
The Skidoo Real{Time Operating System

by

Thomas Jak Trebisky

A Thesis Submitted to the Faulty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Ful�llment of the Requirements

For the Degree of

Master of Siene

In the Graduate College

The University of Arizona

2 0 0 2

2

3

Statement by Author

This thesis has been submitted in partial ful�llment of requirements for an ad-

vaned degree at The University of Arizona and is deposited in the University Library

to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without speial permission, pro-

vided that aurate aknowledgment of soure is made. Requests for permission for

extended quotation from or reprodution of this manusript in whole or in part may

be granted by the head of the major department or the Dean of the Graduate College

when in his or her judgment the proposed use of the material is in the interests of

sholarship. In all other instanes, however, permission must be obtained from the

author.

Signed:

Approval by Thesis Diretor

This thesis has been approved on the date shown below:

Dr. Gregory R. Andrews

Professor

Date

4

Aknowledgments

First of all I would like to thank my wife Ingrid and my sons Alexander and Paul.

They willingly paid a prie and did without the attentions of husband and father

during the many hours I spent with the omputer instead of with them.

I would partiularly like to thank my advisor, Greg Andrews. I very well might

not have begun taking graduate lasses at all without his timely enouragement. I

ertainly would not have takled this projet without his support, and I am grateful

for his investment of time and energy.

I appreiate the willingness of John Hartman and Mikael Degermark to serve on

my thesis ommittee, and to make time in their busy shedules.

I thank my friend and olleague, Alan Koski, for many stimulating onversations,

and for being a enthusiasti fan of the projet. He kindly read an early draft of the

thesis and asked me for more!

I thank my friend Steve West for muh help and assistane over the years, but

partiularly for enouraging me when I was in the midst of the deision of whether

or not to take lasses and work toward yet another degree.

I thank Craig Foltz, diretor of the MMT Observatory, for his enlightened attitude

toward my eduation and the inevitable onits and pressures it plaed upon my job

responsibilities.

5

Table of Contents

List of Tables . 7

List of Figures . 8

ABSTRACT . 9

Chapter 1. INTRODUCTION . 11

1.1. Related work . 12

1.2. Outline of the Thesis . 12

Chapter 2. SERVICES . 13

2.1. Threads . 13

2.2. Preemptive sheduling and priorities 13

2.3. Semaphores . 14

2.4. Condition variables . 14

2.5. Continuations . 15

2.6. Timer failities . 16

2.7. Interrupt failities . 16

2.8. Memory alloation . 17

2.9. Devie drivers . 17

2.10. Boot servies . 18

Chapter 3. IMPLEMENTATION . 19

3.1. Hardware Platform . 19

3.2. Diskless Booting . 19

3.3. Proessor Initialization . 20

3.4. Console Output . 20

3.5. Threads . 21

3.6. Priorities . 21

3.7. Semaphores . 22

3.8. Timers and Interrupts . 22

3.9. Preemption . 22

3.10. Continuations . 23

3.11. Condition Variables . 24

3.12. Drivers . 24

3.13. Code size . 26

Table of Contents|Continued

6

Chapter 4. APPLICATIONS AND TESTS 27

4.1. Test suite . 27

4.2. Debugging tools . 28

4.3. Timing . 28

4.4. Serial terminal . 29

4.5. Data Aquisition Server . 31

Chapter 5. CONCLUSIONS AND FUTURE WORK 35

5.1. Networking . 35

5.2. Memory protetion . 36

5.3. Debug failities . 36

5.4. Inremental module loading . 36

5.5. Porting to new hardware . 37

5.6. Other suggestions . 37

Appendix A. KERNEL INTERFACE SPECIFICATION 39

A.1. Hardware requirements . 39

A.2. Threads . 39

A.3. Semaphores . 41

A.4. Condition Variables . 43

A.5. Timer failities . 44

A.6. Devie drivers . 45

A.7. Interrupt failities . 46

A.8. Booting and initialization . 46

Referenes . 47

7

List of Tables

Table A.1. Thread alls . 39

Table A.2. Semaphore alls . 41

Table A.3. Condition variable alls . 43

Table A.4. Timer alls . 44

Table A.5. Devie driver alls . 45

8

List of Figures

Figure 2.1. Tail reursion using a ontinuation 16

Figure 3.1. Thread preemption points . 23

Figure 3.2. Soure ode summary . 25

Figure 3.3. Exeutable ode size . 26

Figure 4.1. Test suite . 27

Figure 4.2. Typial thread display . 28

Figure 4.3. Control transfer timings . 29

Figure 4.4. Serial terminal appliation . 30

Figure 4.5. Example: routine implementing burst mode 32

Figure 4.6. Example: interrupt routine . 33

Figure 4.7. Example: timer ativated thread 34

9

ABSTRACT

Embedded systems have needs that are not adequately met by onventional operat-

ing systems. Skidoo is a new operating system espeially tailored to support embed-

ded systems. Independently sheduled threads are provided that synhronize using

semaphores and ondition variables. Threads share a ommon address spae and

ommuniate using shared variables. Fully preemptive sheduling meets the needs of

hard real{time appliations.

10

11

Chapter 1

INTRODUCTION

Embedded systems play an inreasingly important role in modern soiety. They our

within automobiles, applianes, disk{drives, internet routers, weapons systems, and

myriad other appliations. Two things haraterize embedded systems. First, their

software is stati and tailored to a spei� mission. Apart from bug �xes and �eld

upgrades, the software in an embedded system never hanges. Seond, the hardware

in an embedded system is likely to be very restritive. Many embedded systems

are omponents in high{volume, ost{sensitive appliations. Considerations of spae,

reliability, and power onsumption often prelude the use of rotating disk drives.

Many embedded systems ontain software in whih strit time deadlines must be

met in order to ensure proper operation; suh systems are alled real{time systems.

A distintion is sometimes made between \soft" and \hard" real{time systems. A

soft real{time system runs orretly if some statistial portion of time deadlines are

met. A hard real{time system runs orretly only if every time deadline is met.

Skidoo

1

is a new operating system that an be used to build embedded systems.

Skidoo provides threads, semaphores, and fully preemptive sheduling. At any time,

the highest priority runnable thread is running, or a low lateny transfer is in progress

to set it running. Additionally, Skidoo o�ers timer failities, onvenient interrupt

handling failities, and a library of support routines and devie drivers. Skidoo runs

in proteted mode on the x86 arhiteture and has very small memory requirements.

It is adequate for building many real{time embedded appliations.

Skidoo is intended to be a toolkit that is to be used to build a ustom operating

system. Eah deployment of Skidoo is in fat an operating system that is tailored to

the task at hand. By ontrast, onventional operating systems suh as Unix [3, 14℄ are

designed to support general purpose omputing. They support timesharing omput-

ing and provide failities suh as �lesystems, virtual memory, and memory protetion

that are unneessary in an embedded appliation. While it is possible to adapt a gen-

eral purpose operating system suh as Unix for use in real{time appliations, a system

that spei�ally addresses the requirements of real{time embedded appliations an

be smaller, simpler, and faster.

1

The name \Skidoo" omes from a ghost town [15℄ on the west side of Death Valley National

Park, in California.

12

1.1 Related work

RT-Linux [4℄ is an example of a onventional general{purpose operating system that

has been enhaned to support real{time requirements. It does this by reating a

real{time sheduling regime within Linux. The regular Linux kernel is then run as

a low priority task under ontrol of the real{time sheduler. This arrangement is

adequate to support hard real{time requirements, but for some embedded systems,

the software would be too large in terms of hardware requirements. It does have the

advantage that software may be developed on the same system on whih it will run.

Both Linux [21℄ and Solaris [22℄ o�er POSIX 4 [7℄ real{time sheduling extensions.

This makes it possible to implement real{time appliations within the usual Unix

timesharing environment. These are both still full{sale Unix systems however, so

they would be inappropriate for hardware{restrited embedded appliations.

It is worth noting that work is being done on the traditional Linux kernel to make

it more suitable for some lasses of real{time programming. In partiular, preemption

points are being provided within the kernel to limit the length of the ode path within

the kernel before an opportunity exists to swith ontext [2℄.

VxWorks [19℄ is a proprietary system without a Unix heritage. It provides a

proprietary interfae, but o�ers a large set of POSIX library failities to aid porting

Unix software. VxWorks expets that a Unix host system is used to develop software

that then runs on a target system with distint hardware and software. This requires

a dediated development system but allows the target system to be very spartan in

terms of both hardware and software.

VxWorks has been a signi�ant soure of inspiration for Skidoo. Like VxWorks,

Skidoo supports a set of threads running in a single address spae and avoids utilizing

address mapping and protetion hardware. In ontrast Skidoo is muh simpler, yet it

provides additional failities suh as ontinuations and rae{free ondition variables.

1.2 Outline of the Thesis

Skidoo was developed mainly as an exellent learning exerise. However, it is useful

for getting real work done, as will be shown. It an be used as the basis for further

researh in embedded systems, as well as for the onstrution of spei� appliations.

Chapter 2 presents Skidoo and outlines the servies that Skidoo makes available.

Chapter 3 desribes the implementation of Skidoo, disussing the steps taken and

the deisions that were made. Chapter 4 disusses a test suite that was developed

to exerise Skidoo, as well as experiments and appliations that demonstrate its util-

ity. Chapter 5 gives a summary of what was aomplished, what ould have been

done di�erently, and what has been left undone. The Appendix gives details of the

programming interfae to Skidoo.

13

Chapter 2

SERVICES

This hapter gives a survey of the servies provided by Skidoo. The two entral

features of the Skidoo kernel are threads and binary semaphores. The most important

feature of threads is the ability to blok and thus to be independently sheduled.

Semaphores provide an entity that an be used for synhronization. An inredible

amount of work an be aomplished given just threads and semaphores. The rest of

the Skidoo kernel provides ondition variables, ontinuations, and aess to essential

hardware via timers, interrupts, and basi devie drivers. The atual kernel routines

are desribed in Appendix A.

2.1 Threads

A thread is an independently sheduled ow of exeution. Eah thread has a private

stak, and a small amount of state, whih onsists of a set of ags and register values

needed to resume the thread after it has bloked. Notably, a thread does not have

a private address spae (other than a stak). All threads share a ommon global

address spae and ommuniate using shared variables.

A thread in the Skidoo kernel is either ready or bloked. A thread only beomes

bloked when it bloks itself. One bloked, a thread is not eligible to be run until

it is unbloked. A thread may be unbloked diretly by another thread, or more

ommonly via a semaphore. With the exeption of interrupt handlers, all ode runs

on behalf of some thread. Eah thread is assigned a unique priority. For larity, the

terms \more urgent" and \less urgent" are used rather than \higher" and \lower"

priority. In fat, priorities with larger numerial values are less urgent.

1

At all times,

the urrent thread is always the ready thread with the most urgent priority.

Speial are was taken to handle the ase where a thread is unbloked from in-

terrupt ode. The diÆulty arises in the ase where a thread more urgent than the

one urrently running is marked ready to run. When this happens, the thread that

was running when the interrupt ourred is left suspended, and the kernel resumes

the more urgent thread when interrupt proessing is �nished.

2.2 Preemptive sheduling and priorities

In the Skidoo kernel, eah thread must be assigned a unique priority when it is

reated. At all times, the thread with the most urgent priority that is ready to run is

1

This hoie is entirely arbitrary and mimis the ordering used in VxWorks.

14

running, or is in the proess of being made to run. This sheduling poliy is expliitly

unfair: if the urrently running thread never bloks, no thread of lower priority will

ever run. This poliy is alled stritly preemptive sheduling. It is an error for two

threads to be assigned the same priority. The system ould have been designed to

have some speial de�ned behavior in this ase (suh as time sliing), but this has

not been done. Providing fairness in this speial ase is not neessary in embedded

systems and would only serve to ompliate the kernel.

2.3 Semaphores

Threads together with some synhronization faility [18℄ provide a suÆient basis to

build signi�ant appliations. Skidoo provides simple binary semaphores [1℄ as its

fundamental synhronization primitive.

Semaphores may be reated with an initial value of zero or one. Typially,

semaphores with an initial value of zero are used for signaling, and semaphores with an

initial value of one are used for mutual exlusion. The P operation is herein denoted

\bloking" on a semaphore. When the value of a semaphore is zero, the \bloking"

operation in fat bloks and plaes the urrent thread on a list assoiated with the

semaphore. When the value of a semaphore is one, the \bloking" operation hanges

the value to zero and keeps running. The V operation is herein denoted \unbloking"

a semaphore. When the value of a semaphore is one, the \unbloking" operation does

nothing.

2

When the value is zero and the list of waiting threads is non{empty, one

of the waiting threads is unbloked; otherwise the value of the semaphore is hanged

to one.

Signaling semaphores are ommonly assoiated with a single thread as a private

semaphore. Under this onvention, only one thread uses the semaphore to await a

signal. A mutual exlusion semaphore is not assoiated with any thread in partiular,

but rather with some resoure that requires loking.

2.4 Condition variables

Condition variables an be viewed as a toolkit for building monitors [9℄. In Ski-

doo they are provided as a higher level synhronization faility than semaphores. In

essene a ondition variable is a mutex semaphore and a signaling semaphore han-

dled together as a unit as in POSIX 4 [7℄. To allow synhronization in devie drivers

between interrupt handlers and thread ontext running the driver, a speial form of

ondition variable is provided that disables proessor interrupts as a form of mutual

exlusion. To use a ondition variable, a thread will aquire the mutex semaphore,

hek the resoure loked by the mutex, and upon �nding that it must wait for the

2

An alternative would be for the unbloking operation to delay if a semaphore is set to one, but

this would produe grave diÆulties if the unblok was being done from within an interrupt routine.

15

ondition of the resoure to hange will perform a \wait" on the ondition variable.

The \wait" operation will blok the thread and release the mutex in an atomi oper-

ation, preventing rae onditions. To unblok the thread when the ondition of the

resoure hanges, another thread aquires the mutex and uses the \signal" opera-

tion. In the ase of an interrupt routine, aquisition of the mutex is impliit in that

interrupts are bloked while in the interrupt handler.

2.5 Continuations

Continuations are provided as a more eÆient alternative to the usual bloking se-

mantis. The idea of a ontinuation is taken from the Mah Operating System [6℄. A

ontinuation provides a streamlined way for a thread to blok and speify a point of

resumption. When a thread bloks with a ontinuation, it abandons its ontext and

proessor state (inluding register values, and the stak). When the thread unbloks,

it omes alive in the ontinuation funtion, as if it were starting up anew. Most

Skidoo failities whih may blok provide the option to blok with a ontinuation, as

well as the onventional return from the bloking all.

When a thread bloks with a ontinuation, it spei�es a funtion to begin exeuting

in when it is unbloked. When the thread does unblok, rather than returning in the

usual way from the blok all, it resumes by alling the spei�ed funtion.

Using ontinuations requires some reorganization of ode. A funtion that was

designed to use a traditional bloking all will need to be partitioned into a funtion

whih performs some setup and then bloks, and a funtion whih handles the event

as a ontinuation. In many ases the event handling funtion will end by making a

bloking all and again speifying itself as a ontinuation. This sort of tail reursion

is a natural way to ode funtions that should be ativated periodially after a �xed

delay.

Figure 2.1 ontains an example of a funtion using tail reursion to ahieve periodi

ativation. A new thread is reated using the thr_new() all. This thread prints a

message, then spei�es itself as a ontinuation after a delay of 25 lok tiks. The

thread is bloked until the number of tiks elapses, and then runs again printing the

message. This goes on forever, or until the thread is destroyed.

The advantage of ontinuations is that they are very lightweight. When a thread

bloks speifying a ontinuation, its ontext an be abandoned|no registers need to

be saved. The mehanism used to resume using a ontinuation is the same one that is

used to launh new threads. In essene a thread is being launhed anew eah time it

resumes with a ontinuation. It would be possible to abandon the stak and alloate

a new one (as is done in Mah), but it is atually more eÆient, although less frugal

with memory, to retain the stak.

16

void

tiker_init (void)

{

(void) thr_new ("tik", tik_fn, (void *)25, PRI_TICK, 0);

}

void

tik_fn (int delay)

{

printf ("Kilroy was here!\n");

thr_delay_ (delay, tik_fn, delay);

}

Figure 2.1. Tail reursion using a ontinuation

2.6 Timer failities

A timer is a hardware devie that provides interrupts at a programmer{de�ned inter-

val. A set of timer failities provides onvenient aess to the available timing signals.

At this time, the timer tiks at a nominal rate of 100 Hz.

A routine to handle timer interrupts is a standard part of Skidoo. This default

routine keeps trak of time and supports a delay servie. The delay servie allows

the urrent thread be bloked until a spei�ed number of timer \tiks" have passed.

The default routine may be augmented by a user supplied C funtion that will also

be alled eah time the timer \tiks". This routine is alled at interrupt level and

should be short and arefully oded.

A ommon use of the ability to onnet a user supplied routine to the timer in-

terrupt is to produe periodi thread ativations. By subdividing the basi lok and

using semaphores to unblok waiting threads from interrupt level, aurate periodi

ativations may be aomplished. Appliations that require extremely aurate tim-

ing (suh as waveform generation), may perform ruial proessing in suh a lok

funtion.

2.7 Interrupt failities

It is very useful to be able to onnet arbitrary C funtions to interrupt soures.

Providing a onvenient faility for doing this relieves individual devie drivers from

the mahine dependent omplexities of manipulating interrupt hardware. This is a

real bene�t for embedded systems whih typially inlude unique hardware devies

that require simple devie drivers. If this faility is abstrated appropriately, it is also

17

an aid to portability. This faility|dubbed interrupt hanneling|is used by existing

drivers for the keyboard, serial port, and timer. It is also used to onnet handlers

to hardware traps suh as divide by zero.

A related faility, already alluded to, is the ability to unblok a thread from within

an interrupt routine. Interrupts are handled on the stak of whatever thread happens

to be running when the interrupt arrives. During proessing of the interrupt (whih

may be entirely unrelated to the thread urrently running), a previously bloked

thread may need to be unbloked. The thread state is marked ready to run, and then

the thread priority is ompared with the priority of the urrent thread. If the priority

is less urgent than the urrent thread, nothing more needs to be done. If the priority

is more urgent than the urrent thread, a ag is set so that when the return from

interrupt is about to happen, a ontext swith to the new thread takes plae.

The ase also should be mentioned where there is no ready thread and an interrupt

ours. In this ase, a tight loop is being run in the ontext of whatever thread last

bloked itself. This loop is wathing to see if that thread again beomes ready. If

this thread does get marked ready, the loop will terminate and the thread will return

from the bloking funtion. If some other thread gets marked ready, a swith must

be made immediately to run that thread in the manner desribed above.

2.8 Memory alloation

The Skidoo kernel has an extremely simple memory alloation sheme. A table of

available memory regions is maintained, and bloks are alloated from the �rst region

that ontains suÆient spae. A all to free a memory blok is provided, but it is

ignored at present in this simple alloator. This sheme is entirely adequate for most

embedded appliations that will alloate all resoures that are required at boot time.

Failities that may want to reuse alloated objets (suh as semaphores) should keep

them on a private free list.

As an alternative to this simple sheme, the Solaris slab alloator [22, p. 392℄

has been made to work with the Skidoo kernel. However, the slab alloator requires

nearly as muh ode memory as Skidoo itself (see Figure 3.3).

2.9 Devie drivers

Drivers for the keyboard and onsole were essential to develop and debug the kernel.

The serial port driver was as muh a demonstration as an essential part of the kernel.

In retrospet, the serial port ould have been used in lieu of the onsole for develop-

ment. The onsole driver has the advantage of being independent of interrupts, and

thus is useful in ases where the serial driver would have failed. The keyboard driver

typially uses interrupts, but an be on�gured to work without them.

18

2.10 Boot servies

Bootstrapping is a low{level hardware{dependent issue. This is partiularly so on

the x86, where the mahine starts running in a bakward ompatibility mode (x86

\real mode"). The goal of bootstrapping is to be able to run C ode in x86 proteted

mode.

At this time, Skidoo is able to boot from oppy disk, as well as over the network

using BOOTP and TFTP . It would be fairly straightforward to allow booting from

a hard drive or CDROM.

One Skidoo has been initialized, it reates one initial thread at priority 0, whih

exeutes the C funtion user_init(). Typially this funtion will launh the set of

user threads and then exit.

19

Chapter 3

IMPLEMENTATION

This hapter desribes the implementation of Skidoo. The desription is given as a

step by step hronology. As eah major subsystem is presented the algorithms used to

implement it are disussed. In almost every ase the simplest possible algorithm has

been hosen. Corretness has been plaed ahead of eÆieny, yet with the expetation

that more omplex and sophistiated algorithms will be introdued as the projet

matures. In some ases (notably memory alloation) this has already ourred.

3.1 Hardware Platform

The deision to make Skidoo run on the Intel x86 [10℄ proessor was an easy one.

X86 hardware is heap, ubiquitous, and amazingly e�etive. This hoie made it

straightforward to use the Gnu C ompiler hosted on a Linux system for development.

Other potential targets were the Spar and the Motorola 680x0 proessors. Although

these arhitetures are in many ways more attrative, the hardware is less ommon,

more expensive, and slower. A desktop personal omputer was obtained for use as a

target mahine. The mahine used had a 200 Mhz Pentium MMX proessor, 64 MB

of memory, video ard, and network ard.

3.2 Diskless Booting

Part of the hallenge of the projet was that Skidoo had to boot and run on bare

hardware. It was expeted (and rightly so) that development would involve many

yles of experimental rebooting and that a sheme that made this as eÆient as

possible would be the best hoie. It is possible to write images onto oppy disks on

the development mahine and boot them by transferring them to the target mahine.

However, this rapidly beomes tedious, and oppy disks are remarkably unreliable.

This was, however, a useful method when a pair of laptop omputers were being used

during a mobile development session.

Network booting is far superior to using removable media. A new image an be

built on the development mahine, and when the target mahine reboots, this image

is transferred into target memory and exeuted. Network booting uses the BOOTP

and TFTP protools and is failitated by a publi domain pakage alled netboot

[11℄. Some time was lost disovering that some features of this pakage were broken

or mis{doumented. In partiular, netboot exhibited aberrant behavior for an image

20

ontaining 512 or fewer bytes. Ultimately netboot suessfully loaded and ran a

small assembly language program that used BIOS

1

routines to print a short message.

3.3 Proessor Initialization

After reset, the Intel x86 proessor is running in \real mode," whih is a ompatibility

mode that runs software written for the oldest members of the x86 proessor family.

The netboot pakage expets the proessor to be running in \real mode," as does the

BIOS software. The Gnu C ompiler generates ode for an x86 proessor running in

proteted mode. Proteted mode supports 32 bit registers and a simple linear address

spae. The purposes of proessor initialization are to reloate the Skidoo image into

low memory and to perform the transition from real to proteted mode. One this is

done, the proessor an run ode generated by the Gnu C ompiler.

Debugging the proessor initialization ode was diÆult and frustrating. Most of

the proessor initialization ode had to be written in assembly language. In addition,

it was not possible to use the real mode BIOS onsole routines for debugging while the

initialization was in progress. A useful debugging tool was a able with a single LED

2

that was onneted to the parallel printer port. A simple routine that looped while

blinking this LED was useful as a sentinel to mark progress through the initialization

ode. One the proessor was properly initialized, a newly oded LED loop, written

in C and ompiled by the Gnu C ompiler, was suessful in making the LED blink.

3.4 Console Output

One it was possible to write ode in C and run it in proteted mode, progress beame

muh faster. The next thing to do was to print messages on the onsole. Beause the

PC arhiteture supports simple memory mapped onsole output, it was easy and

atually fairly enjoyable to write routines to output messages. No interrupts were

involved and there were no ompliated timing or synhronization issues.

One the onsole output was working, and a simple printf() funtion was avail-

able, a keyboard driver beame almost essential. Although the keyboard an generate

interrupts, the driver was initially written to use polling loops to monitor the key-

board status register. One both keyboard and onsole were working, some diagnosti

routines were written, inluding routines to display regions of memory.

An alternative to developing drivers for the onsole and keyboard would have

been to develop a driver for the serial port. This would have had some advantages in

that a serial onnetion via a able to the development system ould have been used

for debugging. Having suh a faility at the earliest stages of development would

1

The BIOS refers to the software in read{only memory. On a typial personal omputer it

ontains bootstrap software, along with a rudimentary set of devie drivers.

2

LED: light emitting diode

21

have been very useful and this should be onsidered if Skidoo is ported to other

arhitetures.

3.5 Threads

The most important aspet of Skidoo was the ability to do onurrent programming

using threads along with semaphores for synhronization. In Skidoo, a thread onsists

of a ontrol struture and a stak. The ontrol struture ontains a pointer to the

stak, spae to store saved registers, a small amount of status information, and a

pointer to the funtion where that thread should start exeuting. A thread state

variable indiates whether the thread is ready to run or bloked for some reason.

All threads are kept on a single linked list. Initially there is only a single thread

whih starts in the funtion user_init(). Swithing between threads is aomplished

by saving registers, swithing staks, and restoring registers so that exeution resumes

in a di�erent thread. Although it is obsurely doumented, the Gnu C ompiler

expets 6 registers to be preserved between funtion invoations (ebx, edx, esp, ebp,

esi, and edi), and 2 registers (eax and ex) may be freely destroyed. Assembly

language ode was written to perform ontext swithing.

The pair of routines thr_blok() and thr_unblok() are the heart of the thread

system. A thread alls thr_blok to mark itself not ready; another thread is then

seleted to be run. Calling thr_unblok allows a bloked thread to be marked ready

one again. At this early stage of the system there were no interrupts (in partiular no

lok interrupt) and no preemptive sheduling. When a thread performed a bloking

all, it would save its registers and swith to an idle thread, whih ran a sheduler.

The sheduler would searh the thread list for some other thread to run. If there was

no ready thread, the system ould do nothing but halt.

It turns out that there is no reason to have a separate idle thread. (In fat having

one introdues a needless thread swith.) This ode was revised so that eah thread

runs the sheduling loop when it needs to �nd another thread to pass ontrol to. A

all thr_yield() was needed in the early system; it ran the sheduling loop, even

when a thread did not wish to blok. It has been eliminated in the �nal system, but it

was neessary before preemptive sheduling and priorities were operational. Without

it, new threads were reated but never ran.

3.6 Priorities

A poliy was needed to deide whih thread to run in the event that more than one

thread was in the ready state. By assigning eah thread a priority and insisting that

all priorities be unique, it is easy to de�ne a simple, unambiguous poliy: the thread

in the ready state with the most urgent priority should run. It is ertainly possible

to de�ne other poliies, espeially if there are multiple threads with idential priority.

22

Adding priorities involved adding the priority to the thread ontrol struture and

adding poliy ode to the sheduling loop. At �rst, the entire linked list of threads

was searhed and the most urgent ready thread seleted and run. It soon beame

obvious that a good optimization is to keep the list in order, with the most urgent

threads �rst, and searh the list only from the urrent thread to the end. Currently, a

thread is reated with a spei�ed priority and that priority remains �xed. It would be

easy to allow a thread to hange priority (or to have its priority hanged). One this

is done, it will be neessary to onsider the need to immediately shedule a thread

whose priority has been elevated.

3.7 Semaphores

The bloking and unbloking alls provide a lumsy form of synhronization. The

utility of semaphores is well known [1, 5℄. Given the thread bloking and unbloking

faility, they are simple to implement using a state variable and a list of bloked

threads. Skidoo implements binary semaphores with an initial value of one for mu-

tual exlusion. Binary semaphores with an initial value of zero are used for private

signaling semaphores.

3.8 Timers and Interrupts

The ability to perform aurate time delays is essential to embedded real time pro-

gramming. The desire for timing signals was the impetus to provide failities in

Skidoo for dealing with interrupts. A substantial amount of assembly language ode

was written to save registers and all a spei�ed C language interrupt handler. A

funtion was provided to allow an arbitrary interrupt soure to be routed to a spei-

�ed C funtion and this faility was used to implement a handler for timer interrupts.

The default timer handler keeps time by ounting tiks, performs a allbak to a user

timer funtion (if one has been registered), and handles a list of threads with pending

delays. This list is kept in order of inreasing delay with the shortest delay at the

front of this list. As entries are added, they are plaed in proper order and the delay

ount adjusted so that it is relative to the entry preeding it. One this is done, only

the front entry needs to be deremented at eah tik [13℄.

3.9 Preemption

When an interrupt ours, some thread is suspended while the interrupt handler runs.

Normally, when the handler is �nished, the same thread is again resumed. One an

interrupt had the potential to modify the state of a thread, it was neessary to onsider

the possibility of resuming a di�erent thread upon ompletion of the interrupt. In

partiular, it is desirable to resume a di�erent thread when that thread is more

urgent than the urrently running thread, and has been marked ready by the interrupt

23

handler. As a spei� example, expiration of a delay interval ould ause a new thread

to be marked ready within an interrupt routine. If this thread was of more urgent

priority than the urrent thread, it would be neessary to resume it immediately rather

than resume the thread that was running when the interrupt ourred. In this ase,

the urrently running thread is marked as \suspended during interrupt" and the more

urgent thread is resumed instead when the interrupt is �nished. This results in there

being two possible ways that a thread an be suspended. One is the synhronous ase

where the thread itself performed a all to thr_blok. The seond is the asynhronous

ase where the thread was left suspended after an interrupt routine handed ontrol

to some other thread. In retrospet it would be possible to make these two states

idential by simply saving some additional registers in the synhronous ase, but this

has not been done.

The situations that may result in a hange in the urrently running thread are

enumerated in Figure 3.1. Notie that thr_yield() is not listed, as it has been

eliminated in the �nal system.

Thread is reated.

Thread exits.

Thread bloks.

Thread is unbloked.

Thread hanges priority.

Figure 3.1. Thread preemption points

The ability to unblok threads and transfer to them immediately from interrupt

ode is vital in real{time systems. In Figure 3.1 the bloking and unbloking points

inlude semaphores, timer delays, and other synhronization primitives yet to be

desribed. Whenever a thread enters or leaves the system (or is bloked or unbloked),

it is neessary to reevaluate whih thread should be running. The ability for a thread

to hange priority was originally not part of the design, but it is neessary to provide

orret behavior in ertain situations. Notable among these is priority inversion,

where a less urgent thread holds a mutex that a more urgent thread is bloked waiting

to aquire.

3.10 Continuations

Normally a thread alls thr_blok() to blok, and returns again from this funtion

when it unbloks. Continuations [6℄ were implemented as an experimental alternative.

A thread whih bloks with a ontinuation spei�es the funtion it should exeute

when it unbloks. It never returns from the bloking all but instead exeutes the

24

spei�ed funtion. This makes it possible to save only the funtion pointer and an

argument rather than the full set of registers. Continuations were easy to implement

by adding additional thread state to support a new resumption mehanism. It turns

out that this mehanism is entirely appropriate for launhing a new thread: speify

a ontinuation funtion and add the new thread to the thread list.

Continuations suggest an additional optimization that has not yet been exploited.

When the sheduling loop �nds no thread ready, and the urrent thread expets to

resume with a ontinuation, the system ould set a ag indiating that no state needs

to be saved when departing from this thread. It would remain in this state until an

interrupt ours, and no registers would need to be saved to transition from this state

into the interrupt routine and from there to whatever thread should be resumed. It

has been pointed out [5℄ that most operating systems have a \homing position" where

the system resides when it is at rest. Threads \aept a task" and leave the homing

position, returning again when the task has been performed. By designing a system

to onsist of threads that eah handle a spei� task using a ontinuation, very fast

response times ould be ahieved.

3.11 Condition Variables

One a lean interrupt system was developed and tested, the keyboard driver was

redesigned to use interrupts. An interrupt{driven keyboard ould support \hot keys"

that would display debug information, and even reboot the system in ases where the

system had hung. (This did in fat prove immensely useful.) The keyboard interrupt

handler would, with interrupts bloked, add haraters to a queue. It is neessary

both to lok the queue during aess by a thread onsuming the haraters, and to

signal suh a thread one it had bloked upon �nding the queue empty. Loking was

done by disabling interrupts, but the business of bloking while releasing the lok

needed to be handled arefully to avoid rae onditions. This is exatly the sort of

problem that monitors and ondition variables were intended to solve [1, 9℄.

A ondition variable faility was developed to ouple together a mutex lok with a

signaling semaphore. Two forms of ondition variables are provided. The �rst ouples

together a mutex semaphore with a signaling semaphore and is intended for signaling

between threads. The seond ouples together the interrupt lok with a signaling

semaphore and is intended for signaling between threads and interrupt routines. The

latter form has been used in both the keyboard and serial drivers.

3.12 Drivers

A driver for the serial ports was developed next. It was gratifying that Skidoo was

mature enough that this driver ould be developed in a straightforward way, entirely

in C, using existing failities. Interrupt routines were onneted to hardware using

interrupt hanneling. Condition variables were used for signaling between interrupt

25

routines and waiting threads|both to indiate available haraters on reeption and

additional bu�er spae on transmission. The harater queue library designed for the

keyboard driver was used for both transmitted and reeived haraters in the serial

port driver. Although this driver did not require new mehanisms in Skidoo, it did

give the system a good workout. With the serial port ative, interrupts from the

keyboard, timer, and serial port were all ative and some new bugs were exposed and

�xed.

A driver for an ISA{bus data aquisition ard was also developed (the \DAS-16"

marketed by Keithley{Metrabyte and others). The driver uses interrupts, was oded

entirely in C, and required no new methodology in Skidoo. Writing a driver like

this is an exellent test, sine every embedded system seems to involve developing

drivers for new hardware, and a good test of the system is how easy it makes this

proess. Having immediate aess to the address spae ontaining the hardware and

not needing to install assembly language interrupt routines made the proess easy.

desription lines

header �les 713

assembly language 1307

onsole. 1108

delay. 166

main. 107

prf. 644

random. 112

serial. 523

sklib. 390

thread. 1550

trap. 958

version. 7

das16. 407

user. 140

tests. 2096

server. 125

total 10353

Figure 3.2. Soure ode summary

26

3.13 Code size

The soure ode for Skidoo is freely available from http://kofa.mmto.org/skidoo.

(This thesis desribes version 0.4.1 of Skidoo.) Skidoo onsists of about 10000 lines

of C soure ode, as shown in Figure 3.2. Considering that about 2000 lines of

this are test ases, the ore of Skidoo is approximately 8000 lines of ode. About

1300 lines of this are assembly language ode. The proessor initialization, thread

swithing, and basi interrupt handling ould only be expressed in assembly language.

On a proessor other than the x86, the proessor initialization ode would be muh

smaller, sine other proessors do not have multiple modes like the x86. Figure 3.2

does not inlude the slab alloator or any of the network ode.

Figure 3.3 shows the ompiled size of the Skidoo kernel in various on�gurations.

The basi kernel is ompat enough to �t into read{only memory as part of a ompat

appliation.

basi kernel 22k

kernel and tests 36k

kernel and slab alloator 55k

kernel and network 320k

Figure 3.3. Exeutable ode size

27

Chapter 4

APPLICATIONS AND TESTS

This hapter disusses what has been done to test and exerise Skidoo. An extensive

test suite was developed ase by ase as features were added to Skidoo. An interative

\shell" was developed to invoke the tests and to inspet the internal state of Skidoo.

Two appliations { a serial terminal and a data aquisition faility { were developed

to demonstrate the utility of Skidoo.

4.1 Test suite

Eah time a new feature was added to Skidoo, a test ase was written to exerise

that feature. All of the test ases have been retained, even old, seemingly historial

and trivial ones. This test suite has grown to over 2000 lines of ode. Assembling

this set has proved to be a prudent ourse of ation. After the spei� test ase for a

new feature has run suessfully, the entire suite of previous ases is run. One that

is suessful, the entire suite is plaed in a loop and run multiple times, sometimes

through the night. Both of these last proedures have turned up unexpeted bugs.

Figure 4.1 shows the set of tests.

1 Start a thread

2 Setjmp and longjmp

3 Timer hookup

4 Thread delay

5 Create multiple threads

6 Create reentrant threads

7 Signal with semaphores

8 Pass arguments to thread funtions

9 Many threads blok on single semaphore

10 Unblok semaphore from an interrupt routine

11 Signal thread using ondition variable

12 Thread join and exit

13 Mutex semaphore

14 Keyboard diagnosti

15 Serial port diagnostis

Figure 4.1. Test suite

28

4.2 Debugging tools

In addition to the test suite, a set of diagnosti tools were developed to exerise

Skidoo. A simple ommand line interfae allows individual tests to be run one or

any number of times. Additionally the entire suite may be run as many times as

desired. Retaining every test, and repeating them as new features were added has

proved invaluable. Often the addition of a new feature introdues bugs in an old one.

When hanges are made to basi algorithms, it is essential to be able to verify that

all features still work properly.

In addition to running the tests, the \shell" allows dumping of memory, inspeting

the stak, and inspeting important data strutures. An example of the display of

the thread list is shown in Figure 4.2.

This display shows a typial thread status during testing. The asterisk next to

the thread at priority 55 indiates the urrently running thread. The state olumn

shows that the two threads with more urgent priorities are bloked on a semaphore

and a timer delay. A single harater shows the resumption mode of eah thread: J

for the usual \jump" mode, C for a ontinuation, I for a postponed interrupt.

Thread: name (&tp) state esp pri

Thread: sserv (0000C4EC) SEM J 00072E8C 50

Thread: tf2 (0000C3F4) DELAY C 00074FF4 52

* Thread: tf1 (0000C470) READY I 00073FF4 55

Thread: user (0000C568) READY J 00071F80 899

Thread: sys (0000C5E4) READY J 00070FAC 950

Thread Cur : (0000C470) (INT)

Figure 4.2. Typial thread display

4.3 Timing

A number of experiments were performed to measure the time neessary to respond

to interrupts, and to transfer ontrol to a previously bloked thread. In all ases the

timer was used to generate interrupts to supply the triggering event. The Pentium

timestamp ounter was used to measure intervals.

1

The system is running a thread

at a non-urgent priority that is looping reading the timestamp ounter and writing

1

The Pentium timestamp ounter is a onstantly inrementing 64 bit timer that ounts at the

system lok rate, in this ase 200 Mhz. It an be read using a speial proessor instrution into a

pair of 32 bit registers.

29

it into a memory loation. When the timer interrupt happens, the last timestamp

value remains in the designated memory loation. One the more urgent thread

is ativated, it reads the timestamp ounter again and an alulate the transfer

time. These experiments were performed on a proessor running at 200 Mhz so that

resolution of 5 nanoseonds was obtained. Figure 4.3 shows the results obtained.

experiment lateny

thread to thread, normal 2.32 miroseonds

thread to thread, ontinuation 2.05 miroseonds

thread to interrupt 0.855 miroseonds

Figure 4.3. Control transfer timings

4.4 Serial terminal

Given the onsole, keyboard, and serial port driver, a very simple appliation is a

serial terminal. A pair of threads are reated. One bloks waiting for keyboard input;

the other bloks waiting for serial port input. When haraters arrive from the serial

port, they are output to the onsole. When they arrive from the keyboard, they are

output to the serial port.

Even though this is a trivial appliation, it serves as a good diagnosti for multiple

interrupt soures (keyboard, timer, and serial port). This test has no real{time re-

quirements apart from the need to move input haraters before the small (128 byte)

input bu�ers overow.

The ode for this appliation is shown in Figure 4.4. The funtion user_init runs

as a high priority thread, initializes serial port parameters, starts two new threads,

and is done. The �rst thread runs in the funtion t_in and is usually bloked waiting

for haraters to arrive on the serial port, whih it then opies to the onsole. The

seond thread runs in the funtion t_out and is usually bloked waiting for haraters

to be typed at the keyboard. When haraters are typed, they are opied to the serial

port. Although both threads run at the same priority, neither is CPU bound and will

yield the proessor to the other when it bloks.

30

void

user_init (void) /* initialize port & reate 2 threads */

{

sio_baud (PORT, 9600);

sio_rmod (PORT, 0);

(void) thr_new ("te_i", t_in, (void *)PORT, PRI_TERM, 0);

(void) thr_new ("te_o", t_out, (void *)PORT, PRI_TERM, 0);

}

stati void

t_in (int port) /* opy from serial port to onsole */

{

int ;

for (;;) {

 = sio_get (port);

if (== '\r')

 = '\n';

vga_put ();

}

}

stati void

t_out (int port) /* opy from keyboard to serial port */

{

int ;

for (;;) {

 = kb_read ();

sio_put (port,);

if (== '\r')

sio_put (port, '\n');

}

}

Figure 4.4. Serial terminal appliation

31

4.5 Data Aquisition Server

A data aquisition server was written as a demonstration appliation. This server

allows an analog data aquisition devie to be ontrolled remotely using a serial port.

Single samples, periodi data, and burst data may be olleted from any of 16 inputs.

This appliation makes use of a speial piee of omputer hardware. A \DAS-16"

analog data aquisition board was installed in the target system and a devie driver

written to aess this devie under Skidoo. The \DAS-16" board is typial of the

sort of hardware used in embedded ontrol projets. It has a 12{bit analog to digital

onverter and an input multiplexer that selets one of 16 hannels for onversion.

It also has a pair of 12{bit digital to analog onverters and a programmable timer.

Analog to digital onversions may be triggered by software or by the timer. When a

onversion is omplete, an interrupt is generated.

Most of the work developing this appliation onsisted of writing the devie driver

for the \DAS-16." The driver for this devie onsists of about 400 lines of C, and

was straightforward to develop. One the driver was written, a simple protool was

designed to make the drivers apabilities aessible from the serial port.

The server provides aess to the hardware in three di�erent modes. A single

sample may be obtained from any hannel at any time. A burst aptures a preisely

timed sequene of 1000 points at 1000 Hz. Periodi sampling may be sheduled at

a more leisurely rate. The server uses two threads. One thread waits for ommands

from the serial port and handles them as they arrive. The seond thread handles

periodi sampling and waits for timer events. A mutual exlusion semaphore is used

to arbitrate aess to the onversion hardware by the two threads. The lok is held

for the duration of a burst (an entire seond). A sample of the ode to support the

burst mode is shown in Figure 4.5.

The interrupt routine that supports the burst mode follows in Figure 4.6. It

aumulates the required number of samples into a bu�er, then unbloks the waiting

thread using a semaphore. The thread that supports periodi sampling is ativated

by passing a semaphore from a lok interrupt routine, as shown in Figure 4.7.

This is a simple appliation, but it illustrates many of the features of Skidoo. This

kind of appliation is used for monitoring temperatures and fores in a remote loation

with telemetry being obtained over a serial onnetion, perhaps using optial �bers.

The set of failities provided by Skidoo are adequate to allow it to replae ommerial

operating systems in many appliations now in servie at large telesopes in Southern

Arizona.

32

/* reate semaphores */

das_sem = sem_signal_new (SEM_FIFO);

das_mutex = sem_mutex_new (SEM_PRIO);

short *

das_burst (int han, int num)

{

/* enter ritial region to aess hardware */

sem_blok (das_mutex);

das_san (han, han);

das_rate (100, 100);

outb (CTL_IRQ_5, base + CTL);

outb (CTL_IE | CTL_IRQ_5 | CTL_TT, base + CTL);

/* onnet handler to interrupt */

irq_5_hookup (das_int);

/* lear the interrupt flag and enable the lok. */

outb (0x00, base + STATUS);

outb (CLK_GATE, base + CLOCK);

ount = 0;

want = num;

next = buffer;

state = RUN;

/* wait for signal that data has aumulated */

sem_blok (das_sem);

/* exit ritial region */

sem_unblok (das_mutex);

return buffer;

}

Figure 4.5. Example: routine implementing burst mode

33

stati void

das_int (void)

{

int san, data;

unsigned long tiks;

/* lear interrupt request. */

outb (0xff, base + STATUS);

/* let this request be a no-op */

if (state != RUN)

return;

/* read sampled value from hardware */

san = inb (base + DATA_LO);

data = inb (base + DATA_HI) << 4;

*next++ = data | (san & 0xf0) >> 4;

/* signal when requisite number is obtained */

if (++ount >= want) {

state = HOLD;

sem_unblok (das_sem);

}

}

Figure 4.6. Example: interrupt routine

34

stati short per_buf[240℄;

stati short *next_per = per_buf;

stati int per_ount = 0;

stati strut sem *per_sem;

void my_timer (void)

{

/* subdivide lok, ativate thread every 10 seonds */

if ((per_ount++ % 1000) == 0)

sem_unblok (per_sem);

}

stati void

periodi (int xx)

{

for (;;) {

/* wait for timer ativation */

sem_blok (per_sem);

/* plae new reading in buffer */

if (next_per < &per_buf[240℄) {

*next_per++ = das_ad (3);

}

}

}

void

user_init (int xx)

{

/* new signaling semaphore */

per_sem = sem_signal_new (SEM_FIFO);

/* initialize timer and onnet timer handler */

tmr_rate_set (100);

tmr_hookup (my_timer);

/* launh new thread to be ativated by timer */

(void) thr_new ("das", periodi, (void *) 0, 49, 0);

}

Figure 4.7. Example: timer ativated thread

35

Chapter 5

CONCLUSIONS AND FUTURE WORK

This thesis has desribed the design and implementation of Skidoo, a ompat real{

time operating system. Skidoo o�ers a omplete set of threading servies at the

kernel level, along with a versatile set of synhronization primitives. The premise

that a useful system ould be built simply from threads and semaphores has been

demonstrated to be valid. Additional servies suh as timers, interrupt hanneling,

and devie drivers have been implemented to enrih the failities provided.

Skidoo inorporates a number of features that are unusual and interesting, if not

new. A lean high level faility for interrupt handling makes the system espeially

onvenient to work with. The availability of ontinuations o�ers a new and useful

way to ontrol threads.

There is no question that this projet has been a worthwhile learning exerise.

Indeed it has gone signi�antly beyond that to beome a useful tool for myself, and

hopefully for others. It has already been used to support a number of small projets.

However, more an be done to provide library routines and a more omplete set of

devie drivers. The following setions outline some major extensions of funtionality

that are sensible next steps to take with this projet.

5.1 Networking

Without question, providing a network stak would be the single thing that would add

the most utility to Skidoo. This work has been started and development is ongoing.

The goal of adding a TCP/IP network stak is to have TCP and UDP sokets

available within Skidoo. Rather than do this work from srath, the plan is to inor-

porate the network ode from an existing open soure system. BSD 4.4 and Linux

are both reasonable andidates, but Linux has been hosen beause it supports the

greatest diversity of hardware. In order to use Linux soure ode with little or no

hange, it will be neessary to onstrut a limited Linux emulator within Skidoo. The

advantage of keeping the Linux ode pristine is that it should be easier to migrate to

newer versions of the Linux ode as they beome available.

The network faility (and Linux emulation layer) would be optional modules that

ould be omitted from Skidoo to redue the memory requirements for those applia-

tions where they are not required.

36

5.2 Memory protetion

Skidoo makes no use of the memory protetion hardware that is available on the x86

proessor. It would be possible to make some bene�ial uses of the memory protetion

hardware without hanging the single shared address spae that is a entral feature

of Skidoo.

The memory pages ontaining the Skidoo kernel ould be marked as read/exeute

or exeute only, so that proessor traps would our if appliation threads made

invalid referenes to that part of the address spae. This ould be a great bene�t to

debugging of new ode and should make the system more robust.

The pages ontaining the stak for eah thread ould be mapped into �xed virtual

addresses for all threads, and a page at the end of the stak ould be set up as a \red

zone" to ath stak overows. This would also be a signi�ant aid to debugging.

5.3 Debug failities

Skidoo was developed with almost no planning and forethought given to debugging.

The proess would almost ertainly have been more eÆient if some sort of debug

faility had been built in as early as possible. It is possible to run the Gnu debugger

in remote mode aross a serial link, and this would have been a great help. It would

be a worthwhile faility to inorporate if Skidoo is developed further, and partiularly

if it is ported to new arhitetures.

5.4 Inremental module loading

At present, to add ode to Skidoo, new modules must be ompiled and linked with

the Skidoo ore. The resulting image is then loaded by rebooting the system.

One a network faility is available, it would be very attrative to have a feature

whereby modules ould be inrementally loaded into a running system. Primarily

this would be of bene�t for ode development, beause many iterations of testing

ould be done without the neessity of rebooting the system. This would also make it

possible to boot the Skidoo ore from a read-only medium suh as CDROM, and then

inrementally load modules to obtain ustomized behavior or to failitate development

and testing.

To do inremental module loading would require maintaining a symbol table to

perform lookups of already loaded symbols. Existing objet �le formats provide

reloation information that ould be used to modify address referenes as a module

was loaded. The software to do the reloation would have to be written. An attrative

option would be to do the symbol table management and reloation outside of Skidoo

as part of a more sophistiated development system than ran on the development

host. This would be espeially attrative for a target host with minimal memory.

37

5.5 Porting to new hardware

It would be worthwhile to port Skidoo to non{x86 arhitetures as well as to multipro-

essor mahines (whether x86 or some other arhiteture). Many projets exist using

older hardware suh as Multibus and VMEbus omputers. These projets have a sub-

stantial investment in hardware other than the proessor itself and most ommonly

use non{x86 proessors suh as the Motorola 680x0 or the Spar.

Equally interesting would be the task of making Skidoo run on one of the inreas-

ingly ommon and inexpensive x86 SMP mahines. The hange to the sheduling

poliy in this ase is straightforward: at any time, run the two runnable threads with

most urgent priorities! The fat that Skidoo is already fully preemptable will be a

tremendous aid to making it run on a multiproessor.

5.6 Other suggestions

A message passing faility would be a useful addition for both synhronization and

ommuniation. This would be essentially a data arrying semaphore. An example of

where this would be useful would be an I/O operation that bloks waiting for data,

but also is set up to unblok on a timeout. A message would provide a onvenient

way to indiate whih event unbloked the thread.

An interative shell would also be a valuable addition to Skidoo. A very useful

mode of testing has been to exploit the serial driver in Skidoo and to set up a simple

RPC faility aross the serial link. This would be substantially more useful when

network sokets are available. As it is, it is inredibly produtive to manipulate

Skidoo using an interpreted language suh as Perl or Ruby. Sine an interative shell

would be a tool for development and debugging, it makes a lot of sense to let it run on

the development host and to ommuniate with Skidoo using an RPC stub. In any

event, it should be arranged as an optional module so that both it and networking

ould be omitted to produe a more ompat image if desired.

38

39

Appendix A

KERNEL INTERFACE SPECIFICATION

A.1 Hardware requirements

Skidoo runs on the x86 proessor. Development was done using a 200 MHz Intel

Pentium-MMX with 64 MB of memory. Skidoo has been tested on proessors ranging

from the 486 through the Pentium-III. It should run on the 386 proessor as well,

but this has not been tested. Certain proessor enhanements suh as the 64 bit time

stamp ounter will not be available on the 386, but this is not essential to run the

kernel.

The most onvenient way to run Skidoo is to use the netboot pakage and arrange

for diskless booting from a server. If this is done, the only hardware required besides

the proessor, motherboard and memory are a video and network ard. If netboot

is not present in the ROM on the network ard, a oppy disk or CDROM will be

required for booting. If the motherboard supports it as a boot devie, the CDROM

is the most reliable and onvenient.

thr_new Create a new thread.

thr_exit Terminate urrent thread.

thr_self Identify urrent thread.

thr_kill Terminate some thread.

thr_join Await thread termination.

thr_blok Blok urrent thread.

thr_blok_ Blok urrent thread with ontinuation.

thr_blok_q Blok urrent thread, reusing ontinuation.

thr_unblok Unblok some thread.

Table A.1. Thread alls

A.2 Threads

strut thread * thr_new (har *name, tfptr fun, void *arg,

int prio, int flags)

40

This is used to reate a thread. A string may be given to identify the thread on

status listings. A funtion is spei�ed, to whih a single argument may be passed.

(If it is desired to pass multiple values to a thread, they should be loaded into a

struture, and a pointer to the struture should be passed to the thread funtion.) The

thread is assigned a priority, and ags are provided to speify unusual behavior. The

present olletion of ags are TF_FPU (the thread uses oating point) and TF_BLOCK

(the thread should start up bloked). Most threads do not use oating point, and

oating point registers are not saved and restored during a ontext swith unless the

appropriate ag is spei�ed.

Priorities are stored as 32 bit signed integers; larger positive numerial values are

less urgent. Behavior for negative priorities is not de�ned and these values should

be avoided. Eah thread must be reated with a unique priority so that there is no

ambiguity about whih thread should run at any given time.

void thr_exit (void)

This may be used by a thread to destroy itself. If a thread just \falls o� the end"

by returning from the thread funtion, a all to thr_exit is made transparently. In

the majority of ases, threads either run forever or fall o� the end, so this funtion is

rarely used diretly.

strut thread * thr_self (void)

This allows a thread to get a pointer to itself. This an be more onvenient than

saving the pointer returned by thr_new.

void thr_kill (strut thread *)

This terminates a running thread. If alled on the urrent thread, it is the same as

alling thr_exit. If alled on another thread, it arranges for it to resume in thr_exit

and marks it ready to run. The next time it is sheduled, it will exit.

void thr_join (strut thread *)

This bloks the urrent thread until the spei�ed thread alls thr_exit.

void thr_blok (enum thread_state why)

void thr_unblok (strut thread *)

These funtions are the most fundamental synhronization primitives in the Skidoo

kernel. Calling thr_blok bloks the urrent thread and posts a state other than

READY to indiate why. Calling thr_unblok unbloks the spei�ed thread. They are

rarely aessed diretly; semaphores or ondition variables are used instead.

41

void thr_blok_ (enum thread_state why, tfptr fun, void *arg)

This is idential to thr_blok exept that a ontinuation is spei�ed. When

the thread is unbloked it will resume in the ontinuation funtion, whereas with

thr_blok the thread resumes by returning from the thr_blok all.

void thr_blok_q (enum thread_state why)

This is a ommon optimization after a all to thr_blok_ has been previously

made. It should be noted that at all times every thread has a ontinuation funtion

set. If one has never been set expliitly, it is impliitly the funtion spei�ed to

thr_new when the thread was reated. A all to thr_blok_q bloks the thread and

sets a ag so that it will resume in whatever ontinuation funtion has already been

spei�ed. It is a slight optimization over alling thr_blok_ repeatedly with the

same ontinuation funtion.

sem_mutex_new Create a new mutex semaphore.

sem_signal_new Create a signaling semaphore.

sem_destroy Destroy a semaphore.

sem_blok Blok on a semaphore.

sem_unblok Unblok a semaphore.

sem_blok_try Test and blok on a semaphore.

sem_blok_ Blok on a semaphore with ontinuation.

sem_blok_q Blok on a semaphore, reusing ontinuation.

Table A.2. Semaphore alls

A.3 Semaphores

strut sem * sem_mutex_new (int flags)

strut sem * sem_signal_new (int flags)

Calling sem_mutex_new reates a new mutual exlusion semaphore. A all to

sem_signal_new reates a new signaling semaphore. The ags variable may be used

to indiate alternate sheduling poliies (SEM_FIFO versus SEM_PRIO). The default

is FIFO sheduling.

void sem_destroy (strut sem *)

42

This all destroys a semaphore so that resoures assoiated with it an be reused.

This should only be done when there is no possibility of further ativity on the

semaphore.

void sem_blok (strut sem *)

This is e�etively the P operation from the lassial semaphore literature. If the

semaphore is set (1), this all will lear it and keep exeuting. If the semaphore is

lear (0), this all will blok the urrent thread and plae it on a list assoiated with

the semaphore.

void sem_unblok (strut sem *)

This is the V operation. This routine never bloks, but it may ause another thread

to be unbloked. It does nothing if the semaphore is already set (1). If the semaphore

is lear (0) and the semaphore queue is empty, the semaphore is set. If the semaphore

is lear and the semaphore queue is non{empty, one thread in the queue is unbloked

and the semaphore value remains leared. Whih queue entry gets unbloked depends

on a poliy ag set when the semaphore was reated. In the usual ase the poliy

is SEM_FIFO, and the entry at the front of the queue is unbloked. If the poliy is

SEM_PRIO, the entry with the most urgent priority is removed from the queue and

unbloked.

int sem_blok_try (strut sem *)

This is a version of sem_blok that attempts to aquire a semaphore (typially

a mutex) but that will never blok. If the semaphore is set, it lears the semaphore

and returns 1. If the semaphore is already lear, it returns 0 rather than bloking as

sem_blok would do.

void sem_blok_ (strut sem *sem, tfptr fun, void *arg)

This is idential to sem_blok exept that it resumes via a ontinuation.

void sem_blok_q (strut sem *sem)

This is idential to sem_blok exept that it resumes using a previously established

ontinuation.

43

v_new Create a new ondition variable.

v_destroy Destroy a ondition variable.

v_wait Blok and wait for a ondition.

v_signal Signal a ondition.

pu_enter Enter interrupt loked region.

pu_leave Leave interrupt loked region.

pu_new Create a new CPU ondition variable.

pu_wait Wait for a ondition under a CPU lok.

pu_signal Signal a ondition under a CPU lok.

Table A.3. Condition variable alls

A.4 Condition Variables

Condition variables are a oupling of a mutex semaphore and a signaling semaphore.

One mutex semaphore may be involved with several signaling semaphores, eah ex-

pressing a di�erent prediate. For this reason the mutex semaphore must be reated

�rst, and then oupled to eah prediate in turn. One this is done, the ondition

variable is a single unit that an be used in the wait all.

strut v * v_new (strut sem *mutex)

This onstruts a new ondition variable that binds together the indiated mutex

and a newly generated signaling semaphore.

void v_destroy (strut v *)

This destroys a ondition variable, and releases its resoures.

void v_wait (strut v *)

This bloks and waits for a signal on a ondition variable. The aller must already

hold the mutex semaphore.

void v_signal (strut v *)

This unbloks a thread waiting on a ondition variable.

void pu_enter (void)

void pu_leave (void)

This pair of routines obtain and release a pu lok { by disabling and re{enabling

all interrupts { in order to enter and leave an interrupt sensitive ritial region. They

provide an interrupt safe mutex.

44

strut sem *pu_new (void)

void pu_wait (strut sem *)

void pu_signal (strut sem *)

These routines are used in onjuntion with pu_enter and pu_leave to imple-

ment a pu loked ondition variable. The routine pu_wait is used to blok and wait

for a signal while holding a pu lok. pu_signal is used to unblok a thread waiting

for the signal, typially from an interrupt handler where the pu lok is impliitly

held.

tmr_rate_set Set lok interrupt rate.

tmr_rate_get Get lok interrupt rate.

tmr_hookup Connet a funtion to the timer.

tmr_delay Blok urrent thread for an interval.

tmr_delay_ Blok and delay using ontinuation.

tmr_delay_q Blok and delay reusing last ontinuation.

Table A.4. Timer alls

A.5 Timer failities

A programmable hardware timer exists whih produes interrupts at a 100 Hz rate.

On the x86, the atual rate is 100.0067052 Hz. The timer is aessed by the following

funtions:

void tmr_rate_set (int hz)

This sets the rate at whih interrupts are produed by the timer. If this funtion

is never alled, timer interrupts are produed at 100 Hz.

int tmr_rate_get (void)

This disovers the rate at whih interrupts are produed by the timer.

void timer_hookup (fptr fun)

This spei�es a C funtion that is alled eah time the timer interrupts. Only one

allbak of this sort is allowed; subsequent alls replae the previously established

funtion. A null argument may be spei�ed to disonnet the funtion.

45

void thr_delay (int ntiks)

This is a onvenient (although somewhat impreise) way to obtain timing delays.

After this all the thread is bloked until the spei�ed number of timer tiks have

elapsed. At this time the thread will be made ready, and will run immediately if it

is the runnable thread of most urgent priority. Otherwise, it will run only after more

urgent runnable threads have bloked.

void thr_delay_ (int ntiks, tfptr fun, void *arg)

This is idential to thr_delay exept that it resumes in a ontinuation funtion.

void thr_delay_q (int ntiks)

This funtion delays, resuming in a previously established ontinuation funtion.

Usually the ontinuation will have been spei�ed in a thr_delay_ all, but the

ontinuation given in thr_new ould be used as well. The thr_delay_q funtion is

onvenient for onstruting periodi loops using tail-reursion.

vga_put Put a harater on the sreen.

vga_puts Put a string on the sreen.

vga_sreen Selet an alternate sreen.

gethar Await and read a keystroke.

gethare Read keystroke and eho to sreen.

sio_get Read harater from serial port.

sio_put Send harater to serial port.

sio_gets Read string from serial port.

sio_puts Send string to serial port.

sio_baud Set serial port baud rate.

Table A.5. Devie driver alls

A.6 Devie drivers

This setion summarizes the most important devie driver aess routines.

void vga_put (int)

void vga_puts (har *s)

void vga_sreen (int n)

46

The onsole driver outputs haraters to a VGA ompatible video ard supporting

a 25 line by 80 olumn onsole. A all to vga_put plaes a single harater on the

sreen. Calling vga_puts plaes all haraters in a null terminated string on the

sreen. A all to vga_sreen selets one of 8 virtual sreens for display. Additional

funtions manipulate the ursor and are desribed in the soure ode.

1

int gethar (void)

int gethare (void)

The keyboard driver reads from the standard PC keyboard. Calling gethar reads

a harater from the keyboard without attempting to eho the harater. Calling

gethare reads a harater and ehos it to the onsole, as would normally be expeted.

int sio_get (int port)

void sio_put (int port, int)

void sio_gets (int port, har *s)

void sio_puts (int port, har *s)

void sio_baud (int port, int rate)

The serial driver reads from and writes to either serial port 0 or 1. Calls to

sio_get and sio_put read and write a single harater from the spei�ed port.

Calls to sio_gets and sio_puts read and write a string from the spei�ed port. A

all to sio_baud sets the baud rate on the spei�ed port. Rates from 300 to 38400

are supported exatly. A rate of 56000 baud is only possible with a 3 perent error

given the standard 1.8432 Mhz rystal, but this seems to work just �ne.

A.7 Interrupt failities

void vetor_hookup (int vetor, fptr fun)

This all arranges that the spei�ed C funtion is alled whenever the indiated

interrupt ours.

A.8 Booting and initialization

After bootstrap, the kernel reloates itself to the lowest part of memory. It then

makes the rest of memory available for dynami alloation. After all subsystems are

initialized, the �rst thread is started in the funtion user_init. This is expeted to

be supplied by the user and will typially alloate resoures and start other threads

neessary to run the intended appliation. This �rst thread runs at the most urgent

possible priority (priority 0), so that no other threads run until it exits.

1

The soure ode may be obtained from http://kofa.mmto.org/skidoo. This thesis desribes

version 0.4.1 of Skidoo.

47

Referenes

[1℄ Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed

Programming. Addison-Wesley, Reading, Massahusetts, 2000.

[2℄ Alexander Horstkotte Arnd C. Heursh and Helmut Rzehak. Preemption on-

epts, rhealstone benhmark and sheduler analysis of linux 2.4. In Proeedings

of the Real Time and Embedded Computing Conferene, Milan, November 2001.

[3℄ Maurie. J. Bah. The Design of the UNIX Operating System. Prentie-Hall,

Upper Saddle River, New Jersey, 1986.

[4℄ Mihael Barabanov. A linux{based real{time operating system. Master's thesis,

New Mexio Institute of Mining and Tehnology, Soorro, New Mexio, 1997.

[5℄ Edsger W. Dijkstra. The struture of the THE {multiprogramming system.

Communiations of the ACM, 11(5):345{346, May 1968.

[6℄ R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean. Using ontinuations

to implement thread management and ommuniation in operating systems. In

Proeedings of the 13th ACM Symposium on Operating Systems Priniples, pages

122{136, 1991.

[7℄ Bill O. Gallmeister. Programming for the Real World, POSIX.4. O'Reilly and

Assoiates, Cambridge, Massahusetts, 1995.

[8℄ Mihael Greenwald and David R. Cheriton. The synergy between non-bloking

synhronization and operating system struture. In Seond Symposium on Op-

erating Systems Design and Implementation, pages 123{136. USENIX, Seattle,

Otober 1996.

[9℄ Rihard. C. Holt. Conurrent Eulid, the UNIX System, and Tunis. Addison-

Wesley, Reading, Massahusetts, 1983.

[10℄ Intel. Intel386EX Embedded Miroproessor User's Manual. Intel Corporation,

Santa Clara, California, 1996. Order Number 272485-002.

[11℄ Gero Kuhlmann. http://netboot.soureforge.net, 2002.

[12℄ H. C. Lauer and R. M. Needham. On the duality of operating system strutures.

Operating Systems Review, 13(2):3{19, April 1979.

[13℄ J. Lions. A Commentary on the Unix Operating System. Department of Com-

puter Siene, University of New South Wales, 1977.

48

[14℄ Marshall Kirk MKusik, Keith Bosti, Mihael J. Karels, and John S. Quarter-

man. The Design and Implementation of the 4.4BSD Operating System. Addison-

Wesley, Reading, Massahusetts, 1996.

[15℄ Remi Nadeau. Ghost Towns and Mining Camps of California. The Ward Rithie

Press, Los Angeles, California, 1972.

[16℄ Gary Nutt. Operating systems, A modern perspetive. Addison-Wesley, Reading,

Massahusetts, 2000.

[17℄ Alessandro Rubini. Linux Devie Drivers. O'Reilly and Assoiates, Sebastopol,

California, 1998.

[18℄ Curt Shimmel. UNIX Systems for Modern Arhitetures. Addison-Wesley, Read-

ing, Massahusetts, 1994.

[19℄ Wind River Systems. VxWorks Programmers Guide. Emeryville, California,

1989.

[20℄ Andrew S. Tanenbaum. Modern Operating Systems. Prentie-Hall, Upper Saddle

River, New Jersey, 1992.

[21℄ Linus Torvalds. Linux: a portable operating system. Master's thesis, University

of Helsinki, Finland, 1997.

[22℄ Uresh Vahalia. UNIX Internals, the New Frontiers. Prentie-Hall, Upper Saddle

River, New Jersey, 1996.

