id name [arg1 … argn] 

the first argument, id, should be the id of the virtual IP machine, 

name is the name of the executable for the new process, and 

arg1 – argn are command line parameters passed to the new 

process. A new system call setvip has also been added and is 

invoked by viprun to change its virtual IP machine. After 

changing to a different virtual IP machine, viprun invokes exec 

and transforms itself into the specified process. Similar 

techniques are used by other well-known Unix utilities to 

transparently start a process under different conditions 

unbeknown to the process, therefore requiring no modification. 

For example, nohup is used to execute a process with the 

SIGHIP signal disabled and nice executes a process with a 

different scheduling priority. 

                                                                 

3 Note that the INET socket layer in Linux is itself a 

conditionally-compiled module. 



A few system calls were added and the INET socket ioctl 

interface was expanded so processes can interface with the 

kernel to create and configure virtual IP machines and links. The 

two system calls are getvip and setvip. They enable processes to 

determine or change their virtual IP machine. The ioctl interface 

allows processes to create and configure the topology by adding 

or modifying virtual IP machines and network links. The setvip 

will usually be invoked by applications to change to another 

virtual IP machine while ioctl is generally invoked by network 

utilities or topology compilers to create and manipulate virtual 

IP machines and links. Existing applications make use of the 

viprun utility as described above. 

We intend to remove the getvip and setvip system calls and add 

their functionality to the ioctl interface. These two system calls 

are easier to use and remember when compared to ioctl 

parameters, but adding system calls to Linux can be problematic 

because the system call numbers might collide with later 

versions of the Linux kernel. Linux developers recommend 

using ioctl when possible. We plan to create a user-level library 

of simple stub routines that invoke ioctl with the appropriate 

parameters. To use the ioctl interface directly, the application or 

network utility must first create a socket just for the purpose of 

interfacing with the INET socket layer inside the kernel. The 

socket descriptor is used as a parameter to ioctl. This is in fact 

the same technique used by network utilities such as netstat, 

route, ifconfig and ip. 

TCP and UDP socket hash tables are created on each virtual IP 

machine. Linux uses hash tables to keep track of currently used 

ports. Hash values are generated from port numbers. Each table 

entry contains a pointer to the socket associated with the given 

port. Linux uses a single table for UDP. TCP uses two tables. 

One table keeps track of sockets that have been binded but 

whose connection has not been established. A similar table is 

maintained for sockets whose connection has been established. 

4. PERFORMANCE AND SCALABILITY 
 

5. RELATED WORK 
Previous work may be divided into those that represent the 

traditional network simulation approach and those that make use 

of the kernel’s network implementation. Our discussion will 

focus on the latter since it is most related to our work. However, 

for the sake of completeness and because of their undisputable 

importance, we mention some of the relevant work in the 

traditional simulation approach. These include ns [7], REAL 

[8], and OPNET [9]. 

S.Y. Wang and H.T. Kung have constructed a tool called the 

Harvard TCP/IP simulator [1] [2] using a novel approach that 

resembles a few similarities with our work and uses the real-life 

UNIX TCP/IP stack. The simulator uses a single routing table in 

the kernel and relies on tunnels to implement virtual links as 

user level processes. Figure 3 illustrates the architecture. 

 

Figure 3: Simulator based on tunnel network interfaces 

Each tunnel interface has a corresponding device special file in 

the /dev directory. Virtual links are implemented as user level 

processes that receive and send packets by reading and writing, 

respectively, on the device special files for the tunnel interfaces. 

Routers are simulated by having IP packets re-enter the kernel 

for each router along the path. The Harvard simulator uses a 

single routing table inside the kernel. This requires that the 

destination address of each packet be re-mapped before re-

entering the kernel. If re-mapping is not done, the IP packet will 

always be forwarded with the same routing entry and through 

the same tunnel interface, therefore looping on a single node 

until the TTL becomes zero.  

This scheme fails to provide processes with the abstraction that 

they are executing under different IP hosts because the routing 

table and other network-related data structures are shared 

between all virtual nodes. A process that looks up the routing 

table will see the routing entries for all network hosts. This 

architecture is inappropriate for implementing network software 

such as routing protocols. 

The authors of the Harvard simulator argue that by using a 

different routing mechanism, existing network utilities such as 

“route” could no longer be used. We have proved that by using 

the virtual IP machine architecture all existing software, 

including network utilities will continue to work. 

An advantage of the Harvard simulator is that it uses a simulated 

virtual time instead of real time. This means that it does not have 

the scalability bounds of the virtual IP machine approach. This 

is something we are looking into and a possibility for future 

work. However, we would like to have the user choose what 

type of simulation time they wish to use. Our framework is 

meant to work efficiently under normal, non-testing 

environments and we’d like to maintain that benefit. 

Dummynet [3] uses a similar approach to that of the Harvard 

TCP/IP simulator.  However, there are some fundamental 

differences. Dummynet uses real time similar to our virtual IP 

machine approach. Routing tables in Dummynet are associated 

with incoming links rather than nodes. Thus the simulator does 

not know how to route packets generated by a router because 

such packets do not come from any links. The concept of virtual 

IP machines avoids this downside because every application or 

protocol executes in the context of an independent and well-

define network state.  

The ENTRAPID development environment [4] adapts the 

concept of a virtual machine [6] to that of a Virtualized 



Networking Kernel (VNK). Each VNK runs as thread inside the 

ENTREPID User Space Process and represents a single network 

node. User processes also run inside the ENTREPID address 

space. VNKs are based on a virtualized version of the BSD Unix 

network that redirects kernel references to resources 

implemented inside ENTREPID. User processes are virtualized 

by redirecting BSD socket calls to routines inside the VNKs. 

Both VNKs and User processes are virtualized by modifying 

their source code to re-map all accesses to shared resources. 

The approach has several downsides. It duplicates code and 

functionality already available in the kernel. Application source 

code needs to be modified to virtualize references to shared 

resources. Because many applications use other subsystems 

besides the network and the BSD sockets interface, ENTREPID 

must also deal with references to file systems, inter-process 

communications, and any other exported interfaces. 

The EMPOWER research group at Michigan State University 

has designed and implemented of a network emulator [5] which 

can be used to simulate a variety network conditions inside a 

controlled laboratory environment. However, it is not intended 

to be a complete emulation or testing environment. It is used to 

extend the flexibility of existing laboratory environments to be 

able to emulate many types of link conditions such as delay, 

bandwidth and loss models. As shown in Figure 4, the tool is 

implemented as a Linux module between the IP layer and the 

network device driver. A configuration utility uses ioctl() to 

configure different link behaviors. 

 
Figure 4: The EMPOWER emulator 

 

6. FUTURE WORK 
Further research and implementation is needed to expand and 

improve the virtual IP machine framework. We mention a few 

ideas here. 

An important topic of research concerns decoupling real time 

from emulation (virtual) time as done by S.Y. Wang in the 

Harvard simulator to achieve grater scalability. We are looking 

for a somewhat different approach that meets the goals of our 

framework. The virtual IP machine architecture is designed to be 

incorporated into mainstream system distributions without 

decreasing system performance. A single virtual IP machine is 

created during normal startup and the system will behave as any 

other legacy system. Users may take advantage of virtual IP 

machine support at any time by creating additional virtual IP 

machines. To maintain this goal, the default virtual IP machine 

must be able to execute the network stack using real time. One 

approach is to use real time by default and provide a system call 

that processes may use to change to virtual time for network 

communication purposes. 

We are also planning developing a topology compiler which 

automates the creation and configuration of virtual IP machines 

and virtual links, as well as process creation in the context of 

different virtual IP machine. Topologies and network scenarios 

are specified in a high-level language and the interpreter 

automatically creates and configures the virtual topology and 

processes. 

Support should also be added for multi-access links. The current 

implementation supports only point to point links. Virtual IP 

machines should also be extended to support multicast and other 

common services that are already supported by the Linux kernel 

but that have not yet been ported to the virtual IP machine 

implementation.   

7. CONCLUSIONS 
We have proposed a system framework and architecture that 

expands the concept of virtual machine into the networking 

domain to transparently support multiple virtual IP hosts on the 

same physical system. We have shown that our framework is 

fully transparent to user-level processes and supports existing 

applications, protocols and network utilities without requiring 

modification or re-compilation.  

Our performance results show that our framework exhibits 

limited but reasonable scalability. Our scalability analysis shows 

that our framework can significantly increase the size of network 

scenarios that can be emulated by test beds and laboratory 

environments. A typical system by today’s standards is able to 

emulate ___ virtual IP machines without incurring in significant 

performance degradation.    
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