
Virtual IP Machines: A System Framework for Emulating
Multiple IP Hosts

Jesus Arango
University of Arizona
Gould-Simpson 721
Tucson, AZ 85721
+1(520)888-1816

jarango@cs.arizona.edu

Xxx
University of Arizona
Gould-Simpson 721
Tucson, AZ 85721
+1(999) 999-9999

xxx@cs.arizona.edu

ABSTRACT

This paper proposes a framework for emulating multiple IP

hosts (virtual IP machines) inside a single system kernel. By

augmenting and restructuring certain system components, the

framework can provide an emulation and testing environment

where a single system is capable of transparently representing

multiple IP hosts comprising a virtual network.

The main advantage of the framework is that existing protocols,

applications and network configuration utilities may execute

under multiple virtual IP machines without being modified nor

recompiled. The framework significantly reduces the equipment

and spatial resources required by test beds and laboratory

environments to appropriately conduct experiments and

emulations.

This paper describes the architecture of the framework. We also

describe our implementation in the Linux kernel and analyze the

performance and scalability of the framework based on the

results obtained from experiments conducted on our

implementation.

Keywords

Virtual IP machine, VIPM, network, simulation, emulation, test

bed, lab.

1. INTRODUCTION
Distributed systems, protocols and applications continue to

emerge as the Internet keeps growing in size and complexity.

The Internet’s large-scale nature and global reach makes it even

more important that we focus on correctness, performance and

scalability. Therefore, developers and researchers must have at

their disposal tools and resources that allow them to test their

protocols and applications for these various types of

performance metrics. These tools can be generally categorized

as three different types: simulators, emulators and test beds. The

latter we will also be referred as testing environments or

laboratory environments.

Simulation tools construct a synthetic representation of the

network topology, protocols and applications. The simulated

protocols and applications are usually simplified versions of the

real systems, perhaps removing details irrelevant to simulations.

Time is generally also synthetic because a difference is made

between simulation time and real time.

Simulators are economical and flexible because they can

represent arbitrary topologies and diverse node and link

characteristics. The notion of simulation time has also a positive

effect on the scaling characteristics. Namely, there is no spatial

or economical constraints on the size of network scenarios that

can be simulated. Larger network scenarios may be simulated at

the expense of longer execution time. Simulation time is also

advantageous because the efficiency of the code has no impact

on performance. For example: no optimizations need to be done

and floating point operations may be used with no cost in

performance. Another nice property of simulators is that

experiments can be replicated. Unless random processes are

intentionally introduced, the same network scenario1 will always

yield the same results.

Simulators unfortunately do have their drawbacks. Applications

must be modeled in a way the simulator can understand by using

the application interface (API) exported by the simulator. This

often means that protocols have to be re-written entirely. Real

systems introduce unpredictability not easily replicated by

simulators. For example, multiprogramming in real systems

affects the order and timing of network events.

There is no unique consensus of what network emulation

involves. The ns [7] simulator defines emulation [10] as the

ability to introduce the simulator into a live network where

special objects within the simulator are capable of introducing

live traffic into the simulator and injecting traffic from the

simulator into the live network. The authors of [11] define

emulation as environment where the applications to be analyzed

can be run on separate, real machines not inside a simulator. In

either case, it is assumed that an emulator has both synthetic and

real hardware and software components. The advantages and

drawbacks of emulations will depend on which components are

real and which are synthetic.

Test beds represent an environment where all objects are real,

including hardware, software and the notion of time. These

environments obviously provide the most accurate

representation but they exhibit serious flexibility problems.

Different network scenarios require extra equipment and/or

hardware rearrangement as well as software reconfiguration.

Test beds are also very restricted in terms of scalability. Only

1 “Network scenario” in this context represents the entire

configuration of the simulation.

small network scenarios can be represented with limited

hardware and space.

This paper proposes a tool that has two goals with respect to the

discussion above: First, it provides novel approach and a new

tool to test and analyze protocols and applications for

correctness, efficiency and scalability. Second, it addresses the

scalability issues of test beds or laboratory environments by

having each hardware system effectively represent multiple IP

hosts.

Our architecture is totally transparent. By borrowing from the

concept of virtual machines [6], we introduce the notion of a

virtual IP machine as a representation of an IP host. Under this

architecture we can have many protocols and applications

executing on the same physical machine but in the context of

different virtual IP machines. Processes executing on different

virtual IP machines have the illusion that they are executing on

different IP hosts with their own network interfaces, IP

addresses, and network state. Transparency is also achieved

because existing applications, protocols and network

configuration utilities can execute under different virtual IP

machines without modification or the need to recompile.

The reminder of this paper is organized as follows: Section 2

describes the architecture of our framework and shows how

multiple virtual IP machines are supported by the kernel.

Section 3 describes our implementation in the Linux kernel.

Section 4 presents the performance and scalability studies and

describes the results obtained on experiments conducted in our

implementation. Section 5 discusses related work, and explains

how we have either improve or contributed on previous work.

Section 6 elaborates on possible areas of future work. Finally,

in section 7 we present the conclusions of our research.

2. VIRTUAL IP MACHINES
The virtual IP machine architecture enables processes in a single

system to execute under different network states called virtual IP

machines, which are transparent and independent

representations of virtual nodes within the network. Figure 1

illustrates this concept. Just as every process is associated with a

set of open files, a virtual address space, an execution state and

process credentials, it is also be associated with a virtual IP

machine. A virtual IP machine identifier is added to every

process descriptor2. This identifier points to the virtual IP

machine under which the process is running.

A virtual IP machine is essentially a data structure containing all

the components necessary to represent the state of any IP host or

router. Figure 2 shows the components of a virtual machine. The

two most salient elements are the routing table and a set of

network interfaces, but other components are necessary as well

and each one will be explained.

2 Other commonly used names for this data structure are process

control block, task control block, task descriptor, process table

entry. In Unix, this structure is usually called proc structure

Figure 1: Relation between processes and VIP Machines

A virtual IP machine has a set of interfaces that connect it to

other virtual IP machines residing either in the same physical

machine or other external system. Each interface could either be

real or virtual. A real interface links the virtual IP machine with

a physical device attached to a network that may in turn be

connected to other legacy systems or other systems capable of

supporting multiple virtual IP machines.

A virtual interface is not associated with a physical device. It is

used to link two virtual IP machines in the same system. Each

interface is configured with a bandwidth and latency value.

When a packet arrives at the virtual interface, the bandwidth and

latency are used to schedule the arrival of the packet at the other

end through the use of software interrupts. Multi-access

networks such as Ethernet may be emulated by having the

software interrupt deliver the packet to all virtual IP machines

connected to the same IP subnet.

In Section 6, we discuss the possibility of having several virtual

IP machines share a physical network interface by stacking

several virtual interfaces on top a physical interface and defining

the appropriate software interface between the two levels of

abstraction. However, this requires a more elaborate re-

structuring of the system’s network stack.

Each virtual machine has a route table and a route cache used to

forward packets generated by a local process or received

through one its virtual network interfaces. All processes execute

in the context of some virtual IP machine. Therefore, their IP

packets will be forwarded according to the route table and route

cache of corresponding virtual IP machine.

Locally generated packets are forwarded somewhat differently

when compared to incoming packets arriving at one of the

interfaces associated with the virtual IP machine. consider first

those packets generated by a local process. Instead of doing a

the usual lookup on a global forwarding table or cache, the IP

layer must first obtain the virtual IP machine identifier of the

current process and perform the route lookup in the table of the

corresponding virtual IP machine. Incoming packets are instead

forwarded during software interrupts and thus need to be treated

differently. Software interrupts are by definition asynchronous

events, therefore they are executed in the context of an arbitrary

process which happens to be whatever process is executing at

the time of the interrupt. Incoming packets need to be forwarded

in the context of the virtual IP machine associated with the

incoming interface. But since the current process is arbitrary the

current virtual IP machine will also be arbitrary. To circumvent

this problem, each network interface data structure includes the

identifier of the virtual IP machine it belongs to. When an

incoming packet arrives at any given interface, the IP layer first

obtains the identifier from the network interface and performs a

route lookup in the corresponding virtual IP machine.

Figure 2: Structure of a Virtual IP Machine

Each virtual IP machine has its own ARP table to achieve better

transparency and isolation. The framework can be implemented

with a single global ARP table but certain secondary effects are

introduced. Certain network utilities such as netstat and arp can

be used to display address resolution information. If a global

ARP table is used then the information from all virtual IP

machines would be displayed. Any address resolution performed

by a given virtual IP machine is also visible on all other virtual

IP machines, potentially reducing the number of address

resolutions in the network. This could be consider as an

undesired change in network behaviour.

Virtual IP machines must also store information regarding

currently used TCP and UPD ports and their associated

connections. This information is used by TCP and UDP to

determine the connection associated with each incoming packet

and to deliver the data to the appropriate process. TCP and UDP

ports must be unique across all connections in the same IP host

because they are used to de-multiplex incoming packets to the

appropriate processes. With global port tables, two processes

could not bind to the same port even if they execute in the

context of different virtual IP machines. Therefore, it is

important that each virtual IP machine maintains its own port

tables to allow processes to bind to the same port providing they

are running on different virtual IP machines. For example, if one

wants to run the RIP routing protocol (routed) on every virtual

IP machine, each process instance of routed should be able to

bind to port 520 on its corresponding virtual IP machine.

There is no performance penalty for adding support for virtual

IP machines. That is, a legacy system will exhibit the same

performance as a system running a single virtual IP machine.

The only difference is that with virtual IP machines an extra

level of indirection has been added when accessing network data

structures. This means that virtual IP machine support can be

added into main stream kernel distributions to provide extra

functionality to the user without incurring in any loss of

performance.

3. IMPLEMENTATION
We decided to implement our architecture on Linux. We

initially debated between Linux and some open source

implementation of BSD Unix. We ended up choosing Linux

because we believe it has a broader reach and could be of more

use to potential users.

The framework is implemented as a conditionally-compiled

module. A dynamic module implementation proved to be

difficult because the framework is not sufficiently isolated and

independent. Many parts of the system and the network stack

had to be modified. Since most of the modifications we made

are located on the INET socket layer, we decided to implement

the virtual IP machine as a conditionally-compiled component

of the INET layer3.

Our initial version is limited to IPv4. Multicast is not yet

supported and only point-to-point virtual links have been

implemented. However, this is not a limitation of the

architecture. We hope our implementation will be expanded in

the near future to support IPv6, multicast, multi-access links,

and quality-of-service routing through the use of multiple

routing tables, all of which are already supported by Linux.

The initialization code has been modified to create a default

virtual IP machine with an ID of zero. All physical interfaces

detected by the system at startup are assigned to the default

virtual IP machine, and the virtual machine identifier of the init

process is set to point to the default virtual IP machine. All

processes created thereafter are descendants of the init process

and therefore will inherit the default virtual IP machine. After

initial start-up, the system will behave a single virtual IP

machine and will behave just like legacy system.

A new Unix command-line utility called viprun has been

created to spawn new processes under a virtual IP machine

different that of its parent. This utility is crucial in providing full

transparency to existing protocols and applications. The syntax

of the viprun command is as follows

viprun id name [arg1 … argn]

the first argument, id, should be the id of the virtual IP machine,

name is the name of the executable for the new process, and

arg1 – argn are command line parameters passed to the new

process. A new system call setvip has also been added and is

invoked by viprun to change its virtual IP machine. After

changing to a different virtual IP machine, viprun invokes exec

and transforms itself into the specified process. Similar

techniques are used by other well-known Unix utilities to

transparently start a process under different conditions

unbeknown to the process, therefore requiring no modification.

For example, nohup is used to execute a process with the

SIGHIP signal disabled and nice executes a process with a

different scheduling priority.

3 Note that the INET socket layer in Linux is itself a

conditionally-compiled module.

A few system calls were added and the INET socket ioctl

interface was expanded so processes can interface with the

kernel to create and configure virtual IP machines and links. The

two system calls are getvip and setvip. They enable processes to

determine or change their virtual IP machine. The ioctl interface

allows processes to create and configure the topology by adding

or modifying virtual IP machines and network links. The setvip

will usually be invoked by applications to change to another

virtual IP machine while ioctl is generally invoked by network

utilities or topology compilers to create and manipulate virtual

IP machines and links. Existing applications make use of the

viprun utility as described above.

We intend to remove the getvip and setvip system calls and add

their functionality to the ioctl interface. These two system calls

are easier to use and remember when compared to ioctl

parameters, but adding system calls to Linux can be problematic

because the system call numbers might collide with later

versions of the Linux kernel. Linux developers recommend

using ioctl when possible. We plan to create a user-level library

of simple stub routines that invoke ioctl with the appropriate

parameters. To use the ioctl interface directly, the application or

network utility must first create a socket just for the purpose of

interfacing with the INET socket layer inside the kernel. The

socket descriptor is used as a parameter to ioctl. This is in fact

the same technique used by network utilities such as netstat,

route, ifconfig and ip.

TCP and UDP socket hash tables are created on each virtual IP

machine. Linux uses hash tables to keep track of currently used

ports. Hash values are generated from port numbers. Each table

entry contains a pointer to the socket associated with the given

port. Linux uses a single table for UDP. TCP uses two tables.

One table keeps track of sockets that have been binded but

whose connection has not been established. A similar table is

maintained for sockets whose connection has been established.

4. PERFORMANCE AND SCALABILITY

5. RELATED WORK
Previous work may be divided into those that represent the

traditional network simulation approach and those that make use

of the kernel’s network implementation. Our discussion will

focus on the latter since it is most related to our work. However,

for the sake of completeness and because of their undisputable

importance, we mention some of the relevant work in the

traditional simulation approach. These include ns [7], REAL

[8], and OPNET [9].

S.Y. Wang and H.T. Kung have constructed a tool called the

Harvard TCP/IP simulator [1] [2] using a novel approach that

resembles a few similarities with our work and uses the real-life

UNIX TCP/IP stack. The simulator uses a single routing table in

the kernel and relies on tunnels to implement virtual links as

user level processes. Figure 3 illustrates the architecture.

Figure 3: Simulator based on tunnel network interfaces

Each tunnel interface has a corresponding device special file in

the /dev directory. Virtual links are implemented as user level

processes that receive and send packets by reading and writing,

respectively, on the device special files for the tunnel interfaces.

Routers are simulated by having IP packets re-enter the kernel

for each router along the path. The Harvard simulator uses a

single routing table inside the kernel. This requires that the

destination address of each packet be re-mapped before re-

entering the kernel. If re-mapping is not done, the IP packet will

always be forwarded with the same routing entry and through

the same tunnel interface, therefore looping on a single node

until the TTL becomes zero.

This scheme fails to provide processes with the abstraction that

they are executing under different IP hosts because the routing

table and other network-related data structures are shared

between all virtual nodes. A process that looks up the routing

table will see the routing entries for all network hosts. This

architecture is inappropriate for implementing network software

such as routing protocols.

The authors of the Harvard simulator argue that by using a

different routing mechanism, existing network utilities such as

“route” could no longer be used. We have proved that by using

the virtual IP machine architecture all existing software,

including network utilities will continue to work.

An advantage of the Harvard simulator is that it uses a simulated

virtual time instead of real time. This means that it does not have

the scalability bounds of the virtual IP machine approach. This

is something we are looking into and a possibility for future

work. However, we would like to have the user choose what

type of simulation time they wish to use. Our framework is

meant to work efficiently under normal, non-testing

environments and we’d like to maintain that benefit.

Dummynet [3] uses a similar approach to that of the Harvard

TCP/IP simulator. However, there are some fundamental

differences. Dummynet uses real time similar to our virtual IP

machine approach. Routing tables in Dummynet are associated

with incoming links rather than nodes. Thus the simulator does

not know how to route packets generated by a router because

such packets do not come from any links. The concept of virtual

IP machines avoids this downside because every application or

protocol executes in the context of an independent and well-

define network state.

The ENTRAPID development environment [4] adapts the

concept of a virtual machine [6] to that of a Virtualized

Networking Kernel (VNK). Each VNK runs as thread inside the

ENTREPID User Space Process and represents a single network

node. User processes also run inside the ENTREPID address

space. VNKs are based on a virtualized version of the BSD Unix

network that redirects kernel references to resources

implemented inside ENTREPID. User processes are virtualized

by redirecting BSD socket calls to routines inside the VNKs.

Both VNKs and User processes are virtualized by modifying

their source code to re-map all accesses to shared resources.

The approach has several downsides. It duplicates code and

functionality already available in the kernel. Application source

code needs to be modified to virtualize references to shared

resources. Because many applications use other subsystems

besides the network and the BSD sockets interface, ENTREPID

must also deal with references to file systems, inter-process

communications, and any other exported interfaces.

The EMPOWER research group at Michigan State University

has designed and implemented of a network emulator [5] which

can be used to simulate a variety network conditions inside a

controlled laboratory environment. However, it is not intended

to be a complete emulation or testing environment. It is used to

extend the flexibility of existing laboratory environments to be

able to emulate many types of link conditions such as delay,

bandwidth and loss models. As shown in Figure 4, the tool is

implemented as a Linux module between the IP layer and the

network device driver. A configuration utility uses ioctl() to

configure different link behaviors.

Figure 4: The EMPOWER emulator

6. FUTURE WORK
Further research and implementation is needed to expand and

improve the virtual IP machine framework. We mention a few

ideas here.

An important topic of research concerns decoupling real time

from emulation (virtual) time as done by S.Y. Wang in the

Harvard simulator to achieve grater scalability. We are looking

for a somewhat different approach that meets the goals of our

framework. The virtual IP machine architecture is designed to be

incorporated into mainstream system distributions without

decreasing system performance. A single virtual IP machine is

created during normal startup and the system will behave as any

other legacy system. Users may take advantage of virtual IP

machine support at any time by creating additional virtual IP

machines. To maintain this goal, the default virtual IP machine

must be able to execute the network stack using real time. One

approach is to use real time by default and provide a system call

that processes may use to change to virtual time for network

communication purposes.

We are also planning developing a topology compiler which

automates the creation and configuration of virtual IP machines

and virtual links, as well as process creation in the context of

different virtual IP machine. Topologies and network scenarios

are specified in a high-level language and the interpreter

automatically creates and configures the virtual topology and

processes.

Support should also be added for multi-access links. The current

implementation supports only point to point links. Virtual IP

machines should also be extended to support multicast and other

common services that are already supported by the Linux kernel

but that have not yet been ported to the virtual IP machine

implementation.

7. CONCLUSIONS
We have proposed a system framework and architecture that

expands the concept of virtual machine into the networking

domain to transparently support multiple virtual IP hosts on the

same physical system. We have shown that our framework is

fully transparent to user-level processes and supports existing

applications, protocols and network utilities without requiring

modification or re-compilation.

Our performance results show that our framework exhibits

limited but reasonable scalability. Our scalability analysis shows

that our framework can significantly increase the size of network

scenarios that can be emulated by test beds and laboratory

environments. A typical system by today’s standards is able to

emulate ___ virtual IP machines without incurring in significant

performance degradation.

8. ACKNOWLEDGMENTS
Our thanks to Dr. S. Y. Wang for permitting use to use his

figures on the Harvard TCP/IP simulator.

9. REFERENCES
[1] S.Y. Wang and H.T. Kung, "A Simple Methodology for

Constructing Extensible and High-Fidelity TCP/IP

Network Simulators", IEEE INFOCOM'99, March 21-25,

1999, New York, USA

[2] S.Y. Wang and H.T. Kung, "A New Methodology for

Easily Constructing Extensible and High-Fidelity TCP/IP

Network Simulators", to appear in Computer Networks

Journal

[3] L. Rizzo, “Dummynet: a simple approach to the evaluation

of network protocols”, Computer Communication Review,

Vol. 27, No. 1, p.31-41, January 1997

[4] X. W. Huang, R. Sharma, and S. Keshav, “The

ENTRAPID Protocol Development Environment”, IEEE

INFOCOM ’99, March 21-25, 1999, New York, USA

[5] Kaushik K. Dam and Lionel M. Ni, “Design and

Implementation of a Network Emulator”, Michigan State

University Technical Report: MSU-CPS-ACS-98-16, May

30, 1998.

[6] A. Meyer and L. H. Seawright, “A Virtual Machine Time

Sharing system”, IBM Systems Journal, Vol 9. No. 3,

1970, pp. 199-218

[7] The ns network simulator, http://www.isi.edu/nsnam/ns/

[8] S. Keshav, “REAL: A Network Simulator”, Technical

Report 88/472, Dept. of computer Science, UC Berkeley,

constructing a TCP/IP network simulator with minimal

time 1988.

[9] MIL3 Inc. home page, http://www.mil3.com/products

[10] The VINT project, “The ns manual”, A collaboration

between researchers at UC Berkeley, LBL, USC/ISI, and

Xerox PARC.

[11] D. Herrscher, A. Leonhardi, and K. Rotherme,

“Modeling Computer Networks for Emulation”,

Proceedings of the 2002 International Conference on

Parallel and Distributed Processing Techniques and

Applications (PDPTA'02), Las Vegas, June 2002

