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Abstract

In the embedded domain, memory usage and energy consumption are critical

constraints. Embedded processors such as the ARM and MIPS provide a 16-bit

instruction set (called Thumb in the case of the ARM cpu family) in addition to the

32-bit instruction set to address these concerns. Using 16-bit instructions one can

achieve code size reduction and I-cache energy savings at the cost of performance.

This paper presents a novel approach that enhances the performance of 16-bit

Thumb code. We have observed that throughout Thumb code there exist Thumb

instruction pairs that are equivalent to a single ARM instruction. We have devel-

oped enhancements to the processor microarchitecture and the Thumb instruction

set to exploit this property. We enhance the Thumb instruction set by incorporat-

ing Augmenting eXtensions (AX). A Thumb instruction pair that can be combined

into a single ARM instruction is replaced by an AXThumb instruction pair by the

compiler. The AX instruction is coalesced with the immediately following Thumb

instruction to generate a single ARM instruction at decode time. The enhanced

microarchitecture ensures that coalescing does not introduce pipeline delays or

increase cycle time thereby resulting in reduction of both instruction counts and

cycle counts. Using AX instructions and coalescing hardware we are also able to

support efficient predicated execution in 16 bit mode.

Keywords - embedded processor, 32-bit ARM ISA, 16-bit Thumb ISA, code size,

energy, performance, AX instructions, instruction coalescing.

1 Introduction

More than 98% of all microprocessors are used in embedded products, the most popular

among them being the ARM family of embedded processors [5]. The ARM proces-

sor core is used both as a macrocell in building application specific system chips and

standard CPU chips.[2] (e.g., ARM810, StrongARM SA-110 [3], XScale [4]). In the

embedded domain, in addition to having good performance, applications must execute

under constraints of limited memory and low energy consumption. Dual instruction

set processors, such as the ARM and MIPS, provide a unique opportunity for code

size reduction by supporting a 16 bit instruction set along with the 32-bit instruction

set. The 16-bit instruction provides a subset of the functionality provided by the 32-bit

instruction set. Hence one can achieve good code size reduction using 16-bit code,

but we pay a performance penalty since, for a given program, the number of 16-bit

instructions needed is much more than the number of 32-bit instructions. In this paper
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we describe a technique, based on the ARM architecture, that reduces this performance

gap between 16-bit and 32-bit code.

1.1 32-bit ARM Code vs 16-bit Thumb Code

Here we illustrate the tradeoffs present in the 32-bit ARM and 16-bit Thumb instruction

sets to motivate our approach. The data in Figure 1 compares the ARM and Thumb

codes along three metrics: Instruction Count, Code size and I-cache fetches. As we can

see, the number of instructions executed by Thumb code is significantly higher even

though the Thumb code size is significantly smaller. The increase in instruction counts

ranges from 3% to 98% while code size reduction ranges from 29.83% to 32.45%. In

prior work [6] it is shown that this substantial increase in the number of instructions

executed by the Thumb code more than offsets the improved I-cache behavior of the

Thumb code. Therefore the net result is higher cycle counts for the Thumb code in

comparison to the ARM code. While we observe that by using Thumb code we nearly

always save I-cache energy as a result of fewer fetches, the increase in instruction

counts increases the energy consumed in other parts of the processor.
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Figure 1: ARM vs Thumb Code

On further analysis we were able to determine that the dynamic instruction count

increase is mainly due to increase in three categories of instructions: Branches, ALU

operations, and MOVs. The reasons for increase in these categories are elaborated in

our discussion of the AX instructions. In the above situations we are able to find short

sequences of Thumb instructions that can be easily replaced by shorter sequences of

ARM instructions. One could generate a mixed binary using both ARM and Thumb

instructions, however, the overhead of explicit switching between 16-bit mode and 32-

bit mode for short sequences negates the benefit of mixed code, as has been shown in

[6].
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1.2 Contributions

This paper presents a novel approach that enhances the Thumb instruction set to en-

able it to perform like ARM code. These enhancements allow patterns of Thumb in-

structions to be translated into ARM equivalents at runtime without requiring explicit

switching of processor mode. We enhance the Thumb instruction set by incorporating

Augmenting eXtensions (AX). Augmenting instructions are a new class of instructions

which are entirely handled in the decode stage of the processor, not going through the

remaining stages of the pipeline. Each AX instruction is coalesced with the following

non-AX instruction in the program during the decode stage of the processor, where

the translation of Thumb instructions into ARM instructions takes place. The compiler

replaces patterns of Thumb instructions by equivalent sequences of AXThumb instruc-

tions. The decode stage is redesigned to detect augmenting instructions and perform

coalescing to generate more efficient ARM instructions for execution. The distinctive

characteristics of our approach are:

� Coalescing Without Pipeline Delays. When coalescing is performed, no addi-

tional pipeline bubbles are introduced as instruction fetching does not fall be-

hind. When two instructions are coalesced during execution of AXThumb code,

two additional Thumb instructions are available for decoding in the very next

cycle.

� Simple Coalescing Hardware. By placing the responsibility of identifying in-

struction coalescing opportunities on the compiler, AX enables us to achieve

coalescing using simple modifications to the decode stage. While a compiler can

easily recognize coalescing opportunities, and appropriately mark them using

AX instructions, the hardware cannot do so either easily or safely.

� Supporting Predication in Thumb. AX not only incorporates predicated execu-

tion into the Thumb instruction set, but simple support in the decode stage allows

an implementation of predication which is even more efficient than the ARM im-

plementation of predication.

� Avoiding Mode Switching. Our approach does not require explicit switching

of processor modes since the fetched instructions are always 16 bit AXThumb

instructions.

The remainder of the paper is organized as follows. Section 2 describes the concept

of augmenting instructions and the coalescing mechanism for handling these instruc-

tions. We also show how this novel coalescing mechanism can with a minor modifi-

cation allow us to incorporate a highly effective method for executing predicated code.

We also provide details of the set of augmenting instructions we have developed. Sec-

tion 3 presents the results of our evaluation. Conclusions are given in section 4.
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2 Instruction Coalescing

ARM: sub reg1, reg2, lsl #2

Thumb: lsl rtmp, reg2, #2

sub reg1, rtmp

AXThumb: setshift lsl #2

sub reg1, reg2

To illustrate the key concepts of our approach we use a simple example. In the code

above we show an ARM instruction which shifts the value in reg2 before subtracting

it from reg1. Since the shift cannot be specified as part of another Thumb ALU in-

struction, as shown above two Thumb instructions are required to achieve the effect of

one ARM instruction. We would like to coalesce the 2 16-bit instructions into 1 32-bit

instruction. While coalescing is relatively easy to carry out, detecting a legal opportu-

nity for coalescing by examining the two Thumb instructions is in general impossible

to carry out. In our example the Thumb code uses a temporary register rtmp. If in-

struction coalescing is performed, rtmp is no longer needed and therefore its contents

will not be changed. Therefore, at the time of coalescing, the hardware must also de-

termine that the contents of register rtmp will not be used after the Thumb sequence.

Clearly this is in general impossible to determine since the next read or write reference

to register rtmp can be arbitrarily far away.

Since the coalescing opportunity cannot be detected in hardware we rely on the

compiler to recognize such opportunities and communicate them to the hardware through

the use of the Augmenting eXtensions (AX). In the AXThumb code the first instruction

is an augmenting instruction which is not executed but rather always coalesced in the

decode stage with the instruction that immediately follows it to generate a single ARM

instruction for execution. In the above example the augmenting instruction setshift

merely carries the shift type and amount which is incorporated in the subsequent in-

struction to create the required ARM instruction for execution.

We make the design choice that each Thumb instruction can be augmented only

by a single AX instruction. As a result we are guaranteed that an AX instruction is

always preceded and followed by a Thumb instruction. While it is possible to support a

more flexible mechanism which allows an instruction to be augmented by multiple AX

instructions, this is not useful as it does not speed up the execution of the Thumb code.

The reason for this claim will become clear when we discuss the microarchitecture

design in greater detail.

It should be noted that the code size of all three instruction sequences is the same

(i.e., 32 bits); however, only the AXThumb sequence satisfies the desired criteria as it

results in execution of a single equivalent ARM instruction and is made up of 16 bit

instructions. Thus, the AXThumb code is 16 bit code that runs like the ARM code.

We have introduced the basic idea behind our approach. Next we describe in de-

tail the realization of this idea. First we describe the modified microarchitecture that

is capable of executing the AXThumb code in a manner such that coalescing does

not introduce additional pipeline delays. Second we describe the complete set of AX

instructions and the rationale behind the design of these instructions.
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2.1 Microarchitecture

Our work is based upon the StrongARM SA-110 pipeline which consists of five stages:

(F) instruction fetch; (D) instruction decode and register read; branch target calculation

and execution; (E) Shift and ALU operation, including data transfer memory address

calculation; (M) data cache access; and (W) result write-back to register file. It per-

forms in-order execution and does not employ branch prediction.
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Figure 2: Thumb Implementation.

2.1.1 Instruction Coalescing

Before we describe our design of the decode stage, let us first review the original de-

sign of the decode stage which allows the ARM processor to execute both ARM and

Thumb instructions. As shown in Figure 2, the fetch capacity of the processor is de-

signed to be 32 bits per cycle so that it can execute one ARM instruction per cycle.

In the ARM mode a 32 bit instruction is directly fed to the ARM decoder. However,

in the Thumb mode the 32 bits are held in an instruction buffer and the two Thumb

instructions that it contains are selected in consecutive cycles and fed into the Thumb

decompressor, which converts the Thumb instruction into an equivalent ARM instruc-

tion and feeds it to the ARM decoder. Since every time a word is fetched we get two

Thumb instructions, fetch needs to be carried out in alternate cycles.

The key idea of our approach is to process an AX instruction simultaneously with

the processing of the immediately preceding Thumb instruction. What makes this

achievable is the extra fetch capacity already present in the processor.
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Figure 3: AXThumb Implementation.

The overall operation of the hardware design shown in Figure 3 is as follows. The

instruction buffer in the decode stage is modified to exploit the extra fetch bandwidth

to keep at least two instructions in the buffer at all times. Two consecutive instructions,

one Thumb instruction and a following AX instruction, can be simultaneously pro-

cessed by the decode stage in each cycle. The AXThumb instruction is processed by

the AX processor which updates the status field to hold the information carried by the

AX instruction for augmenting the next instruction in the following cycle. The Thumb

instruction is processed by the AXThumb decompressor and then the ARM decoder.

The decompressor is enhanced to use both the current Thumb instruction and the status

field contents modified by the immediately preceding AX instruction in the previous

cycle, if any, to generate the coalesced ARM instruction. The status field is read at

the beginning of the cycle for use in generation of the coalesced ARM instruction and

overwritten at the end of the cycle if an AX instruction is processed in the current cycle.

The status field can be implemented as a 32-bit register. Hence during a thread switch

it is sufficient to save the state of this status register along with other state to ensure

correct execution when this thread resumes.

There are three important points to note about the above operation. First, as shown

by the pipeline timing diagram in Figure 3, in the above operation no extra cycles

are needed to handle the AX instructions. Each sequence (pair) of AX and Thumb

instructions complete their execution one cycle after the completion of the preceding

Thumb instruction. Second the above design ensures that there is no increase in the
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processor cycle time. The AX processor’s handling of the AX instruction is entirely

independent of handling of the Thumb instruction by the decode stage. In the pipeline

diagram Thumb-D and AX-D denote handling of Thumb and AX instructions by the

decode stage respectively. In addition, the path taken by the Thumb instruction is es-

sentially the same as the original design - the Thumb instruction is first decompressed

and then decoded by the ARM decoder. The only difference is the modification made to

the decompressor to make use of the status field information and carry out instruction

coalescing. However, this modification does not increase the complexity of the decom-

pressor as the generation of an ARM instruction through coalescing of AX and Thumb

instructions is straightforward. An AX instruction essentially predetermines some of

the bits of the ARM instruction generated from the following Thumb instruction. This

should be obvious for the setshift example already shown. The other AX instruc-

tions that are described in detail in the next section are equally simple. Finally it should

now be clear why we do not allow two AX instructions to augment a Thumb instruc-

tion. Only a single AX instruction can be executed for free. If two consecutive AX

instructions are allowed, their execution will add a cycle to the program’s execution.

The instruction buffer and the filling of this buffer by the instruction fetch mech-

anism are designed such that, in the absence of taken branches, the instruction buffer

always contains at least two instructions. The buffer can hold up to three consecutive

instructions. Thus, it is expanded in size from 32 bits (ib
1

and ib

2

) in the original de-

sign to 48 bits (ib
1

, ib
2

, and ib

3

). As shown later, this increase in size is needed to

ensure that at least two instructions are present in the instruction buffer. Of the three

consecutive program instructions held in ib

1

, ib
2

and ib

3

, the first instruction is in ib

1

,

second is in ib

2

and third one is in ib

3

. The instruction in ib

1

is always a Thumb in-

struction which is processed by the Thumb decompressor and the ARM decoder. The

instruction in ib

2

can be an AX or a Thumb instruction and it is processed by the AX

processor. If this instruction is an AX instruction then it is completely processed, and

therefore at the end of the cycle, instructions in both ib

1

and ib

2

are consumed; other-

wise only the instruction in ib

1

is consumed. The remaining instructions in the buffer,

if any, are shifted by 1 or 2 entries so that the first unprocessed instruction is now in ib

1

.

The fetch deposits the next two instructions from the instruction fetch queue into the

buffer at the beginning of the next cycle if at least two entries in the buffer are empty.

Therefore essentially there are two cases: either the two instructions are deposited in

(ib

1

; ib

2

) or in (ib

2

; ib

3

).

Now we illustrate the need to expand the instruction buffer to hold up to three

instructions. In Figure 4(a) we show a sequence in which the AX instruction(s) can-

not be processed in parallel with the preceding Thumb instruction(s) as only after the

preceding Thumb instruction(s) are processed can the instruction fetch deposit an ad-

ditional pair of instructions into the buffer. Therefore the advantage of providing AX

instructions is lost. On the other hand, in Figure 4(b) when we expand the buffer to

48 bits, the instructions are deposited by the fetch sooner and thereby causing the AX

instruction(s) and the preceding Thumb instruction(s) to be simultaneously present in

the buffer. Therefore the AX instructions are now handled for free.

Next we show how it is ensured that whenever an instruction is found in ib

1

it is

always a Thumb instruction. If the instruction was shifted from ib

2

it must be a Thumb

instruction as the AX processor has concluded that it is not an AX instruction. If the
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instruction was shifted from ib

3

, it must be a Thumb instruction. This is because in the

preceding cycle the instruction in ib

2

must have been successfully processed meaning

that it was an AX instruction which implies the next instruction (i.e., the one in ib

3

)

must be a Thumb instruction. The final case is when the fetch directly deposits the next

two instructions into (ib
1

; ib

2

). Clearly the instruction in ib
1

is not examined by the AX

processor in this case. Therefore it must be guaranteed that whenever the instruction

buffer is empty at the end of the decode cycle, the next instruction that is fetched is a

Thumb instruction.

In absence of branches the above condition is satisfied because at the beginning of

the decode cycle the buffer definitely contains two instructions and for it to be empty

the two instructions must be simultaneously processed. This can only happen if the

instruction in ib

2

was an AX instruction which implies that the next instruction must

be a Thumb instruction.

In the presence of branches, following a taken branch, the first fetched instruction

is also directly deposited into ib

1

. We assume that the instruction at a branch target is a

Thumb instruction and therefore it can be directly deposited into ib

1

as examination of

the instruction by the AX processor is of no use. The compiler is responsible for gener-

ating code that always satisfies this condition. The reason for making this assumption

is that there is no advantage of introducing an AX instruction at a branch target. Only

an AX instruction that is preceded by another Thumb instruction can be executed for

free. If the instruction at a branch target is an AX instruction, and the control arrives

at the target through a taken branch, then the processing of the AX instruction by the

AX processor can no longer be overlapped with the immediately preceding instruction

that is executed, that is, the branch instruction. This is because the AX instruction can

only be fetched after the outcome of the branch is known.1 Therefore, the execution

of AX instruction actually adds a cycle to the execution. In other words the benefit

of introducing the AX instruction is lost. When an AXThumb pair replaces a Thumb

pair, the second Thumb instruction in the AXThumb pair need not be the same as the

1Note that the ARM processor does not support delayed branching and therefore an AX instruction cannot

be moved up and placed in the branch delay slot.
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second Thumb instruction in the Thumb instruction pair. Hence one cannot allow an

AX instruction in ib

1

by issuing a nop when an AIX instruction is found in ib

1

. We

rely on the compiler to schedule code in a manner that avoids placement of an AX

instruction at a branch target. If this cannot be achieved through instruction reordering,

the compiler uses a sequence of two Thumb instructions instead of using a sequence of

an AX and Thumb instructions at the branch target.

2.1.2 Predicated Execution in AXThumb

While the original Thumb instruction set does not support predicated execution, we

have developed a very effective approach to carry out predicated execution using AX-

Thumb code which requires only a minor modification to the decode stage design just

presented. Like instruction coalescing, this method also takes advantage of the extra

fetch bandwidth already present in the processor. We rely on the compiler to place

the instructions from the true and false branches in an interleaved manner as shown in

Figure 5. Since the execution of a pair of instructions is mutually exclusive, i.e. only

one of them will be executed, in the decode stage we select the appropriate instruction

and pass it on to the decompressor while the other instruction is discarded.
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A special AX instruction precedes the sequence of interleaved instructions. This

instruction communicates the predicate in form of a condition flag which is used to

perform instruction selection from an interleaved instruction pair. If the condition flag

is set the first instruction belonging to each interleaved pair is executed; otherwise the

second instruction from the interleaved pair is executed. Therefore the compiler must

always interleave the instructions from the true path in the first position and instructions

from the false path in the second position. The special AX instruction also specifies the

count of interleaved instructions pairs that follow it. The AX processor uses this count

to continue to stay in the predication mode as long as necessary and then switches back

to the normal selection mode. The selection of an instruction from each instruction pair

is carried out by using a minor modification to the original design as shown in Figure 5.

Instead of directly feeding the instruction in ib

1

to the decompressor, the multiplexer

selects either the instruction from ib

1

or ib
2

depending upon the predicate as shown in

Figure 5. The select signal is generated by the AX processor. For correct operation,

when not in predication mode, the select signal always selects the instruction in ib

1

.

For this approach to work each interleaved instruction pair should be completely

present in the instruction buffer so that the appropriate instruction can be selected. This

condition is guaranteed to be always true as the interleaved sequence is preceded by an

AX instruction. Following the execution of the AX instruction there will be at least

two empty positions in the instruction buffer which will be immediately filled by the

fetch.

The above approach for executing predicated code is more effective than doing so

in the ARM mode. In ARM mode the 32 bit instructions from the true and false paths

are examined one by one. Depending on the outcome of the predicate test, instructions

from one of the branches are executed while the instructions from the other branch are

essentially converted into nops. Therefore the number of cycles needed to execute the

instructions is at least equal to the sum of the instructions on the true and false paths.

In contrast the number of cycles taken to execute the AXThumb code is equal to the

number of interleaved instruction pairs. Note that this advantage is only achievable

because in Thumb mode instructions arrive in the decode stage early while the same is

not true for ARM.

2.2 AX Extensions to Thumb

The AX extension to Thumb consists of eight new instructions. These instructions were

chosen by studying ARM and Thumb codes of benchmarks and identifying commonly

occurring sequences of Thumb instructions which were found to correspond to shorter

ARM sequences of instructions. We first show how we use exactly one free instruction

in the free opcode space of the Thumb instruction set to implement AX instructions.

We describe these instructions next and illustrate their use through examples of typical

situations that were encountered. We categorize the AX instructions according to the

types of instructions whose counts they effect the most. The following discussion will

also make clear the differences in the ARM and Thumb instruction sets that lead to

poorer quality Thumb code.
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2.2.1 Encoding of AX Instructions

Not surprisingly there are very few unused opcodes available in Thumb. We have

chosen one of these available opcodes to incorporate the AX instructions. Bits 10..15

are taken up by this unused opcode 101110 which now refers to AX. The remaining

bits 0..9 are available for encoding the various AX instructions. Since there are eight

AX instructions, three bits are needed to differentiate between them - we use bits 7..9

for this purpose. The operands are encoded in the remaining bits 0..6.

Unimplemented Thumb Instruction

101110 xxxxxxxxxx

[10..15] [0..9]

AX Instructions
101110 AX opcode AX operands

[10..15] [7..9] [0..6]

The details of how operands are encoded for the various instructions are given

below. Depending upon the number of bits available, the constant fields in various

instructions are limited in size. The immediate constant in setimm is 7 bits, shift

amount in setshift 4 bits, and count in setpred is 3 bits. Finally, registers are

encoded using 4 bits so we can refer to both higher and lower order registers in AX

instructions.

Encodings

101110 setimm #constant

[10..15] [7..9] [0..6]

101110 setshift shifttype shiftamount

[10..15] [7..9] [4..6] [0..3]

101110 setsbit -

[10..15] [7..9] [0..6]

101110 setpred condition count

[10..15] [7..9] [3..6] [0..2]

101110 setsource Hreg -

[10..15] [7..9] [3..6] [0..2]

101110 setdest Hreg -

[10..15] [7..9] [3..6] [0..2]

101110 setallhigh -

[10..15] [7..9] [0..6]

101110 setthird reg -

[10..15] [7..9] [3..6] [0..2]
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2.2.2 ALU Instructions

There are specific differences in the ARM and Thumb instruction sets that cause ad-

ditional ALU instructions to be generated in the Thumb code. There are three critical

differences we have located and to compensate for each of three weaknesses in the

Thumb instruction set we have designed a new AX instruction. ARM instructions are

able to specify negative immediates, shift operations that can be folded into other ARM

instructions, and certain kind of compares that can be folded with other ARM instruc-

tions. None of these three features are available in the Thumb instruction set. The new

AX instructions are as follows.

Negative Immediate

setimm #constant

Folded Shift

setshift shifttype shiftamount

Folded Compare

setsbit

Negative Immediate Offsets. The example shown below, which is taken from

versions of the ARM and Thumb codes of a function in adpcm coder, illustrates this

problem. The constant negative offset specified as part of the str store instruction

in ARM code is placed into register r1 using the mov and neg instructions in the

Thumb mode. The address computation of rbase + r1 is also carried out by a

separate instruction in the Thumb mode. Therefore one ARM instruction is replaced

by 4 Thumb instructions.

Original ARM

str rsrc, [rbase, -#offset]

Corresponding Thumb

mov rtmp, #offset

neg rtmp

add rtmp, rbase

str rsrc, [rtmp, #0]

AXThumb

setimm -#offset

str rsrc, [rbase, ]

Coalesced ARM

str rsrc, [rbase, -#offset]

The AX instruction setimm is used to specify the negative operand of the instruc-

tion that immediately follows it. For our example, the setimm is generated immedi-

ately preceding the str instruction. When an str instruction immediately follows a

setimm instruction, the constant offset is taken from the setimm and whatever con-

stant offset that may be specified as part of str is ignored. In the decode stage the

setimm and str are coalesced to generate the equivalent ARM instruction as shown

above.

Shift Instructions. The setshift instruction has been shown through our example

at the beginning of section 2. We describe one more use here. A shift operation folded

with a MOV instruction is often used in ARM code to generate large immediate con-

stants. An immediate operand of a MOV instruction is a 12 bit entity which is divided

into an 8 bit immediate constant and a 4 bit rotate constant. The eight bit entity is

rotated by the rotate amount to generate a 32 bit constant. In Thumb mode the imme-

diate operand is only 8 bits and therefore the rotate amount cannot be specified. An
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additional ALU instruction is used to generate the large constant as shown below. In

the AXThumb code setshift is used to eliminate the extra shift instruction through

coalescing.

Original ARM

mov reg1, #imm8.rotate4

Corresponding Thumb

mov reg1, #imm8

lsl reg1, #rotate4’, where

rotate4’ = 32 - 2 * rotate4.

AXThumb

setshift #rotate4

mov reg1, #imm8

Coalesced ARM

mov reg1, #imm8.rotate4

Compare Instructions. In the ARM instruction set MOV and ALU instructions

contain an s-bit. If the s-bit is set, following the MOV or ALU operation, the destina-

tion register contents are compared with the constant value zero and certain flags are set

which can later be tested. Thus, in ARM certain types of compares can be folded into

other MOV and ALU instructions. As illustrated below, since Thumb does not support

the s-bit, it must perform the comparison in a separate instruction. To overcome the

above drawback we introduce the setsbit instruction which indicates that the s-bit

of the instruction that immediately follows should be set when translation of Thumb

into ARM takes place.

Original ARM

movs reg1, reg2

Corresponding Thumb

mov reg1, reg2

cmp reg1, #0

AXThumb

setsbit

mov reg1, reg2

Coalesced ARM

movs reg1, reg2

2.2.3 Predication - Branch Instructions

Lack of predication in Thumb is the reason for more branches in Thumb code com-

pared to ARM code, as illustrated by the example below. The ARM code performs the

compare; if r3 contains zero then the two rsbne instructions turn into nops while the

other two addeq instructions are executed. The reverse happens if r3 does not con-

tain zero. In the corresponding Thumb code explicit branches are introduced to achieve

conditional execution of instructions.

13



Original ARM

cmp r3, #0

addeq r6, r6, r1

addeq r5, r5, r2

rsbne r6, r6, r1

rsbne r5, r5, r2

Corresponding Thumb

cmp r3, #0

beq .L13

sub r6, r1

sub r5, r2

b .L14

.L13: add r6, r1

add r5, r2

.L14: ...

AXThumb

cmp r3, #0

setpred eq, #2

add r6, r1

sub r6, r1

add r5, r2

sub r5, r2

Coalesced ARM

cmp r3, #0

sub r6, r6, r1

sub r5, r5, r2

OR

cmp r3, #0

add r6, r6, r1

add r5, r5, r2

The new setpred instruction we introduce enables conditional execution of Thumb

instructions. This instruction specifies two things. First it specifies the condition in-

volved in predication (e.g., eq, ne etc.). Second it specifies the count of predicated

instruction pairs that follow. Following the setpred instruction are pairs of Thumb

instructions – the number of such pairs is equal to count. If the condition is true, the

first instruction in each pair is executed; otherwise the second instruction each pair is

executed.

setpred condition, #count

In our example, when we examine the AXThumb code, we observe that the con-

dition in this case is eq and count is 2 since there are two pairs of instructions that

are conditionally executed. If eq is true the first instruction in each pair (i.e., the add

instruction) is executed; otherwise the second instruction in each pair (i.e., the sub in-

struction) are executed. Therefore after the AXThumb instructions are processed by the

decode stage the corresponding ARM instruction sequence generated consists of three

instructions. The sequence contains either the add instructions or the sub instructions

depending upon the eq flag. Clearly the sequence of instructions generated using our

method is shorter than the original ARM sequence since it does generate nops for the

two instructions that are not executed. Note that this form of predication is restricted

to small length branch hammocks due to the lack of encoding space in the setpred

instruction.

This form of predication could also reduce the number fetches from the I-cache. In

the case shown below Thumb requires one more fetch than AXThumb code for every

iteration of the outer loop L0. Also note that use of predication reduces the size by one

instruction.

Thumb Code

L0: I0

beq L1

I1

b L2

L1: I2

L2: beq L0

AXThumb

L0: I0

setpred EQ 1

I1

I2

beq L0
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2.2.4 MOV Instructions

We have identified three distinct reasons due to which extra move instructions are re-

quired in Thumb code. First most ALU Thumb instructions cannot directly reference

values held in higher order registers. Second while ARM supports three address in-

struction format, Thumb uses a two address format and therefore requires additional

move instructions. Finally in Thumb ADD/MOV instructions the result register can be

a higher order register but in this case an immediate operand is not allowed. Therefore

the immediate operand must be moved into a register before it can be used by the high

register based Thumb ADD/MOV instruction. The following AX instructions are used

to overcome the above drawbacks.

High Register Operand

setsource Hreg

setdest Hreg

setallhigh

Third Operand

setthird reg

Immediate Operand

setimm #constant

High Register Operands. Consider the example of a load below in which the

base address is in a higher order register. While the ARM load instruction can directly

reference this register, the Thumb code requires the base address to be moved to lower

order register which can be directly referenced by a Thumb load instruction.

Original ARM

ldr reg, [Hreg, #offset]

Corresponding Thumb

mov Lreg, Hreg

ldr reg, [Lreg, #offset]

AXThumb

setsource Hreg

ldr reg, [ , #offset]

Coalesced ARM

ldr reg, [Hreg, #offset]

The instruction setsource Hreg is used to handle the above situation. The

Thumb instruction that follows the setsource Hreg instruction makes use of Hreg

as its source operand. After coalescing, the resulting ARM instruction is identical to

the the ARM instruction used in the ARM code. The setdest Hreg is used in a

similar way.

The push instruction is used to carry out saving of registers at function boundaries.

The ARM push instruction provides a 16 bit mask which indicates which registers

should be saved and which are not to be saved. The corresponding Thumb push

instruction provides a 8 bit mask which corresponds to lower order registers. As a

consequence, saving of higher order registers requires additional move instructions in

Thumb code as illustrated by the example given below. While ARM code can use a

single push instruction to save both lower order registers (r4 - r7) and higher order

registers (r8 - r11), The Thumb code uses one push to save lower order registers,

then moves contents of higher order registers into lower order registers, and then uses

another push to save their contents.
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Original ARM

push fr4,.., r11g

Corresponding Thumb

push fr4, r5, r6, r7g

mov r7, r11

mov r6, r10

mov r5, r9

mov r4, r8

push fr4, r5, r6, r7g

AXThumb

push fr4, r5, r6, r7g

setallhigh

push fr0, r1, r2, r3g

Coalesced ARM

push fr4, r5, r6, r7g

push fr8, r9, r10, r11g

To address this problem we provide the setallhigh AX instruction. When this

instruction precedes a Thumb push instruction, the 8 bit mask is interpreted to cor-

respond to higher order registers. In absence of preceding setallhigh instruction

the 8 bit mask in the Thumb push instructions corresponds to the lower order regis-

ters. The bit positions of registers r0 through r7 in the mask correspond to that of r8

through r15 respectively. The AXThumb code for the above example is shown be-

low. It contains two push instructions, the first one saves the contents of lower order

registers and the second one preceded by setallhigh saves the contents of higher

order registers. The move instructions present in the Thumb code have been eliminated.

The difference between original ARM code and coalesced ARM code is that original

ARM requires only a single push instruction while the coalesced ARM code contains

two push instructions. setallhigh can similarly be used for restoring registers in

combination with pop. Note that the AXThumb code has fewer 16-bit instructions,

reducing both the code size and I-cache fetches compared to Thumb code.

Third Operand. Additional move instructions are required to compensate for the

lack of three address instruction format in Thumb. We introduce the setthird reg

AX instruction to avoid the extra move instruction. When a Thumb instruction is a

preceded by a setthird reg instruction, then reg is treated as the third address

for the Thumb instruction as shown below. Following coalescing the impact of extra

move instruction is entirely eliminated.

Original ARM

add reg1, reg2, reg3

Corresponding Thumb

mov reg1, reg2

add reg1, reg3

AXThumb

setthird reg3

add reg1, reg2

Coalesced ARM

add reg1, reg2, reg3

Immediate Operand. The Thumb ADD/MOV instructions can directly reference

higher order registers. However, in these cases if the operand cannot be an immediate

constant, requiring an an extra move as shown below.

Original ARM

add Hreg1, Hreg1, #imm

Corresponding Thumb

mov rtmp, #imm

add Hreg1, rtmp

AXThumb

setimm #imm

add Hreg1,

OR

setdest Hreg1

add , #imm

Coalesced ARM

add Hreg1, Hreg1, #imm
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We can use the setimm instruction already introduced earlier to avoid the move

instruction as shown above. The immediate operand is incorporated into the Thumb

instruction that follows the setimm instruction by the coalescing actions of the decode

stage resulting in a single ARM instruction. Alternatively the setdest instruction can

be used as shown above. In either case the coalesced ARM instruction is the same.

Original ARM

and reg1, reg1, #imm

Corresponding Thumb

mov rtmp, #imm

and reg1, rtmp

AXThumb

setimm #imm

and reg1,

Coalesced ARM

and reg1, reg1, #imm

Another situation where extra move instructions are generated due to the presence

of immediate operands is when bitwise boolean operations are used. Instructions for

these operations cannot have immediate operands generating an extra move.

2.3 Compiler Support: AX Postpass

AXThumb transformations are performed as a postpass, after the compiler has gener-

ated object code. The transformation which involves detecting and replacing sequences

of Thumb code with corresponding AXThumb code consists of three phases. Each of

the three phases deals with a particular kind of AXThumb transformation. The first

phase handles predication of Thumb code using the setpred AX instruction. The

second phase handles the generic case for AX transformations like the example used

to describe instruction coalescing. The third phase handles the setallhigh AX in-

struction used to eliminate unnecessary moves at function prologues and epilogues.

The algorithms for each of the three phases along with code examples are described in

detail next.

2.3.1 Phase 1

The code segment shown below, illustrates how Thumb code can be predicated using

the setpred instruction. The original Thumb code has to execute explicit branch

instructions to achieve conditional execution, choosing between the subtract and add

operations. Using the setpred instruction we can avoid this explicit branching. This

instruction specifies two things. First it specifies the condition involved in predication

(e.g., eq, ne etc.). Second it specifies the count of predicated instruction pairs that

follow. Following the setpred instruction are pairs of Thumb instructions – the

number of such pairs is equal to count. If the condition is true, the first instruction in

each pair is executed; otherwise the second instruction each pair is executed.
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Thumb Code

(1) cmp r3, #0

(2) beq (6)

(3) sub r6, r1

(4) sub r5, r2

(5) b (8)

(6) add r6, r1

(7) add r5, r2

(8) mov r3, r9

AXThumb Code

(1) cmp r3, #0

(2) setpred EQ, #2

(3) add r6, r1

(4) sub r6, r1

(5) add r5, r1

(6) sub r5, r2

(7) mov r3, r9

In our example, when we examine the AXThumb code, we observe that the con-

dition in this case is eq and count is 2 since there are two pairs of instructions that

are conditionally executed. If eq is true the first instruction in each pair (i.e., the add

instruction) is executed; otherwise the second instruction in each pair (i.e., the sub in-

struction) are executed. Therefore after the AXThumb instructions are processed by the

decode stage the corresponding ARM instruction sequence generated consists of three

instructions. The sequence contains either the add instructions or the sub instructions

depending upon the eq flag.

This method of predication is more effective than ARM predication because, in the

case of ARM, nops are issued for predicated instructions whose condition is not satis-

fied. However this form of predication can be applied only to small branch hammocks

corresponding to a simple if-then-else construct. Hence the algorithm described

below, first detects such branch hammocks in the CFG for the function, then interleaves

the instructions from the two branches, merging them with the parent basic block. We

consider pairs of sibling nodes during a Breadth-First Traversal of the CFG for ham-

mock detection. A hammock is detected when (i) the predecessor of both siblings is

the same, (ii) there is exactly one predecessor (iii) and both siblings have the same suc-

cessor. Once a hammock is detected, it is predicated by inserting a setpred instead

of the branch instruction and interleaving the code from the two branches as shown in

Figure 2.3.1. The CFGs for the code example described above, before and after the

transformation are shown in Figure 2.3.1.

2.3.2 Phase 2

The code segment shown below illustrates the general case for AX Transformations

which captures the majority of AX instructions. This example uses the setshift

and setsource AX instructions. The setshift instruction specifies the type and

amount of the shift needed by the following instruction. The setsource instruction

specifies the high register needed as the source for the following instruction. While

the Thumb code requires the execution of five instructions, the AXThumb code only

executes three instructions.

Thumb Code

(1) mov r2, r5

(2) lsl r4, r2, #2

(3) mov r3, r9

(4) sub r1, r4

(5) ldr r5, [r3, #100]

AXThumb Code

(1) mov r2, r5

(2,4) setshift lsl #2

sub r1, r2

(3,5) setsource high r9

ldr r5, [-,#100]
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input : A CFG for a function

output : A modified CFG with ’set’predicated code

for all siblings (n
1

; n

2

) in the BFS Traversal of the CFG do

/* Check for a hammock in the CFG */

PredEQ = Su

EQ = FALSE;

if numPreds (n
1

) == numPreds (n
2

) == 1 then

if Pred (n
1

) == Pred (n
2

) then

PredEQ = TRUE;

end
end

if numSuccs (n
1

) == numSuccs (n
2

) == 1 then

if Succ (n
1

) == Succ (n
2

) then

Su

EQ = TRUE;

end
end

/* SetPredicate if hammock found */

if Su

EQ and PredEQ then

DeleteLastIns( Pred(n
1

));

InsertIns( Pred( n

1

), setpred, 
ond );

for each pair of instructions in
1

, in
2

from n

1

and n

2

do

InsertIns( Pred(n
1

), in
1

);

InsertIns( Pred(n
1

), in
2

);

end

MergeBB(Pred(n
1

), Succ(n
1

));

DeleteBB(n
1

);

DeleteBB(n
2

);

end
end

Figure 6: SetPredicate
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Figure 7: Predication

20



Since these transformations are local to a basic block, the algorithm shown in Fig-

ure 2.3.2 uses the Basic Block dependence DAG as its input. Since AXThumb pairs

replace dependent Thumb instructions, it is sufficient to examine adjacent nodes along

a path in the DAG. We traverse the DAG in Bread-First Order and examine each node

with its predecessor. AXThumb pairs have to be instructions adjacent to each other

in the instruction schedule. While replacing Thumb pairs with equivalent AXThumb

pairs, in order to ensure that this property is maintained, we coalesce the nodes of the

candidate Thumb pairs into one node representing the AXThumb pair. However to

maintain the acyclic property of the DAG, we have to ensure that this coalescing of

candidate Thumb instructions does not introduce a cycle. The nodes in the DAG are

numbered according to the topological sorted order of the instruction schedule. By

checking for back edges from higher numbered nodes to lower numbered nodes during

coalescing we make sure that the acyclic property is maintained. The final instruction

schedule is the ordering of nodes according to increasing node id where for coalesced

nodes, the node id is the id of the first instruction in the node.

For our example, instructions 3 and 5 are candidates and instructions 2 and 4 are

candidates. The CandidateAXPair function takes in 2 Thumb instructions and

checks to see if they are candidates for replacement. This involves a liveness check.

Using liveness information, in our example one can say that register r4, in instruction

2, is a temporary register. Since the two dependent instructions (subtract and shift) can

be replaced using a setshift instruction and register r4 is not live after instruction

3, the CandidateAXPair function returns the AXThumb pair that could replace

instructions 2 and 4. Since coalescing nodes 2 and 4 does not introduce a cycle, the

replacement is legal. The algorithm for phase 2 is shown in Figure 2.3.2 and the DAG

for our example, before and after the transformation is shown in Figure 2.3.2.

2.3.3 Phase 3

The third phase handles the specific case of the setallhigh instruction, where a

whole sequence of Thumb instructions is converted to an AXThumb pair. The code

segment shown below illustrates the need for a setallhigh instruction. Since only

low registers can be accessed in Thumb mode, the saving and restoring of context at

function boundaries results in the use of extra move instructions. In the example above,

first the low registers are pushed onto the stack, the high registers are then moved to the

low registers before they are pushed onto the stack. Using the setallhigh instruction we

can avoid the extra moves, indicating that the next instruction accesses high registers.

Thumb Code

(1) push [r4, r5, r6, r7]

(2) mov r4, r8

(3) mov r5, r9

(4) mov r6, r10

(5) mov r7, r11

(6) push [r4, r5, r6, r7]

AXThumb Code

(1) push [r4, r5, r6, r7]

(2,3) setallhigh

push [r4, r5, r6, r7]

This transformation, like phase 2, is local to a basic block and uses the basic block

DAG as its input. The alogrithm detects such sequences during a Breadth-First traver-

sal of the DAG. The dependence in the DAG is between the push instructions and
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input : Basic Block DAG D with nodes numbered according to the topological

order of the instruction schedule

output : Basic Block DAG D with Coalesced Nodes to indicate AXThumb instruc-

tion pairs

for each n � nodes in BFS order of D do

for each p � Pred(n) do

Let dependence between n and p be due to register r.

if r is not live following instructions (n,p) then

/* Check if nodes n and p are coalescable */

if CandidateAXPair(n,p) then

G ;

G Coalesce(n,p)

/* Check if coalesced Graph is a DAG */

isDAG = TRUE

for each e � edges in G do

if Source(e) < Destination(e) then

isDAG = FALSE

end
end

if isDAG then

D G

end
end

end
end

end

Figure 8: DAG Coalescing for generic AX instructions

Figure 9: Phase 2
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the move instructions as shown in Figure 2.3.3. The move instructions are siblings

with predecessor and successors as the push instructions in the DAG. This condition is

checked for as shown in Figure 2.3.3. The PushorPopList functions find instruc-

tions that push/pop a list of registers and performs the liveness check on these registers.

The movLoHi function makes sure the register being used in the mov instruction is in

the list of registers in the push/pop instruction encountered before. Once such a pat-

tern is detected all the sibling nodes are replaced with one single node containing the

setallhigh instruction. This node is then coalesced with the succesor node which

is the push/pop instruction to ensure that two instructions are adjacent to each other in

the instruction schedule.

input : Basic Block DAGs (with nodes in the topological sorted order of the

instruction schedule) for the basic block predecessors of the exit node

and successors of the entry node in the CFG

output : Reduced Basic Blocks with setallhigh AX instructions

for each DAG D � set of basic blocks B do

for each n � BFS order of nodes in D do

if PushOrPopListLo(n) then

/* Check for the replaceable mov instructions */

isReplacable = TRUE

for each m � Succ(n) do

if not movLoHi(m) j not PushOrPopListHi(Succ(m)) j

numSuccs(m) 6= 1 then

isReplacable = FALSE

end
end

/* Remove mov’s and insert a setallhigh */

if isReplacable then

for each m � Succ(n) do

Save Succ(m) Remove(m)

end

Succ(n) Save

SettoLo(Save)

Coalesce(setallhigh, Succ(n))
end

end
end

end

Figure 10: DAG Coalescing for setallhigh AX instructions

3 Experimental Results
Experimental setup A modified version of the Simplescalar-ARM [1] simulator,

was used for experiments. It simulates the five stage Intel’s SA-1 StrongARM pipeline

[3] with an 8-entry instruction fetch queue. The I-Cache configuration for this proces-

sor are: 16Kb cache size, 32b line size, and 32-way associativity, and miss penalty of
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Figure 11: SetAllHigh AX transformation

64 cycles (a miss requires going off-chip). The simulator was extended to support both

16-bit and 32-bit modes, the Thumb instruction set and the system call conventions

followed in the newlib c library. This is a lightweight C library used on embedded

platforms that does not provide explicit network, I/O and other functionality typically

found in libraries such as glibc. The xscale-elf gcc version 2.9 com-

piler used was built to create a version that supports generation of ARM, Thumb as

well as mixed ARM and Thumb code. Code size being a critical constraint, all pro-

grams were compiled at -O2 level of optimization, since at higher levels code size

increasing optimizations such as function inlining and loop unrolling are enabled. The

benchmarks used are taken from the Mediabench [7],Commbench [14] and Net-

Bench [8] suites as they are representative of a class of applications important for

the embedded domain. The benchmark programs used do not require functionality not

present in newlib.

Instruction Counts The use of AX instructions reduces the dynamic instruction

count of 16-bit code by 0.4% to 32%. Figure 12 shows this reduction normalized

with the counts for 32-bit ARM code. The difference in instruction count between

ARM and Thumb code is between 3% and 98%. Using AX instructions we reduce the

perfromance gap between 32-bit and 16-bit code. For cases such as crc and adpcm

where there is substantial difference between ARM and Thumb code, we see improve-

ments between 25% and 30% bridging the performance gap between ARM and Thumb

by a factor of one third in the case of crc and more than one half in the case of adpcm.

For cases such as drr where Thumb code is not much worse than ARM code (3%),

we see little improvement using AX instructions. In the other cases we see an improve-

ment over Thumb code of about 10% on an average. The difference in the instruction

counts between ARM and Thumb code indicates the room for possible improvement

of 16-bit code due to constraints present in 16-bit code. Using AX instructions we are

24



able to considerably bridge this gap between 32-bit and 16-bit code.

Cycle Counts Figure 13 shows the cycle count data for Thumb and AXThumb code

relative to the ARM code. The use of AX instructions gives varying cycle count

changes between -0.2% and 20% compared to Thumb code. We see reduction of 15%

to 20% in cycle counts for crc and adpcm compared to the Thumb making the reduc-

ing the difference between ARM and Thumb by half in the case of crc and about 66%

with the adpcm programs. In the other 3 cases where Thumb cycle counts are higher

than ARM, viz. frag reed.encode, reed.decode, and rtr, we see that there

is a moderate reduction in cycle counts compared to Thumb. However the difference

between the ARM and Thumb codes itself being moderate, in the cases of rtr and

reed.encode, AXThumb code gives a lower cycle count compared to even ARM

code. The improved I-cache behavior of the Thumb and AXThumb codes compared to

ARM code makes this possible. In the other cases, where Thumb code already outper-

forms ARM code we see little improvement as there is little scope for the use of AX

instructions.

Code Size and Fetch Data The code sizes of Thumb and AXThumb are almost

identical. This is because in all cases where AXThumb instruction replace Thumb

instructions, the size is only decreased if at all changed. The decrease occurs due to

the introduction of setallhigh or setpred instructions as mentioned before. In

all other cases the size does not change. The code sizes relative to ARM are shown

in Figure 14. Figure 15 shows the I-cache fetches for Thumb and AXThumb codes

relative to ARM code. In the three cases where Thumb has more I-cache fetches viz.

crc and the two adpcm programs, we see that AXThumb reduces the fetches making

them almost as little as ARM. In the other cases we see AX always has fewer I-cache

fetches compared to Thumb, making it even better compared to ARM. Fewer fetches

could result from code size reducing AX transformations. Additionally, the number

fetches into the instruction queue depends on the utilization of the queue. AXThumb

consumes instructions at a faster rate from the instruction queue compared to Thumb,

filling up the queue slower compared to Thumb. Hence on taken branches when the

queue is flushed there are fewer instruction that are flushed, which account for the extra

fetches performed by Thumb. From an energy perspective, we see that energy spent

on the I-cache will be lesser in AXThumb compared to Thumb. Additionally, since the

instruction count is reduced, energy spent in other parts of the processor is also reduced.

The addition of the AX processor in the decode stage is a very small increase in energy

spent since the operations of the AX processor are very simple involving detection of

the AX opcode and setting the status if the instruction is an AX instruction. Hence we

also save on overall energy using AX instructions.

Usage of AX instructions In Table 1 we show a weighted distribution of the AX

instructions executed by each benchmark. Each benchmark uses a different set of AX

instructions and all AX instructions have been used by at least two benchmarks. In-

structions that made an impact in almost all benchmarks were setsbit, setshift,

setsource and setthird. Predication was found to be useful only in adpcm as in

25



other benchmarks small branch hammocks capable of being predicated were not found.

In crc, a small set of setsbit instructions in the hotspots of the code gave very good

performance improvement. drr had little opportunity for insertion of AX instructions

resulting in the use of a few setsbit instructions which did not give much of an

improvement. The use of setallhigh in rtr resulted in smaller code as a result of

removing unnecessary moves, which was also the reason for reduced instruction count.
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Figure 12: Normalized Instruction Counts

4 Conclusions

The design of dual instruction width processors like ARM poses an important chal-

lenge. Some of the functionality of the 32 bit ARM instructions must be sacrificed to

obtain a more compact 16 bit encoding for Thumb instructions. We have demonstrated

an approach which very effectively compensates for the weaknesses of the 16-bit code

bridging the performance gap between 16-bit and 32-bit codes without detriment to the

code size and energy reducing properties of 16-bit code. A new class of AX instruc-

tions is carefully designed so that extra Thumb instructions can be eliminated at run-

time through instruction coalescing performed in the processor’s decode stage. These

instructions were implemented using exactly one unused opcode in the 16-bit encoding

space. The compiler is responsible for identifying Thumb instructions that can be elim-

inated and replacing them with appropriate AX instructions. The hardware extensions

are simple and by handling the AX instructions in parallel with other instructions we

avoid any increase in the processor’s cycle time.
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Figure 13: Normalized Cycle Counts
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Figure 14: Code Size
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Figure 15: Fetch Data

Table 1: Usage of Different AX Instructions.

Benchmark setallhigh setpred setsbit setshift setsource setdest setthird setimm

rtr 11.77% 0.00% 82.34% 5.88% 0.00% 0.00% 0.00% 0.00%

crc 0.00% 0.00% 0.27% 99.72% 0.00% 0.00% 0.00% 0.00%

adpcm.rawcaudio 0.00% 36.30% 36.30% 14.52% 0.00% 7.26% 0.00% 5.59%

adpcm.rawdaudio 0.00% 34.47% 34.47% 13.79% 3.44% 10.34% 3.44% 0.00%

pegwit.gen 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%

pegwit.encrypt 0.19% 0.00% 80.22% 5.01% 6.23% 0.00% 8.32% 0.00%

pegwit.decrypt 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%

frag 4.44% 0.00% 0.00% 6.66% 13.33% 4.44% 66.66% 4.44%

reed.encode 0.01% 0.00% 3.81% 0.00% 68.45% 0.00% 27.71% 0.00%

reed.decode 0.01% 0.00% 1.09% 0.63% 88.29% 0.00% 9.95% 0.00%

drr 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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