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Abstract

Mirage is a system that aggregates multiple NFS
servers into a single, virtual NFS file server. It is in-
terposed between the NFS clients and servers, mak-
ing the clients believe that they are communicating
with a single, large server. Mirage is an NFS router
because it routes an NFS request from a client to the
proper NFS server, and routes the reply back to the
proper client. Mirage also prevents DoS attacks on
the NFS protocol, ensuring that all clients receive a
fair share of the servers’ resources. Mirage is de-
signed to run on an IP router, providing virtualized
NFS file service without affecting other network traf-
fic. Experiments with a Mirage prototype show that
Mirage effectively virtualizes an NFS server using
unmodified clients and servers, and it ensures that
legitimate clients receive a fair share of the NFS
server even during a DoS attack. Mirage imposes an
overhead of only 7% on a realistic NFS workload.

1 Introduction

Mirage provides NFS [Sandberg85] clients with the
illusion that a collection of NFS servers is actually a
single, virtual NFS server. Mirage is not an NFS
server -- it is an NFS router, which operates by rout-
ing client requests to the appropriate NFS servers,
and routing replies back to the appropriate clients
(Figure 1). Mirage exports a set of file systems that is
the union of the file systems exported by the NFS
servers. Clients mount a file system from the virtual
server and access its contents as if Mirage were a
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real, physical NFS server. Mirage is thus fully trans-
parent to the clients and servers, allowing unmodified
client and server implementations to use Mirage.

Figure 1: Mirage routes requests and replies between the NFS
clients and the NFS servers.

An NFS file system is stored on a single NFS server.
NFS has no provision for spreading a file system over
multiple servers. Due to this limitation, as the system
scales to more users, the NFS server will become
overloaded with the increased demand. The system
administrator has few solutions to this problem, in-
cluding upgrading the NFS server or introducing an
additional server and moving some files from the old
server to the new. The former solution is expensive
and disruptive, while the second requires reconfigur-
ing the clients to be aware of the new server. Simi-
larly, if an NFS server runs out of storage, the only
way to gain additional space is to upgrade or add an
additional server.

Mirage implements a Virtual Server abstraction that
solves these system administration problems. Clients
perceive a single NFS server, unaware that it is actu-
ally a virtual server that is the aggregation of the real



NFS servers. Files and file systems can be moved
from one NFS server to another without reconfigur-
ing the clients. Similarly, new NFS servers can be
deployed without the clients’ knowledge. All that is
required is to reconfigure Mirage to include the new
server in its virtualization. By hiding the server con-
figuration details from the clients, Mirage allows
NFS to scale to large numbers of servers without a
overwhelming increase in system administration
complexity.

Mirage virtualizes an NFS server such that the IP
address of the virtual server is the IP address of the
Mirage router. Client NFS requests are delivered to
the Mirage router, which rewrites the requests and
forwards them to the appropriate NFS server. The
clients are unaware that Mirage is a router, or that it
is aggregating multiple NFS servers into a single
virtual server. No client modifications are necessary,
which is advantageous because the NFS client proto-
col is usually implemented as an integral part of the
host operating system on the client computer. To
modify the NFS implementation would require in-
stalling a custom kernel on the client computer, a task
that is beyond the abilities of most end users, and
inconvenient for most system administrators.

Mirage also supports unmodified servers. Server
modification is infeasible because many NFS servers
are commercial products and contain proprietary
code. Commercial servers also provide additional
features such as snapshots, which not only are com-
plicated to implement, but protected by patents. Fur-
thermore, since Mirage doesn’t require server modi-
fications and exists outside of the server, it is always
possible to access the NFS servers directly if Mirage
suffers a failure or is otherwise unavailable.

Mirage contains support for preventing Denial of
Service (DoS) attacks on the NFS protocol. A DoS
attack is one in which a malicious client overwhelms
the server with requests, preventing legitimate clients
from accessing the server. These attacks may not be
detected by existing DoS mechanisms because they
may generate very little network traffic, yet induce a
high load on the server. The request might be quite
small, but require the NFS server a lot of effort to
process. Mirage mitigates DoS attacks by ensuring
that each NFS client receives a fair share of the serv-
ers’ resources.

Mirage is designed to run on a programmable net-
work router [Gottlieb02]. It has a minimal amount of
state, and is able to recover its state automatically
after a crash. Mirage operates by re-writing packet
contents based on table-lookups, and therefore intro-

duces a minimal amount of overhead to the packet
processing. We have developed two prototype im-
plementations, one as a user-level NFS proxy, and
another as a Linux kernel module. The kernel module
version has only a 7% slowdown of a large compila-
tion benchmark over that of a simple IP router. We
believe this to be an acceptable overhead for the
benefits that Mirage provides.

2 NFS

Mirage implements the NFS protocol, version 2. The
NFS protocol is based upon SUN Remote Procedure
Call (RPC) [Sun88], and therefore uses a re-
quest/reply paradigm for communication between the
clients and the servers. The protocol uses handles to
represent files, directories, and other file system ob-
jects. An NFS handle is a 32-byte quantity that is
generated by the server and opaque to the client. The
client receives the handle for the root directory of a
file system when it mounts that file system. The
mount request includes the name of the file system to
be mounted (the mount point). The NFS server
checks the mount request for the appropriate security
and authentication and then issues a reply containing
the handle for the root directory of the file system. A
client uses a handle to access the contents of its asso-
ciated object, as well as to obtain handles for addi-
tional objects.

An NFS client obtains a handle for a desired object in
an iterative fashion. It works its way through the de-
sired pathname one component at a time, sending a
lookup request to the server containing the handle of
the current directory and the name of the desired
component to the server, and receiving back a handle
for the component. For example, to get a handle for
the file /foo/bar, the client first sends a lookup re-
quest to the server containing root file handle and the
string “foo”, and receives back a handle for that di-
rectory. The client then sends then a lookup request
containing the handle for /foo and the string “bar”,
and receives back the handle for /foo/bar. The client
then uses the handle to read and write the file. Figure
2 illustrates the sequence of events required to read
the file /home/fred/photo.

Client Request Server Reply
Mount(“/home”) handlepgme
Lookup(handley, ., “fred”) handlegy
Lookup(handleg.q, “photo”) handle et
Read(handle e, 0-1024) First 1024 bytes
Read(handley,, 1024-2048) Next 1024 bytes

Figure 2: Sequence of NFS client requests and server replies to
read the first 2048 bytes of /home/fred/photo.



The use of handles in the NFS protocol poses two
problems for Mirage. First, the NFS server generates
handles however it desires, as long as different ob-
jects have different handles. Typically, the NFS
server will encode information in the handle that
identifies the location of the object in the server’s
internal file system, improving access performance.
The handles are opaque to the client, however, so it is
unaware of what information the handle holds. Since
Mirage virtualizes multiple NFS servers into a single
server, it must ensure that different objects have dif-
ferent handles, even if the objects reside on different
NFS servers. Mirage has no control over how the
servers create their handles, so there is no way for
Mirage to ensure that the handles generated by the
servers do not conflict. As a result, Mirage must vir-
tualize the NFS handle space by creating its own
(virtual) handles for objects, and mapping between its
virtual handles and the physical handles used by the
servers. This requires Mirage to maintain state about
the mapping, increasing Mirage’s complexity. Virtual
handles and how they are managed in Mirage is de-
scribed in more detail in Section 3.2.

The second handle-related issue that affects Mirage is
once a client has a handle, it may use the handle in-
definitely to access the associated object. The client
never needs to refresh the handle, therefore the server
cannot subsequently change the handle contents. If
the server crashes and reboots, it may no longer have
information about handles issued before the crash,
causing it to return “stale handle” errors to the client.
This causes the client to re-lookup the handle, if pos-
sible. Handle longevity is an issue for Mirage be-
cause it means that not only must Mirage maintain
the mapping from a virtual handle to a physical han-
dle indefinitely, but Mirage must also be able to re-
construct that mapping after a crash. If Mirage did
not reconstruct the mapping, then Mirage would have
to return a “stale handle” error to the client, causing
Mirage to no longer be transparent to the client. Mi-
rage’s crash recovery mechanism is described in
more detail in Section 3.3.

3 Mirage

Mirage addresses the NFS scalability problem by
virtualizing multiple NFS servers as a single NFS
server. This virtualization is entirely transparent to
the client and the servers, so the clients are not aware
they are dealing with a collection of servers. There
are several issues that Mirage must resolve, including
the abstraction presented to the clients, how virtual
handles are maintained and validated, and how Mi-
rage recovers from crashes.

3.1 Virtual Server Abstraction

There are at least two possibilities for the virtual
server abstraction presented by Mirage. The simplest
is that the set of mount points exported by the virtual
server is the union of the sets of mount points ex-
ported by the underlying NFS servers (Figure 3).
When the Mirage router receives a mount request it
forwards the request to all of the NFS servers that it
virtualizes. The server that exports the desired mount
point will return its root handle, while the other serv-
ers return errors. Mirage generates a virtual handle,
associates it with the root handle provided by the
server, and returns it to the client. In this way the
client can access the entire union of the mount points
and believes it is communicating with one larger
server. The advantage of this approach is that it re-
quires a relatively small amount of state and proc-
essing on Mirage to implement. The Mirage router
must simply associate different virtual handles with
different servers, so that requests are directed prop-
erly. When a new virtual handle is created via a
lookup on an existing handle, the new handle is asso-
ciated with the same server as the existing handle.
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Virtualized Mount Points
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Figure 3: The set of mount points exported by the Mirage virtual
server is the union of the sets of mount points exported by the
individual NFS servers.

The downside of this approach is that the sets of
mount points exported by the servers must be dis-
joint. Suppose two servers export mount points with
the same name. What should the virtual server ex-
port? An alternative virtual server abstraction that
addresses this issue is to export the union of the file
system namespaces (Figure 4). For mount points that
overlap, the virtual server exports a single mount
point whose name space merges the name spaces of
the individual mount points. When the client mounts
an overlapping mount point, subsequent accesses to
that file system must be directed to the proper NFS
server on a case-by-case basis. This approach allows
for more flexibility in the organization of the under-
lying servers, but increases the virtual server’s com-



plexity because it must map virtual handles to NFS
servers individually. If a new virtual handle is created
using a lookup on an existing handle, it is possible
that the new handle should be associated with a dif-
ferent server than the existing handle. Furthermore,
this approach introduces semantic problems if there
are name conflicts in the underlying file systems.
Suppose a directory on one NFS server has the same
name as a file on another server. What type of object
should the clients see? It isn’t obvious that there is a
correct answer to this problem.
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Figure 4: The virtual server exports file systems whose name-
spaces merge the namespaces of the underlying exported file sys-
tems.

The current Mirage prototype uses the former ap-
proach of exporting the union of the mount points
exported by the NFS servers. This approach is sim-
pler to implement, demonstrates the most of the ad-
vantages of a virtual NFS server, and doesn’t have
the semantic problem of naming conflicts within file
namespaces. We are currently experimenting with the
“union of file namespaces™ approach and have a par-
tial implementation in Mirage. Its viability and value
is an area of future work, however.

3.2 Virtual Handle Mapping

One of the core functions of the Mirage router is to
map between the file handles produced by the Mirage
router and the file handles produced by the NFS serv-
ers (Figure 5). The clients cannot be presented with
the NFS server handles directly because there is no
guarantee that the NFS servers won’t generate the
same handle for different objects. For this reason,
Mirage generates its own file handles that uniquely
identify objects. We refer to the file handles gener-
ated by Mirage as virtual file handles (VFH), and
those generated by the NFS servers as physical file
handles (PFH). Mirage stores the mapping between a
VFH and a PFH in a memory-resident handle table.
When Mirage receives an NFS request from a client,
Mirage looks up the VFH in the handle table to de-

termine the proper server and PFH for the request.
Mirage then rewrites NFS request using the PFH and
forwards it to the server.

Virtual Handles Physical Handles

Figure 5: The Mirage router maps between the virtual file handles
used by the clients and the physical file handles used by the NFS
servers.

Mirage must perform a reverse mapping on NFS re-
plies. Each PFH in a reply must be mapped to the
appropriate VFH before the reply is forwarded to the
client. The most common reply to contain a PFH is
the reply to the Lookup request that is used to resolve
a file name into a file handle. Mirage looks up the
PFH contained in the reply in the handle table and
rewrites the NFS reply with the correct VFH before
forwarding the reply to the client. If this is the first
time the PFH has been used, then Mirage generates
the new VFH and stores it in the handle table.

[ vw [over[sm| PN | pFs | mcH | HVC |
0 T 6 8 12 16 20 2

Figure 6: Format of a virtual file handle. Offsets are in bytes.

The handle table is a concern because it represents
state on the Mirage router that consumes memory
resources and must be recovered after a crash. It also
requires processing to look up handles in the table.
Mirage minimizes the state and processing resources
of the table by encoding information in the VFH
(Figure 6). The VFH is a 32-byte quantity that is
opaque to the client, make all 32 bytes available for
Mirage’s use. Mirage encodes the following infor-
mation in the VFH (Figure 6):

Virtual Inode Number (VIN): Every object has a
unique VIN.

Server ID (SID): The SID identifies the NFS server
that stores the object associated with the VFH.

Handle Version (HVER): The handle version num-
ber allows multiple handles to be issued for the same
object. This is used by the DoS prevention mecha-
nism to invalidate compromised handles (Section
4.4).

Physical Inode Number (PIN) and Physical File
System ID (PFS): The PIN is the inode number of



the object as assigned by the NFS server, and the PFS
is the file system ID on the server. These two fields
thereby uniquely identify an object within the physi-
cal file server and are used during recovery (Section
3.3). The triple (SID, PIN, PFS) uniquely identifies
an object within all of Mirage.

Mount Checksum (MCH): The MCH is a 32-bit
checksum of the name of the mount point associated
with the VFH. The MCH speeds up Mirage recovery
(Section 3.3).

Handle Validation Checksum (HVC): The HVC is a
cryptographically secure checksum that includes the
other fields of the VFH and prevents clients from
forging VFHs (Section 3.4).

3.3 Mirage Crash Recovery

If a traditional IP router fails, the Internet routes
packets around it. This process is transparent and the
communicating parties are not aware that their traffic
has shifted from one router to another. Since Mirage
is an NFS router, Mirage must provide the same de-
gree of transparency. Clients and servers should not
be aware of Mirage router failures, in the sense that
NFS service will be unavailable while Mirage is
down, but will resume once Mirage reboots without
any special processing on the part of the clients or the
SETVers.

The biggest issue with recovering from a Mirage
crash is recovering the contents of the handle table.
Mirage simplifies this process by ensuring that the
contents of the handle table represent soft state. Soft
state is state that can be discarded or lost because it
can subsequently be regenerated. Hard state, on the
other hand, must be protected at all costs because it
cannot be regenerated if lost and will affect the cor-
rect functioning of the system. This usually means
maintaining multiple copies of the hard state, either
on redundant computers or on backup media. Mirage
avoids the problems of hard state by ensuring that the
contents of the handle table can be regenerated by
existing mechanisms in the NFS protocol. This al-
lows Mirage to lose the handle table during a crash,
or discard part of the table if it gets too large, without
affecting correctness.

Mirage uses a uniform mechanism for dealing with
lost handle table state, that deals with handle table
information lost in a crash, as well as handle table
entries discarded because the table grew too large. If
a client presents a VFH that is not found in the handle
table, Mirage initiates handle recovery. The first step

is to ensure that the VFH has not been forged (Sec-
tion 3.4). Once the VFH has been authenticated, the
fields it contains are used to recover the proper server
and PFH to which it should be mapped.

The Server ID (SID) allows Mirage to determine
which server the file came from, and the Physical
File System (PFS) and Physical Inode (PIN) uniquely
identify the file within that server. Ideally, the Mi-
rage router would present this information to the NFS
server and obtain a handle for the object. Unfortu-
nately, the NFS protocol does not include such a
function. Therefore, Mirage is forced to search the
server until it finds an object with the correct PFS
and PIN.

Although searching a server for the correct PFS and
PIN can be a lengthy process, Mirage uses two tech-
niques to speed up the search. First the mount check-
sum (MCH) reduces the file systems that must be
searched. The MCH is a simple 32-bit checksum of
the mount point for the handle. When the client
originally mounted the file system, Mirage computed
the MCH and stored it in the root file handle. From
the point on, every time a name lookup was per-
formed, the MCH was propagated from parent handle
to child handle. Therefore, every handle includes a
valid MCH that will identify the file system to which
the VFH belongs.

During handle recovery, Mirage uses the “exports”
function of the Mount protocol to get a list of all ex-
ported mount points from the NFS server. The
checksum of each mount point is computed, and only
those matching the MCH in the VFH are searched. If
more than one mount point matches, then multiple
file systems may have to be searched, but this should
be infrequent. Normally, the MCH should remove the
vast majority of file systems from consideration.

Once Mirage has used the MCH to determine that a
file system may contain the desired object, Mirage
enumerates all files and directories contained within
that file system looking for one whose PFS and PID
matches. The enumeration is performed by issuing
“Read Directory” NFS requests. The Read Directory
calls are issued recursively in a depth-first search
order. The Lookup NFS function is used to get the
PFH, PFS and PIN for every object until the desired
object is found, allowing the handle table to be up-
dated with the VFH to PFH mapping.

Mirage speeds up the handle recovery process by
caching the PFH, PFS, and PIN information obtained
during the recursive search. This information is used
during subsequent handle recoveries to avoid con-



tacting the server, and substantially speed up recov-
ery.

Although handle recovery is potentially a slow proc-
ess, it is guaranteed to find the correct PFH for a
VFH, allowing Mirage crashes to be transparent to
the clients and servers. Handle recovery could be
made nearly instantaneous if the NFS server provided
a function that mapped from PFS/PIN to PFH. Such a
function would probably be simple to implement, but
would obviously require server modifications, which
violates Mirage’s goal of using unmodified NFS
servers.

3.4 Handle Validation

Mirage’s handle recovery mechanism is itself a po-
tential target for a DoS attack because every time
Mirage is presented with a VFH that is not in the
handle table it begins the expensive handle recovery
process. A malicious client could wreak havoc on
Mirage by flooding it with invalid file handles. Mi-
rage uses the HVC field in the VFH to protect itself
from such an attack. The HVC stored in a VFH is a
cryptographically secure hash of a Mirage secret, the
client’s IP address, and the other fields of the VFH.
The MDS5 algorithm [Rivest92] is used to generate
the cryptographically secure hash. MDS5 has the
property that it is computationally infeasible to gen-
erate two blocks of data that hash to the same value.
When Mirage generates a VFH it computes the asso-
ciated HVC and stores it in the VFH.

When a Mirage router receives a VFH it first com-
putes the HVC for the VFH, source IP address, and
Mirage secret, and compares the computed HVC with
the HVC stored in the VFH. If they match, the handle
is valid. Otherwise the handle is invalid, and the re-
quest discarded. By including a Mirage secret in the
hash, Mirage ensures that no one but a legitimate
Mirage router can generate a VFH with a valid HVC.
The system administrator configures the Mirage se-
cret into the Mirage router, much like the “root”
password is configured on a Unix computer. This
secret can either be stored in persistent storage on the
router (preferably), or typed every time the Mirage
router reboots.

The HVC also includes the IP address of the client
associated with the VFH. Including the IP address in
the HVC ensures that one client is not able to use
another client’s VFH, perhaps obtained by sniffing
on the network. This does not prevent IP spoofing,
however, which requires a separate mechanism to
prevent (Section 4.4).

Finally, the HVC includes the other fields of the VFH
to prevent modification by a malicious client. If these
fields could be modified, then the client could change
the mapping of VFH to PFH and access objects im-

properly.

4 Denial of Service Prevention

A Denial of Service (DoS) attack occurs when mali-
cious clients prevent a resource from being used by
legitimate clients. Attacks range from destructive
attacks that could render the contents of a server
useless, to attacks that merely consume resources in
an attempt to inconvenience other users. Most tech-
niques for preventing DoS attacks focus on the low-
level network protocols, such as TCP. For example,
the TCP SYN attack [Schuba97] is a very popular
form of distributed denial of service attack that tar-
gets TCP’s connection mechanism. Mirage, on the
other hand, focuses on preventing attacks on the NFS
protocol, since Mirage is an NFS router. Mirage’s
NFS DoS prevention mechanism should be combined
with DoS prevention mechanisms for the lower levels
of the protocol stack, although we have not done so
in our prototype.

A destructive DoS attack is one that denies service by
destroying the underlying resource. Not much can be
done about destructive attacks, other than to ensure
timely backups of important information. For exam-
ple, if an attacker is able to steal the password to an
account on a file server, then the attacker is able to
delete or overwrite files at will. The only way such an
attack can even be detected is when the legitimate
user shows up and notices that data have been com-
promised.

The best way to prevent destructive attacks is through
proper security — ensuring users choose good pass-
words and protect the passwords from theft. The
saving grace of a destructive attack is that only the
files that are owned by the compromised account can
be destroyed. However, once an attacker has gained
access to an account, he is able to carry out a re-
source-consumption attack.

Resource-consumption DoS attacks have the ability
to affect all users of the file server, not just the ac-
count (or accounts) that the attacker may have broken
into. For example, an attacker could flood the server
with useless write requests that consume server re-
sources by causing the server to repeatedly write to
its disk. By causing a bottleneck on the server’s disk,
all legitimate clients will have their productivity af-
fected.



4.1 NFS DoS Scenarios

Mirage’s DoS prevention mechanism is designed to
mitigate DoS attacks on the NFS protocol itself. To
help in understanding what types of attacks Mirage
can and cannot prevent, it is useful to categorize the
different scenarios under which a NFS DoS attack
can occur (Figure 7).

Client Authentication Result
Compromised ?

Yes AUTH_UNIX Attacker can imper-
sonate any user and
delete any object on

the server.

DES or Kerberos Attacker can only
impersonate users
that he can authen-
ticate with the third

party server.

No AUTH_UNIX Attacker can only
impersonate users
for whom he knows
the username and

password.

DES or Kerberos Attacker can only
impersonate users
for whom he knows
the username and
password and can
authenticate with
the third party
server.

Figure 7: Classification of NFS DoS scenarios.

The first classification of scenarios is whether or not
the operating system on the client computer issuing
the attack has been compromised. If a client com-
puter hasn’t been compromised, then the attacker is
running a user-level program that accesses NFS
through system calls. This means that the operating
system is issuing valid NFS requests from valid ports
using valid credentials. An attacker can use an un-
compromised client for an attack, but he must do so
within the framework that the operating system pro-
vides.

The degree of an attack from an uncompromised
computer is bounded by the rules that are enforced by
the operating system. For example, Linux computers
typically issue a maximum of four NFS requests at
once. To issue more than four requests, the computer
must wait for the requests that are outstanding to be
resolved first, leading to an implicit method of flow
control. Furthermore, since the operating system is
creating the NFS requests, it’s safe to assume that the
requests are properly formulated and contain valid

parameters. For example, the user identification that
is sent in the request will pertain to the actual user
account that is logged into the machine.

An attack from a compromised client is more diffi-
cult to handle, but probably more likely. The attack is
more difficult to prevent because there is no longer
any guarantee that the NFS requests issued will prop-
erly follow the NFS protocol, or even be formatted
properly. The attacker can issue bogus requests from
secure port numbers, and present falsified credentials
in the NFS request, making it difficult to determine
the attacker’s true identity. The attacker can issue
hundreds or even thousands of requests in parallel.
The attacker can even spoof IP addresses and imper-
sonate other computers.

The second classification of NFS DoS scenarios is by
the type of authentication used by the NFS protocol
itself. By default, NFS uses AUTH_UNIX, a very
weak authentication method in which the client oper-
ating system presents the user id and group id of the
current user as the authentication credentials. The
server compares these credentials against the user id
and group id of the desired object before granting
access. If a client computer is compromised, then it is
very easy for the attacker to use a forged user id and
thus impersonate any user on the system.

More secure authentication methods such as DES
[DES88] and Kerberos [Steiner88] are available for
NFS and are typically used when high security is
desired. DES and Kerberos use opaque tokens for
authentication that are very difficult to forge. DES
and Kerberos use a trusted third party authentication
server to independently authenticate the clients.

Mirage’s DoS mechanism does not prevent attacks if
the client is compromised and AUTH UNIX authen-
tication is used. This is because security is so mini-
mal that an attacker can delete or corrupt any or all of
the files on the file server, rendering the server use-
less. Mirage can prevent DoS attacks in the other
three scenarios, however, assuming that the attacker
only knows a subset of the valid credentials (i.e.
name and password pairs). If the attacker knows all
of valid credentials, then it is be simple for the at-
tacker to implement a destructive attack that destroys
all files on the server.

4.2 Invalid NFS Request Attack

In an invalid NFS request attack the attacker floods
the NFS with bogus requests that consume server
resources. For example, an attacker could generate



random file handles, causing the server to repeatedly
resolve the handles and bypassing the server’s inter-
nal caches. An attacker could repeatedly attempt to
exceed his disk quota, read past the end of a file, or
write to a file that is read-only. Invalid request at-
tacks fall into two categories: those that contain in-
valid file handles and those that contain valid handles
but invalid operations. Requests that contain forged
file handles are easy for Mirage to detect because the
HVC field will be invalid. Mirage simply computes
the HVC for the presented VFH, and drops the re-
quest if the HVC stored in the VFH does not match
the computed HVC.

Requests that contain valid handles but invalid op-
erations are more difficult to detect. There are various
scenarios in which an invalid operation could be is-
sued but does not constitute an attack. Consider a
situation where one client truncates a file while an-
other client is reading from that same file. Clearly,
this is an example of an error condition, but not nec-
essarily a DoS attack.

One way to deal with invalid request attacks is to
cache the results of all invalid requests so that the
router responds directly to an invalid request rather
than forwarding the invalid request to the server.
Consider the read beyond end of file scenario. If a
client tries to read beyond the end of the file once,
and the file is not modified, then if the client attempts
to read it again, the result will certainly be another
read past end of file error. As long as the router
knows that a request is invalid, it is safe to send the
error reply directly from the router, without bothering
the file server.

In an initial Mirage prototype, we constructed a
cache-based invalid request responding system. The
results of any invalid requests were cached and if the
identical request showed up in the future, Mirage
replayed the same error code that was issued the first
time. The exception was in the case that an operation
occurred that would invalidate an error condition.
Continuing the read past end of file example, any
write operation on the same file caused the “read past
end of file” rejection that was stored in the cache to
be discarded, so that future reads would again be sent
to the server.

We found that this mechanism worked very well for
preventing invalid request attacks. Mirage could be
deployed at the periphery of the network and would
limit the number of invalid requests that made it
through to the file servers. However, we found in our
experimentation that valid request attacks posed a
much greater threat than invalid request attacks, and

that we could develop a mechanism that would han-
dle both cases.

4.3 Valid NFS Request Attacks

In a valid NFS request attack the attacker floods the
server with valid, but spurious, requests. The requests
are designed to consume resources by executing ex-
pensive operations such as creating files or writing
data. For example, an attacker could repeatedly write
to a file causing the server to continually flush data to
its disk. This is loads the server, and diminishes other
clients’ access to the server.

The trouble with a valid request attacks is that it is
difficult to detect. It is difficult to determine that one
client’s stream of requests is doing useful work while
another client’s stream of requests is serving no use-
ful purpose. Mirage finesses this issue by treating it
as a scheduling problem. Rather than detecting and
prevent DoS attacks, Mirage simply ensures that each
client receives a fair share of the server. If there are N
clients using the file server, then each client should
receive 1/N of the server’s resources. If any one cli-
ent attempts to use more than its fair share, then it is
throttled back to enforce fairness.

Allocating a fair share of the server’s resources to
each client is made difficult because different NFS
requests consume different amounts of server re-
sources. For example, a write request will likely con-
sume more server resources than a simple Lookup
request. It isn’t sufficient to simply ensure that all
clients issue requests at the same rate; Mirage must
also take the type of NFS requests into account. For
this reason, the Mirage scheduler does not weight all
requests equally, but rather assigns a higher cost to
more costly requests such as writes and file creations.
In our prototype, the Mirage assigns static costs to
different requests. The costs that are used are a com-
bination of the size of the packet and a penalty for
expensive operations such as creates and writes

(Figure 8).

Request Type Cost

Getattr, Lookup, ReadLink, Read, | packet size
ReadDir, StatFs

Symlink, Rename, Link, Rmdir, Re- | packet size + 500
move

Write packet size + 1000

Create packet size + 2000

Figure 8: NFS request costs.



The current Mirage prototype uses static costs be-
cause they are simple to implement. Ideally, the costs
would be computed dynamically, by monitoring the
time it takes different types of requests to be serviced
by the server. This is an area of ongoing research.

4.4 Stolen Handles

One way for a malicious client to use more than its
fair share of the server’s resources is to issue requests
using handles stolen from other clients, such as by
sniffing the network. In order to use the stolen han-
dle, however, the attacker also has to spoof the IP
address of the owner of the handle. The handle is
protected by the HVC and the HVC includes client’s
IP address. If the attacker doesn’t spoof the IP ad-
dress, then Mirage would detect the invalid HVC and
drop the request. If the attacker does spoof the IP
address, then Mirage cannot detect the invalid handle
directly. If DES or Kerberos authentication is used,
however, then authentication will fail on the server
and the server will return an error. Mirage keeps
track of handles that generated authentication errors
and considers them potentially stolen. Such handles
are stored in a stolen handle table, and a request
containing a stolen handle is assigned a higher cost
than a request that does not. The cost associated with
a stolen handle is increased every time the handle
generates an authentication error.

As a result, only the performance of requests issued
using a stolen handle is degraded. Once Mirage has
flagged a handle as stolen, it never returns the same
handle in an NFS reply. Instead, Mirage increments
the Handle Version Number (HVER) in the handle so
the next time a valid client performs a lookup, a new
handle is generated. This causes legitimate clients to
stop using the stolen handle.

It is possible for a legitimate client to lose time syn-
chronization with the NFS server and cause a DES or
Kerberos authentication error to occur. This is not a
denial of service attack, but is a rarely occurring side-
effect of the DES and Kerberos authentication meth-
ods. Since the weight penalty assigned to stolen han-
dles is proportional to the number of authentication
errors a handle receives, the effect of a single
authentication error has a minimal impact on a valid
client’s performance.

5 Implementation

We have developed two versions of Mirage — a user-
mode Unix process, and a Linux kernel module'.
The user-mode version is used for rapid prototyping,
while the kernel-mode version is used for experi-
mentation. Both are written in C and use the same set
of functions for the core Mirage functionality, but use
different mechanisms for sending and receiving
packets. The core code is responsible for maintaining
the handle table, rewriting packets, and performing
handle recovery. The user-mode process uses sockets
bound to local port numbers to read and write pack-
ets. One implication of this is that the user-mode Mi-
rage cannot modify the UDP and IP headers on the
packets it sends, so that it cannot put the client’s ad-
dresses in the headers. As a result, packets forwarded
to the NFS servers by the user-mode Mirage appear
to come from the Mirage router itself, not the clients.
This means that Mirage is not transparent to the serv-
ers, but is an unavoidable result of using a user-mode
process.

The kernel-mode version of Mirage is implemented
as a Linux kernel module that can be loaded into Silk
[Peterson01]. Silk stands for “Scout in the Linux
Kernel” and is a port of the Scout operating system
[Peterson94] to Linux. Silk provides a flexible mes-
sage passing mechanism that separates packet classi-
fication from protocol processing. Silk uses a path
abstraction for scheduling and resource management.
A path represents a source and sink of packets, along
with the protocol processing necessary when moving
the packets from the source to the sink. A path can be
specialized according to any invariants in its packets.
For example, a path can be created for UDP packets
from a specific source IP address to a specific desti-
nation IP address and port. Since all packets on the
path have the same type (UDP) and the same source
and destination addresses and ports, the path can be
optimized to improve overall performance.

The Silk version of Mirage is implemented as a mod-
ule that sits on top of the UDP module. Mirage uses
three types of paths: client/Mirage, Mirage/server,
and client/server. Client requests arrive on the cli-
ent/Mirage path. The first time Mirage receives a
request from client it creates a path for the requests
from that client. The path is optimized for that client,
and has per-path state that includes the handle table
for the client.

! The  Mirage source code is  available at

http://www.cs.arizona.edu/mirage/.



Once Mirage has decoded the server ID from the
VFH in the request, it rewrites the handle and other
fields of the request appropriately and sends the
packet on the Mirage/server path associated with the
server ID. This path is optimized to send packets to
the particular NFS server, and rewrites the destina-
tion address in the request to be the address of the
NFS server. The source address is left unchanged,
however, so that to the server the request appears to
come from the client.

Replies from the server arrive on the client/server
path. Mirage changes the source address in the reply
to Mirage’s IP address. Thus it appears to the client
that the reply came from Mirage, as is necessary for
the virtual server abstraction.

Mirage’s DoS prevention mechanism uses “charge-
based proportional scheduling” [Maheshwari95].
Each client has a bank balance, and each client has a
queue of pending requests (up to 16 maximum). The
scheduler iterates through the clients in a round-robin
fashion, and if the current client has a pending re-
quest and a positive bank balance, then the request is
sent to the NFS server and the bank balance reduced
by the cost of the request. If there are pending re-
quests but all clients have negative bank balances,
then all bank balances are increased by an equal
amount.

6 Performance

We measured Mirage performance using both micro-
benchmarks that show the raw Mirage performance,
and macro-benchmarks that use an end-to-end test to
show the overall performance in a real-world situa-
tion. We ran the tests on the kernel-mode version of
Mirage, running on Linux 2.4.7 and Silk 3.0. The
configuration included three computers consisting of
an NFS client and an NFS server connected to a Mi-
rage router via 100 Mbs Ethernet. The client and
router were 1.7 GHz Pentium 4 machines, while the
server was a 2x600 MHz Pentium 3. Each machine
had 256 MB of memory. All results reported are the
average of 5 runs.

6.1 Micro-Benchmark

The micro-benchmark measures the latency and
bandwidth of the Mirage router. The benchmark con-
sists of sending 128-byte* Lookup requests from the

> All sizes reported for NFS packets are the size of the NFS header,
RPC header, and payload.
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client to the server. For comparison purposes, the
performance of a standard IP router implemented in
Silk is also presented. Two versions of the IP router
were measured. The standard IP router provided by
Silk uses “raw paths” and a level-3 cache to forward
packets from the input network interface to the output
interface. The details of this aren’t relevant to this
paper, but suffice it to say that these two mechanisms
bypass most of the Silk functionality and simply for-
ward packets between network interfaces at interrupt
level. Although the “raw” IP forwarding numbers are
indicative of a real IP router, we also measured Mi-
rage against a Silk-based IP router that uses the stan-
dard Silk path mechanism to forward packets. This
allows Mirage’s overhead to be measured. In either
case, it is important to note that Mirage’s perform-
ance does not affect the performance of forwarding
other types of packets in the same router.

The latency of the micro-benchmark was measured as
the time from when a packet was received by Silk to
the time that Silk sent the packet, and is shown in
Figure 9. As can be seen, Mirage processing intro-
duces a significant latency as compared to IP for-
warding using “raw” paths, but a more acceptable
amount for IP forwarding using standard paths. From
this we conclude that 10 us of Mirage’s request la-
tency is due to path overhead, and only 5 us is due to
Mirage processing. Improving Mirage’s latency is an
area of ongoing work.

Request (us) Reply (us)
Silk IPFW (raw) 2 2
Silk IPFW (path) 12 11
Mirage 17 11

Figure 9: Time to forward a 128-byte Lookup request and reply.

The throughput test measures the rate at which the
different routers forward packets. The client gener-
ates an offered load on the router by sending packets
of various sizes to the router at a specific rate. The
server counts how many packets are successfully
received, and the difference between the packets sent
and the packets received is the number of packets
dropped by the router. The offered load is varied to
determine at what point the router begins to drop
packets, and how the forwarding rate behaves as the
offered load is increased beyond that point.
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Figure 10: Router throughput as a function of attempted through-
put (offered load).

Figure 10 shows the results of the throughput test. If
the router doesn’t drop packets then the actual
throughput of the packets that reach the server
matches the attempted throughput of the packets sent
by the client, producing a diagonal line. Once the
router starts to drop packets, the actual throughput
falls below the diagonal. With 128-byte packets, Mi-
rage starts to drop packets at an offered load of about
21 Mb/s, whereas IP forwarding doesn’t drop packets
until 37 Mb/s. Similarly, with 256-byte packets Mi-
rage starts to drop packets at about 40 and IP for-
warding starts to drop packets at about 71 Mb/s. The
points at which the two systems begin to drop packets
correspond to packet rates of about 20,000 pack-
ets/second for Mirage and about 40,000 pack-
ets/second for IP forwarding. Mirage is only able to
sustain about half the packet rate of IP forwarding,
due to the overhead of Mirage’s processing.

As the attempted throughput is increased beyond the
point that the router drops packets the actual
throughput begins to drop off as the router spends
more and more time handling the incoming packets,
only to drop them. As a result, the actual throughput
drops towards zero as the router approaches live-
lock.

At larger packet sizes the 100 Mbps Ethernet link is
the bottleneck rather than the router. For example,
for 768-byte packets, the physical link is only capable
of transporting approximately 15,000 packets per
second. Since Mirage can sustain 20,000 pack-
ets/second, it can operate at full line speed.

6.2 Macro-Benchmarks

Although the micro-benchmark is illustrative of Mi-
rage’s performance as compared to an IP router. A
real NFS server cannot process NFS requests at the
same rate than an IP router can route them, so Mi-
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rage’s effect on NFS performance is likely to be
much less pronounced.

The first macro-benchmark we used to measure Mi-
rage’s effect on NFS performance is an end-to-end
bandwidth that consists of copying a 256 MB file
from /dev/zero to an NFS file server and reading it
back. The block size used for reads and writes is
1024 bytes.

Write (MBs) Read (MBs)
Silk IPFW 2.46 2.60
Mirage 235 241

Figure 11: Bandwidth of reading and writing a 256 MB file.

The end-to-end bandwidth test shows that Mirage’s
bandwidth is about 5% lower on writes and 7% lower
on reads (Figure 11). The decrease in performance is
due to the additional latency that Mirage requires on
the router, which prevents the client and server from
keeping as much data in flight as with IP forwarding.
Since Linux limits NFS to four requests at once, the
time taken to receive a reply delays the next request,
and Mirage’s higher delay therefore reduces band-
width.

The second macro-benchmark represents a more re-
alistic use of Mirage, and consists of unpacking and
compiling the Linux 2.4 kernel distribution. This test
creates over 10,000 individual files, and causes the
client to issue approximately 472,000 NFS requests.
The experiment took 7:52 minutes to complete using
Silk IPFW, and 8:24 to complete on Mirage, a differ-
ence of 32 seconds or 7%. Thus, on a real-world
workload Mirage induces an overhead of 7%, which
we consider acceptable given the benefits of using
Mirage.

6.3 DoS Benchmark

The DoS benchmark measures Mirage’s ability to
prevent DoS attacks. In this experiment, two client
machines send request to Mirage. One client is a
“good” client performing simulated useful work con-
sisting of a mix of Lookup, GetAttr, and Write re-
quests. The other client is an attacker that executes a
rapid mix of simultaneous write requests. Figure 12
shows the throughput of the good client (in terms of
successful requests per second) as the number of the
attacker’s simultaneous requests is varied, both on
Mirage with DoS prevention enabled and with it dis-
abled for comparison.
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Figure 12: Throughput of “good” client while Mirage undergoes
DoS attacks. Mirage’s DoS mechanism prevents the good client’s
throughput from degrading. Note that the x-axis is logarithmic.

As can be seen, Mirage’s DoS prevention mechanism
allows the good client to maintain about 1500 suc-
cessful requests independent of the size of the attack,
a little more than half of its rate with no attack. This
is to be expected, since the good client must share the
server with the attacker. If DoS prevention is turned
off, however, the number of successful requests drops
off precipitously as the number of simultaneous at-
tacks increases, reaching almost zero when there are
64 simultaneous attacks.

7 Related Work

Base [Rodrigues01] provides Byzantine fault toler-
ance for the NFS protocol by replicating objects on
multiple NFS servers. Base is implemented via a user
level relay process that mediates communication
between the NFS client built into the operating sys-
tem and the NFS servers. The idea is to use a hetero-
geneous collection of NFS servers, so that imple-
mentation-specific software bugs do not cause all the
servers to fail. Base uses a handle translation mecha-
nism similar to Mirage where the relay process
translates client handles to server handles via a table.
The Mirage handle recovery mechanism of using an
exhaustive search is derived from Base. Unlike Mi-
rage, multiple Base relay processes coordinate their
actions, so that a client can access its files through
any of them.

Deceit [Siegal90] is a distributed file system that
combines multiple servers to provide the illusion of a
single large NFS server. Deceit differs from Mirage
in that it requires modified servers. The Deceit serv-
ers provide a superset of the NFS protocol and re-
quire the ISIS protocol for server-to-server commu-
nication. Deceit requires each server to function as
both a server for its own files and as a router to for-
ward requests from a client to another server’s files.
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To use the automatic failover and version control
features, Deceit requires client modification as well.

Slice [Anderson] provides request routing in which a
micro-proxy functions as a switch that routes client
requests to a group of bulk data servers and file man-
agers. Slice uses a proprietary OBSD protocol for
communication between the micro-proxy and the
bulk data servers. The file managers are distinct from
the bulk data servers and manage the directory
structure and metadata of the file system. A drawback
of Slice is that standard NFS servers cannot be used.

Locality-Aware Request Distribution [Pai98] is a
mechanism for routing requests to servers to enhance
load distribution and locality. LARD uses a front-end
that performs routing, and a collection of back-end
servers that each export identical data. The key ob-
servation with LARD is that the collection of servers
will be most efficient if the requests always hit in the
cache of the back-end servers. If the current working
set were divided amongst the back-end servers in
round-robin manner, then the back-end servers would
each have to cache the entire working set. Instead, the
LARD front-end divides the working set into a col-
lection of subsets and assigns each subset to one
back-end server. This allows the collection of servers
to support a working set that is the sum of their indi-
vidual caches. Both LARD and Mirage use applica-
tion-level data within the requests to determine which
back-end server the request will be routed to, and
both LARD and Mirage operate transparently to the
clients and servers.

8 Future Work

We are currently working on a full implementation of
the namespace union. The namespace union presents
many issues that are not present in the mount point
union. While the mount point union allows the deci-
sion of which server contains a file to be made at
mount time, the namespace union requires the deci-
sion to be made potentially on a file-by-file basis.

Currently Mirage routes packets between different
subnets. In the real world, switches are used much
more often than routers, and we are experimenting
with developing a version of Mirage that functions
more like a switch than a router. A Mirage switch
would be more lightweight than the Mirage router,
thus being able to handle more traffic and producing
less latency. We hope to implement the Mirage
switch using the Intel IXP1200 hardware [Intel00],
which should allow Mirage to operate at line speeds
and without measurable latency.



Multiple Mirage routers could coordinate to increase
performance and mask failures. If a Mirage router
were to fail, then automatic failover mechanisms
would divert traffic to a backup Mirage router. Simi-
larly, if one Mirage router undergoes a DoS attack,
legitimate traffic would be routed to a different
router. The major difficulty with multiple Mirage
routers is the communication between them. For ex-
ample, if a client migrates from one router to another,
the VFH to PFH cache on the new router may not
contain the entries that the client needs. Although the
Mirage recovery mechanism would be able to ensure
correctness, it would be inefficient to be constantly
performing recovery every time a client was mi-
grated. Similarly, the DoS scheduler would need to
divide bandwidth between routers in addition to di-
viding it between clients.

8 Conclusion

Mirage is an NFS router that provides a virtual NFS
server abstraction, aggregating the resources of mul-
tiple unmodified NFS servers for use by unmodified
clients. Both the clients and the servers are unaware
of Mirage’s presence, yet Mirage allows files and file
systems to be moved between NFS servers, and new
NFS servers to be deployed, without reconfiguring
the clients. In this way it greatly simplifies NFS sys-
tem administration.

Mirage also protects against DoS attacks. Mirage
ensures that each client is given an equal share of the
servers’ resources. Malicious clients can waste server
resources, but never more than their share, and thus
they are unable to prevent legitimate clients from
accessing the NFS servers.

Experiments with Mirage show that packet latencies
are significantly higher than in a standard IP router
on the same hardware, but that bandwidth is only
reduced by 5-7%. A realistic workload is only 7%
slower using Mirage than using the NFS server di-
rectly. Mirage’s low overhead, combined with the
benefits of the virtualized server abstraction, demon-
strate the viability of using an NFS router to build a
scalable and versatile NFS system.
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