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ABSTRACT

Embedded systems have needs that are not adequately met by 
onventional operat-

ing systems. Skidoo is a new operating system espe
ially tailored to support embed-

ded systems. Independently s
heduled threads are provided that syn
hronize using

semaphores and 
ondition variables. Threads share a 
ommon address spa
e and


ommuni
ate using shared variables. Fully preemptive s
heduling meets the needs of

hard real{time appli
ations.
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Chapter 1

INTRODUCTION

Embedded systems play an in
reasingly important role in modern so
iety. They o

ur

within automobiles, applian
es, disk{drives, internet routers, weapons systems, and

myriad other appli
ations. Two things 
hara
terize embedded systems. First, their

software is stati
 and tailored to a spe
i�
 mission. Apart from bug �xes and �eld

upgrades, the software in an embedded system never 
hanges. Se
ond, the hardware

in an embedded system is likely to be very restri
tive. Many embedded systems

are 
omponents in high{volume, 
ost{sensitive appli
ations. Considerations of spa
e,

reliability, and power 
onsumption often pre
lude the use of rotating disk drives.

Many embedded systems 
ontain software in whi
h stri
t time deadlines must be

met in order to ensure proper operation; su
h systems are 
alled real{time systems.

A distin
tion is sometimes made between \soft" and \hard" real{time systems. A

soft real{time system runs 
orre
tly if some statisti
al portion of time deadlines are

met. A hard real{time system runs 
orre
tly only if every time deadline is met.

Skidoo

1

is a new operating system that 
an be used to build embedded systems.

Skidoo provides threads, semaphores, and fully preemptive s
heduling. At any time,

the highest priority runnable thread is running, or a low laten
y transfer is in progress

to set it running. Additionally, Skidoo o�ers timer fa
ilities, 
onvenient interrupt

handling fa
ilities, and a library of support routines and devi
e drivers. Skidoo runs

in prote
ted mode on the x86 ar
hite
ture and has very small memory requirements.

It is adequate for building many real{time embedded appli
ations.

Skidoo is intended to be a toolkit that is to be used to build a 
ustom operating

system. Ea
h deployment of Skidoo is in fa
t an operating system that is tailored to

the task at hand. By 
ontrast, 
onventional operating systems su
h as Unix [3, 14℄ are

designed to support general purpose 
omputing. They support timesharing 
omput-

ing and provide fa
ilities su
h as �lesystems, virtual memory, and memory prote
tion

that are unne
essary in an embedded appli
ation. While it is possible to adapt a gen-

eral purpose operating system su
h as Unix for use in real{time appli
ations, a system

that spe
i�
ally addresses the requirements of real{time embedded appli
ations 
an

be smaller, simpler, and faster.

1

The name \Skidoo" 
omes from a ghost town [15℄ on the west side of Death Valley National

Park, in California.
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1.1 Related work

RT-Linux [4℄ is an example of a 
onventional general{purpose operating system that

has been enhan
ed to support real{time requirements. It does this by 
reating a

real{time s
heduling regime within Linux. The regular Linux kernel is then run as

a low priority task under 
ontrol of the real{time s
heduler. This arrangement is

adequate to support hard real{time requirements, but for some embedded systems,

the software would be too large in terms of hardware requirements. It does have the

advantage that software may be developed on the same system on whi
h it will run.

Both Linux [21℄ and Solaris [22℄ o�er POSIX 4 [7℄ real{time s
heduling extensions.

This makes it possible to implement real{time appli
ations within the usual Unix

timesharing environment. These are both still full{s
ale Unix systems however, so

they would be inappropriate for hardware{restri
ted embedded appli
ations.

It is worth noting that work is being done on the traditional Linux kernel to make

it more suitable for some 
lasses of real{time programming. In parti
ular, preemption

points are being provided within the kernel to limit the length of the 
ode path within

the kernel before an opportunity exists to swit
h 
ontext [2℄.

VxWorks [19℄ is a proprietary system without a Unix heritage. It provides a

proprietary interfa
e, but o�ers a large set of POSIX library fa
ilities to aid porting

Unix software. VxWorks expe
ts that a Unix host system is used to develop software

that then runs on a target system with distin
t hardware and software. This requires

a dedi
ated development system but allows the target system to be very spartan in

terms of both hardware and software.

VxWorks has been a signi�
ant sour
e of inspiration for Skidoo. Like VxWorks,

Skidoo supports a set of threads running in a single address spa
e and avoids utilizing

address mapping and prote
tion hardware. In 
ontrast Skidoo is mu
h simpler, yet it

provides additional fa
ilities su
h as 
ontinuations and ra
e{free 
ondition variables.

1.2 Outline of the Thesis

Skidoo was developed mainly as an ex
ellent learning exer
ise. However, it is useful

for getting real work done, as will be shown. It 
an be used as the basis for further

resear
h in embedded systems, as well as for the 
onstru
tion of spe
i�
 appli
ations.

Chapter 2 presents Skidoo and outlines the servi
es that Skidoo makes available.

Chapter 3 des
ribes the implementation of Skidoo, dis
ussing the steps taken and

the de
isions that were made. Chapter 4 dis
usses a test suite that was developed

to exer
ise Skidoo, as well as experiments and appli
ations that demonstrate its util-

ity. Chapter 5 gives a summary of what was a

omplished, what 
ould have been

done di�erently, and what has been left undone. The Appendix gives details of the

programming interfa
e to Skidoo.
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Chapter 2

SERVICES

This 
hapter gives a survey of the servi
es provided by Skidoo. The two 
entral

features of the Skidoo kernel are threads and binary semaphores. The most important

feature of threads is the ability to blo
k and thus to be independently s
heduled.

Semaphores provide an entity that 
an be used for syn
hronization. An in
redible

amount of work 
an be a

omplished given just threads and semaphores. The rest of

the Skidoo kernel provides 
ondition variables, 
ontinuations, and a

ess to essential

hardware via timers, interrupts, and basi
 devi
e drivers. The a
tual kernel routines

are des
ribed in Appendix A.

2.1 Threads

A thread is an independently s
heduled 
ow of exe
ution. Ea
h thread has a private

sta
k, and a small amount of state, whi
h 
onsists of a set of 
ags and register values

needed to resume the thread after it has blo
ked. Notably, a thread does not have

a private address spa
e (other than a sta
k). All threads share a 
ommon global

address spa
e and 
ommuni
ate using shared variables.

A thread in the Skidoo kernel is either ready or blo
ked. A thread only be
omes

blo
ked when it blo
ks itself. On
e blo
ked, a thread is not eligible to be run until

it is unblo
ked. A thread may be unblo
ked dire
tly by another thread, or more


ommonly via a semaphore. With the ex
eption of interrupt handlers, all 
ode runs

on behalf of some thread. Ea
h thread is assigned a unique priority. For 
larity, the

terms \more urgent" and \less urgent" are used rather than \higher" and \lower"

priority. In fa
t, priorities with larger numeri
al values are less urgent.

1

At all times,

the 
urrent thread is always the ready thread with the most urgent priority.

Spe
ial 
are was taken to handle the 
ase where a thread is unblo
ked from in-

terrupt 
ode. The diÆ
ulty arises in the 
ase where a thread more urgent than the

one 
urrently running is marked ready to run. When this happens, the thread that

was running when the interrupt o

urred is left suspended, and the kernel resumes

the more urgent thread when interrupt pro
essing is �nished.

2.2 Preemptive s
heduling and priorities

In the Skidoo kernel, ea
h thread must be assigned a unique priority when it is


reated. At all times, the thread with the most urgent priority that is ready to run is

1

This 
hoi
e is entirely arbitrary and mimi
s the ordering used in VxWorks.
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running, or is in the pro
ess of being made to run. This s
heduling poli
y is expli
itly

unfair: if the 
urrently running thread never blo
ks, no thread of lower priority will

ever run. This poli
y is 
alled stri
tly preemptive s
heduling. It is an error for two

threads to be assigned the same priority. The system 
ould have been designed to

have some spe
ial de�ned behavior in this 
ase (su
h as time sli
ing), but this has

not been done. Providing fairness in this spe
ial 
ase is not ne
essary in embedded

systems and would only serve to 
ompli
ate the kernel.

2.3 Semaphores

Threads together with some syn
hronization fa
ility [18℄ provide a suÆ
ient basis to

build signi�
ant appli
ations. Skidoo provides simple binary semaphores [1℄ as its

fundamental syn
hronization primitive.

Semaphores may be 
reated with an initial value of zero or one. Typi
ally,

semaphores with an initial value of zero are used for signaling, and semaphores with an

initial value of one are used for mutual ex
lusion. The P operation is herein denoted

\blo
king" on a semaphore. When the value of a semaphore is zero, the \blo
king"

operation in fa
t blo
ks and pla
es the 
urrent thread on a list asso
iated with the

semaphore. When the value of a semaphore is one, the \blo
king" operation 
hanges

the value to zero and keeps running. The V operation is herein denoted \unblo
king"

a semaphore. When the value of a semaphore is one, the \unblo
king" operation does

nothing.

2

When the value is zero and the list of waiting threads is non{empty, one

of the waiting threads is unblo
ked; otherwise the value of the semaphore is 
hanged

to one.

Signaling semaphores are 
ommonly asso
iated with a single thread as a private

semaphore. Under this 
onvention, only one thread uses the semaphore to await a

signal. A mutual ex
lusion semaphore is not asso
iated with any thread in parti
ular,

but rather with some resour
e that requires lo
king.

2.4 Condition variables

Condition variables 
an be viewed as a toolkit for building monitors [9℄. In Ski-

doo they are provided as a higher level syn
hronization fa
ility than semaphores. In

essen
e a 
ondition variable is a mutex semaphore and a signaling semaphore han-

dled together as a unit as in POSIX 4 [7℄. To allow syn
hronization in devi
e drivers

between interrupt handlers and thread 
ontext running the driver, a spe
ial form of


ondition variable is provided that disables pro
essor interrupts as a form of mutual

ex
lusion. To use a 
ondition variable, a thread will a
quire the mutex semaphore,


he
k the resour
e lo
ked by the mutex, and upon �nding that it must wait for the

2

An alternative would be for the unblo
king operation to delay if a semaphore is set to one, but

this would produ
e grave diÆ
ulties if the unblo
k was being done from within an interrupt routine.
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ondition of the resour
e to 
hange will perform a \wait" on the 
ondition variable.

The \wait" operation will blo
k the thread and release the mutex in an atomi
 oper-

ation, preventing ra
e 
onditions. To unblo
k the thread when the 
ondition of the

resour
e 
hanges, another thread a
quires the mutex and uses the \signal" opera-

tion. In the 
ase of an interrupt routine, a
quisition of the mutex is impli
it in that

interrupts are blo
ked while in the interrupt handler.

2.5 Continuations

Continuations are provided as a more eÆ
ient alternative to the usual blo
king se-

manti
s. The idea of a 
ontinuation is taken from the Ma
h Operating System [6℄. A


ontinuation provides a streamlined way for a thread to blo
k and spe
ify a point of

resumption. When a thread blo
ks with a 
ontinuation, it abandons its 
ontext and

pro
essor state (in
luding register values, and the sta
k). When the thread unblo
ks,

it 
omes alive in the 
ontinuation fun
tion, as if it were starting up anew. Most

Skidoo fa
ilities whi
h may blo
k provide the option to blo
k with a 
ontinuation, as

well as the 
onventional return from the blo
king 
all.

When a thread blo
ks with a 
ontinuation, it spe
i�es a fun
tion to begin exe
uting

in when it is unblo
ked. When the thread does unblo
k, rather than returning in the

usual way from the blo
k 
all, it resumes by 
alling the spe
i�ed fun
tion.

Using 
ontinuations requires some reorganization of 
ode. A fun
tion that was

designed to use a traditional blo
king 
all will need to be partitioned into a fun
tion

whi
h performs some setup and then blo
ks, and a fun
tion whi
h handles the event

as a 
ontinuation. In many 
ases the event handling fun
tion will end by making a

blo
king 
all and again spe
ifying itself as a 
ontinuation. This sort of tail re
ursion

is a natural way to 
ode fun
tions that should be a
tivated periodi
ally after a �xed

delay.

Figure 2.1 
ontains an example of a fun
tion using tail re
ursion to a
hieve periodi


a
tivation. A new thread is 
reated using the thr_new() 
all. This thread prints a

message, then spe
i�es itself as a 
ontinuation after a delay of 25 
lo
k ti
ks. The

thread is blo
ked until the number of ti
ks elapses, and then runs again printing the

message. This goes on forever, or until the thread is destroyed.

The advantage of 
ontinuations is that they are very lightweight. When a thread

blo
ks spe
ifying a 
ontinuation, its 
ontext 
an be abandoned|no registers need to

be saved. The me
hanism used to resume using a 
ontinuation is the same one that is

used to laun
h new threads. In essen
e a thread is being laun
hed anew ea
h time it

resumes with a 
ontinuation. It would be possible to abandon the sta
k and allo
ate

a new one (as is done in Ma
h), but it is a
tually more eÆ
ient, although less frugal

with memory, to retain the sta
k.
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void

ti
ker_init ( void )

{

(void) thr_new ( "ti
k", ti
k_fn, (void *)25, PRI_TICK, 0 );

}

void

ti
k_fn ( int delay )

{

printf ( "Kilroy was here!\n" );

thr_delay_
 ( delay, ti
k_fn, delay );

}

Figure 2.1. Tail re
ursion using a 
ontinuation

2.6 Timer fa
ilities

A timer is a hardware devi
e that provides interrupts at a programmer{de�ned inter-

val. A set of timer fa
ilities provides 
onvenient a

ess to the available timing signals.

At this time, the timer ti
ks at a nominal rate of 100 Hz.

A routine to handle timer interrupts is a standard part of Skidoo. This default

routine keeps tra
k of time and supports a delay servi
e. The delay servi
e allows

the 
urrent thread be blo
ked until a spe
i�ed number of timer \ti
ks" have passed.

The default routine may be augmented by a user supplied C fun
tion that will also

be 
alled ea
h time the timer \ti
ks". This routine is 
alled at interrupt level and

should be short and 
arefully 
oded.

A 
ommon use of the ability to 
onne
t a user supplied routine to the timer in-

terrupt is to produ
e periodi
 thread a
tivations. By subdividing the basi
 
lo
k and

using semaphores to unblo
k waiting threads from interrupt level, a

urate periodi


a
tivations may be a

omplished. Appli
ations that require extremely a

urate tim-

ing (su
h as waveform generation), may perform 
ru
ial pro
essing in su
h a 
lo
k

fun
tion.

2.7 Interrupt fa
ilities

It is very useful to be able to 
onne
t arbitrary C fun
tions to interrupt sour
es.

Providing a 
onvenient fa
ility for doing this relieves individual devi
e drivers from

the ma
hine dependent 
omplexities of manipulating interrupt hardware. This is a

real bene�t for embedded systems whi
h typi
ally in
lude unique hardware devi
es

that require simple devi
e drivers. If this fa
ility is abstra
ted appropriately, it is also
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an aid to portability. This fa
ility|dubbed interrupt 
hanneling|is used by existing

drivers for the keyboard, serial port, and timer. It is also used to 
onne
t handlers

to hardware traps su
h as divide by zero.

A related fa
ility, already alluded to, is the ability to unblo
k a thread from within

an interrupt routine. Interrupts are handled on the sta
k of whatever thread happens

to be running when the interrupt arrives. During pro
essing of the interrupt (whi
h

may be entirely unrelated to the thread 
urrently running), a previously blo
ked

thread may need to be unblo
ked. The thread state is marked ready to run, and then

the thread priority is 
ompared with the priority of the 
urrent thread. If the priority

is less urgent than the 
urrent thread, nothing more needs to be done. If the priority

is more urgent than the 
urrent thread, a 
ag is set so that when the return from

interrupt is about to happen, a 
ontext swit
h to the new thread takes pla
e.

The 
ase also should be mentioned where there is no ready thread and an interrupt

o

urs. In this 
ase, a tight loop is being run in the 
ontext of whatever thread last

blo
ked itself. This loop is wat
hing to see if that thread again be
omes ready. If

this thread does get marked ready, the loop will terminate and the thread will return

from the blo
king fun
tion. If some other thread gets marked ready, a swit
h must

be made immediately to run that thread in the manner des
ribed above.

2.8 Memory allo
ation

The Skidoo kernel has an extremely simple memory allo
ation s
heme. A table of

available memory regions is maintained, and blo
ks are allo
ated from the �rst region

that 
ontains suÆ
ient spa
e. A 
all to free a memory blo
k is provided, but it is

ignored at present in this simple allo
ator. This s
heme is entirely adequate for most

embedded appli
ations that will allo
ate all resour
es that are required at boot time.

Fa
ilities that may want to reuse allo
ated obje
ts (su
h as semaphores) should keep

them on a private free list.

As an alternative to this simple s
heme, the Solaris slab allo
ator [22, p. 392℄

has been made to work with the Skidoo kernel. However, the slab allo
ator requires

nearly as mu
h 
ode memory as Skidoo itself (see Figure 3.3).

2.9 Devi
e drivers

Drivers for the keyboard and 
onsole were essential to develop and debug the kernel.

The serial port driver was as mu
h a demonstration as an essential part of the kernel.

In retrospe
t, the serial port 
ould have been used in lieu of the 
onsole for develop-

ment. The 
onsole driver has the advantage of being independent of interrupts, and

thus is useful in 
ases where the serial driver would have failed. The keyboard driver

typi
ally uses interrupts, but 
an be 
on�gured to work without them.
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2.10 Boot servi
es

Bootstrapping is a low{level hardware{dependent issue. This is parti
ularly so on

the x86, where the ma
hine starts running in a ba
kward 
ompatibility mode (x86

\real mode"). The goal of bootstrapping is to be able to run C 
ode in x86 prote
ted

mode.

At this time, Skidoo is able to boot from 
oppy disk, as well as over the network

using BOOTP and TFTP . It would be fairly straightforward to allow booting from

a hard drive or CDROM.

On
e Skidoo has been initialized, it 
reates one initial thread at priority 0, whi
h

exe
utes the C fun
tion user_init(). Typi
ally this fun
tion will laun
h the set of

user threads and then exit.
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Chapter 3

IMPLEMENTATION

This 
hapter des
ribes the implementation of Skidoo. The des
ription is given as a

step by step 
hronology. As ea
h major subsystem is presented the algorithms used to

implement it are dis
ussed. In almost every 
ase the simplest possible algorithm has

been 
hosen. Corre
tness has been pla
ed ahead of eÆ
ien
y, yet with the expe
tation

that more 
omplex and sophisti
ated algorithms will be introdu
ed as the proje
t

matures. In some 
ases (notably memory allo
ation) this has already o

urred.

3.1 Hardware Platform

The de
ision to make Skidoo run on the Intel x86 [10℄ pro
essor was an easy one.

X86 hardware is 
heap, ubiquitous, and amazingly e�e
tive. This 
hoi
e made it

straightforward to use the Gnu C 
ompiler hosted on a Linux system for development.

Other potential targets were the Spar
 and the Motorola 680x0 pro
essors. Although

these ar
hite
tures are in many ways more attra
tive, the hardware is less 
ommon,

more expensive, and slower. A desktop personal 
omputer was obtained for use as a

target ma
hine. The ma
hine used had a 200 Mhz Pentium MMX pro
essor, 64 MB

of memory, video 
ard, and network 
ard.

3.2 Diskless Booting

Part of the 
hallenge of the proje
t was that Skidoo had to boot and run on bare

hardware. It was expe
ted (and rightly so) that development would involve many


y
les of experimental rebooting and that a s
heme that made this as eÆ
ient as

possible would be the best 
hoi
e. It is possible to write images onto 
oppy disks on

the development ma
hine and boot them by transferring them to the target ma
hine.

However, this rapidly be
omes tedious, and 
oppy disks are remarkably unreliable.

This was, however, a useful method when a pair of laptop 
omputers were being used

during a mobile development session.

Network booting is far superior to using removable media. A new image 
an be

built on the development ma
hine, and when the target ma
hine reboots, this image

is transferred into target memory and exe
uted. Network booting uses the BOOTP

and TFTP proto
ols and is fa
ilitated by a publi
 domain pa
kage 
alled netboot

[11℄. Some time was lost dis
overing that some features of this pa
kage were broken

or mis{do
umented. In parti
ular, netboot exhibited aberrant behavior for an image
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ontaining 512 or fewer bytes. Ultimately netboot su

essfully loaded and ran a

small assembly language program that used BIOS

1

routines to print a short message.

3.3 Pro
essor Initialization

After reset, the Intel x86 pro
essor is running in \real mode," whi
h is a 
ompatibility

mode that runs software written for the oldest members of the x86 pro
essor family.

The netboot pa
kage expe
ts the pro
essor to be running in \real mode," as does the

BIOS software. The Gnu C 
ompiler generates 
ode for an x86 pro
essor running in

prote
ted mode. Prote
ted mode supports 32 bit registers and a simple linear address

spa
e. The purposes of pro
essor initialization are to relo
ate the Skidoo image into

low memory and to perform the transition from real to prote
ted mode. On
e this is

done, the pro
essor 
an run 
ode generated by the Gnu C 
ompiler.

Debugging the pro
essor initialization 
ode was diÆ
ult and frustrating. Most of

the pro
essor initialization 
ode had to be written in assembly language. In addition,

it was not possible to use the real mode BIOS 
onsole routines for debugging while the

initialization was in progress. A useful debugging tool was a 
able with a single LED

2

that was 
onne
ted to the parallel printer port. A simple routine that looped while

blinking this LED was useful as a sentinel to mark progress through the initialization


ode. On
e the pro
essor was properly initialized, a newly 
oded LED loop, written

in C and 
ompiled by the Gnu C 
ompiler, was su

essful in making the LED blink.

3.4 Console Output

On
e it was possible to write 
ode in C and run it in prote
ted mode, progress be
ame

mu
h faster. The next thing to do was to print messages on the 
onsole. Be
ause the

PC ar
hite
ture supports simple memory mapped 
onsole output, it was easy and

a
tually fairly enjoyable to write routines to output messages. No interrupts were

involved and there were no 
ompli
ated timing or syn
hronization issues.

On
e the 
onsole output was working, and a simple printf() fun
tion was avail-

able, a keyboard driver be
ame almost essential. Although the keyboard 
an generate

interrupts, the driver was initially written to use polling loops to monitor the key-

board status register. On
e both keyboard and 
onsole were working, some diagnosti


routines were written, in
luding routines to display regions of memory.

An alternative to developing drivers for the 
onsole and keyboard would have

been to develop a driver for the serial port. This would have had some advantages in

that a serial 
onne
tion via a 
able to the development system 
ould have been used

for debugging. Having su
h a fa
ility at the earliest stages of development would

1

The BIOS refers to the software in read{only memory. On a typi
al personal 
omputer it


ontains bootstrap software, along with a rudimentary set of devi
e drivers.

2

LED: light emitting diode
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have been very useful and this should be 
onsidered if Skidoo is ported to other

ar
hite
tures.

3.5 Threads

The most important aspe
t of Skidoo was the ability to do 
on
urrent programming

using threads along with semaphores for syn
hronization. In Skidoo, a thread 
onsists

of a 
ontrol stru
ture and a sta
k. The 
ontrol stru
ture 
ontains a pointer to the

sta
k, spa
e to store saved registers, a small amount of status information, and a

pointer to the fun
tion where that thread should start exe
uting. A thread state

variable indi
ates whether the thread is ready to run or blo
ked for some reason.

All threads are kept on a single linked list. Initially there is only a single thread

whi
h starts in the fun
tion user_init(). Swit
hing between threads is a

omplished

by saving registers, swit
hing sta
ks, and restoring registers so that exe
ution resumes

in a di�erent thread. Although it is obs
urely do
umented, the Gnu C 
ompiler

expe
ts 6 registers to be preserved between fun
tion invo
ations (ebx, edx, esp, ebp,

esi, and edi), and 2 registers (eax and e
x) may be freely destroyed. Assembly

language 
ode was written to perform 
ontext swit
hing.

The pair of routines thr_blo
k() and thr_unblo
k() are the heart of the thread

system. A thread 
alls thr_blo
k to mark itself not ready; another thread is then

sele
ted to be run. Calling thr_unblo
k allows a blo
ked thread to be marked ready

on
e again. At this early stage of the system there were no interrupts (in parti
ular no


lo
k interrupt) and no preemptive s
heduling. When a thread performed a blo
king


all, it would save its registers and swit
h to an idle thread, whi
h ran a s
heduler.

The s
heduler would sear
h the thread list for some other thread to run. If there was

no ready thread, the system 
ould do nothing but halt.

It turns out that there is no reason to have a separate idle thread. (In fa
t having

one introdu
es a needless thread swit
h.) This 
ode was revised so that ea
h thread

runs the s
heduling loop when it needs to �nd another thread to pass 
ontrol to. A


all thr_yield() was needed in the early system; it ran the s
heduling loop, even

when a thread did not wish to blo
k. It has been eliminated in the �nal system, but it

was ne
essary before preemptive s
heduling and priorities were operational. Without

it, new threads were 
reated but never ran.

3.6 Priorities

A poli
y was needed to de
ide whi
h thread to run in the event that more than one

thread was in the ready state. By assigning ea
h thread a priority and insisting that

all priorities be unique, it is easy to de�ne a simple, unambiguous poli
y: the thread

in the ready state with the most urgent priority should run. It is 
ertainly possible

to de�ne other poli
ies, espe
ially if there are multiple threads with identi
al priority.
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Adding priorities involved adding the priority to the thread 
ontrol stru
ture and

adding poli
y 
ode to the s
heduling loop. At �rst, the entire linked list of threads

was sear
hed and the most urgent ready thread sele
ted and run. It soon be
ame

obvious that a good optimization is to keep the list in order, with the most urgent

threads �rst, and sear
h the list only from the 
urrent thread to the end. Currently, a

thread is 
reated with a spe
i�ed priority and that priority remains �xed. It would be

easy to allow a thread to 
hange priority (or to have its priority 
hanged). On
e this

is done, it will be ne
essary to 
onsider the need to immediately s
hedule a thread

whose priority has been elevated.

3.7 Semaphores

The blo
king and unblo
king 
alls provide a 
lumsy form of syn
hronization. The

utility of semaphores is well known [1, 5℄. Given the thread blo
king and unblo
king

fa
ility, they are simple to implement using a state variable and a list of blo
ked

threads. Skidoo implements binary semaphores with an initial value of one for mu-

tual ex
lusion. Binary semaphores with an initial value of zero are used for private

signaling semaphores.

3.8 Timers and Interrupts

The ability to perform a

urate time delays is essential to embedded real time pro-

gramming. The desire for timing signals was the impetus to provide fa
ilities in

Skidoo for dealing with interrupts. A substantial amount of assembly language 
ode

was written to save registers and 
all a spe
i�ed C language interrupt handler. A

fun
tion was provided to allow an arbitrary interrupt sour
e to be routed to a spe
i-

�ed C fun
tion and this fa
ility was used to implement a handler for timer interrupts.

The default timer handler keeps time by 
ounting ti
ks, performs a 
allba
k to a user

timer fun
tion (if one has been registered), and handles a list of threads with pending

delays. This list is kept in order of in
reasing delay with the shortest delay at the

front of this list. As entries are added, they are pla
ed in proper order and the delay


ount adjusted so that it is relative to the entry pre
eding it. On
e this is done, only

the front entry needs to be de
remented at ea
h ti
k [13℄.

3.9 Preemption

When an interrupt o

urs, some thread is suspended while the interrupt handler runs.

Normally, when the handler is �nished, the same thread is again resumed. On
e an

interrupt had the potential to modify the state of a thread, it was ne
essary to 
onsider

the possibility of resuming a di�erent thread upon 
ompletion of the interrupt. In

parti
ular, it is desirable to resume a di�erent thread when that thread is more

urgent than the 
urrently running thread, and has been marked ready by the interrupt
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handler. As a spe
i�
 example, expiration of a delay interval 
ould 
ause a new thread

to be marked ready within an interrupt routine. If this thread was of more urgent

priority than the 
urrent thread, it would be ne
essary to resume it immediately rather

than resume the thread that was running when the interrupt o

urred. In this 
ase,

the 
urrently running thread is marked as \suspended during interrupt" and the more

urgent thread is resumed instead when the interrupt is �nished. This results in there

being two possible ways that a thread 
an be suspended. One is the syn
hronous 
ase

where the thread itself performed a 
all to thr_blo
k. The se
ond is the asyn
hronous


ase where the thread was left suspended after an interrupt routine handed 
ontrol

to some other thread. In retrospe
t it would be possible to make these two states

identi
al by simply saving some additional registers in the syn
hronous 
ase, but this

has not been done.

The situations that may result in a 
hange in the 
urrently running thread are

enumerated in Figure 3.1. Noti
e that thr_yield() is not listed, as it has been

eliminated in the �nal system.

Thread is 
reated.

Thread exits.

Thread blo
ks.

Thread is unblo
ked.

Thread 
hanges priority.

Figure 3.1. Thread preemption points

The ability to unblo
k threads and transfer to them immediately from interrupt


ode is vital in real{time systems. In Figure 3.1 the blo
king and unblo
king points

in
lude semaphores, timer delays, and other syn
hronization primitives yet to be

des
ribed. Whenever a thread enters or leaves the system (or is blo
ked or unblo
ked),

it is ne
essary to reevaluate whi
h thread should be running. The ability for a thread

to 
hange priority was originally not part of the design, but it is ne
essary to provide


orre
t behavior in 
ertain situations. Notable among these is priority inversion,

where a less urgent thread holds a mutex that a more urgent thread is blo
ked waiting

to a
quire.

3.10 Continuations

Normally a thread 
alls thr_blo
k() to blo
k, and returns again from this fun
tion

when it unblo
ks. Continuations [6℄ were implemented as an experimental alternative.

A thread whi
h blo
ks with a 
ontinuation spe
i�es the fun
tion it should exe
ute

when it unblo
ks. It never returns from the blo
king 
all but instead exe
utes the
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spe
i�ed fun
tion. This makes it possible to save only the fun
tion pointer and an

argument rather than the full set of registers. Continuations were easy to implement

by adding additional thread state to support a new resumption me
hanism. It turns

out that this me
hanism is entirely appropriate for laun
hing a new thread: spe
ify

a 
ontinuation fun
tion and add the new thread to the thread list.

Continuations suggest an additional optimization that has not yet been exploited.

When the s
heduling loop �nds no thread ready, and the 
urrent thread expe
ts to

resume with a 
ontinuation, the system 
ould set a 
ag indi
ating that no state needs

to be saved when departing from this thread. It would remain in this state until an

interrupt o

urs, and no registers would need to be saved to transition from this state

into the interrupt routine and from there to whatever thread should be resumed. It

has been pointed out [5℄ that most operating systems have a \homing position" where

the system resides when it is at rest. Threads \a

ept a task" and leave the homing

position, returning again when the task has been performed. By designing a system

to 
onsist of threads that ea
h handle a spe
i�
 task using a 
ontinuation, very fast

response times 
ould be a
hieved.

3.11 Condition Variables

On
e a 
lean interrupt system was developed and tested, the keyboard driver was

redesigned to use interrupts. An interrupt{driven keyboard 
ould support \hot keys"

that would display debug information, and even reboot the system in 
ases where the

system had hung. (This did in fa
t prove immensely useful.) The keyboard interrupt

handler would, with interrupts blo
ked, add 
hara
ters to a queue. It is ne
essary

both to lo
k the queue during a

ess by a thread 
onsuming the 
hara
ters, and to

signal su
h a thread on
e it had blo
ked upon �nding the queue empty. Lo
king was

done by disabling interrupts, but the business of blo
king while releasing the lo
k

needed to be handled 
arefully to avoid ra
e 
onditions. This is exa
tly the sort of

problem that monitors and 
ondition variables were intended to solve [1, 9℄.

A 
ondition variable fa
ility was developed to 
ouple together a mutex lo
k with a

signaling semaphore. Two forms of 
ondition variables are provided. The �rst 
ouples

together a mutex semaphore with a signaling semaphore and is intended for signaling

between threads. The se
ond 
ouples together the interrupt lo
k with a signaling

semaphore and is intended for signaling between threads and interrupt routines. The

latter form has been used in both the keyboard and serial drivers.

3.12 Drivers

A driver for the serial ports was developed next. It was gratifying that Skidoo was

mature enough that this driver 
ould be developed in a straightforward way, entirely

in C, using existing fa
ilities. Interrupt routines were 
onne
ted to hardware using

interrupt 
hanneling. Condition variables were used for signaling between interrupt
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routines and waiting threads|both to indi
ate available 
hara
ters on re
eption and

additional bu�er spa
e on transmission. The 
hara
ter queue library designed for the

keyboard driver was used for both transmitted and re
eived 
hara
ters in the serial

port driver. Although this driver did not require new me
hanisms in Skidoo, it did

give the system a good workout. With the serial port a
tive, interrupts from the

keyboard, timer, and serial port were all a
tive and some new bugs were exposed and

�xed.

A driver for an ISA{bus data a
quisition 
ard was also developed (the \DAS-16"

marketed by Keithley{Metrabyte and others). The driver uses interrupts, was 
oded

entirely in C, and required no new methodology in Skidoo. Writing a driver like

this is an ex
ellent test, sin
e every embedded system seems to involve developing

drivers for new hardware, and a good test of the system is how easy it makes this

pro
ess. Having immediate a

ess to the address spa
e 
ontaining the hardware and

not needing to install assembly language interrupt routines made the pro
ess easy.

des
ription lines

header �les 713

assembly language 1307


onsole.
 1108

delay.
 166

main.
 107

prf.
 644

random.
 112

serial.
 523

sklib.
 390

thread.
 1550

trap.
 958

version.
 7

das16.
 407

user.
 140

tests.
 2096

server.
 125

total 10353

Figure 3.2. Sour
e 
ode summary
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3.13 Code size

The sour
e 
ode for Skidoo is freely available from http://kofa.mmto.org/skidoo.

(This thesis des
ribes version 0.4.1 of Skidoo.) Skidoo 
onsists of about 10000 lines

of C sour
e 
ode, as shown in Figure 3.2. Considering that about 2000 lines of

this are test 
ases, the 
ore of Skidoo is approximately 8000 lines of 
ode. About

1300 lines of this are assembly language 
ode. The pro
essor initialization, thread

swit
hing, and basi
 interrupt handling 
ould only be expressed in assembly language.

On a pro
essor other than the x86, the pro
essor initialization 
ode would be mu
h

smaller, sin
e other pro
essors do not have multiple modes like the x86. Figure 3.2

does not in
lude the slab allo
ator or any of the network 
ode.

Figure 3.3 shows the 
ompiled size of the Skidoo kernel in various 
on�gurations.

The basi
 kernel is 
ompa
t enough to �t into read{only memory as part of a 
ompa
t

appli
ation.

basi
 kernel 22k

kernel and tests 36k

kernel and slab allo
ator 55k

kernel and network 320k

Figure 3.3. Exe
utable 
ode size
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Chapter 4

APPLICATIONS AND TESTS

This 
hapter dis
usses what has been done to test and exer
ise Skidoo. An extensive

test suite was developed 
ase by 
ase as features were added to Skidoo. An intera
tive

\shell" was developed to invoke the tests and to inspe
t the internal state of Skidoo.

Two appli
ations { a serial terminal and a data a
quisition fa
ility { were developed

to demonstrate the utility of Skidoo.

4.1 Test suite

Ea
h time a new feature was added to Skidoo, a test 
ase was written to exer
ise

that feature. All of the test 
ases have been retained, even old, seemingly histori
al

and trivial ones. This test suite has grown to over 2000 lines of 
ode. Assembling

this set has proved to be a prudent 
ourse of a
tion. After the spe
i�
 test 
ase for a

new feature has run su

essfully, the entire suite of previous 
ases is run. On
e that

is su

essful, the entire suite is pla
ed in a loop and run multiple times, sometimes

through the night. Both of these last pro
edures have turned up unexpe
ted bugs.

Figure 4.1 shows the set of tests.

1 Start a thread

2 Setjmp and longjmp

3 Timer hookup

4 Thread delay

5 Create multiple threads

6 Create reentrant threads

7 Signal with semaphores

8 Pass arguments to thread fun
tions

9 Many threads blo
k on single semaphore

10 Unblo
k semaphore from an interrupt routine

11 Signal thread using 
ondition variable

12 Thread join and exit

13 Mutex semaphore

14 Keyboard diagnosti


15 Serial port diagnosti
s

Figure 4.1. Test suite
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4.2 Debugging tools

In addition to the test suite, a set of diagnosti
 tools were developed to exer
ise

Skidoo. A simple 
ommand line interfa
e allows individual tests to be run on
e or

any number of times. Additionally the entire suite may be run as many times as

desired. Retaining every test, and repeating them as new features were added has

proved invaluable. Often the addition of a new feature introdu
es bugs in an old one.

When 
hanges are made to basi
 algorithms, it is essential to be able to verify that

all features still work properly.

In addition to running the tests, the \shell" allows dumping of memory, inspe
ting

the sta
k, and inspe
ting important data stru
tures. An example of the display of

the thread list is shown in Figure 4.2.

This display shows a typi
al thread status during testing. The asterisk next to

the thread at priority 55 indi
ates the 
urrently running thread. The state 
olumn

shows that the two threads with more urgent priorities are blo
ked on a semaphore

and a timer delay. A single 
hara
ter shows the resumption mode of ea
h thread: J

for the usual \jump" mode, C for a 
ontinuation, I for a postponed interrupt.

Thread: name ( &tp ) state esp pri

Thread: sserv (0000C4EC) SEM J 00072E8C 50

Thread: tf2 (0000C3F4) DELAY C 00074FF4 52

* Thread: tf1 (0000C470) READY I 00073FF4 55

Thread: user (0000C568) READY J 00071F80 899

Thread: sys (0000C5E4) READY J 00070FAC 950

Thread Cur : (0000C470) (INT)

Figure 4.2. Typi
al thread display

4.3 Timing

A number of experiments were performed to measure the time ne
essary to respond

to interrupts, and to transfer 
ontrol to a previously blo
ked thread. In all 
ases the

timer was used to generate interrupts to supply the triggering event. The Pentium

timestamp 
ounter was used to measure intervals.

1

The system is running a thread

at a non-urgent priority that is looping reading the timestamp 
ounter and writing

1

The Pentium timestamp 
ounter is a 
onstantly in
rementing 64 bit timer that 
ounts at the

system 
lo
k rate, in this 
ase 200 Mhz. It 
an be read using a spe
ial pro
essor instru
tion into a

pair of 32 bit registers.
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it into a memory lo
ation. When the timer interrupt happens, the last timestamp

value remains in the designated memory lo
ation. On
e the more urgent thread

is a
tivated, it reads the timestamp 
ounter again and 
an 
al
ulate the transfer

time. These experiments were performed on a pro
essor running at 200 Mhz so that

resolution of 5 nanose
onds was obtained. Figure 4.3 shows the results obtained.

experiment laten
y

thread to thread, normal 2.32 mi
rose
onds

thread to thread, 
ontinuation 2.05 mi
rose
onds

thread to interrupt 0.855 mi
rose
onds

Figure 4.3. Control transfer timings

4.4 Serial terminal

Given the 
onsole, keyboard, and serial port driver, a very simple appli
ation is a

serial terminal. A pair of threads are 
reated. One blo
ks waiting for keyboard input;

the other blo
ks waiting for serial port input. When 
hara
ters arrive from the serial

port, they are output to the 
onsole. When they arrive from the keyboard, they are

output to the serial port.

Even though this is a trivial appli
ation, it serves as a good diagnosti
 for multiple

interrupt sour
es (keyboard, timer, and serial port). This test has no real{time re-

quirements apart from the need to move input 
hara
ters before the small (128 byte)

input bu�ers over
ow.

The 
ode for this appli
ation is shown in Figure 4.4. The fun
tion user_init runs

as a high priority thread, initializes serial port parameters, starts two new threads,

and is done. The �rst thread runs in the fun
tion t_in and is usually blo
ked waiting

for 
hara
ters to arrive on the serial port, whi
h it then 
opies to the 
onsole. The

se
ond thread runs in the fun
tion t_out and is usually blo
ked waiting for 
hara
ters

to be typed at the keyboard. When 
hara
ters are typed, they are 
opied to the serial

port. Although both threads run at the same priority, neither is CPU bound and will

yield the pro
essor to the other when it blo
ks.
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void

user_init ( void ) /* initialize port & 
reate 2 threads */

{

sio_baud ( PORT, 9600 );

sio_
rmod ( PORT, 0 );

(void) thr_new ( "te_i", t_in, (void *)PORT, PRI_TERM, 0 );

(void) thr_new ( "te_o", t_out, (void *)PORT, PRI_TERM, 0 );

}

stati
 void

t_in ( int port ) /* 
opy from serial port to 
onsole */

{

int 
;

for ( ;; ) {


 = sio_get
 ( port );

if ( 
 == '\r' )


 = '\n';

vga_put
 ( 
 );

}

}

stati
 void

t_out ( int port ) /* 
opy from keyboard to serial port */

{

int 
;

for ( ;; ) {


 = kb_read ();

sio_put
 ( port, 
 );

if ( 
 == '\r' )

sio_put
 ( port, '\n' );

}

}

Figure 4.4. Serial terminal appli
ation
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4.5 Data A
quisition Server

A data a
quisition server was written as a demonstration appli
ation. This server

allows an analog data a
quisition devi
e to be 
ontrolled remotely using a serial port.

Single samples, periodi
 data, and burst data may be 
olle
ted from any of 16 inputs.

This appli
ation makes use of a spe
ial pie
e of 
omputer hardware. A \DAS-16"

analog data a
quisition board was installed in the target system and a devi
e driver

written to a

ess this devi
e under Skidoo. The \DAS-16" board is typi
al of the

sort of hardware used in embedded 
ontrol proje
ts. It has a 12{bit analog to digital


onverter and an input multiplexer that sele
ts one of 16 
hannels for 
onversion.

It also has a pair of 12{bit digital to analog 
onverters and a programmable timer.

Analog to digital 
onversions may be triggered by software or by the timer. When a


onversion is 
omplete, an interrupt is generated.

Most of the work developing this appli
ation 
onsisted of writing the devi
e driver

for the \DAS-16." The driver for this devi
e 
onsists of about 400 lines of C, and

was straightforward to develop. On
e the driver was written, a simple proto
ol was

designed to make the drivers 
apabilities a

essible from the serial port.

The server provides a

ess to the hardware in three di�erent modes. A single

sample may be obtained from any 
hannel at any time. A burst 
aptures a pre
isely

timed sequen
e of 1000 points at 1000 Hz. Periodi
 sampling may be s
heduled at

a more leisurely rate. The server uses two threads. One thread waits for 
ommands

from the serial port and handles them as they arrive. The se
ond thread handles

periodi
 sampling and waits for timer events. A mutual ex
lusion semaphore is used

to arbitrate a

ess to the 
onversion hardware by the two threads. The lo
k is held

for the duration of a burst (an entire se
ond). A sample of the 
ode to support the

burst mode is shown in Figure 4.5.

The interrupt routine that supports the burst mode follows in Figure 4.6. It

a

umulates the required number of samples into a bu�er, then unblo
ks the waiting

thread using a semaphore. The thread that supports periodi
 sampling is a
tivated

by passing a semaphore from a 
lo
k interrupt routine, as shown in Figure 4.7.

This is a simple appli
ation, but it illustrates many of the features of Skidoo. This

kind of appli
ation is used for monitoring temperatures and for
es in a remote lo
ation

with telemetry being obtained over a serial 
onne
tion, perhaps using opti
al �bers.

The set of fa
ilities provided by Skidoo are adequate to allow it to repla
e 
ommer
ial

operating systems in many appli
ations now in servi
e at large teles
opes in Southern

Arizona.
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/* 
reate semaphores */

das_sem = sem_signal_new ( SEM_FIFO );

das_mutex = sem_mutex_new ( SEM_PRIO );

short *

das_burst ( int 
han, int num )

{

/* enter 
riti
al region to a

ess hardware */

sem_blo
k ( das_mutex );

das_s
an ( 
han, 
han );

das_rate ( 100, 100 );

outb ( CTL_IRQ_5, base + CTL );

outb ( CTL_IE | CTL_IRQ_5 | CTL_TT, base + CTL );

/* 
onne
t handler to interrupt */

irq_5_hookup ( das_int );

/* 
lear the interrupt flag and enable the 
lo
k. */

outb ( 0x00, base + STATUS );

outb ( CLK_GATE, base + CLOCK );


ount = 0;

want = num;

next = buffer;

state = RUN;

/* wait for signal that data has a

umulated */

sem_blo
k ( das_sem );

/* exit 
riti
al region */

sem_unblo
k ( das_mutex );

return buffer;

}

Figure 4.5. Example: routine implementing burst mode
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stati
 void

das_int ( void )

{

int s
an, data;

unsigned long ti
ks;

/* 
lear interrupt request. */

outb ( 0xff, base + STATUS );

/* let this request be a no-op */

if ( state != RUN )

return;

/* read sampled value from hardware */

s
an = inb ( base + DATA_LO );

data = inb ( base + DATA_HI ) << 4;

*next++ = data | (s
an & 0xf0) >> 4;

/* signal when requisite number is obtained */

if ( ++
ount >= want ) {

state = HOLD;

sem_unblo
k ( das_sem );

}

}

Figure 4.6. Example: interrupt routine
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stati
 short per_buf[240℄;

stati
 short *next_per = per_buf;

stati
 int per_
ount = 0;

stati
 stru
t sem *per_sem;

void my_timer ( void )

{

/* subdivide 
lo
k, a
tivate thread every 10 se
onds */

if ( (per_
ount++ % 1000) == 0 )

sem_unblo
k ( per_sem );

}

stati
 void

periodi
 ( int xx )

{

for ( ;; ) {

/* wait for timer a
tivation */

sem_blo
k ( per_sem );

/* pla
e new reading in buffer */

if ( next_per < &per_buf[240℄ ) {

*next_per++ = das_ad
 ( 3 );

}

}

}

void

user_init ( int xx )

{

/* new signaling semaphore */

per_sem = sem_signal_new ( SEM_FIFO );

/* initialize timer and 
onne
t timer handler */

tmr_rate_set ( 100 );

tmr_hookup ( my_timer );

/* laun
h new thread to be a
tivated by timer */

(void) thr_new ( "das", periodi
, (void *) 0, 49, 0 );

}

Figure 4.7. Example: timer a
tivated thread
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This thesis has des
ribed the design and implementation of Skidoo, a 
ompa
t real{

time operating system. Skidoo o�ers a 
omplete set of threading servi
es at the

kernel level, along with a versatile set of syn
hronization primitives. The premise

that a useful system 
ould be built simply from threads and semaphores has been

demonstrated to be valid. Additional servi
es su
h as timers, interrupt 
hanneling,

and devi
e drivers have been implemented to enri
h the fa
ilities provided.

Skidoo in
orporates a number of features that are unusual and interesting, if not

new. A 
lean high level fa
ility for interrupt handling makes the system espe
ially


onvenient to work with. The availability of 
ontinuations o�ers a new and useful

way to 
ontrol threads.

There is no question that this proje
t has been a worthwhile learning exer
ise.

Indeed it has gone signi�
antly beyond that to be
ome a useful tool for myself, and

hopefully for others. It has already been used to support a number of small proje
ts.

However, more 
an be done to provide library routines and a more 
omplete set of

devi
e drivers. The following se
tions outline some major extensions of fun
tionality

that are sensible next steps to take with this proje
t.

5.1 Networking

Without question, providing a network sta
k would be the single thing that would add

the most utility to Skidoo. This work has been started and development is ongoing.

The goal of adding a TCP/IP network sta
k is to have TCP and UDP so
kets

available within Skidoo. Rather than do this work from s
rat
h, the plan is to in
or-

porate the network 
ode from an existing open sour
e system. BSD 4.4 and Linux

are both reasonable 
andidates, but Linux has been 
hosen be
ause it supports the

greatest diversity of hardware. In order to use Linux sour
e 
ode with little or no


hange, it will be ne
essary to 
onstru
t a limited Linux emulator within Skidoo. The

advantage of keeping the Linux 
ode pristine is that it should be easier to migrate to

newer versions of the Linux 
ode as they be
ome available.

The network fa
ility (and Linux emulation layer) would be optional modules that


ould be omitted from Skidoo to redu
e the memory requirements for those appli
a-

tions where they are not required.
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5.2 Memory prote
tion

Skidoo makes no use of the memory prote
tion hardware that is available on the x86

pro
essor. It would be possible to make some bene�
ial uses of the memory prote
tion

hardware without 
hanging the single shared address spa
e that is a 
entral feature

of Skidoo.

The memory pages 
ontaining the Skidoo kernel 
ould be marked as read/exe
ute

or exe
ute only, so that pro
essor traps would o

ur if appli
ation threads made

invalid referen
es to that part of the address spa
e. This 
ould be a great bene�t to

debugging of new 
ode and should make the system more robust.

The pages 
ontaining the sta
k for ea
h thread 
ould be mapped into �xed virtual

addresses for all threads, and a page at the end of the sta
k 
ould be set up as a \red

zone" to 
at
h sta
k over
ows. This would also be a signi�
ant aid to debugging.

5.3 Debug fa
ilities

Skidoo was developed with almost no planning and forethought given to debugging.

The pro
ess would almost 
ertainly have been more eÆ
ient if some sort of debug

fa
ility had been built in as early as possible. It is possible to run the Gnu debugger

in remote mode a
ross a serial link, and this would have been a great help. It would

be a worthwhile fa
ility to in
orporate if Skidoo is developed further, and parti
ularly

if it is ported to new ar
hite
tures.

5.4 In
remental module loading

At present, to add 
ode to Skidoo, new modules must be 
ompiled and linked with

the Skidoo 
ore. The resulting image is then loaded by rebooting the system.

On
e a network fa
ility is available, it would be very attra
tive to have a feature

whereby modules 
ould be in
rementally loaded into a running system. Primarily

this would be of bene�t for 
ode development, be
ause many iterations of testing


ould be done without the ne
essity of rebooting the system. This would also make it

possible to boot the Skidoo 
ore from a read-only medium su
h as CDROM, and then

in
rementally load modules to obtain 
ustomized behavior or to fa
ilitate development

and testing.

To do in
remental module loading would require maintaining a symbol table to

perform lookups of already loaded symbols. Existing obje
t �le formats provide

relo
ation information that 
ould be used to modify address referen
es as a module

was loaded. The software to do the relo
ation would have to be written. An attra
tive

option would be to do the symbol table management and relo
ation outside of Skidoo

as part of a more sophisti
ated development system than ran on the development

host. This would be espe
ially attra
tive for a target host with minimal memory.
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5.5 Porting to new hardware

It would be worthwhile to port Skidoo to non{x86 ar
hite
tures as well as to multipro-


essor ma
hines (whether x86 or some other ar
hite
ture). Many proje
ts exist using

older hardware su
h as Multibus and VMEbus 
omputers. These proje
ts have a sub-

stantial investment in hardware other than the pro
essor itself and most 
ommonly

use non{x86 pro
essors su
h as the Motorola 680x0 or the Spar
.

Equally interesting would be the task of making Skidoo run on one of the in
reas-

ingly 
ommon and inexpensive x86 SMP ma
hines. The 
hange to the s
heduling

poli
y in this 
ase is straightforward: at any time, run the two runnable threads with

most urgent priorities! The fa
t that Skidoo is already fully preemptable will be a

tremendous aid to making it run on a multipro
essor.

5.6 Other suggestions

A message passing fa
ility would be a useful addition for both syn
hronization and


ommuni
ation. This would be essentially a data 
arrying semaphore. An example of

where this would be useful would be an I/O operation that blo
ks waiting for data,

but also is set up to unblo
k on a timeout. A message would provide a 
onvenient

way to indi
ate whi
h event unblo
ked the thread.

An intera
tive shell would also be a valuable addition to Skidoo. A very useful

mode of testing has been to exploit the serial driver in Skidoo and to set up a simple

RPC fa
ility a
ross the serial link. This would be substantially more useful when

network so
kets are available. As it is, it is in
redibly produ
tive to manipulate

Skidoo using an interpreted language su
h as Perl or Ruby. Sin
e an intera
tive shell

would be a tool for development and debugging, it makes a lot of sense to let it run on

the development host and to 
ommuni
ate with Skidoo using an RPC stub. In any

event, it should be arranged as an optional module so that both it and networking


ould be omitted to produ
e a more 
ompa
t image if desired.
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Appendix A

KERNEL INTERFACE SPECIFICATION

A.1 Hardware requirements

Skidoo runs on the x86 pro
essor. Development was done using a 200 MHz Intel

Pentium-MMX with 64 MB of memory. Skidoo has been tested on pro
essors ranging

from the 486 through the Pentium-III. It should run on the 386 pro
essor as well,

but this has not been tested. Certain pro
essor enhan
ements su
h as the 64 bit time

stamp 
ounter will not be available on the 386, but this is not essential to run the

kernel.

The most 
onvenient way to run Skidoo is to use the netboot pa
kage and arrange

for diskless booting from a server. If this is done, the only hardware required besides

the pro
essor, motherboard and memory are a video and network 
ard. If netboot

is not present in the ROM on the network 
ard, a 
oppy disk or CDROM will be

required for booting. If the motherboard supports it as a boot devi
e, the CDROM

is the most reliable and 
onvenient.

thr_new Create a new thread.

thr_exit Terminate 
urrent thread.

thr_self Identify 
urrent thread.

thr_kill Terminate some thread.

thr_join Await thread termination.

thr_blo
k Blo
k 
urrent thread.

thr_blo
k_
 Blo
k 
urrent thread with 
ontinuation.

thr_blo
k_q Blo
k 
urrent thread, reusing 
ontinuation.

thr_unblo
k Unblo
k some thread.

Table A.1. Thread 
alls

A.2 Threads

stru
t thread * thr_new ( 
har *name, tfptr fun
, void *arg,

int prio, int flags )
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This is used to 
reate a thread. A string may be given to identify the thread on

status listings. A fun
tion is spe
i�ed, to whi
h a single argument may be passed.

(If it is desired to pass multiple values to a thread, they should be loaded into a

stru
ture, and a pointer to the stru
ture should be passed to the thread fun
tion.) The

thread is assigned a priority, and 
ags are provided to spe
ify unusual behavior. The

present 
olle
tion of 
ags are TF_FPU (the thread uses 
oating point) and TF_BLOCK

(the thread should start up blo
ked). Most threads do not use 
oating point, and


oating point registers are not saved and restored during a 
ontext swit
h unless the

appropriate 
ag is spe
i�ed.

Priorities are stored as 32 bit signed integers; larger positive numeri
al values are

less urgent. Behavior for negative priorities is not de�ned and these values should

be avoided. Ea
h thread must be 
reated with a unique priority so that there is no

ambiguity about whi
h thread should run at any given time.

void thr_exit ( void )

This may be used by a thread to destroy itself. If a thread just \falls o� the end"

by returning from the thread fun
tion, a 
all to thr_exit is made transparently. In

the majority of 
ases, threads either run forever or fall o� the end, so this fun
tion is

rarely used dire
tly.

stru
t thread * thr_self ( void )

This allows a thread to get a pointer to itself. This 
an be more 
onvenient than

saving the pointer returned by thr_new.

void thr_kill ( stru
t thread * )

This terminates a running thread. If 
alled on the 
urrent thread, it is the same as


alling thr_exit. If 
alled on another thread, it arranges for it to resume in thr_exit

and marks it ready to run. The next time it is s
heduled, it will exit.

void thr_join ( stru
t thread * )

This blo
ks the 
urrent thread until the spe
i�ed thread 
alls thr_exit.

void thr_blo
k ( enum thread_state why )

void thr_unblo
k ( stru
t thread * )

These fun
tions are the most fundamental syn
hronization primitives in the Skidoo

kernel. Calling thr_blo
k blo
ks the 
urrent thread and posts a state other than

READY to indi
ate why. Calling thr_unblo
k unblo
ks the spe
i�ed thread. They are

rarely a

essed dire
tly; semaphores or 
ondition variables are used instead.



41

void thr_blo
k_
 ( enum thread_state why, tfptr fun
, void *arg )

This is identi
al to thr_blo
k ex
ept that a 
ontinuation is spe
i�ed. When

the thread is unblo
ked it will resume in the 
ontinuation fun
tion, whereas with

thr_blo
k the thread resumes by returning from the thr_blo
k 
all.

void thr_blo
k_q ( enum thread_state why )

This is a 
ommon optimization after a 
all to thr_blo
k_
 has been previously

made. It should be noted that at all times every thread has a 
ontinuation fun
tion

set. If one has never been set expli
itly, it is impli
itly the fun
tion spe
i�ed to

thr_new when the thread was 
reated. A 
all to thr_blo
k_q blo
ks the thread and

sets a 
ag so that it will resume in whatever 
ontinuation fun
tion has already been

spe
i�ed. It is a slight optimization over 
alling thr_blo
k_
 repeatedly with the

same 
ontinuation fun
tion.

sem_mutex_new Create a new mutex semaphore.

sem_signal_new Create a signaling semaphore.

sem_destroy Destroy a semaphore.

sem_blo
k Blo
k on a semaphore.

sem_unblo
k Unblo
k a semaphore.

sem_blo
k_try Test and blo
k on a semaphore.

sem_blo
k_
 Blo
k on a semaphore with 
ontinuation.

sem_blo
k_q Blo
k on a semaphore, reusing 
ontinuation.

Table A.2. Semaphore 
alls

A.3 Semaphores

stru
t sem * sem_mutex_new ( int flags )

stru
t sem * sem_signal_new ( int flags )

Calling sem_mutex_new 
reates a new mutual ex
lusion semaphore. A 
all to

sem_signal_new 
reates a new signaling semaphore. The 
ags variable may be used

to indi
ate alternate s
heduling poli
ies ( SEM_FIFO versus SEM_PRIO ). The default

is FIFO s
heduling.

void sem_destroy ( stru
t sem * )
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This 
all destroys a semaphore so that resour
es asso
iated with it 
an be reused.

This should only be done when there is no possibility of further a
tivity on the

semaphore.

void sem_blo
k ( stru
t sem * )

This is e�e
tively the P operation from the 
lassi
al semaphore literature. If the

semaphore is set (1), this 
all will 
lear it and keep exe
uting. If the semaphore is


lear (0), this 
all will blo
k the 
urrent thread and pla
e it on a list asso
iated with

the semaphore.

void sem_unblo
k ( stru
t sem * )

This is the V operation. This routine never blo
ks, but it may 
ause another thread

to be unblo
ked. It does nothing if the semaphore is already set (1). If the semaphore

is 
lear (0) and the semaphore queue is empty, the semaphore is set. If the semaphore

is 
lear and the semaphore queue is non{empty, one thread in the queue is unblo
ked

and the semaphore value remains 
leared. Whi
h queue entry gets unblo
ked depends

on a poli
y 
ag set when the semaphore was 
reated. In the usual 
ase the poli
y

is SEM_FIFO, and the entry at the front of the queue is unblo
ked. If the poli
y is

SEM_PRIO, the entry with the most urgent priority is removed from the queue and

unblo
ked.

int sem_blo
k_try ( stru
t sem * )

This is a version of sem_blo
k that attempts to a
quire a semaphore (typi
ally

a mutex) but that will never blo
k. If the semaphore is set, it 
lears the semaphore

and returns 1. If the semaphore is already 
lear, it returns 0 rather than blo
king as

sem_blo
k would do.

void sem_blo
k_
 ( stru
t sem *sem, tfptr fun
, void *arg )

This is identi
al to sem_blo
k ex
ept that it resumes via a 
ontinuation.

void sem_blo
k_q ( stru
t sem *sem )

This is identi
al to sem_blo
k ex
ept that it resumes using a previously established


ontinuation.
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v_new Create a new 
ondition variable.


v_destroy Destroy a 
ondition variable.


v_wait Blo
k and wait for a 
ondition.


v_signal Signal a 
ondition.


pu_enter Enter interrupt lo
ked region.


pu_leave Leave interrupt lo
ked region.


pu_new Create a new CPU 
ondition variable.


pu_wait Wait for a 
ondition under a CPU lo
k.


pu_signal Signal a 
ondition under a CPU lo
k.

Table A.3. Condition variable 
alls

A.4 Condition Variables

Condition variables are a 
oupling of a mutex semaphore and a signaling semaphore.

One mutex semaphore may be involved with several signaling semaphores, ea
h ex-

pressing a di�erent predi
ate. For this reason the mutex semaphore must be 
reated

�rst, and then 
oupled to ea
h predi
ate in turn. On
e this is done, the 
ondition

variable is a single unit that 
an be used in the wait 
all.

stru
t 
v * 
v_new ( stru
t sem *mutex )

This 
onstru
ts a new 
ondition variable that binds together the indi
ated mutex

and a newly generated signaling semaphore.

void 
v_destroy ( stru
t 
v * )

This destroys a 
ondition variable, and releases its resour
es.

void 
v_wait ( stru
t 
v * )

This blo
ks and waits for a signal on a 
ondition variable. The 
aller must already

hold the mutex semaphore.

void 
v_signal ( stru
t 
v * )

This unblo
ks a thread waiting on a 
ondition variable.

void 
pu_enter ( void )

void 
pu_leave ( void )

This pair of routines obtain and release a 
pu lo
k { by disabling and re{enabling

all interrupts { in order to enter and leave an interrupt sensitive 
riti
al region. They

provide an interrupt safe mutex.
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stru
t sem *
pu_new ( void )

void 
pu_wait ( stru
t sem * )

void 
pu_signal ( stru
t sem * )

These routines are used in 
onjun
tion with 
pu_enter and 
pu_leave to imple-

ment a 
pu lo
ked 
ondition variable. The routine 
pu_wait is used to blo
k and wait

for a signal while holding a 
pu lo
k. 
pu_signal is used to unblo
k a thread waiting

for the signal, typi
ally from an interrupt handler where the 
pu lo
k is impli
itly

held.

tmr_rate_set Set 
lo
k interrupt rate.

tmr_rate_get Get 
lo
k interrupt rate.

tmr_hookup Conne
t a fun
tion to the timer.

tmr_delay Blo
k 
urrent thread for an interval.

tmr_delay_
 Blo
k and delay using 
ontinuation.

tmr_delay_q Blo
k and delay reusing last 
ontinuation.

Table A.4. Timer 
alls

A.5 Timer fa
ilities

A programmable hardware timer exists whi
h produ
es interrupts at a 100 Hz rate.

On the x86, the a
tual rate is 100.0067052 Hz. The timer is a

essed by the following

fun
tions:

void tmr_rate_set ( int hz )

This sets the rate at whi
h interrupts are produ
ed by the timer. If this fun
tion

is never 
alled, timer interrupts are produ
ed at 100 Hz.

int tmr_rate_get ( void )

This dis
overs the rate at whi
h interrupts are produ
ed by the timer.

void timer_hookup ( fptr fun
 )

This spe
i�es a C fun
tion that is 
alled ea
h time the timer interrupts. Only one


allba
k of this sort is allowed; subsequent 
alls repla
e the previously established

fun
tion. A null argument may be spe
i�ed to dis
onne
t the fun
tion.
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void thr_delay ( int nti
ks )

This is a 
onvenient (although somewhat impre
ise) way to obtain timing delays.

After this 
all the thread is blo
ked until the spe
i�ed number of timer ti
ks have

elapsed. At this time the thread will be made ready, and will run immediately if it

is the runnable thread of most urgent priority. Otherwise, it will run only after more

urgent runnable threads have blo
ked.

void thr_delay_
 ( int nti
ks, tfptr fun
, void *arg )

This is identi
al to thr_delay ex
ept that it resumes in a 
ontinuation fun
tion.

void thr_delay_q ( int nti
ks )

This fun
tion delays, resuming in a previously established 
ontinuation fun
tion.

Usually the 
ontinuation will have been spe
i�ed in a thr_delay_
 
all, but the


ontinuation given in thr_new 
ould be used as well. The thr_delay_q fun
tion is


onvenient for 
onstru
ting periodi
 loops using tail-re
ursion.

vga_put
 Put a 
hara
ter on the s
reen.

vga_puts Put a string on the s
reen.

vga_s
reen Sele
t an alternate s
reen.

get
har Await and read a keystroke.

get
hare Read keystroke and e
ho to s
reen.

sio_get
 Read 
hara
ter from serial port.

sio_put
 Send 
hara
ter to serial port.

sio_gets Read string from serial port.

sio_puts Send string to serial port.

sio_baud Set serial port baud rate.

Table A.5. Devi
e driver 
alls

A.6 Devi
e drivers

This se
tion summarizes the most important devi
e driver a

ess routines.

void vga_put
 ( int 
 )

void vga_puts ( 
har *s )

void vga_s
reen ( int n )
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The 
onsole driver outputs 
hara
ters to a VGA 
ompatible video 
ard supporting

a 25 line by 80 
olumn 
onsole. A 
all to vga_put
 pla
es a single 
hara
ter on the

s
reen. Calling vga_puts pla
es all 
hara
ters in a null terminated string on the

s
reen. A 
all to vga_s
reen sele
ts one of 8 virtual s
reens for display. Additional

fun
tions manipulate the 
ursor and are des
ribed in the sour
e 
ode.

1

int get
har ( void )

int get
hare ( void )

The keyboard driver reads from the standard PC keyboard. Calling get
har reads

a 
hara
ter from the keyboard without attempting to e
ho the 
hara
ter. Calling

get
hare reads a 
hara
ter and e
hos it to the 
onsole, as would normally be expe
ted.

int sio_get
 ( int port )

void sio_put
 ( int port, int 
 )

void sio_gets ( int port, 
har *s )

void sio_puts ( int port, 
har *s )

void sio_baud ( int port, int rate )

The serial driver reads from and writes to either serial port 0 or 1. Calls to

sio_get
 and sio_put
 read and write a single 
hara
ter from the spe
i�ed port.

Calls to sio_gets and sio_puts read and write a string from the spe
i�ed port. A


all to sio_baud sets the baud rate on the spe
i�ed port. Rates from 300 to 38400

are supported exa
tly. A rate of 56000 baud is only possible with a 3 per
ent error

given the standard 1.8432 Mhz 
rystal, but this seems to work just �ne.

A.7 Interrupt fa
ilities

void ve
tor_hookup ( int ve
tor, fptr fun
 )

This 
all arranges that the spe
i�ed C fun
tion is 
alled whenever the indi
ated

interrupt o

urs.

A.8 Booting and initialization

After bootstrap, the kernel relo
ates itself to the lowest part of memory. It then

makes the rest of memory available for dynami
 allo
ation. After all subsystems are

initialized, the �rst thread is started in the fun
tion user_init. This is expe
ted to

be supplied by the user and will typi
ally allo
ate resour
es and start other threads

ne
essary to run the intended appli
ation. This �rst thread runs at the most urgent

possible priority (priority 0), so that no other threads run until it exits.

1

The sour
e 
ode may be obtained from http://kofa.mmto.org/skidoo. This thesis des
ribes

version 0.4.1 of Skidoo.
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