THE SKIDOO REAL-TIME OPERATING SYSTEM

by
Thomas Jack Trebisky

A Thesis Submitted to the Faculty of the
DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
In the Graduate College
THE UNIVERSITY OF ARIZONA

2002

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an ad-
vanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may
be granted by the head of the major department or the Dean of the Graduate College
when in his or her judgment the proposed use of the material is in the interests of
scholarship. In all other instances, however, permission must be obtained from the
author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Dr. Gregory R. Andrews Date
Professor

ACKNOWLEDGMENTS

First of all I would like to thank my wife Ingrid and my sons Alexander and Paul.
They willingly paid a price and did without the attentions of husband and father
during the many hours I spent with the computer instead of with them.

I would particularly like to thank my advisor, Greg Andrews. I very well might
not have begun taking graduate classes at all without his timely encouragement. I
certainly would not have tackled this project without his support, and I am grateful
for his investment of time and energy.

I appreciate the willingness of John Hartman and Mikael Degermark to serve on
my thesis committee, and to make time in their busy schedules.

I thank my friend and colleague, Alan Koski, for many stimulating conversations,
and for being a enthusiastic fan of the project. He kindly read an early draft of the
thesis and asked me for more!

I thank my friend Steve West for much help and assistance over the years, but
particularly for encouraging me when I was in the midst of the decision of whether
or not to take classes and work toward yet another degree.

[thank Craig Foltz, director of the MM'T Observatory, for his enlightened attitude
toward my education and the inevitable conflicts and pressures it placed upon my job
responsibilities.

TABLE OF CONTENTS

LIST OF TABLES o o e s s e e 7
LIST OF FIGURES o o o s s e d e e e e 8
ABSTRACT e 9
CHAPTER 1. INTRODUCTION 11
1.1. Related work 12
1.2. Outline of the Thesis 12
CHAPTER 2. SERVICES 13
2.1. Threads e 13
2.2. Preemptive scheduling and priorities 13
2.3. Semaphores 14
2.4. Condition variables 14
2.5. Continuations 15
2.6. Timer facilities 16
2.7. Interrupt facilities 16
2.8. Memory allocation oL 17
2.9. Devicedrivers 17
2.10. Boot services 18
CHAPTER 3. IMPLEMENTATION 19
3.1. Hardware Platform 19
3.2. Diskless Booting 19
3.3. Processor Initialization 20
3.4. Comnsole Output 20
3.5. Threads e 21
3.6. Priorities 21
3.7. Semaphores 22
3.8. Timers and Interrupts L L 22
3.9. Preemption 22
3.10. Continuations e e 23
3.11. Condition Variables 24
3.12.Drivers e 24

3.13. Code size 26

TABLE OF CONTENTS— Continued

CHAPTER 4. APPLICATIONS AND TESTS 27
4.1. Test suite 27
4.2. Debugging tools 28
4.3. Timingo 28
4.4. Serial terminalo 29
4.5. Data Acquisition Server o 31

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 35
5.1. Networking 35
5.2. Memory protection L 36
5.3. Debug facilities 36
5.4. Incremental module loading 36
5.5. Porting to new hardware oL 37
5.6. Other suggestions 37

AprpENDIX A. KERNEL INTERFACE SPECIFICATION 39
A.1. Hardware requirements 39
A2, Threads 39
A.3. Semaphores 41
A.4. Condition Variables 43
A5, Timer facilities 44
A.6. Device drivers e 45
A.7. Interrupt facilities 46
A.8. Booting and initialization L. 46

REFERENCES o o o o e 47

TABLE A.1.
TABLE A.2.
TABLE A.3.
TABLE A 4.
TABLE A.5.

LisT OF TABLES

Thread calls 39
Semaphorecalls, . 41
Condition variable calls 43
Timer calls 44

Device driver calls 45

FIGURE 2.1.

FIGURE 3.1.
FIGURE 3.2.
FIGURE 3.3.

FIGURE 4.1.
FIGURE 4.2.
FIGURE 4.3.
FIGURE 4.4.
FIGURE 4.5.
FIGURE 4.6.
FIGURE 4.7.

LisT OF FIGURES

Tail recursion using a continuation 16
Thread preemption points 23
Source code summary e 25
Executable code size 26
Test suite 27
Typical thread display 28
Control transfer timings 29

Serial terminal application 30

Example: routine implementing burst mode 32
Example: interrupt routine 33
Example: timer activated thread 34

ABSTRACT

Embedded systems have needs that are not adequately met by conventional operat-
ing systems. Skidoo is a new operating system especially tailored to support embed-
ded systems. Independently scheduled threads are provided that synchronize using
semaphores and condition variables. Threads share a common address space and
communicate using shared variables. Fully preemptive scheduling meets the needs of
hard real-time applications.

10

11

CHAPTER 1

INTRODUCTION

Embedded systems play an increasingly important role in modern society. They occur
within automobiles, appliances, disk—drives, internet routers, weapons systems, and
myriad other applications. Two things characterize embedded systems. First, their
software is static and tailored to a specific mission. Apart from bug fixes and field
upgrades, the software in an embedded system never changes. Second, the hardware
in an embedded system is likely to be very restrictive. Many embedded systems
are components in high—volume, cost—sensitive applications. Considerations of space,
reliability, and power consumption often preclude the use of rotating disk drives.

Many embedded systems contain software in which strict time deadlines must be
met in order to ensure proper operation; such systems are called real-time systems.
A distinction is sometimes made between “soft” and “hard” real-time systems. A
soft real-time system runs correctly if some statistical portion of time deadlines are
met. A hard real-time system runs correctly only if every time deadline is met.

Skidoo! is a new operating system that can be used to build embedded systems.
Skidoo provides threads, semaphores, and fully preemptive scheduling. At any time,
the highest priority runnable thread is running, or a low latency transfer is in progress
to set it running. Additionally, Skidoo offers timer facilities, convenient interrupt
handling facilities, and a library of support routines and device drivers. Skidoo runs
in protected mode on the x86 architecture and has very small memory requirements.
It is adequate for building many real-time embedded applications.

Skidoo is intended to be a toolkit that is to be used to build a custom operating
system. Each deployment of Skidoo is in fact an operating system that is tailored to
the task at hand. By contrast, conventional operating systems such as Unix [3, 14] are
designed to support general purpose computing. They support timesharing comput-
ing and provide facilities such as filesystems, virtual memory, and memory protection
that are unnecessary in an embedded application. While it is possible to adapt a gen-
eral purpose operating system such as Unix for use in real-time applications, a system
that specifically addresses the requirements of real-time embedded applications can
be smaller, simpler, and faster.

!The name “Skidoo” comes from a ghost town [15] on the west side of Death Valley National
Park, in California.

12

1.1 Related work

RT-Linux [4] is an example of a conventional general-purpose operating system that
has been enhanced to support real-time requirements. It does this by creating a
real-time scheduling regime within Linux. The regular Linux kernel is then run as
a low priority task under control of the real-time scheduler. This arrangement is
adequate to support hard real-time requirements, but for some embedded systems,
the software would be too large in terms of hardware requirements. It does have the
advantage that software may be developed on the same system on which it will run.

Both Linux [21] and Solaris [22] offer POSIX 4 [7] real-time scheduling extensions.
This makes it possible to implement real-time applications within the usual Unix
timesharing environment. These are both still full-scale Unix systems however, so
they would be inappropriate for hardware-restricted embedded applications.

It is worth noting that work is being done on the traditional Linux kernel to make
it more suitable for some classes of real-time programming. In particular, preemption
points are being provided within the kernel to limit the length of the code path within
the kernel before an opportunity exists to switch context [2].

VxWorks [19] is a proprietary system without a Unix heritage. It provides a
proprietary interface, but offers a large set of POSIX library facilities to aid porting
Unix software. VxWorks expects that a Unix host system is used to develop software
that then runs on a target system with distinct hardware and software. This requires
a dedicated development system but allows the target system to be very spartan in
terms of both hardware and software.

VxWorks has been a significant source of inspiration for Skidoo. Like VxWorks,
Skidoo supports a set of threads running in a single address space and avoids utilizing
address mapping and protection hardware. In contrast Skidoo is much simpler, yet it
provides additional facilities such as continuations and race—free condition variables.

1.2 Outline of the Thesis

Skidoo was developed mainly as an excellent learning exercise. However, it is useful
for getting real work done, as will be shown. It can be used as the basis for further
research in embedded systems, as well as for the construction of specific applications.

Chapter 2 presents Skidoo and outlines the services that Skidoo makes available.
Chapter 3 describes the implementation of Skidoo, discussing the steps taken and
the decisions that were made. Chapter 4 discusses a test suite that was developed
to exercise Skidoo, as well as experiments and applications that demonstrate its util-
ity. Chapter 5 gives a summary of what was accomplished, what could have been
done differently, and what has been left undone. The Appendix gives details of the
programming interface to Skidoo.

13

CHAPTER 2

SERVICES

This chapter gives a survey of the services provided by Skidoo. The two central
features of the Skidoo kernel are threads and binary semaphores. The most important
feature of threads is the ability to block and thus to be independently scheduled.
Semaphores provide an entity that can be used for synchronization. An incredible
amount of work can be accomplished given just threads and semaphores. The rest of
the Skidoo kernel provides condition variables, continuations, and access to essential
hardware via timers, interrupts, and basic device drivers. The actual kernel routines
are described in Appendix A.

2.1 Threads

A thread is an independently scheduled flow of execution. Each thread has a private
stack, and a small amount of state, which consists of a set of flags and register values
needed to resume the thread after it has blocked. Notably, a thread does not have
a private address space (other than a stack). All threads share a common global
address space and communicate using shared variables.

A thread in the Skidoo kernel is either ready or blocked. A thread only becomes
blocked when it blocks itself. Once blocked, a thread is not eligible to be run until
it is unblocked. A thread may be unblocked directly by another thread, or more
commonly via a semaphore. With the exception of interrupt handlers, all code runs
on behalf of some thread. Each thread is assigned a unique priority. For clarity, the
terms “more urgent” and “less urgent” are used rather than “higher” and “lower”
priority. In fact, priorities with larger numerical values are less urgent.! At all times,
the current thread is always the ready thread with the most urgent priority.

Special care was taken to handle the case where a thread is unblocked from in-
terrupt code. The difficulty arises in the case where a thread more urgent than the
one currently running is marked ready to run. When this happens, the thread that
was running when the interrupt occurred is left suspended, and the kernel resumes
the more urgent thread when interrupt processing is finished.

2.2 Preemptive scheduling and priorities

In the Skidoo kernel, each thread must be assigned a unique priority when it is
created. At all times, the thread with the most urgent priority that is ready to run is

I This choice is entirely arbitrary and mimics the ordering used in VxWorks.

14

running, or is in the process of being made to run. This scheduling policy is explicitly
unfair: if the currently running thread never blocks, no thread of lower priority will
ever run. This policy is called strictly preemptive scheduling. It is an error for two
threads to be assigned the same priority. The system could have been designed to
have some special defined behavior in this case (such as time slicing), but this has
not been done. Providing fairness in this special case is not necessary in embedded
systems and would only serve to complicate the kernel.

2.3 Semaphores

Threads together with some synchronization facility [18] provide a sufficient basis to
build significant applications. Skidoo provides simple binary semaphores [1] as its
fundamental synchronization primitive.

Semaphores may be created with an initial value of zero or one. Typically,
semaphores with an initial value of zero are used for signaling, and semaphores with an
initial value of one are used for mutual exclusion. The P operation is herein denoted
“blocking” on a semaphore. When the value of a semaphore is zero, the “blocking”
operation in fact blocks and places the current thread on a list associated with the
semaphore. When the value of a semaphore is one, the “blocking” operation changes
the value to zero and keeps running. The V operation is herein denoted “unblocking”
a semaphore. When the value of a semaphore is one, the “unblocking” operation does
nothing.? When the value is zero and the list of waiting threads is non—empty, one
of the waiting threads is unblocked; otherwise the value of the semaphore is changed
to one.

Signaling semaphores are commonly associated with a single thread as a private
semaphore. Under this convention, only one thread uses the semaphore to await a
signal. A mutual exclusion semaphore is not associated with any thread in particular,
but rather with some resource that requires locking.

2.4 Condition variables

Condition variables can be viewed as a toolkit for building monitors [9]. In Ski-
doo they are provided as a higher level synchronization facility than semaphores. In
essence a condition variable is a mutex semaphore and a signaling semaphore han-
dled together as a unit as in POSIX 4 [7]. To allow synchronization in device drivers
between interrupt handlers and thread context running the driver, a special form of
condition variable is provided that disables processor interrupts as a form of mutual
exclusion. To use a condition variable, a thread will acquire the mutex semaphore,
check the resource locked by the mutex, and upon finding that it must wait for the

2An alternative would be for the unblocking operation to delay if a semaphore is set to one, but
this would produce grave difficulties if the unblock was being done from within an interrupt routine.

15

condition of the resource to change will perform a “wait” on the condition variable.
The “wait” operation will block the thread and release the mutex in an atomic oper-
ation, preventing race conditions. To unblock the thread when the condition of the
resource changes, another thread acquires the mutex and uses the “signal” opera-
tion. In the case of an interrupt routine, acquisition of the mutex is implicit in that
interrupts are blocked while in the interrupt handler.

2.5 Continuations

Continuations are provided as a more efficient alternative to the usual blocking se-
mantics. The idea of a continuation is taken from the Mach Operating System [6]. A
continuation provides a streamlined way for a thread to block and specify a point of
resumption. When a thread blocks with a continuation, it abandons its context and
processor state (including register values, and the stack). When the thread unblocks,
it comes alive in the continuation function, as if it were starting up anew. Most
Skidoo facilities which may block provide the option to block with a continuation, as
well as the conventional return from the blocking call.

When a thread blocks with a continuation, it specifies a function to begin executing
in when it is unblocked. When the thread does unblock, rather than returning in the
usual way from the block call, it resumes by calling the specified function.

Using continuations requires some reorganization of code. A function that was
designed to use a traditional blocking call will need to be partitioned into a function
which performs some setup and then blocks, and a function which handles the event
as a continuation. In many cases the event handling function will end by making a
blocking call and again specifying itself as a continuation. This sort of tail recursion
is a natural way to code functions that should be activated periodically after a fixed
delay.

Figure 2.1 contains an example of a function using tail recursion to achieve periodic
activation. A new thread is created using the thr_new() call. This thread prints a
message, then specifies itself as a continuation after a delay of 25 clock ticks. The
thread is blocked until the number of ticks elapses, and then runs again printing the
message. This goes on forever, or until the thread is destroyed.

The advantage of continuations is that they are very lightweight. When a thread
blocks specifying a continuation, its context can be abandoned—no registers need to
be saved. The mechanism used to resume using a continuation is the same one that is
used to launch new threads. In essence a thread is being launched anew each time it
resumes with a continuation. It would be possible to abandon the stack and allocate
a new one (as is done in Mach), but it is actually more efficient, although less frugal
with memory, to retain the stack.

16

void
ticker_init (void)
{
(void) thr_new ("tick", tick_fn, (void *)25, PRI_TICK, 0);
+
void
tick_fn (int delay)
{
printf ("Kilroy was here!\n");
thr_delay_c (delay, tick_fn, delay);
}

FIGURE 2.1. Tail recursion using a continuation

2.6 Timer facilities

A timer is a hardware device that provides interrupts at a programmer—defined inter-
val. A set of timer facilities provides convenient access to the available timing signals.
At this time, the timer ticks at a nominal rate of 100 Hz.

A routine to handle timer interrupts is a standard part of Skidoo. This default
routine keeps track of time and supports a delay service. The delay service allows
the current thread be blocked until a specified number of timer “ticks” have passed.
The default routine may be augmented by a user supplied C function that will also
be called each time the timer “ticks”. This routine is called at interrupt level and
should be short and carefully coded.

A common use of the ability to connect a user supplied routine to the timer in-
terrupt is to produce periodic thread activations. By subdividing the basic clock and
using semaphores to unblock waiting threads from interrupt level, accurate periodic
activations may be accomplished. Applications that require extremely accurate tim-
ing (such as waveform generation), may perform crucial processing in such a clock
function.

2.7 Interrupt facilities

It is very useful to be able to connect arbitrary C functions to interrupt sources.
Providing a convenient facility for doing this relieves individual device drivers from
the machine dependent complexities of manipulating interrupt hardware. This is a
real benefit for embedded systems which typically include unique hardware devices
that require simple device drivers. If this facility is abstracted appropriately, it is also

17

an aid to portability. This facility—dubbed interrupt channeling—is used by existing
drivers for the keyboard, serial port, and timer. It is also used to connect handlers
to hardware traps such as divide by zero.

A related facility, already alluded to, is the ability to unblock a thread from within
an interrupt routine. Interrupts are handled on the stack of whatever thread happens
to be running when the interrupt arrives. During processing of the interrupt (which
may be entirely unrelated to the thread currently running), a previously blocked
thread may need to be unblocked. The thread state is marked ready to run, and then
the thread priority is compared with the priority of the current thread. If the priority
is less urgent than the current thread, nothing more needs to be done. If the priority
is more urgent than the current thread, a flag is set so that when the return from
interrupt is about to happen, a context switch to the new thread takes place.

The case also should be mentioned where there is no ready thread and an interrupt
occurs. In this case, a tight loop is being run in the context of whatever thread last
blocked itself. This loop is watching to see if that thread again becomes ready. If
this thread does get marked ready, the loop will terminate and the thread will return
from the blocking function. If some other thread gets marked ready, a switch must
be made immediately to run that thread in the manner described above.

2.8 Memory allocation

The Skidoo kernel has an extremely simple memory allocation scheme. A table of
available memory regions is maintained, and blocks are allocated from the first region
that contains sufficient space. A call to free a memory block is provided, but it is
ignored at present in this simple allocator. This scheme is entirely adequate for most
embedded applications that will allocate all resources that are required at boot time.
Facilities that may want to reuse allocated objects (such as semaphores) should keep
them on a private free list.

As an alternative to this simple scheme, the Solaris slab allocator [22, p. 392]
has been made to work with the Skidoo kernel. However, the slab allocator requires
nearly as much code memory as Skidoo itself (see Figure 3.3).

2.9 Device drivers

Drivers for the keyboard and console were essential to develop and debug the kernel.
The serial port driver was as much a demonstration as an essential part of the kernel.
In retrospect, the serial port could have been used in lieu of the console for develop-
ment. The console driver has the advantage of being independent of interrupts, and
thus is useful in cases where the serial driver would have failed. The keyboard driver
typically uses interrupts, but can be configured to work without them.

18

2.10 Boot services

Bootstrapping is a low—level hardware-dependent issue. This is particularly so on
the x86, where the machine starts running in a backward compatibility mode (x86
“real mode”). The goal of bootstrapping is to be able to run C code in x86 protected
mode.

At this time, Skidoo is able to boot from floppy disk, as well as over the network
using BOOTP and TFTP . It would be fairly straightforward to allow booting from
a hard drive or CDROM.

Once Skidoo has been initialized, it creates one initial thread at priority 0, which
executes the C function user_init (). Typically this function will launch the set of
user threads and then exit.

19

CHAPTER 3

IMPLEMENTATION

This chapter describes the implementation of Skidoo. The description is given as a
step by step chronology. As each major subsystem is presented the algorithms used to
implement it are discussed. In almost every case the simplest possible algorithm has
been chosen. Correctness has been placed ahead of efficiency, yet with the expectation
that more complex and sophisticated algorithms will be introduced as the project
matures. In some cases (notably memory allocation) this has already occurred.

3.1 Hardware Platform

The decision to make Skidoo run on the Intel x86 [10] processor was an easy one.
X86 hardware is cheap, ubiquitous, and amazingly effective. This choice made it
straightforward to use the Gnu C compiler hosted on a Linux system for development.
Other potential targets were the Sparc and the Motorola 680x0 processors. Although
these architectures are in many ways more attractive, the hardware is less common,
more expensive, and slower. A desktop personal computer was obtained for use as a
target machine. The machine used had a 200 Mhz Pentium MMX processor, 64 MB
of memory, video card, and network card.

3.2 Diskless Booting

Part of the challenge of the project was that Skidoo had to boot and run on bare
hardware. It was expected (and rightly so) that development would involve many
cycles of experimental rebooting and that a scheme that made this as efficient as
possible would be the best choice. It is possible to write images onto floppy disks on
the development machine and boot them by transferring them to the target machine.
However, this rapidly becomes tedious, and floppy disks are remarkably unreliable.
This was, however, a useful method when a pair of laptop computers were being used
during a mobile development session.

Network booting is far superior to using removable media. A new image can be
built on the development machine, and when the target machine reboots, this image
is transferred into target memory and executed. Network booting uses the BOOTP
and TFTP protocols and is facilitated by a public domain package called netboot
[11]. Some time was lost discovering that some features of this package were broken
or mis—documented. In particular, netboot exhibited aberrant behavior for an image

20

containing 512 or fewer bytes. Ultimately netboot successfully loaded and ran a
small assembly language program that used BIOS! routines to print a short message.

3.3 Processor Initialization

After reset, the Intel x86 processor is running in “real mode,” which is a compatibility
mode that runs software written for the oldest members of the x86 processor family.
The netboot package expects the processor to be running in “real mode,” as does the
BIOS software. The Gnu C compiler generates code for an x86 processor running in
protected mode. Protected mode supports 32 bit registers and a simple linear address
space. The purposes of processor initialization are to relocate the Skidoo image into
low memory and to perform the transition from real to protected mode. Once this is
done, the processor can run code generated by the Gnu C compiler.

Debugging the processor initialization code was difficult and frustrating. Most of
the processor initialization code had to be written in assembly language. In addition,
it was not possible to use the real mode BIOS console routines for debugging while the
initialization was in progress. A useful debugging tool was a cable with a single LED?
that was connected to the parallel printer port. A simple routine that looped while
blinking this LED was useful as a sentinel to mark progress through the initialization
code. Once the processor was properly initialized, a newly coded LED loop, written
in C and compiled by the Gnu C compiler, was successful in making the LED blink.

3.4 Console Output

Once it was possible to write code in C and run it in protected mode, progress became
much faster. The next thing to do was to print messages on the console. Because the
PC architecture supports simple memory mapped console output, it was easy and
actually fairly enjoyable to write routines to output messages. No interrupts were
involved and there were no complicated timing or synchronization issues.

Once the console output was working, and a simple printf () function was avail-
able, a keyboard driver became almost essential. Although the keyboard can generate
interrupts, the driver was initially written to use polling loops to monitor the key-
board status register. Once both keyboard and console were working, some diagnostic
routines were written, including routines to display regions of memory.

An alternative to developing drivers for the console and keyboard would have
been to develop a driver for the serial port. This would have had some advantages in
that a serial connection via a cable to the development system could have been used
for debugging. Having such a facility at the earliest stages of development would

!The BIOS refers to the software in read-only memory. On a typical personal computer it
contains bootstrap software, along with a rudimentary set of device drivers.
2LED: light emitting diode

21

have been very useful and this should be considered if Skidoo is ported to other
architectures.

3.5 Threads

The most important aspect of Skidoo was the ability to do concurrent programming
using threads along with semaphores for synchronization. In Skidoo, a thread consists
of a control structure and a stack. The control structure contains a pointer to the
stack, space to store saved registers, a small amount of status information, and a
pointer to the function where that thread should start executing. A thread state
variable indicates whether the thread is ready to run or blocked for some reason.

All threads are kept on a single linked list. Initially there is only a single thread
which starts in the function user_init (). Switching between threads is accomplished
by saving registers, switching stacks, and restoring registers so that execution resumes
in a different thread. Although it is obscurely documented, the Gnu C compiler
expects 6 registers to be preserved between function invocations (ebx, edx, esp, ebp,
esi, and edi), and 2 registers (eax and ecx) may be freely destroyed. Assembly
language code was written to perform context switching.

The pair of routines thr_block() and thr_unblock() are the heart of the thread
system. A thread calls thr_block to mark itself not ready; another thread is then
selected to be run. Calling thr_unblock allows a blocked thread to be marked ready
once again. At this early stage of the system there were no interrupts (in particular no
clock interrupt) and no preemptive scheduling. When a thread performed a blocking
call, it would save its registers and switch to an idle thread, which ran a scheduler.
The scheduler would search the thread list for some other thread to run. If there was
no ready thread, the system could do nothing but halt.

It turns out that there is no reason to have a separate idle thread. (In fact having
one introduces a needless thread switch.) This code was revised so that each thread
runs the scheduling loop when it needs to find another thread to pass control to. A
call thr_yield() was needed in the early system; it ran the scheduling loop, even
when a thread did not wish to block. It has been eliminated in the final system, but it
was necessary before preemptive scheduling and priorities were operational. Without
it, new threads were created but never ran.

3.6 Priorities

A policy was needed to decide which thread to run in the event that more than one
thread was in the ready state. By assigning each thread a priority and insisting that
all priorities be unique, it is easy to define a simple, unambiguous policy: the thread
in the ready state with the most urgent priority should run. It is certainly possible
to define other policies, especially if there are multiple threads with identical priority.

22

Adding priorities involved adding the priority to the thread control structure and
adding policy code to the scheduling loop. At first, the entire linked list of threads
was searched and the most urgent ready thread selected and run. It soon became
obvious that a good optimization is to keep the list in order, with the most urgent
threads first, and search the list only from the current thread to the end. Currently, a
thread is created with a specified priority and that priority remains fixed. It would be
easy to allow a thread to change priority (or to have its priority changed). Once this
is done, it will be necessary to consider the need to immediately schedule a thread
whose priority has been elevated.

3.7 Semaphores

The blocking and unblocking calls provide a clumsy form of synchronization. The
utility of semaphores is well known [1, 5]. Given the thread blocking and unblocking
facility, they are simple to implement using a state variable and a list of blocked
threads. Skidoo implements binary semaphores with an initial value of one for mu-
tual exclusion. Binary semaphores with an initial value of zero are used for private
signaling semaphores.

3.8 Timers and Interrupts

The ability to perform accurate time delays is essential to embedded real time pro-
gramming. The desire for timing signals was the impetus to provide facilities in
Skidoo for dealing with interrupts. A substantial amount of assembly language code
was written to save registers and call a specified C language interrupt handler. A
function was provided to allow an arbitrary interrupt source to be routed to a speci-
fied C function and this facility was used to implement a handler for timer interrupts.
The default timer handler keeps time by counting ticks, performs a callback to a user
timer function (if one has been registered), and handles a list of threads with pending
delays. This list is kept in order of increasing delay with the shortest delay at the
front of this list. As entries are added, they are placed in proper order and the delay
count adjusted so that it is relative to the entry preceding it. Once this is done, only
the front entry needs to be decremented at each tick [13].

3.9 Preemption

When an interrupt occurs, some thread is suspended while the interrupt handler runs.
Normally, when the handler is finished, the same thread is again resumed. Once an
interrupt had the potential to modify the state of a thread, it was necessary to consider
the possibility of resuming a different thread upon completion of the interrupt. In
particular, it is desirable to resume a different thread when that thread is more
urgent than the currently running thread, and has been marked ready by the interrupt

23

handler. As a specific example, expiration of a delay interval could cause a new thread
to be marked ready within an interrupt routine. If this thread was of more urgent
priority than the current thread, it would be necessary to resume it immediately rather
than resume the thread that was running when the interrupt occurred. In this case,
the currently running thread is marked as “suspended during interrupt” and the more
urgent thread is resumed instead when the interrupt is finished. This results in there
being two possible ways that a thread can be suspended. One is the synchronous case
where the thread itself performed a call to thr_block. The second is the asynchronous
case where the thread was left suspended after an interrupt routine handed control
to some other thread. In retrospect it would be possible to make these two states
identical by simply saving some additional registers in the synchronous case, but this
has not been done.

The situations that may result in a change in the currently running thread are
enumerated in Figure 3.1. Notice that thr_yield() is not listed, as it has been
eliminated in the final system.

Thread is created.
Thread exits.

Thread blocks.

Thread is unblocked.
Thread changes priority.

FIGURE 3.1. Thread preemption points

The ability to unblock threads and transfer to them immediately from interrupt
code is vital in real-time systems. In Figure 3.1 the blocking and unblocking points
include semaphores, timer delays, and other synchronization primitives yet to be
described. Whenever a thread enters or leaves the system (or is blocked or unblocked),
it is necessary to reevaluate which thread should be running. The ability for a thread
to change priority was originally not part of the design, but it is necessary to provide
correct behavior in certain situations. Notable among these is priority inversion,
where a less urgent thread holds a mutex that a more urgent thread is blocked waiting
to acquire.

3.10 Continuations

Normally a thread calls thr_block() to block, and returns again from this function
when it unblocks. Continuations [6] were implemented as an experimental alternative.
A thread which blocks with a continuation specifies the function it should execute
when it unblocks. It never returns from the blocking call but instead executes the

24

specified function. This makes it possible to save only the function pointer and an
argument rather than the full set of registers. Continuations were easy to implement
by adding additional thread state to support a new resumption mechanism. It turns
out that this mechanism is entirely appropriate for launching a new thread: specify
a continuation function and add the new thread to the thread list.

Continuations suggest an additional optimization that has not yet been exploited.
When the scheduling loop finds no thread ready, and the current thread expects to
resume with a continuation, the system could set a flag indicating that no state needs
to be saved when departing from this thread. It would remain in this state until an
interrupt occurs, and no registers would need to be saved to transition from this state
into the interrupt routine and from there to whatever thread should be resumed. It
has been pointed out [5] that most operating systems have a “homing position” where
the system resides when it is at rest. Threads “accept a task” and leave the homing
position, returning again when the task has been performed. By designing a system
to consist of threads that each handle a specific task using a continuation, very fast
response times could be achieved.

3.11 Condition Variables

Once a clean interrupt system was developed and tested, the keyboard driver was
redesigned to use interrupts. An interrupt—driven keyboard could support “hot keys”
that would display debug information, and even reboot the system in cases where the
system had hung. (This did in fact prove immensely useful.) The keyboard interrupt
handler would, with interrupts blocked, add characters to a queue. It is necessary
both to lock the queue during access by a thread consuming the characters, and to
signal such a thread once it had blocked upon finding the queue empty. Locking was
done by disabling interrupts, but the business of blocking while releasing the lock
needed to be handled carefully to avoid race conditions. This is exactly the sort of
problem that monitors and condition variables were intended to solve [1, 9].

A condition variable facility was developed to couple together a mutex lock with a
signaling semaphore. Two forms of condition variables are provided. The first couples
together a mutex semaphore with a signaling semaphore and is intended for signaling
between threads. The second couples together the interrupt lock with a signaling
semaphore and is intended for signaling between threads and interrupt routines. The
latter form has been used in both the keyboard and serial drivers.

3.12 Drivers

A driver for the serial ports was developed next. It was gratifying that Skidoo was
mature enough that this driver could be developed in a straightforward way, entirely
in C, using existing facilities. Interrupt routines were connected to hardware using
interrupt channeling. Condition variables were used for signaling between interrupt

25

routines and waiting threads—both to indicate available characters on reception and
additional buffer space on transmission. The character queue library designed for the
keyboard driver was used for both transmitted and received characters in the serial
port driver. Although this driver did not require new mechanisms in Skidoo, it did
give the system a good workout. With the serial port active, interrupts from the

keyboard, timer, and serial port were all active and some new bugs were exposed and
fixed.

A driver for an ISA-bus data acquisition card was also developed (the “DAS-16"
marketed by Keithley—Metrabyte and others). The driver uses interrupts, was coded
entirely in C, and required no new methodology in Skidoo. Writing a driver like
this is an excellent test, since every embedded system seems to involve developing
drivers for new hardware, and a good test of the system is how easy it makes this
process. Having immediate access to the address space containing the hardware and
not needing to install assembly language interrupt routines made the process easy.

description lines
header files 713
assembly language | 1307
console.c 1108
delay.c 166
main.c 107
prf.c 644
random.c 112
serial.c 523
sklib.c 390
thread.c 1550
trap.c 958
version.c 7
dasl6.c 407
user.c 140
tests.c 2096
server.c 125
total 10353

FIGURE 3.2. Source code summary

26

3.13 Code size

The source code for Skidoo is freely available from http://kofa.mmto.org/skidoo.
(This thesis describes version 0.4.1 of Skidoo.) Skidoo consists of about 10000 lines
of C source code, as shown in Figure 3.2. Considering that about 2000 lines of
this are test cases, the core of Skidoo is approximately 8000 lines of code. About
1300 lines of this are assembly language code. The processor initialization, thread
switching, and basic interrupt handling could only be expressed in assembly language.
On a processor other than the x86, the processor initialization code would be much
smaller, since other processors do not have multiple modes like the x86. Figure 3.2
does not include the slab allocator or any of the network code.

Figure 3.3 shows the compiled size of the Skidoo kernel in various configurations.
The basic kernel is compact enough to fit into read—only memory as part of a compact
application.

basic kernel 22k
kernel and tests 36k
kernel and slab allocator | 55k
kernel and network 320k

Ficurk 3.3. Executable code size

27

CHAPTER 4

APPLICATIONS AND TESTS

This chapter discusses what has been done to test and exercise Skidoo. An extensive
test suite was developed case by case as features were added to Skidoo. An interactive
“shell” was developed to invoke the tests and to inspect the internal state of Skidoo.
Two applications — a serial terminal and a data acquisition facility — were developed
to demonstrate the utility of Skidoo.

4.1 Test suite

Each time a new feature was added to Skidoo, a test case was written to exercise
that feature. All of the test cases have been retained, even old, seemingly historical
and trivial ones. This test suite has grown to over 2000 lines of code. Assembling
this set has proved to be a prudent course of action. After the specific test case for a
new feature has run successfully, the entire suite of previous cases is run. Once that
is successful, the entire suite is placed in a loop and run multiple times, sometimes
through the night. Both of these last procedures have turned up unexpected bugs.
Figure 4.1 shows the set of tests.

1 | Start a thread

2 | Setjmp and longjmp

3 | Timer hookup

4 | Thread delay

5 | Create multiple threads

6 | Create reentrant threads

7 | Signal with semaphores

8 | Pass arguments to thread functions

9 | Many threads block on single semaphore
10 | Unblock semaphore from an interrupt routine
11 | Signal thread using condition variable
12 | Thread join and exit
13 | Mutex semaphore
14 | Keyboard diagnostic
15 | Serial port diagnostics

FIGURE 4.1. Test suite

28

4.2 Debugging tools

In addition to the test suite, a set of diagnostic tools were developed to exercise
Skidoo. A simple command line interface allows individual tests to be run once or
any number of times. Additionally the entire suite may be run as many times as
desired. Retaining every test, and repeating them as new features were added has
proved invaluable. Often the addition of a new feature introduces bugs in an old one.
When changes are made to basic algorithms, it is essential to be able to verify that
all features still work properly.

In addition to running the tests, the “shell” allows dumping of memory, inspecting
the stack, and inspecting important data structures. An example of the display of
the thread list is shown in Figure 4.2.

This display shows a typical thread status during testing. The asterisk next to
the thread at priority 55 indicates the currently running thread. The state column
shows that the two threads with more urgent priorities are blocked on a semaphore
and a timer delay. A single character shows the resumption mode of each thread: J
for the usual “jump” mode, C for a continuation, I for a postponed interrupt.

Thread: name (&tp) state esp pri
Thread: sserv (0000C4EC) SEM J 00072E8C 50
Thread: tf2 (0000C3F4) DELAY C 00074FF4 52

* Thread: tf1 (0000C470) READY I 00073FF4 55
Thread: user (0000C568) READY J 00071F80 899
Thread: sys (0000C5E4) READY J 00070FAC 950
Thread Cur : (0000C470) (INT)

F1GURE 4.2. Typical thread display

4.3 Timing

A number of experiments were performed to measure the time necessary to respond
to interrupts, and to transfer control to a previously blocked thread. In all cases the
timer was used to generate interrupts to supply the triggering event. The Pentium
timestamp counter was used to measure intervals.! The system is running a thread
at a non-urgent priority that is looping reading the timestamp counter and writing

!The Pentium timestamp counter is a constantly incrementing 64 bit timer that counts at the
system clock rate, in this case 200 Mhz. It can be read using a special processor instruction into a
pair of 32 bit registers.

29

it into a memory location. When the timer interrupt happens, the last timestamp
value remains in the designated memory location. Once the more urgent thread
is activated, it reads the timestamp counter again and can calculate the transfer
time. These experiments were performed on a processor running at 200 Mhz so that
resolution of 5 nanoseconds was obtained. Figure 4.3 shows the results obtained.

experiment latency
thread to thread, normal 2.32 microseconds
thread to thread, continuation | 2.05 microseconds
thread to interrupt 0.855 microseconds

FiGURE 4.3. Control transfer timings

4.4 Serial terminal

Given the console, keyboard, and serial port driver, a very simple application is a
serial terminal. A pair of threads are created. One blocks waiting for keyboard input;
the other blocks waiting for serial port input. When characters arrive from the serial
port, they are output to the console. When they arrive from the keyboard, they are
output to the serial port.

Even though this is a trivial application, it serves as a good diagnostic for multiple
interrupt sources (keyboard, timer, and serial port). This test has no real-time re-
quirements apart from the need to move input characters before the small (128 byte)
input buffers overflow.

The code for this application is shown in Figure 4.4. The function user_init runs
as a high priority thread, initializes serial port parameters, starts two new threads,
and is done. The first thread runs in the function t_in and is usually blocked waiting
for characters to arrive on the serial port, which it then copies to the console. The
second thread runs in the function t_out and is usually blocked waiting for characters
to be typed at the keyboard. When characters are typed, they are copied to the serial
port. Although both threads run at the same priority, neither is CPU bound and will
yield the processor to the other when it blocks.

void
user_init (void) /* initialize port & create 2 threads */
{

sio_baud (PORT, 9600);

sio_crmod (PORT, 0);

(void) thr_new ("te_i", t_in, (void *)PORT, PRI_TERM,
(void) thr_new ("te_o", t_out, (void *)PORT, PRI_TERM,

static void
t_in (int port) /* copy from serial port to console */

{

int c;

for (;;) {
c = sio_getc (port);
if (¢ == "\r’)

c =’\n’;
vga_putc (¢);

static void

t_out (int port) /* copy from keyboard to serial port */
{

int c;

for (;;) {
¢ = kb_read ();
sio_putc (port, c);
if (¢ =="\r’)
sio_putc (port, ’\n’);

FIGURE 4.4. Serial terminal application

0);
0);

30

31

4.5 Data Acquisition Server

A data acquisition server was written as a demonstration application. This server
allows an analog data acquisition device to be controlled remotely using a serial port.
Single samples, periodic data, and burst data may be collected from any of 16 inputs.

This application makes use of a special piece of computer hardware. A “DAS-16”
analog data acquisition board was installed in the target system and a device driver
written to access this device under Skidoo. The “DAS-16” board is typical of the
sort of hardware used in embedded control projects. It has a 12-bit analog to digital
converter and an input multiplexer that selects one of 16 channels for conversion.
It also has a pair of 12-bit digital to analog converters and a programmable timer.
Analog to digital conversions may be triggered by software or by the timer. When a
conversion is complete, an interrupt is generated.

Most of the work developing this application consisted of writing the device driver
for the “DAS-16." The driver for this device consists of about 400 lines of C, and
was straightforward to develop. Once the driver was written, a simple protocol was
designed to make the drivers capabilities accessible from the serial port.

The server provides access to the hardware in three different modes. A single
sample may be obtained from any channel at any time. A burst captures a precisely
timed sequence of 1000 points at 1000 Hz. Periodic sampling may be scheduled at
a more leisurely rate. The server uses two threads. One thread waits for commands
from the serial port and handles them as they arrive. The second thread handles
periodic sampling and waits for timer events. A mutual exclusion semaphore is used
to arbitrate access to the conversion hardware by the two threads. The lock is held
for the duration of a burst (an entire second). A sample of the code to support the
burst mode is shown in Figure 4.5.

The interrupt routine that supports the burst mode follows in Figure 4.6. It
accumulates the required number of samples into a buffer, then unblocks the waiting
thread using a semaphore. The thread that supports periodic sampling is activated
by passing a semaphore from a clock interrupt routine, as shown in Figure 4.7.

This is a simple application, but it illustrates many of the features of Skidoo. This
kind of application is used for monitoring temperatures and forces in a remote location
with telemetry being obtained over a serial connection, perhaps using optical fibers.
The set of facilities provided by Skidoo are adequate to allow it to replace commercial
operating systems in many applications now in service at large telescopes in Southern
Arizona.

/* create semaphores */

das_sem

= sem_signal_new (SEM_FIFO);

das_mutex = sem_mutex_new (SEM_PRIOD);

short *

das_burst (int chan, int num)

{

/* enter critical region to access hardware */
sem_block (das_mutex);

das_scan (chan, chan);

das_rate (100, 100);

outb (CTL_IRQ_5, base + CTL);

outb (CTL_IE | CTL_IRQ_5 | CTL_TT, base + CTL);

/* connect handler to interrupt */
irq_5_hookup (das_int);

/* clear the interrupt flag and enable the clock.
outb (0x00, base + STATUS);
outb (CLK_GATE, base + CLOCK);

count = 0;
want = num,;
next = buffer;
state = RUN;

/* wait for signal that data has accumulated */
sem_block (das_sem);

/* exit critical region */
sem_unblock (das_mutex);
return buffer;

FIGURE 4.5. Example: routine implementing burst mode

32

static void
das_int (void)

{

int scan, data;
unsigned long ticks;

/* clear interrupt request. */
outb (0xff, base + STATUS);

/* let this request be a no-op */
if (state != RUN)
return;

/* read sampled value from hardware */
scan = inb (base + DATA_LO);

data = inb (base + DATA_HI) << 4;
*next++ = data | (scan & 0xf0) >> 4;

/* signal when requisite number is obtained */
if (++count >= want) {

state = HOLD;

sem_unblock (das_sem);

FIGURE 4.6. Example: interrupt routine

33

static short per_buf [240];

static short *next_per = per_buf;
static int per_count = 0;

static struct sem *per_sem;

void my_timer (void)

{
/* subdivide clock, activate
if ((per_count++ 7% 1000) ==
sem_unblock (per_sem);

}

static void
periodic (int xx)

thread every 10 seconds */
0)

{
for (;;) {
/* wait for timer activation */
sem_block (per_sem);
/* place new reading in buffer x/
if (next_per < &per_buf[240]) {
*next_per++ = das_adc (3);
}
}
}
void
user_init (int xx)
{
/* new signaling semaphore */
per_sem = sem_signal_new (SEM_FIFO);
/* initialize timer and connect timer handler */
tmr_rate_set (100);
tmr_hookup (my_timer);
/* launch new thread to be activated by timer */
(void) thr_new ("das", periodic, (void *) 0, 49, 0);
+

FIGURE 4.7. Example: timer activated thread

34

35

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis has described the design and implementation of Skidoo, a compact real—
time operating system. Skidoo offers a complete set of threading services at the
kernel level, along with a versatile set of synchronization primitives. The premise
that a useful system could be built simply from threads and semaphores has been
demonstrated to be valid. Additional services such as timers, interrupt channeling,
and device drivers have been implemented to enrich the facilities provided.

Skidoo incorporates a number of features that are unusual and interesting, if not
new. A clean high level facility for interrupt handling makes the system especially
convenient to work with. The availability of continuations offers a new and useful
way to control threads.

There is no question that this project has been a worthwhile learning exercise.
Indeed it has gone significantly beyond that to become a useful tool for myself, and
hopefully for others. It has already been used to support a number of small projects.
However, more can be done to provide library routines and a more complete set of
device drivers. The following sections outline some major extensions of functionality
that are sensible next steps to take with this project.

5.1 Networking

Without question, providing a network stack would be the single thing that would add
the most utility to Skidoo. This work has been started and development is ongoing.

The goal of adding a TCP/IP network stack is to have TCP and UDP sockets
available within Skidoo. Rather than do this work from scratch, the plan is to incor-
porate the network code from an existing open source system. BSD 4.4 and Linux
are both reasonable candidates, but Linux has been chosen because it supports the
greatest diversity of hardware. In order to use Linux source code with little or no
change, it will be necessary to construct a limited Linux emulator within Skidoo. The
advantage of keeping the Linux code pristine is that it should be easier to migrate to
newer versions of the Linux code as they become available.

The network facility (and Linux emulation layer) would be optional modules that
could be omitted from Skidoo to reduce the memory requirements for those applica-
tions where they are not required.

36

5.2 Memory protection

Skidoo makes no use of the memory protection hardware that is available on the x86
processor. It would be possible to make some beneficial uses of the memory protection
hardware without changing the single shared address space that is a central feature
of Skidoo.

The memory pages containing the Skidoo kernel could be marked as read/execute
or execute only, so that processor traps would occur if application threads made
invalid references to that part of the address space. This could be a great benefit to
debugging of new code and should make the system more robust.

The pages containing the stack for each thread could be mapped into fixed virtual
addresses for all threads, and a page at the end of the stack could be set up as a “red
zone” to catch stack overflows. This would also be a significant aid to debugging.

5.3 Debug facilities

Skidoo was developed with almost no planning and forethought given to debugging.
The process would almost certainly have been more efficient if some sort of debug
facility had been built in as early as possible. It is possible to run the Gnu debugger
in remote mode across a serial link, and this would have been a great help. It would
be a worthwhile facility to incorporate if Skidoo is developed further, and particularly
if it is ported to new architectures.

5.4 Incremental module loading

At present, to add code to Skidoo, new modules must be compiled and linked with
the Skidoo core. The resulting image is then loaded by rebooting the system.

Once a network facility is available, it would be very attractive to have a feature
whereby modules could be incrementally loaded into a running system. Primarily
this would be of benefit for code development, because many iterations of testing
could be done without the necessity of rebooting the system. This would also make it
possible to boot the Skidoo core from a read-only medium such as CDROM, and then
incrementally load modules to obtain customized behavior or to facilitate development
and testing.

To do incremental module loading would require maintaining a symbol table to
perform lookups of already loaded symbols. Existing object file formats provide
relocation information that could be used to modify address references as a module
was loaded. The software to do the relocation would have to be written. An attractive
option would be to do the symbol table management and relocation outside of Skidoo
as part of a more sophisticated development system than ran on the development
host. This would be especially attractive for a target host with minimal memory.

37

5.5 Porting to new hardware

It would be worthwhile to port Skidoo to non-—x86 architectures as well as to multipro-
cessor machines (whether x86 or some other architecture). Many projects exist using
older hardware such as Multibus and VMEbus computers. These projects have a sub-
stantial investment in hardware other than the processor itself and most commonly
use non-x86 processors such as the Motorola 680x0 or the Sparc.

Equally interesting would be the task of making Skidoo run on one of the increas-
ingly common and inexpensive x86 SMP machines. The change to the scheduling
policy in this case is straightforward: at any time, run the two runnable threads with
most urgent priorities! The fact that Skidoo is already fully preemptable will be a
tremendous aid to making it run on a multiprocessor.

5.6 Other suggestions

A message passing facility would be a useful addition for both synchronization and
communication. This would be essentially a data carrying semaphore. An example of
where this would be useful would be an I/O operation that blocks waiting for data,
but also is set up to unblock on a timeout. A message would provide a convenient
way to indicate which event unblocked the thread.

An interactive shell would also be a valuable addition to Skidoo. A very useful
mode of testing has been to exploit the serial driver in Skidoo and to set up a simple
RPC facility across the serial link. This would be substantially more useful when
network sockets are available. As it is, it is incredibly productive to manipulate
Skidoo using an interpreted language such as Perl or Ruby. Since an interactive shell
would be a tool for development and debugging, it makes a lot of sense to let it run on
the development host and to communicate with Skidoo using an RPC stub. In any
event, it should be arranged as an optional module so that both it and networking
could be omitted to produce a more compact image if desired.

38

39

APPENDIX A

KERNEL INTERFACE SPECIFICATION

A.1 Hardware requirements

Skidoo runs on the x86 processor. Development was done using a 200 MHz Intel
Pentium-MMX with 64 MB of memory. Skidoo has been tested on processors ranging
from the 486 through the Pentium-III. It should run on the 386 processor as well,
but this has not been tested. Certain processor enhancements such as the 64 bit time
stamp counter will not be available on the 386, but this is not essential to run the
kernel.

The most convenient way to run Skidoo is to use the netboot package and arrange
for diskless booting from a server. If this is done, the only hardware required besides
the processor, motherboard and memory are a video and network card. If netboot
is not present in the ROM on the network card, a floppy disk or CDROM will be
required for booting. If the motherboard supports it as a boot device, the CDROM
is the most reliable and convenient.

thr_new Create a new thread.
thr_exit Terminate current thread.
thr_self Identify current thread.
thr_kill Terminate some thread.
thr_join Await thread termination.

thr_block Block current thread.

thr_block_c | Block current thread with continuation.
thr_block_q | Block current thread, reusing continuation.
thr_unblock | Unblock some thread.

TABLE A.l. Thread calls

A.2 Threads

struct thread * thr_new (char #*name, tfptr func, void *arg,
int prio, int flags)

40

This is used to create a thread. A string may be given to identify the thread on
status listings. A function is specified, to which a single argument may be passed.
(If it is desired to pass multiple values to a thread, they should be loaded into a
structure, and a pointer to the structure should be passed to the thread function.) The
thread is assigned a priority, and flags are provided to specify unusual behavior. The
present collection of flags are TF_FPU (the thread uses floating point) and TF_BLOCK
(the thread should start up blocked). Most threads do not use floating point, and
floating point registers are not saved and restored during a context switch unless the
appropriate flag is specified.

Priorities are stored as 32 bit signed integers; larger positive numerical values are
less urgent. Behavior for negative priorities is not defined and these values should
be avoided. Each thread must be created with a unique priority so that there is no
ambiguity about which thread should run at any given time.

void thr_exit (void)

This may be used by a thread to destroy itself. If a thread just “falls off the end”
by returning from the thread function, a call to thr_exit is made transparently. In
the majority of cases, threads either run forever or fall off the end, so this function is
rarely used directly.

struct thread * thr_self (void)

This allows a thread to get a pointer to itself. This can be more convenient than
saving the pointer returned by thr_new.

void thr_kill (struct thread *)

This terminates a running thread. If called on the current thread, it is the same as
calling thr_exit. If called on another thread, it arranges for it to resume in thr_exit
and marks it ready to run. The next time it is scheduled, it will exit.

void thr_join (struct thread *)
This blocks the current thread until the specified thread calls thr_exit.

void thr_block (enum thread_state why)
void thr_umblock (struct thread *)

These functions are the most fundamental synchronization primitives in the Skidoo
kernel. Calling thr_block blocks the current thread and posts a state other than
READY to indicate why. Calling thr_unblock unblocks the specified thread. They are
rarely accessed directly; semaphores or condition variables are used instead.

41

void thr_block_c (enum thread_state why, tfptr func, void *arg)

This is identical to thr_block except that a continuation is specified. When
the thread is unblocked it will resume in the continuation function, whereas with
thr_block the thread resumes by returning from the thr_block call.

void thr_block_q (enum thread_state why)

This is a common optimization after a call to thr_block_c has been previously
made. It should be noted that at all times every thread has a continuation function
set. If one has never been set explicitly, it is implicitly the function specified to
thr_new when the thread was created. A call to thr_block_q blocks the thread and
sets a flag so that it will resume in whatever continuation function has already been
specified. It is a slight optimization over calling thr_block_c repeatedly with the
same continuation function.

sem_mutex_new | Create a new mutex semaphore.
sem_signal_new | Create a signaling semaphore.

sem_destroy Destroy a semaphore.

sem_block Block on a semaphore.

sem_unblock Unblock a semaphore.

sem_block_try | Test and block on a semaphore.
sem_block_c Block on a semaphore with continuation.
sem_block_g Block on a semaphore, reusing continuation.

TABLE A.2. Semaphore calls

A.3 Semaphores

struct sem * sem_mutex_new (int flags)
struct sem * sem_signal_new (int flags)

Calling sem_mutex_new creates a new mutual exclusion semaphore. A call to
sem_signal_new creates a new signaling semaphore. The flags variable may be used
to indicate alternate scheduling policies (SEM_FIFQO versus SEM_PRIO). The default
is FIFO scheduling.

void sem_destroy (struct sem *)

42

This call destroys a semaphore so that resources associated with it can be reused.
This should only be done when there is no possibility of further activity on the
semaphore.

void sem_block (struct sem *)

This is effectively the P operation from the classical semaphore literature. If the
semaphore is set (1), this call will clear it and keep executing. If the semaphore is
clear (0), this call will block the current thread and place it on a list associated with
the semaphore.

void sem_unblock (struct sem *)

This is the V operation. This routine never blocks, but it may cause another thread
to be unblocked. It does nothing if the semaphore is already set (1). If the semaphore
is clear (0) and the semaphore queue is empty, the semaphore is set. If the semaphore
is clear and the semaphore queue is non—empty, one thread in the queue is unblocked
and the semaphore value remains cleared. Which queue entry gets unblocked depends
on a policy flag set when the semaphore was created. In the usual case the policy
is SEM_FIFO, and the entry at the front of the queue is unblocked. If the policy is
SEM_PRIO, the entry with the most urgent priority is removed from the queue and
unblocked.

int sem_block_try (struct sem *)

This is a version of sem_block that attempts to acquire a semaphore (typically
a mutex) but that will never block. If the semaphore is set, it clears the semaphore
and returns 1. If the semaphore is already clear, it returns 0 rather than blocking as
sem_block would do.

void sem_block_c (struct sem *sem, tfptr func, void *arg)
This is identical to sem_block except that it resumes via a continuation.
void sem_block_q (struct sem *sem)

This is identical to sem_block except that it resumes using a previously established
continuation.

43

cv_new Create a new condition variable.
cv_destroy | Destroy a condition variable.
cv_wait Block and wait for a condition.

cv_signal | Signal a condition.

cpu_enter | Enter interrupt locked region.
cpu_leave | Leave interrupt locked region.

cpu_new Create a new CPU condition variable.
cpu_wait Wait for a condition under a CPU lock.
cpu_signal | Signal a condition under a CPU lock.

TABLE A.3. Condition variable calls

A.4 Condition Variables

Condition variables are a coupling of a mutex semaphore and a signaling semaphore.
One mutex semaphore may be involved with several signaling semaphores, each ex-
pressing a different predicate. For this reason the mutex semaphore must be created
first, and then coupled to each predicate in turn. Once this is done, the condition
variable is a single unit that can be used in the wait call.

struct cv * cv_new (struct sem *mutex)

This constructs a new condition variable that binds together the indicated mutex
and a newly generated signaling semaphore.

void cv_destroy (struct cv *)
This destroys a condition variable, and releases its resources.
void cv_wait (struct cv *)

This blocks and waits for a signal on a condition variable. The caller must already
hold the mutex semaphore.

void cv_signal (struct cv *)
This unblocks a thread waiting on a condition variable.

void cpu_enter (void)
void cpu_leave (void)

This pair of routines obtain and release a cpu lock — by disabling and re—enabling
all interrupts — in order to enter and leave an interrupt sensitive critical region. They
provide an interrupt safe mutex.

44

struct sem *cpu_new (void)
void cpu_wait (struct sem *)
void cpu_signal (struct sem *)

These routines are used in conjunction with cpu_enter and cpu_leave to imple-
ment a cpu locked condition variable. The routine cpu_wait is used to block and wait
for a signal while holding a cpu lock. cpu_signal is used to unblock a thread waiting
for the signal, typically from an interrupt handler where the cpu lock is implicitly
held.

tmr_rate_set | Set clock interrupt rate.

tmr_rate_get | Get clock interrupt rate.

tmr_hookup Connect a function to the timer.
tmr_delay Block current thread for an interval.
tmr_delay_c | Block and delay using continuation.
tmr_delay_q | Block and delay reusing last continuation.

TABLE A.4. Timer calls

A.5 Timer facilities

A programmable hardware timer exists which produces interrupts at a 100 Hz rate.
On the x86, the actual rate is 100.0067052 Hz. The timer is accessed by the following
functions:

void tmr_rate_set (int hz)

This sets the rate at which interrupts are produced by the timer. If this function
is never called, timer interrupts are produced at 100 Hz.

int tmr_rate_get (void)
This discovers the rate at which interrupts are produced by the timer.
void timer_hookup (fptr func)
This specifies a C function that is called each time the timer interrupts. Only one

callback of this sort is allowed; subsequent calls replace the previously established
function. A null argument may be specified to disconnect the function.

45

void thr_delay (int nticks)

This is a convenient (although somewhat imprecise) way to obtain timing delays.
After this call the thread is blocked until the specified number of timer ticks have
elapsed. At this time the thread will be made ready, and will run immediately if it
is the runnable thread of most urgent priority. Otherwise, it will run only after more
urgent runnable threads have blocked.

void thr_delay_c (int nticks, tfptr func, void *arg)

This is identical to thr_delay except that it resumes in a continuation function.
void thr_delay_q (int nticks)

This function delays, resuming in a previously established continuation function.
Usually the continuation will have been specified in a thr_delay_c call, but the

continuation given in thr_new could be used as well. The thr_delay_q function is
convenient for constructing periodic loops using tail-recursion.

vga_putc Put a character on the screen.
vga_puts Put a string on the screen.
vga_screen | Select an alternate screen.
getchar Await and read a keystroke.
getchare Read keystroke and echo to screen.
sio_getc Read character from serial port.
sio_putc Send character to serial port.
sio_gets Read string from serial port.
sio_puts Send string to serial port.
sio_baud Set serial port baud rate.

TABLE A.5. Device driver calls

A.6 Device drivers
This section summarizes the most important device driver access routines.
void vga_putc (int c)

void vga_puts (char *s)
void vga_screen (int n)

46

The console driver outputs characters to a VGA compatible video card supporting
a 25 line by 80 column console. A call to vga_putc places a single character on the
screen. Calling vga_puts places all characters in a null terminated string on the
screen. A call to vga_screen selects one of 8 virtual screens for display. Additional
functions manipulate the cursor and are described in the source code.

int getchar (void)
int getchare (void)

The keyboard driver reads from the standard PC keyboard. Calling getchar reads
a character from the keyboard without attempting to echo the character. Calling
getchare reads a character and echos it to the console, as would normally be expected.

int sio_getc (int port)

void sio_putc (int port, int c¢)
void sio_gets (int port, char *s)
void sio_puts (int port, char *s)
void sio_baud (int port, int rate)

The serial driver reads from and writes to either serial port 0 or 1. Calls to
sio_getc and sio_putc read and write a single character from the specified port.
Calls to sio_gets and sio_puts read and write a string from the specified port. A
call to sio_baud sets the baud rate on the specified port. Rates from 300 to 38400
are supported exactly. A rate of 56000 baud is only possible with a 3 percent error
given the standard 1.8432 Mhz crystal, but this seems to work just fine.

A.7 Interrupt facilities

void vector_hookup (int vector, fptr func)

This call arranges that the specified C function is called whenever the indicated
interrupt occurs.

A.8 Booting and initialization

After bootstrap, the kernel relocates itself to the lowest part of memory. It then
makes the rest of memory available for dynamic allocation. After all subsystems are
initialized, the first thread is started in the function user_init. This is expected to
be supplied by the user and will typically allocate resources and start other threads
necessary to run the intended application. This first thread runs at the most urgent
possible priority (priority 0), so that no other threads run until it exits.

!The source code may be obtained from http://kofa.mmto.org/skidoo. This thesis describes
version 0.4.1 of Skidoo.

1]

2]

[10]

[11]

[12]

[13]

47

REFERENCES

Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison-Wesley, Reading, Massachusetts, 2000.

Alexander Horstkotte Arnd C. Heursch and Helmut Rzehak. Preemption con-
cepts, rhealstone benchmark and scheduler analysis of linux 2.4. In Proceedings
of the Real Time and Embedded Computing Conference, Milan, November 2001.

Maurice. J. Bach. The Design of the UNIX Operating System. Prentice-Hall,
Upper Saddle River, New Jersey, 1986.

Michael Barabanov. A linux—based real-time operating system. Master’s thesis,
New Mexico Institute of Mining and Technology, Socorro, New Mexico, 1997.

Edsger W. Dijkstra. The structure of the THE —multiprogramming system.
Communications of the ACM, 11(5):345-346, May 1968.

R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean. Using continuations
to implement thread management and communication in operating systems. In

Proceedings of the 13th ACM Symposium on Operating Systems Principles, pages
122-136, 1991.

Bill O. Gallmeister. Programming for the Real World, POSIX./. O’Reilly and
Associates, Cambridge, Massachusetts, 1995.

Michael Greenwald and David R. Cheriton. The synergy between non-blocking
synchronization and operating system structure. In Second Symposium on Op-
erating Systems Design and Implementation, pages 123-136. USENIX, Seattle,
October 1996.

Richard. C. Holt. Concurrent Euclid, the UNIX System, and Tunis. Addison-
Wesley, Reading, Massachusetts, 1983.

Intel. Intel386EX Embedded Microprocessor User’s Manual. Intel Corporation,
Santa Clara, California, 1996. Order Number 272485-002.

Gero Kuhlmann. http://netboot.sourceforge.net, 2002.

H. C. Lauer and R. M. Needham. On the duality of operating system structures.
Operating Systems Review, 13(2):3-19, April 1979.

J. Lions. A Commentary on the Unix Operating System. Department of Com-
puter Science, University of New South Wales, 1977.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

48

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarter-
man. The Design and Implementation of the 4.4BSD Operating System. Addison-
Wesley, Reading, Massachusetts, 1996.

Remi Nadeau. Ghost Towns and Mining Camps of California. The Ward Ritchie
Press, Los Angeles, California, 1972.

Gary Nutt. Operating systems, A modern perspective. Addison-Wesley, Reading,
Massachusetts, 2000.

Alessandro Rubini. Linuz Device Drivers. O’Reilly and Associates, Sebastopol,
California, 1998.

Curt Schimmel. UNIX Systems for Modern Architectures. Addison-Wesley, Read-
ing, Massachusetts, 1994.

Wind River Systems. VzWorks Programmers Guide. Emeryville, California,
1989.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Upper Saddle
River, New Jersey, 1992.

Linus Torvalds. Linux: a portable operating system. Master’s thesis, University
of Helsinki, Finland, 1997.

Uresh Vahalia. UNIX Internals, the New Frontiers. Prentice-Hall, Upper Saddle
River, New Jersey, 1996.

