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ABSTRACT

What are the hottest computer science research topics today? Which research areas are

experiencing steady decline? How many co-authors are typical for a research paper to-

day and 20 years ago? Who are the most prolific writers? In this paper, we attempt to

address these questions as well as study collaboration patterns, research communities,

interactions between related research specialties, and the evolution of these character-

istics through time. For our analysis we use data from the Association of Computing

Machinery’s Digital Library of Scientific Literature (ACM Portal) which contains over

a hundred thousand research papers and authors. We use a novel technique for visu-

alization of large graphs that evolve through time. Given a dynamic graph, the layout

algorithm produces two-dimensional representations of each time-slice, while preserv-

ing the mental map of the graph from one slice to the next. A combined view, with all

the time-slices can also be viewed and explored. Graphs with tens of thousands of ver-

tices and edges, resulting from specific queries to our local copy of the ACM database,

are generated and displayed in seconds. The images in this paper are produced by a

graph layout tool which uses the dynamic graph layout algorithm.

Keywords:

dynamic graph visualization, visualization of literature, co-
authorship analysis

1 INTRODUCTION

In this paper, we present several examples of exploration of the
computing literature using a novel algorithm for visualization of
large graphs that evolve through time together with more traditional
gnuplot charts of the relevant statistics. The Association for Com-
puting Machinery (ACM) has kindly provided us with a copy of the
their digital library which contains over 100,000 research papers
and over 100,000 unique authors. After creating our own MySQL
database we wrote a program that extracts different types of graphs
from the data. The graphs were then viewed with our dynamic
graph visualization tool.

Typical graphs extracted from the ACM data include category
graphs and collaboration graphs. The category graph allows us to
view the computing literature as a large graph that evolves through
time and enables us to “see” the answers to questions such as:

• What were the hottest topics in computing in the 1990’s?

• Which research areas are experiencing steady decline?

• What areas have been growing rapidly in the last few years?

The collaboration graph allows us to view the computing litera-
ture as a dynamic social network and enables us to see the answers
to questions such as:

• How many co-authors are typical in a research paper today?

• Which research communities are open and well-connected?

• Who is the Paul Erdös of ACM?

∗This work is supported in part by the NSF under grant ACR-0222920.

Several reasons influenced our decision to work with the ACM
portal data: First, ACM kindly provided us with a copy of their
digital library. Second, from the ACM data we were able to extract
numerous graphs that evolve through time. Given access to “real-
world” graphs that evolve through time we could put our dynamic
graph visualization algorithm to the test. Third, we were curious to
find patterns and trends within the computing community. Fourth,
we were hoping to provide a visual interactive tool for exploring
the ACM data that could be of use to the computing community.

2 SPECIFICS

The Data: For this study we use conference proceedings papers
from the 20-year period between 1981 and 2000. The ACM Portal
contains 51,503 conference papers and 81,279 authors in this pe-
riod. Table 1 summarizes some of the important statistics gathered
from the data. For years outside this range our copy of the ACM
Portal lacks complete coverage. We decided to work with the con-
ference data as there is better coverage and better representation of
conference data in the database. We did not consider journal and
conference papers together because there is non-trivial overlap of
articles (journal publications that have a corresponding conference
version). Fig. 1 shows the cumulative number of conference papers
in the period 1981-2000. The results are notable because similar
data from mathematics and neuro-science [2] show linear growth
while the ACM data seems to indicate super-linear growth.

One of the common problems in working with a bibliographical
database is the problem of name representation. For example, all
the following are possible database entries: Edsger Wybe Dijkstra,
Edsger W. Dijkstra, Edsger Dijkstra, E. W. Dijkstra, and E. Dijkstra.
It is also possible that different authors may have the same name in
the database. Typically these problems are addressed by choosing
one way to represent the data and hoping that the resulting errors
are not that large. We did not attempt to match up different en-
tries in the database to account for the same author appearing under
more than one name. Thus, we most likely over-count the number
of unique authors. Fortunately, it has been shown that errors intro-
duced due to name representation have minor effects on the overall
graph statistics [21].

Collaboration Graphs: These graphs (also known as co-
authorship graphs) have been used in the past to study social
networks [17] and to extract statistics about research communi-
ties [2, 21]. A well-known example of such a graph is the Erdös
collaboration graph [3]. Paul Erdös was one of the most intellectu-
ally productive mathematicians in the history having authored more
than 1400 papers with over 500 co-authors.

In exploring the ACM database, we would like to extract more
information from a collaboration graph so that its visualization
gives us a better understanding of issues such as the productivity of
authors, the degree of collaboration between authors, and the evo-
lution of collaboration patterns through time. With this in mind,
our collaboration graphs are simple, undirected, node-weighted,
and edge-weighted graphs corresponding to a given time period.
Vertices represent unique authors and there is an edge between two
vertices if the respective authors have collaborated on a research



General Value

Total papers 51503

Total authors 81279

Authors per paper 2.32

Highest Category-Hardware 4.56

Lowest Category-General Literature 1.91

Papers per author 1.80

Collaborators per author 3.36

Percentage of giant component 49

Percentage of 2
nd component 0.11

Clustering Coefficient 0.62

Average Distance 9.26

Maximum Distance 30

Table 1: Data for conference papers published in 1981-2000.

paper. The weight of a vertex is determined by the author’s collab-
orativeness and productivity. The weight of an edge represents the
strength of the collaborative ties between two authors.

Category Graphs: We take advantage of the categorization of
papers stored in the ACM database by creating what we call cate-
gory graphs. The category graph for a given time period is a sim-
ple, undirected, node-weighted, and edge-weighted graph in which
vertices correspond to categories and edges are placed between cat-
egories that co-occur in research papers. The weight of a vertex
represents the concentration of research on a category and the edge
weight represents the strength of the relation between two cate-
gories. There are 11 categories and 92 subcategories in the ACM
classification. Related to the category graphs are the category-
change graphs in which a vertex represents the percent change
(growth/decline) of research concentration on the corresponding
category. Together, the category and category-change graphs can
be effectively used to visualize the trends in research specialties in
computing literature through time.

Temporal Graph Visualization: Both the category and collab-
oration graphs contain interesting information as static representa-
tions of the computing literature given a particular year, or accu-
mulated over a period of time. However, studying the evolution
and dynamics of these graphs can reveal even more information,
such as, new research trends and interesting collaboration patterns.
With this in mind, we focus our attention on the models and algo-
rithms for visualization of graphs that evolve through time (tempo-
ral graph visualization). Consider a sequence of category graphs,
G1, G2, . . . , Gn, one for each year in a given time period. To visu-
alize the evolution of this category graph we would like to ensure
that the drawing of each time-slice is readable and that the sequence
of drawings preserves the mental map of the underlying structure.

Intuitively, a layout for a graph is readable if it shows well the
relationships described by the graph structure and a user’s mental

map is preserved between two drawings in the sequence if ver-
tices common to both graphs remain in the same positions. To
address these two conflicting goals, we create a combined-graph
G1,n, which consist of all time-slices G1, G2, . . . , Gn, with addi-
tional edges connecting same vertices in adjacent time-slices. We
obtain a drawing for the combined-graph G1,n using an extensive
modification of one of the algorithms for visualization of large static
graphs [14]. The main features of our algorithm, TGRIP, include:

• graph distance based intelligent (rather than random) initial
placement of vertices;

• a fast O(n log n+m) multi-dimensional scaling layout algo-
rithm, where n and m are the number of vertices and edges in
G1,n, respectively;

• a force-directed layout for node-weighted and edge-weighted
graphs, where each time-slice Gi is restricted to the plane z =
i and constrained by the edges connecting it to its adjacent
graphs Gi−1 and Gi+1;

3

N
u

m
b

er
 o

f 
P

ap
er

s 
(X

 1
0

  
)

0

10

20

30

40

50

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

0

1

2

3

4

5

6

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

Figure 1: Cumulative number of conference papers from 1981 to 2000. The

inset shows the number of papers each year.

• layout and visualization of the combined-graph, together with
time-slice visualization and animation through time.

• a control mechanism for balancing readability and mental
map preservation, the two main characteristics of a “good”
drawing.

TGRIP produces a 3D drawing of the combined-graph as well
as individual 2D drawings of each time-slice, as in Fig. 2(b-c). An
animation of the 2D drawings of the time-slices allows us to observe
the evolution of the structure.

3 RELATED WORK

Social network analysis often relies on visualization to convey in-
formation about the network structure [24]. Social network analysis
and visualization based on scientific collaborations are addressed
in [2, 3, 17, 21]. Adding a visualization level to database search
engines has been tried in the past. For example, Butterfly is an
Information Visualizer application for accessing three DIALOG
databases [18]. The Butterfly application provides a user interface
for accessing multiple repositories by embedding access activity,
including search and browsing within an information visualization.
There have been recent efforts on mining the citation graph of the
computer science literature [1] using NEC’s ResearchIndex.

Author co-citation analysis has been used in informetrics and
McCain [19] details the procedures required: co-citation counts are
collected for pairs of authors and then stored in a raw co-citation
matrix for further analysis. For instance, “maps” of a scientific
domain can be generated from this data. Such analysis has been
applied to the library and information science domain by concen-
trating on the top 120 authors in the field [25]. In [22], mini-
mum spanning trees, based on the distances between documents
computed from co-citations together with multi-dimensional scal-
ing and force-directed graph drawing methods are used to visualize
parts of the information science domain. Similar techniques were
used to visualize the ACM Hypertext literature [8, 9].

Dynamic graph visualization is typically based on techniques for
static layouts [6, 16, 26]. North [23] studies the incremental graph
drawing problem in the DynaDAG system. Brandes and Wagner
adapt the force-directed model to dynamic graphs using a Bayesian
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Figure 2: Level-1 category graph made of four time-slices, from bottom to top, T1 (1981-1985), T2 (1986-1990), T3 (1991-1995), T4 (1996-2000); (a) a view of the

combined-graph without the edges; (b) a view of the combined-graph with all the edges; (c) a view of the time-slices with only the heavy edges; (d) a view of the

category-change graphs.

framework [5]. Diehl and Görg [12] consider graphs in a sequence
to create smoother transitions. Special classes of graphs such as
trees, series-parallel graphs and st-graphs have also been studied
in dynamic models [10, 20]. Most of these approaches, however,
are limited to special classes of graphs and usually do not scale
to graphs over a few hundred vertices. Brandes and Corman [4]
present a system for visualizing network evolution in which each
modification is shown in a separate layer of 3D representation with
vertices common to two layers represented as columns connect-
ing the layers. Thus, mental map preservation is achieved by pre-
computing good locations for the vertices and fixing the position
throughout the layers.

Simultaneous planar graph embedding is a related problem that
asks whether there exist locations for the vertices of two differ-
ent planar graphs such that each of the graphs can be drawn with
straight lines and no crossings. Recent theoretical results [7, 13]
imply that simultaneous embeddings exist only for special cases
and relaxations of the problem (such as the one we address in this
paper) should be considered. Along these lines, Collberg et al [11]
describe a graph-based system for visualization of software evolu-
tion, which uses a modification of our algorithm for visualization
of large graphs [14], while preserve the mental map by fixing the
locations of all common vertices in the evolving graph.

4 CATEGORY GRAPHS

ACM classifies the computing literature in 11 level-1 categories: A
(General Literature), B (Hardware), C (Computer Systems Orga-
nization), D (Software), E (Data), F (Theory of Computation), G
(Mathematics of Computing), H (Information Systems), I (Com-
puting Methodologies), J (Computer Applications), and K (Com-

puter Milieux). Within each category there are varying numbers
of subcategories, or level-2 categories, for a total of 92. The cate-
gory graph for a given time period is a simple node-weighted and
edge-weighted undirected graph in which vertices correspond to
categories and edges are placed between categories that co-occur
in research papers. The weight of a vertex in the category graph
is proportional to the number of papers that list the corresponding
category for the given time period. Similarly, the edge weight is
proportional to the number of papers in which the two correspond-
ing categories co-occur.

Category graphs can reveal information about related special-
ties, the concentration of research on a specific specialty and the
trends as they evolve through time. Fig. 2 contains several visu-
alizations of the level-1 category graph. Fig. 2(a) and Fig. 2(b)
show the combined-graph without edges and with edges, respec-
tively. The edges connecting same vertices in adjacent time-slices
help with mental map preservation and are used to determine the
vertex locations in the animation between time-slices. As can be
seen in Fig. 2(b), most vertices do not move great deal between ad-
jacent time-slices, thus helping preserve the mental map. Fig. 2(c)
displays each time-slice separately in 2D. The evolution is animated
by obtaining intermediate time-slices from any adjacent pair.

We also construct category-change graphs in which the weight
of a vertex is the percentage of its weight change between adjacent
time-slices. The edge weight is proportional to the corresponding
percent-change between two time periods. Together with the cate-
gory graphs, the category-change graphs can be effectively used to
visualize the evolution of the computing literature through time.
Fig. 2(d) shows the category-change graph corresponding to the
level-1 category graph in Fig. 2(a-c). Note that although categories
I (Computing Methodologies) and H (Information Systems) are the
largest categories in the last time period in Fig. 2(c) the change be-
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Figure 3: Level-2 category-change graphs for the following time periods; (a)

Change between T1 and T2; (b) Change between T2 and T3; (c) Change be-

tween T3 and T4; The subcategories in the graphs are: B.6 (Logic Design),

B.7 (Integrated Circuits), C.2 (Computer-Communication Networks), C.4 (Per-

formance of Systems), D.2 (Software Engineering), D.3 (Programming Lan-

guages) F.1 (Computation by Abstract Devices), F.2 (Analysis of Algorithms

and Problem Complexity, G.2 (Discrete Mathematics), G.3 (Probability and

Statistics), H.3 (Information Storage and Retrieval), H.5 (Information Interfaces

and Presentation), I.3 (Computer Graphics), I.6 (Simulation and Modeling), K.6

(Management of Computing and Information)

tween the last two periods is most significant in one of the smaller
categories, namely A (General Literature).

We include one other example of a category-change graph for a
subset of the level-2 categories, which are more detailed and pro-
vide a better representation of research specialties; see Fig. 3. Note
the large growth of H.5 (Information Interfaces and Presentation)
from time-slice T2 to T3 in Fig. 3(b).

Popular Title Words: Parsing the paper titles allows us to look
for “buzzwords” in the different years. Fig. 4 shows the most popu-
lar five words (as percent of the total) used each year starting in
1981, not including words such as for and the. One noticeable
trend is that compared to the early 80’s there are less dominant
words in the late 90’s, as can be seen by the shrinking range of
the plot. Some words remain quite popular throughout the 20-year
period (design, systems, simulation) while others appear and disap-
pear quickly (ada, database, parallel). The word algorithm makes
the list in most years in the 90’s and together with model, design
and systems almost completes the lists for the last five years.
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Figure 4: Title popularity

Trends: We explored the level-2 category graphs for the 1996-
2000 period. As expected, some areas (as grouped by the ACM)
show decline while others seem to be growing. In particular, as
shown on Fig. 5 steadily growing level-2 categories include C.5
(Computer System Implementation), E.3 (Data Encryption), H.2

(Database Management), and I.5 (Pattern Recognition). Research
areas experiencing decline include E.1 (Data Structures), F.1 (Com-
putation by Abstract Devices), and I.1 (Symbolic and Algebraic
Manipulation), the last one after already experiencing a decline of
41.9% from the 1991-1995 period to the 1996-2000 period. Also
notable is the graph for G.4 (Mathematical Software) which seems
peak in 1997, followed by a sharp decline in the late 90’s.
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Figure 5: Growth and decline trends for C.5 (Computer System Implemen-

tation), E.1 (Data Structures), E.3 (Data Encryption), F.1 (Computation by Ab-

stract Devices), G.4 (Mathematical Software), H.2 (Database Management),

I.1 (Symbolic and Algebraic Manipulation), and I.5 (Pattern Recognition).

5 COLLABORATION GRAPHS

An earlier comparative study of the computing, physics, and med-
ical literature points to both similarities and differences between
the research communities [21] in metrics such as mean number of
papers and number of collaborators per author, distances between
authors in the collaboration graph, and the size of the largest con-
nected component. However, the data about the computing commu-
nity came from NCSTRL, which contains preprints of papers sub-
mitted by participating institutions. At the time of the above study,
there were slightly over than 13,000 papers and under 12,000 au-
thors in the NCSTRL database. We believe that our study has better
coverage of the subject areas and presents a more complete picture
of the computing literature. Table 1 shows a summary of the overall
statistics.

Our data confirms several of the results noted in earlier papers
on research collaboration as a social network [2, 21]. First, the col-
laboration network in computer science has the “six degrees of sep-
aration” property; that is, the average distance between two authors
in the collaboration graph is a small constant. Second, as a “real-
world” graph, the collaboration graph has a much higher degree of
clustering than would be expected from a random graph of compa-
rable size. Third, the power-law degree distribution in the collabo-
ration graph places the computing literature collaboration graph in
the class of scale-free networks unlike truly random Erdös-Réyni
networks [24].

Authors per Paper: In mathematics, the average number of au-
thors per paper has increased from about 1 per paper in 1935 to
about 1.5 in 1995 [15]. Averages in medicine and physics are often
higher, with the SPIRES high-energy physics database average of
about 9 collaborators per paper [21]. In computer science, theoret-
ical papers often have less collaborators than applied papers. We
note a steady increase in the average number of authors per paper
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in the computing literature from 1.82 in 1981 to 2.79 in 2000. Fig. 6
shows the average number of authors per paper in the 20-year pe-
riod considered by showing the overall data, as well as data for the
ACM categories with highest average, B (Hardware) and the lowest
average, A (General Literature).

Size of Giant Component: In the theory of random graphs it
is known that increasing the density of the edges leads to the for-
mation of a giant connected component. While the size of the gi-
ant component in a typical scientific collaboration graph is 80%-
90% the number seems to be much smaller for the computing liter-
ature [21]. Possible reasons for the discrepancy include incomplete
data and identifying one person as two or more (due to name rep-
resentation). Our data indicates that the size of the giant connected
component is about 49%. It other words, about half of the authors
in the ACM database are connected via a path of co-authors.

Average and Maximum Distances: We can also find the short-
est path from one author to another in the co-authorship graph. This
information is useful in the sense that it creates a chain of references
of intermediate scientists through whom contact between two au-
thors may be established [17]. Our data suggests a “nine degrees of
separation” property, as the average distance between two authors
is slightly above 9. The maximum shortest path distance between
two connected authors is 30. Note that the true maximum distance
is infinite for two authors not in the same connected component but
we perform the calculations using only the finite distances.

Clustering Coefficient: A useful measure for the strength of the
ties between authors is the clustering coefficient. Let Nu denote the
set of neighbors of vertex u in the collaboration graph and let ENu

be the set of edges e such that both of the vertices incident to e are
in Nu. The clustering coefficient for u is defined as:

Cu = 2 × |ENu |
|Nu| × (|Nu| − 1)

In other words, the clustering coefficient of u tells us how collab-
orative the co-authors of u are among themselves. We have found
that the average clustering coefficient for the collaboration graph is
0.62, which is comparable with the clustering coefficient for other
fields such as mathematics and physics. This indicates that the ten-
dency to form strongly tied computing research groups is as high as
in other research areas, despite the relatively small size of the giant
connected component.

Number of Papers and Collaborators: The average number of
papers per author is 1.80, while the average number of collaborators
is nearly double at 3.36. Table 2 shows the most productive and

Name Number of papers

Wong, D. F. 78

Cong, Jason 74

Potkonjak, Miodrag 73

Pedram, Massoud 72

Sharir, Micha 59

Shneiderman, Ben 56

Kahng, Andrew B. 56

Brayton, Robert K. 53

Sangiovanni-Vincentelli, Alberto 51

Myers, Brad A. 50

Name Number of co-authors

Sangiovanni-Vincentelli, Alberto 109

Shneiderman, Ben 88

Pausch, Randy 81

Fuchs, Henry 79

Soloway, Elliot 77

Kahng, Andrew B. 75

Cong, Jason 72

Druin, Allison 70

Wilson, James R. 69

Muthukrishnan, S. 69

Table 2: Authors with highest number of papers and collaborators.

most collaborative authors in the period 1981-2000. It is worth
noting that changing the name representations did not affect either
list significantly, with one notable exception: if all representations
of Alberto Sangiovanni-Vincentelli in the ACM database are taken
into account, he tops both lists. Seven of the ten researchers with
highest number of papers have worked in Computer Aided Design
and VLSI, two have worked in Human Computer Interaction, and
one has worked in Computational Geometry.

Collaboration Graph Evolution: Previous work with collab-
oration graphs focuses on a cumulative snapshot of the graph for
a given period, such as the analysis in this section. We obtained
the data in Table 1 using such a snapshot of the 20-year period of
interest. However, since we are interested in the dynamics of the
structure, we tried to modify the traditional collaboration graph so
that it captures more of the available information. For a given time
period we define the collaboration graph to be a simple, undirected,
node-weighted and edge-weighted graph. Vertices represent unique
authors and there is an edge between two vertices if the respective
authors have collaborated on a research paper. A vertex u in the
collaboration graph has an openness weight wu

o equal to the num-
ber of different coauthors of the author represented by u. Similarly,
u has a productivity weight of wu

p equal to the number of papers
by the author represented by u. We combine these weights to form
the influential weight wu

i = co × wu
o + cp × wu

p, where co, cp

are constants reflecting the importance of openness versus produc-
tivity. When visualizing the collaboration graph, the weight wu

i

determines the size of the vertex u. The node weights play an im-
portant role in the graph layout algorithm, as node weights are used
in calculating the repulsive forces between the vertices.

The weight of an edge is proportional to the number of collabo-
rations between the respective authors in the given time period. Let
ki be the ith paper of u and v together, and let nki be the total num-
ber of authors on that paper. The weight of e = (u, v) is given by
we =

∑

ki

1

nki −1
. The edge weights also play an important role in

the graph layout algorithm, as edge weights are used in calculating
the attractive forces between the vertices.

To illustrate the algorithm and the available visualizations we
look at the level-2 category H.5 (Information Interfaces and Pre-
sentation). Fig. 7 shows the top 200 (by influential weight with
c0 = c1) authors in H.5 (Information Interfaces and Presentation)
and their collaboration graph as it evolved through time periods T2

(1986-1990), T3 (1991-1995), and T4 (1996-2000). Such visualiza-
tion can be used to find out active research groups in a specific field.



     (a) (b) (c)

Figure 7: The H.5 (Information Interfaces and Presentation) collaboration

graph: (a) time-slice T2; (b) time-slice T3; (c) time-slice T4

Fig. 8 shows the collaboration graph of Fig. 7(c) in greater detail.
While viewing this graph the user might want to know more about
the research group clustered inside the red circle. Zooming into the
area, the user can click on large vertices that seem to be central in
the cluster to see the the author id’s in the database. The clustering
produced by the graph layout algorithm tends to group together col-
laborators in tight groups. For example, the cluster in Fig. 8 consist
of researchers within level-3 category H.5.2 (User Interfaces) under
the level-2 category H.5.

Figure 8: Top left: Time-slice T4 with smaller vertex sizes; Bottom Left:

Zoomed into region marked with red circle; Right: Labeled vertices in a cluster

of collaborating scientists.

6 TEMPORAL GRAPH VISUALIZATION

The main contribution of this paper is the algorithm for visualiza-
tion of large graphs that evolve through time. We designed and im-
plemented TGRIP, an algorithm for visualization of the combined-
graph, which is similar to those in [4, 11, 14]. However, unlike
earlier algorithms, TGRIP is designed for node-weighted and edge-
weighted graphs and produces readable drawings while preserving
the mental map between adjacent time-slices. Moreover, TGRIP
provides a control mechanism for balancing readability and mental
map preservation, the two main characteristics of a “good” drawing.

If we were to “optimally” draw each graph in the sequence, in-
dependent of the others, we would maximize readability at the ex-
pense of mental map preservation. On the other hand, fixing the
relative positions of the vertices in each time-slice would maxi-
mize mental map preservation at the expense of readability. Instead,
we create a combined-graph G1,n, which consist of all time-slices
G1, G2, . . . , Gn, with additional edges connecting same vertices in
adjacent time-slices.

Our algorithm is based on GRIP, an earlier force-directed algo-
rithm for large graphs [14], and determines the placement of the
vertices by repeated computation of attractive and repulsive forces.
The underlying principle is that vertices repel each other, while
edges prevent adjacent vertices from getting too far from each other.
Thus, for a given node v, the displacement is calculated by:

~F (v) =
∑

u∈Ni(v)

(

‖p[u] − p[v]‖2

dG(u, v)2 · edgeLen2
− 1

)

(p[u] − p[v])

where p[u] is the position of node u, Ni(v) is the the neighborhood
of node v, dG(u, v) is the graph distance between nodes u and v,
and edgeLen is the predefined optimal edge length.

The GRIP algorithm [14] is designed to quickly compute layouts
for simple, unweighted graphs with tens of thousands of vertices,
without assuming any information about the underlying graphs.
This makes it a good base for the visualization of graphs that evolve
through time. However, before we can employ the combined-graph
approach, we need to modify it so that attributes such as weights
on the nodes or edges of a graph are taken into account. The mean-
ing of the node-weight varies in the types of graphs we consider:
it could be be the number of papers in the given category for cate-
gory graphs, or a combination of productivity and collaborativeness
weight for collaboration graphs. Higher edge-weight is typically
associated with stronger connection between two nodes: number
of papers that list two categories together in the category graph or
number of papers co-authored by a pair of authors in the collabora-
tion graph. The weight of the edges connecting adjacent time-slices
can be varied to control the degree of mental map preservation re-
quired. For example, if the adjacent graphs are very similar then
light edges suffice to keep same vertices in the same position in two
adjacent time-slices.

Modification to the forces that act on the nodes are made to ac-
commodate weights and to allow for control over the balance be-
tween the readability of each time slice and overall mental map
preservation. With this in mind, weights are taken into account as
follows:

1. Two nodes connected by an edge of weight 0 should behave
as if not connected by an edge at all;

2. An edge connecting two nodes, each of weight 0, should have
a natural length of zero;

3. Heavy nodes should be placed further apart;

4. Heavy edges should be shorter;

5. If an edge of weight w connects two nodes of weight w, the
edge’s ideal length should be the same as an edge of weight
1 connecting two nodes of weight 1, but the larger the w, the
stronger the connection should be.

Given these considerations, an edge e of weight we connecting
nodes u, v of weight wu, wv , respectively, is given an ideal length:

√
wu · wv

we

(1)

This formula will lead to a division by zero if we = 0. The result-
ing infinite distance is indeed the correct ideal distance for the force
based calculations, since two disconnected nodes have only repul-
sive forces between them. In practice, however, this is undesirable
and thus we ensure that all edges of weight zero are removed.

To account for the layout constraints of weighted graphs, the
graph distance between two nodes is replaced with the ideal dis-
tance between the nodes. Because of the computational and space



requirements of calculating the effects of all paths between two
nodes, or of computing the shortest weighted path between them,
an approximation is used. Let p1, p2, . . . , pn be the sequence of
nodes in the shortest unweighted path in G connecting two nodes,
u and v. Then we define:

optDG(u, v) =

n−1
∑

i=1

√
wpi

· wpi−1

wepipi−1

(2)

In practice this approximation works both quickly and well. The
final force calculation in the modified algorithm is:

~F (v) = (3)

∑

u∈Ni(v)

(

2‖p[u] − p[v]‖2 · (p[u] − p[v])

(edgeLen · optDG(u, v))2 + ‖p[u] − p[v]‖2

)

−

−
∑

u∈Ni(v)

(p[u] − p[v])

For the combined-graph layout we constrain the drawing of time-
slices to parallel planes by limiting the vertex displacement of nodes
in time-slice k the plane z = k. We further modify the force calcu-
lations as follows: in equation (3) we re-define optDG(u, v) so that
for two nodes u, v with time-slice indexes of tu and tv respectively:

optDG(u, v) = δtutv ·
√

wu · wv

we

(4)

Where δ is the Kronecker delta:

δij =

{

1, i = j
0, i 6= j

More details about TGRIP as well as additional images and ani-
mations can be found at http://tgrip.cs.arizona.edu.

7 CONCLUSION AND FUTURE WORK

We have presented a system for visualization of the evolution of
the computing literature using a novel graph drawing technique for
visualization of large graphs with a temporal component. Category
and collaboration graphs that evolve through time were used to il-
lustrate the visualization model and to discover patterns and trends
from the data. We were hoping to provide a visual interactive tool
for exploring the ACM data that could be of use to the computing
community. While all three stages of the process (data extraction,
graph generation, graph visualization) are working, we do not have
the fully integrated and stable system that is the ultimate goal of
this project yet.

In addition to integrating the current components of the system,
we would like to extract citation graphs [1] and study their evolu-
tion through time. We would like to study the journal portion of the
ACM database and look for similarities and differences with the
conference portion. We hope to be obtain a local copy of the IEEE
Digital Library (for a more complete representation of the comput-
ing community) and to study even larger sets using databases such
as NEC’s ResearchIndex.
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